1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
6 #include <linux/export.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
27 * Inode locking rules:
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
42 * inode->i_sb->s_inode_list_lock
44 * Inode LRU list locks
50 * inode->i_sb->s_inode_list_lock
57 static unsigned int i_hash_mask __read_mostly
;
58 static unsigned int i_hash_shift __read_mostly
;
59 static struct hlist_head
*inode_hashtable __read_mostly
;
60 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
66 const struct address_space_operations empty_aops
= {
68 EXPORT_SYMBOL(empty_aops
);
71 * Statistics gathering..
73 struct inodes_stat_t inodes_stat
;
75 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
76 static DEFINE_PER_CPU(unsigned long, nr_unused
);
78 static struct kmem_cache
*inode_cachep __read_mostly
;
80 static long get_nr_inodes(void)
84 for_each_possible_cpu(i
)
85 sum
+= per_cpu(nr_inodes
, i
);
86 return sum
< 0 ? 0 : sum
;
89 static inline long get_nr_inodes_unused(void)
93 for_each_possible_cpu(i
)
94 sum
+= per_cpu(nr_unused
, i
);
95 return sum
< 0 ? 0 : sum
;
98 long get_nr_dirty_inodes(void)
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty
> 0 ? nr_dirty
: 0;
106 * Handle nr_inode sysctl
109 int proc_nr_inodes(struct ctl_table
*table
, int write
,
110 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
112 inodes_stat
.nr_inodes
= get_nr_inodes();
113 inodes_stat
.nr_unused
= get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
118 static int no_open(struct inode
*inode
, struct file
*file
)
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
131 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
133 static const struct inode_operations empty_iops
;
134 static const struct file_operations no_open_fops
= {.open
= no_open
};
135 struct address_space
*const mapping
= &inode
->i_data
;
138 inode
->i_blkbits
= sb
->s_blocksize_bits
;
140 atomic_set(&inode
->i_count
, 1);
141 inode
->i_op
= &empty_iops
;
142 inode
->i_fop
= &no_open_fops
;
143 inode
->__i_nlink
= 1;
144 inode
->i_opflags
= 0;
146 inode
->i_opflags
|= IOP_XATTR
;
147 i_uid_write(inode
, 0);
148 i_gid_write(inode
, 0);
149 atomic_set(&inode
->i_writecount
, 0);
151 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
154 inode
->i_generation
= 0;
155 inode
->i_pipe
= NULL
;
156 inode
->i_bdev
= NULL
;
157 inode
->i_cdev
= NULL
;
158 inode
->i_link
= NULL
;
159 inode
->i_dir_seq
= 0;
161 inode
->dirtied_when
= 0;
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 inode
->i_wb_frn_winner
= 0;
165 inode
->i_wb_frn_avg_time
= 0;
166 inode
->i_wb_frn_history
= 0;
169 if (security_inode_alloc(inode
))
171 spin_lock_init(&inode
->i_lock
);
172 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
174 init_rwsem(&inode
->i_rwsem
);
175 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
177 atomic_set(&inode
->i_dio_count
, 0);
179 mapping
->a_ops
= &empty_aops
;
180 mapping
->host
= inode
;
183 atomic_set(&mapping
->i_mmap_writable
, 0);
184 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
185 mapping
->private_data
= NULL
;
186 mapping
->writeback_index
= 0;
187 inode
->i_private
= NULL
;
188 inode
->i_mapping
= mapping
;
189 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
194 #ifdef CONFIG_FSNOTIFY
195 inode
->i_fsnotify_mask
= 0;
197 inode
->i_flctx
= NULL
;
198 this_cpu_inc(nr_inodes
);
204 EXPORT_SYMBOL(inode_init_always
);
206 void free_inode_nonrcu(struct inode
*inode
)
208 kmem_cache_free(inode_cachep
, inode
);
210 EXPORT_SYMBOL(free_inode_nonrcu
);
212 static void i_callback(struct rcu_head
*head
)
214 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
215 if (inode
->free_inode
)
216 inode
->free_inode(inode
);
218 free_inode_nonrcu(inode
);
221 static struct inode
*alloc_inode(struct super_block
*sb
)
223 const struct super_operations
*ops
= sb
->s_op
;
226 if (ops
->alloc_inode
)
227 inode
= ops
->alloc_inode(sb
);
229 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
234 if (unlikely(inode_init_always(sb
, inode
))) {
235 if (ops
->destroy_inode
) {
236 ops
->destroy_inode(inode
);
237 if (!ops
->free_inode
)
240 inode
->free_inode
= ops
->free_inode
;
241 i_callback(&inode
->i_rcu
);
248 void __destroy_inode(struct inode
*inode
)
250 BUG_ON(inode_has_buffers(inode
));
251 inode_detach_wb(inode
);
252 security_inode_free(inode
);
253 fsnotify_inode_delete(inode
);
254 locks_free_lock_context(inode
);
255 if (!inode
->i_nlink
) {
256 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
257 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
260 #ifdef CONFIG_FS_POSIX_ACL
261 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
262 posix_acl_release(inode
->i_acl
);
263 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
264 posix_acl_release(inode
->i_default_acl
);
266 this_cpu_dec(nr_inodes
);
268 EXPORT_SYMBOL(__destroy_inode
);
270 static void destroy_inode(struct inode
*inode
)
272 const struct super_operations
*ops
= inode
->i_sb
->s_op
;
274 BUG_ON(!list_empty(&inode
->i_lru
));
275 __destroy_inode(inode
);
276 if (ops
->destroy_inode
) {
277 ops
->destroy_inode(inode
);
278 if (!ops
->free_inode
)
281 inode
->free_inode
= ops
->free_inode
;
282 call_rcu(&inode
->i_rcu
, i_callback
);
286 * drop_nlink - directly drop an inode's link count
289 * This is a low-level filesystem helper to replace any
290 * direct filesystem manipulation of i_nlink. In cases
291 * where we are attempting to track writes to the
292 * filesystem, a decrement to zero means an imminent
293 * write when the file is truncated and actually unlinked
296 void drop_nlink(struct inode
*inode
)
298 WARN_ON(inode
->i_nlink
== 0);
301 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
303 EXPORT_SYMBOL(drop_nlink
);
306 * clear_nlink - directly zero an inode's link count
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink. See
311 * drop_nlink() for why we care about i_nlink hitting zero.
313 void clear_nlink(struct inode
*inode
)
315 if (inode
->i_nlink
) {
316 inode
->__i_nlink
= 0;
317 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
320 EXPORT_SYMBOL(clear_nlink
);
323 * set_nlink - directly set an inode's link count
325 * @nlink: new nlink (should be non-zero)
327 * This is a low-level filesystem helper to replace any
328 * direct filesystem manipulation of i_nlink.
330 void set_nlink(struct inode
*inode
, unsigned int nlink
)
335 /* Yes, some filesystems do change nlink from zero to one */
336 if (inode
->i_nlink
== 0)
337 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
339 inode
->__i_nlink
= nlink
;
342 EXPORT_SYMBOL(set_nlink
);
345 * inc_nlink - directly increment an inode's link count
348 * This is a low-level filesystem helper to replace any
349 * direct filesystem manipulation of i_nlink. Currently,
350 * it is only here for parity with dec_nlink().
352 void inc_nlink(struct inode
*inode
)
354 if (unlikely(inode
->i_nlink
== 0)) {
355 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
356 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
361 EXPORT_SYMBOL(inc_nlink
);
363 static void __address_space_init_once(struct address_space
*mapping
)
365 xa_init_flags(&mapping
->i_pages
, XA_FLAGS_LOCK_IRQ
| XA_FLAGS_ACCOUNT
);
366 init_rwsem(&mapping
->i_mmap_rwsem
);
367 INIT_LIST_HEAD(&mapping
->private_list
);
368 spin_lock_init(&mapping
->private_lock
);
369 mapping
->i_mmap
= RB_ROOT_CACHED
;
372 void address_space_init_once(struct address_space
*mapping
)
374 memset(mapping
, 0, sizeof(*mapping
));
375 __address_space_init_once(mapping
);
377 EXPORT_SYMBOL(address_space_init_once
);
380 * These are initializations that only need to be done
381 * once, because the fields are idempotent across use
382 * of the inode, so let the slab aware of that.
384 void inode_init_once(struct inode
*inode
)
386 memset(inode
, 0, sizeof(*inode
));
387 INIT_HLIST_NODE(&inode
->i_hash
);
388 INIT_LIST_HEAD(&inode
->i_devices
);
389 INIT_LIST_HEAD(&inode
->i_io_list
);
390 INIT_LIST_HEAD(&inode
->i_wb_list
);
391 INIT_LIST_HEAD(&inode
->i_lru
);
392 __address_space_init_once(&inode
->i_data
);
393 i_size_ordered_init(inode
);
395 EXPORT_SYMBOL(inode_init_once
);
397 static void init_once(void *foo
)
399 struct inode
*inode
= (struct inode
*) foo
;
401 inode_init_once(inode
);
405 * inode->i_lock must be held
407 void __iget(struct inode
*inode
)
409 atomic_inc(&inode
->i_count
);
413 * get additional reference to inode; caller must already hold one.
415 void ihold(struct inode
*inode
)
417 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
419 EXPORT_SYMBOL(ihold
);
421 static void inode_lru_list_add(struct inode
*inode
)
423 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
424 this_cpu_inc(nr_unused
);
426 inode
->i_state
|= I_REFERENCED
;
430 * Add inode to LRU if needed (inode is unused and clean).
432 * Needs inode->i_lock held.
434 void inode_add_lru(struct inode
*inode
)
436 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
437 I_FREEING
| I_WILL_FREE
)) &&
438 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& SB_ACTIVE
)
439 inode_lru_list_add(inode
);
443 static void inode_lru_list_del(struct inode
*inode
)
446 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
447 this_cpu_dec(nr_unused
);
451 * inode_sb_list_add - add inode to the superblock list of inodes
452 * @inode: inode to add
454 void inode_sb_list_add(struct inode
*inode
)
456 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
457 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
458 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
460 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
462 static inline void inode_sb_list_del(struct inode
*inode
)
464 if (!list_empty(&inode
->i_sb_list
)) {
465 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
466 list_del_init(&inode
->i_sb_list
);
467 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
471 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
475 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
477 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
478 return tmp
& i_hash_mask
;
482 * __insert_inode_hash - hash an inode
483 * @inode: unhashed inode
484 * @hashval: unsigned long value used to locate this object in the
487 * Add an inode to the inode hash for this superblock.
489 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
491 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
493 spin_lock(&inode_hash_lock
);
494 spin_lock(&inode
->i_lock
);
495 hlist_add_head(&inode
->i_hash
, b
);
496 spin_unlock(&inode
->i_lock
);
497 spin_unlock(&inode_hash_lock
);
499 EXPORT_SYMBOL(__insert_inode_hash
);
502 * __remove_inode_hash - remove an inode from the hash
503 * @inode: inode to unhash
505 * Remove an inode from the superblock.
507 void __remove_inode_hash(struct inode
*inode
)
509 spin_lock(&inode_hash_lock
);
510 spin_lock(&inode
->i_lock
);
511 hlist_del_init(&inode
->i_hash
);
512 spin_unlock(&inode
->i_lock
);
513 spin_unlock(&inode_hash_lock
);
515 EXPORT_SYMBOL(__remove_inode_hash
);
517 void clear_inode(struct inode
*inode
)
520 * We have to cycle the i_pages lock here because reclaim can be in the
521 * process of removing the last page (in __delete_from_page_cache())
522 * and we must not free the mapping under it.
524 xa_lock_irq(&inode
->i_data
.i_pages
);
525 BUG_ON(inode
->i_data
.nrpages
);
526 BUG_ON(inode
->i_data
.nrexceptional
);
527 xa_unlock_irq(&inode
->i_data
.i_pages
);
528 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
529 BUG_ON(!(inode
->i_state
& I_FREEING
));
530 BUG_ON(inode
->i_state
& I_CLEAR
);
531 BUG_ON(!list_empty(&inode
->i_wb_list
));
532 /* don't need i_lock here, no concurrent mods to i_state */
533 inode
->i_state
= I_FREEING
| I_CLEAR
;
535 EXPORT_SYMBOL(clear_inode
);
538 * Free the inode passed in, removing it from the lists it is still connected
539 * to. We remove any pages still attached to the inode and wait for any IO that
540 * is still in progress before finally destroying the inode.
542 * An inode must already be marked I_FREEING so that we avoid the inode being
543 * moved back onto lists if we race with other code that manipulates the lists
544 * (e.g. writeback_single_inode). The caller is responsible for setting this.
546 * An inode must already be removed from the LRU list before being evicted from
547 * the cache. This should occur atomically with setting the I_FREEING state
548 * flag, so no inodes here should ever be on the LRU when being evicted.
550 static void evict(struct inode
*inode
)
552 const struct super_operations
*op
= inode
->i_sb
->s_op
;
554 BUG_ON(!(inode
->i_state
& I_FREEING
));
555 BUG_ON(!list_empty(&inode
->i_lru
));
557 if (!list_empty(&inode
->i_io_list
))
558 inode_io_list_del(inode
);
560 inode_sb_list_del(inode
);
563 * Wait for flusher thread to be done with the inode so that filesystem
564 * does not start destroying it while writeback is still running. Since
565 * the inode has I_FREEING set, flusher thread won't start new work on
566 * the inode. We just have to wait for running writeback to finish.
568 inode_wait_for_writeback(inode
);
570 if (op
->evict_inode
) {
571 op
->evict_inode(inode
);
573 truncate_inode_pages_final(&inode
->i_data
);
576 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
578 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
581 remove_inode_hash(inode
);
583 spin_lock(&inode
->i_lock
);
584 wake_up_bit(&inode
->i_state
, __I_NEW
);
585 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
586 spin_unlock(&inode
->i_lock
);
588 destroy_inode(inode
);
592 * dispose_list - dispose of the contents of a local list
593 * @head: the head of the list to free
595 * Dispose-list gets a local list with local inodes in it, so it doesn't
596 * need to worry about list corruption and SMP locks.
598 static void dispose_list(struct list_head
*head
)
600 while (!list_empty(head
)) {
603 inode
= list_first_entry(head
, struct inode
, i_lru
);
604 list_del_init(&inode
->i_lru
);
612 * evict_inodes - evict all evictable inodes for a superblock
613 * @sb: superblock to operate on
615 * Make sure that no inodes with zero refcount are retained. This is
616 * called by superblock shutdown after having SB_ACTIVE flag removed,
617 * so any inode reaching zero refcount during or after that call will
618 * be immediately evicted.
620 void evict_inodes(struct super_block
*sb
)
622 struct inode
*inode
, *next
;
626 spin_lock(&sb
->s_inode_list_lock
);
627 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
628 if (atomic_read(&inode
->i_count
))
631 spin_lock(&inode
->i_lock
);
632 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
633 spin_unlock(&inode
->i_lock
);
637 inode
->i_state
|= I_FREEING
;
638 inode_lru_list_del(inode
);
639 spin_unlock(&inode
->i_lock
);
640 list_add(&inode
->i_lru
, &dispose
);
643 * We can have a ton of inodes to evict at unmount time given
644 * enough memory, check to see if we need to go to sleep for a
645 * bit so we don't livelock.
647 if (need_resched()) {
648 spin_unlock(&sb
->s_inode_list_lock
);
650 dispose_list(&dispose
);
654 spin_unlock(&sb
->s_inode_list_lock
);
656 dispose_list(&dispose
);
658 EXPORT_SYMBOL_GPL(evict_inodes
);
661 * invalidate_inodes - attempt to free all inodes on a superblock
662 * @sb: superblock to operate on
663 * @kill_dirty: flag to guide handling of dirty inodes
665 * Attempts to free all inodes for a given superblock. If there were any
666 * busy inodes return a non-zero value, else zero.
667 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
670 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
673 struct inode
*inode
, *next
;
676 spin_lock(&sb
->s_inode_list_lock
);
677 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
678 spin_lock(&inode
->i_lock
);
679 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
680 spin_unlock(&inode
->i_lock
);
683 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
684 spin_unlock(&inode
->i_lock
);
688 if (atomic_read(&inode
->i_count
)) {
689 spin_unlock(&inode
->i_lock
);
694 inode
->i_state
|= I_FREEING
;
695 inode_lru_list_del(inode
);
696 spin_unlock(&inode
->i_lock
);
697 list_add(&inode
->i_lru
, &dispose
);
699 spin_unlock(&sb
->s_inode_list_lock
);
701 dispose_list(&dispose
);
707 * Isolate the inode from the LRU in preparation for freeing it.
709 * Any inodes which are pinned purely because of attached pagecache have their
710 * pagecache removed. If the inode has metadata buffers attached to
711 * mapping->private_list then try to remove them.
713 * If the inode has the I_REFERENCED flag set, then it means that it has been
714 * used recently - the flag is set in iput_final(). When we encounter such an
715 * inode, clear the flag and move it to the back of the LRU so it gets another
716 * pass through the LRU before it gets reclaimed. This is necessary because of
717 * the fact we are doing lazy LRU updates to minimise lock contention so the
718 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
719 * with this flag set because they are the inodes that are out of order.
721 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
722 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
724 struct list_head
*freeable
= arg
;
725 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
728 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
729 * If we fail to get the lock, just skip it.
731 if (!spin_trylock(&inode
->i_lock
))
735 * Referenced or dirty inodes are still in use. Give them another pass
736 * through the LRU as we canot reclaim them now.
738 if (atomic_read(&inode
->i_count
) ||
739 (inode
->i_state
& ~I_REFERENCED
)) {
740 list_lru_isolate(lru
, &inode
->i_lru
);
741 spin_unlock(&inode
->i_lock
);
742 this_cpu_dec(nr_unused
);
746 /* recently referenced inodes get one more pass */
747 if (inode
->i_state
& I_REFERENCED
) {
748 inode
->i_state
&= ~I_REFERENCED
;
749 spin_unlock(&inode
->i_lock
);
753 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
755 spin_unlock(&inode
->i_lock
);
756 spin_unlock(lru_lock
);
757 if (remove_inode_buffers(inode
)) {
759 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
760 if (current_is_kswapd())
761 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
763 __count_vm_events(PGINODESTEAL
, reap
);
764 if (current
->reclaim_state
)
765 current
->reclaim_state
->reclaimed_slab
+= reap
;
772 WARN_ON(inode
->i_state
& I_NEW
);
773 inode
->i_state
|= I_FREEING
;
774 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
775 spin_unlock(&inode
->i_lock
);
777 this_cpu_dec(nr_unused
);
782 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
783 * This is called from the superblock shrinker function with a number of inodes
784 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
785 * then are freed outside inode_lock by dispose_list().
787 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
792 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
793 inode_lru_isolate
, &freeable
);
794 dispose_list(&freeable
);
798 static void __wait_on_freeing_inode(struct inode
*inode
);
800 * Called with the inode lock held.
802 static struct inode
*find_inode(struct super_block
*sb
,
803 struct hlist_head
*head
,
804 int (*test
)(struct inode
*, void *),
807 struct inode
*inode
= NULL
;
810 hlist_for_each_entry(inode
, head
, i_hash
) {
811 if (inode
->i_sb
!= sb
)
813 if (!test(inode
, data
))
815 spin_lock(&inode
->i_lock
);
816 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
817 __wait_on_freeing_inode(inode
);
820 if (unlikely(inode
->i_state
& I_CREATING
)) {
821 spin_unlock(&inode
->i_lock
);
822 return ERR_PTR(-ESTALE
);
825 spin_unlock(&inode
->i_lock
);
832 * find_inode_fast is the fast path version of find_inode, see the comment at
833 * iget_locked for details.
835 static struct inode
*find_inode_fast(struct super_block
*sb
,
836 struct hlist_head
*head
, unsigned long ino
)
838 struct inode
*inode
= NULL
;
841 hlist_for_each_entry(inode
, head
, i_hash
) {
842 if (inode
->i_ino
!= ino
)
844 if (inode
->i_sb
!= sb
)
846 spin_lock(&inode
->i_lock
);
847 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
848 __wait_on_freeing_inode(inode
);
851 if (unlikely(inode
->i_state
& I_CREATING
)) {
852 spin_unlock(&inode
->i_lock
);
853 return ERR_PTR(-ESTALE
);
856 spin_unlock(&inode
->i_lock
);
863 * Each cpu owns a range of LAST_INO_BATCH numbers.
864 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
865 * to renew the exhausted range.
867 * This does not significantly increase overflow rate because every CPU can
868 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
869 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
870 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
871 * overflow rate by 2x, which does not seem too significant.
873 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
874 * error if st_ino won't fit in target struct field. Use 32bit counter
875 * here to attempt to avoid that.
877 #define LAST_INO_BATCH 1024
878 static DEFINE_PER_CPU(unsigned int, last_ino
);
880 unsigned int get_next_ino(void)
882 unsigned int *p
= &get_cpu_var(last_ino
);
883 unsigned int res
= *p
;
886 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
887 static atomic_t shared_last_ino
;
888 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
890 res
= next
- LAST_INO_BATCH
;
895 /* get_next_ino should not provide a 0 inode number */
899 put_cpu_var(last_ino
);
902 EXPORT_SYMBOL(get_next_ino
);
905 * new_inode_pseudo - obtain an inode
908 * Allocates a new inode for given superblock.
909 * Inode wont be chained in superblock s_inodes list
911 * - fs can't be unmount
912 * - quotas, fsnotify, writeback can't work
914 struct inode
*new_inode_pseudo(struct super_block
*sb
)
916 struct inode
*inode
= alloc_inode(sb
);
919 spin_lock(&inode
->i_lock
);
921 spin_unlock(&inode
->i_lock
);
922 INIT_LIST_HEAD(&inode
->i_sb_list
);
928 * new_inode - obtain an inode
931 * Allocates a new inode for given superblock. The default gfp_mask
932 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
933 * If HIGHMEM pages are unsuitable or it is known that pages allocated
934 * for the page cache are not reclaimable or migratable,
935 * mapping_set_gfp_mask() must be called with suitable flags on the
936 * newly created inode's mapping
939 struct inode
*new_inode(struct super_block
*sb
)
943 spin_lock_prefetch(&sb
->s_inode_list_lock
);
945 inode
= new_inode_pseudo(sb
);
947 inode_sb_list_add(inode
);
950 EXPORT_SYMBOL(new_inode
);
952 #ifdef CONFIG_DEBUG_LOCK_ALLOC
953 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
955 if (S_ISDIR(inode
->i_mode
)) {
956 struct file_system_type
*type
= inode
->i_sb
->s_type
;
958 /* Set new key only if filesystem hasn't already changed it */
959 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
961 * ensure nobody is actually holding i_mutex
963 // mutex_destroy(&inode->i_mutex);
964 init_rwsem(&inode
->i_rwsem
);
965 lockdep_set_class(&inode
->i_rwsem
,
966 &type
->i_mutex_dir_key
);
970 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
974 * unlock_new_inode - clear the I_NEW state and wake up any waiters
975 * @inode: new inode to unlock
977 * Called when the inode is fully initialised to clear the new state of the
978 * inode and wake up anyone waiting for the inode to finish initialisation.
980 void unlock_new_inode(struct inode
*inode
)
982 lockdep_annotate_inode_mutex_key(inode
);
983 spin_lock(&inode
->i_lock
);
984 WARN_ON(!(inode
->i_state
& I_NEW
));
985 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
987 wake_up_bit(&inode
->i_state
, __I_NEW
);
988 spin_unlock(&inode
->i_lock
);
990 EXPORT_SYMBOL(unlock_new_inode
);
992 void discard_new_inode(struct inode
*inode
)
994 lockdep_annotate_inode_mutex_key(inode
);
995 spin_lock(&inode
->i_lock
);
996 WARN_ON(!(inode
->i_state
& I_NEW
));
997 inode
->i_state
&= ~I_NEW
;
999 wake_up_bit(&inode
->i_state
, __I_NEW
);
1000 spin_unlock(&inode
->i_lock
);
1003 EXPORT_SYMBOL(discard_new_inode
);
1006 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1008 * Lock any non-NULL argument that is not a directory.
1009 * Zero, one or two objects may be locked by this function.
1011 * @inode1: first inode to lock
1012 * @inode2: second inode to lock
1014 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1016 if (inode1
> inode2
)
1017 swap(inode1
, inode2
);
1019 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1021 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1022 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
1024 EXPORT_SYMBOL(lock_two_nondirectories
);
1027 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1028 * @inode1: first inode to unlock
1029 * @inode2: second inode to unlock
1031 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1033 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1034 inode_unlock(inode1
);
1035 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1036 inode_unlock(inode2
);
1038 EXPORT_SYMBOL(unlock_two_nondirectories
);
1041 * inode_insert5 - obtain an inode from a mounted file system
1042 * @inode: pre-allocated inode to use for insert to cache
1043 * @hashval: hash value (usually inode number) to get
1044 * @test: callback used for comparisons between inodes
1045 * @set: callback used to initialize a new struct inode
1046 * @data: opaque data pointer to pass to @test and @set
1048 * Search for the inode specified by @hashval and @data in the inode cache,
1049 * and if present it is return it with an increased reference count. This is
1050 * a variant of iget5_locked() for callers that don't want to fail on memory
1051 * allocation of inode.
1053 * If the inode is not in cache, insert the pre-allocated inode to cache and
1054 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1055 * to fill it in before unlocking it via unlock_new_inode().
1057 * Note both @test and @set are called with the inode_hash_lock held, so can't
1060 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1061 int (*test
)(struct inode
*, void *),
1062 int (*set
)(struct inode
*, void *), void *data
)
1064 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1066 bool creating
= inode
->i_state
& I_CREATING
;
1069 spin_lock(&inode_hash_lock
);
1070 old
= find_inode(inode
->i_sb
, head
, test
, data
);
1071 if (unlikely(old
)) {
1073 * Uhhuh, somebody else created the same inode under us.
1074 * Use the old inode instead of the preallocated one.
1076 spin_unlock(&inode_hash_lock
);
1080 if (unlikely(inode_unhashed(old
))) {
1087 if (set
&& unlikely(set(inode
, data
))) {
1093 * Return the locked inode with I_NEW set, the
1094 * caller is responsible for filling in the contents
1096 spin_lock(&inode
->i_lock
);
1097 inode
->i_state
|= I_NEW
;
1098 hlist_add_head(&inode
->i_hash
, head
);
1099 spin_unlock(&inode
->i_lock
);
1101 inode_sb_list_add(inode
);
1103 spin_unlock(&inode_hash_lock
);
1107 EXPORT_SYMBOL(inode_insert5
);
1110 * iget5_locked - obtain an inode from a mounted file system
1111 * @sb: super block of file system
1112 * @hashval: hash value (usually inode number) to get
1113 * @test: callback used for comparisons between inodes
1114 * @set: callback used to initialize a new struct inode
1115 * @data: opaque data pointer to pass to @test and @set
1117 * Search for the inode specified by @hashval and @data in the inode cache,
1118 * and if present it is return it with an increased reference count. This is
1119 * a generalized version of iget_locked() for file systems where the inode
1120 * number is not sufficient for unique identification of an inode.
1122 * If the inode is not in cache, allocate a new inode and return it locked,
1123 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1124 * before unlocking it via unlock_new_inode().
1126 * Note both @test and @set are called with the inode_hash_lock held, so can't
1129 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1130 int (*test
)(struct inode
*, void *),
1131 int (*set
)(struct inode
*, void *), void *data
)
1133 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1136 struct inode
*new = alloc_inode(sb
);
1140 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1141 if (unlikely(inode
!= new))
1147 EXPORT_SYMBOL(iget5_locked
);
1150 * iget_locked - obtain an inode from a mounted file system
1151 * @sb: super block of file system
1152 * @ino: inode number to get
1154 * Search for the inode specified by @ino in the inode cache and if present
1155 * return it with an increased reference count. This is for file systems
1156 * where the inode number is sufficient for unique identification of an inode.
1158 * If the inode is not in cache, allocate a new inode and return it locked,
1159 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1160 * before unlocking it via unlock_new_inode().
1162 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1164 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1165 struct inode
*inode
;
1167 spin_lock(&inode_hash_lock
);
1168 inode
= find_inode_fast(sb
, head
, ino
);
1169 spin_unlock(&inode_hash_lock
);
1173 wait_on_inode(inode
);
1174 if (unlikely(inode_unhashed(inode
))) {
1181 inode
= alloc_inode(sb
);
1185 spin_lock(&inode_hash_lock
);
1186 /* We released the lock, so.. */
1187 old
= find_inode_fast(sb
, head
, ino
);
1190 spin_lock(&inode
->i_lock
);
1191 inode
->i_state
= I_NEW
;
1192 hlist_add_head(&inode
->i_hash
, head
);
1193 spin_unlock(&inode
->i_lock
);
1194 inode_sb_list_add(inode
);
1195 spin_unlock(&inode_hash_lock
);
1197 /* Return the locked inode with I_NEW set, the
1198 * caller is responsible for filling in the contents
1204 * Uhhuh, somebody else created the same inode under
1205 * us. Use the old inode instead of the one we just
1208 spin_unlock(&inode_hash_lock
);
1209 destroy_inode(inode
);
1213 wait_on_inode(inode
);
1214 if (unlikely(inode_unhashed(inode
))) {
1221 EXPORT_SYMBOL(iget_locked
);
1224 * search the inode cache for a matching inode number.
1225 * If we find one, then the inode number we are trying to
1226 * allocate is not unique and so we should not use it.
1228 * Returns 1 if the inode number is unique, 0 if it is not.
1230 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1232 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1233 struct inode
*inode
;
1235 spin_lock(&inode_hash_lock
);
1236 hlist_for_each_entry(inode
, b
, i_hash
) {
1237 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1238 spin_unlock(&inode_hash_lock
);
1242 spin_unlock(&inode_hash_lock
);
1248 * iunique - get a unique inode number
1250 * @max_reserved: highest reserved inode number
1252 * Obtain an inode number that is unique on the system for a given
1253 * superblock. This is used by file systems that have no natural
1254 * permanent inode numbering system. An inode number is returned that
1255 * is higher than the reserved limit but unique.
1258 * With a large number of inodes live on the file system this function
1259 * currently becomes quite slow.
1261 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1264 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1265 * error if st_ino won't fit in target struct field. Use 32bit counter
1266 * here to attempt to avoid that.
1268 static DEFINE_SPINLOCK(iunique_lock
);
1269 static unsigned int counter
;
1272 spin_lock(&iunique_lock
);
1274 if (counter
<= max_reserved
)
1275 counter
= max_reserved
+ 1;
1277 } while (!test_inode_iunique(sb
, res
));
1278 spin_unlock(&iunique_lock
);
1282 EXPORT_SYMBOL(iunique
);
1284 struct inode
*igrab(struct inode
*inode
)
1286 spin_lock(&inode
->i_lock
);
1287 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1289 spin_unlock(&inode
->i_lock
);
1291 spin_unlock(&inode
->i_lock
);
1293 * Handle the case where s_op->clear_inode is not been
1294 * called yet, and somebody is calling igrab
1295 * while the inode is getting freed.
1301 EXPORT_SYMBOL(igrab
);
1304 * ilookup5_nowait - search for an inode in the inode cache
1305 * @sb: super block of file system to search
1306 * @hashval: hash value (usually inode number) to search for
1307 * @test: callback used for comparisons between inodes
1308 * @data: opaque data pointer to pass to @test
1310 * Search for the inode specified by @hashval and @data in the inode cache.
1311 * If the inode is in the cache, the inode is returned with an incremented
1314 * Note: I_NEW is not waited upon so you have to be very careful what you do
1315 * with the returned inode. You probably should be using ilookup5() instead.
1317 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1319 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1320 int (*test
)(struct inode
*, void *), void *data
)
1322 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1323 struct inode
*inode
;
1325 spin_lock(&inode_hash_lock
);
1326 inode
= find_inode(sb
, head
, test
, data
);
1327 spin_unlock(&inode_hash_lock
);
1329 return IS_ERR(inode
) ? NULL
: inode
;
1331 EXPORT_SYMBOL(ilookup5_nowait
);
1334 * ilookup5 - search for an inode in the inode cache
1335 * @sb: super block of file system to search
1336 * @hashval: hash value (usually inode number) to search for
1337 * @test: callback used for comparisons between inodes
1338 * @data: opaque data pointer to pass to @test
1340 * Search for the inode specified by @hashval and @data in the inode cache,
1341 * and if the inode is in the cache, return the inode with an incremented
1342 * reference count. Waits on I_NEW before returning the inode.
1343 * returned with an incremented reference count.
1345 * This is a generalized version of ilookup() for file systems where the
1346 * inode number is not sufficient for unique identification of an inode.
1348 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1350 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1351 int (*test
)(struct inode
*, void *), void *data
)
1353 struct inode
*inode
;
1355 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1357 wait_on_inode(inode
);
1358 if (unlikely(inode_unhashed(inode
))) {
1365 EXPORT_SYMBOL(ilookup5
);
1368 * ilookup - search for an inode in the inode cache
1369 * @sb: super block of file system to search
1370 * @ino: inode number to search for
1372 * Search for the inode @ino in the inode cache, and if the inode is in the
1373 * cache, the inode is returned with an incremented reference count.
1375 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1377 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1378 struct inode
*inode
;
1380 spin_lock(&inode_hash_lock
);
1381 inode
= find_inode_fast(sb
, head
, ino
);
1382 spin_unlock(&inode_hash_lock
);
1387 wait_on_inode(inode
);
1388 if (unlikely(inode_unhashed(inode
))) {
1395 EXPORT_SYMBOL(ilookup
);
1398 * find_inode_nowait - find an inode in the inode cache
1399 * @sb: super block of file system to search
1400 * @hashval: hash value (usually inode number) to search for
1401 * @match: callback used for comparisons between inodes
1402 * @data: opaque data pointer to pass to @match
1404 * Search for the inode specified by @hashval and @data in the inode
1405 * cache, where the helper function @match will return 0 if the inode
1406 * does not match, 1 if the inode does match, and -1 if the search
1407 * should be stopped. The @match function must be responsible for
1408 * taking the i_lock spin_lock and checking i_state for an inode being
1409 * freed or being initialized, and incrementing the reference count
1410 * before returning 1. It also must not sleep, since it is called with
1411 * the inode_hash_lock spinlock held.
1413 * This is a even more generalized version of ilookup5() when the
1414 * function must never block --- find_inode() can block in
1415 * __wait_on_freeing_inode() --- or when the caller can not increment
1416 * the reference count because the resulting iput() might cause an
1417 * inode eviction. The tradeoff is that the @match funtion must be
1418 * very carefully implemented.
1420 struct inode
*find_inode_nowait(struct super_block
*sb
,
1421 unsigned long hashval
,
1422 int (*match
)(struct inode
*, unsigned long,
1426 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1427 struct inode
*inode
, *ret_inode
= NULL
;
1430 spin_lock(&inode_hash_lock
);
1431 hlist_for_each_entry(inode
, head
, i_hash
) {
1432 if (inode
->i_sb
!= sb
)
1434 mval
= match(inode
, hashval
, data
);
1442 spin_unlock(&inode_hash_lock
);
1445 EXPORT_SYMBOL(find_inode_nowait
);
1447 int insert_inode_locked(struct inode
*inode
)
1449 struct super_block
*sb
= inode
->i_sb
;
1450 ino_t ino
= inode
->i_ino
;
1451 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1454 struct inode
*old
= NULL
;
1455 spin_lock(&inode_hash_lock
);
1456 hlist_for_each_entry(old
, head
, i_hash
) {
1457 if (old
->i_ino
!= ino
)
1459 if (old
->i_sb
!= sb
)
1461 spin_lock(&old
->i_lock
);
1462 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1463 spin_unlock(&old
->i_lock
);
1469 spin_lock(&inode
->i_lock
);
1470 inode
->i_state
|= I_NEW
| I_CREATING
;
1471 hlist_add_head(&inode
->i_hash
, head
);
1472 spin_unlock(&inode
->i_lock
);
1473 spin_unlock(&inode_hash_lock
);
1476 if (unlikely(old
->i_state
& I_CREATING
)) {
1477 spin_unlock(&old
->i_lock
);
1478 spin_unlock(&inode_hash_lock
);
1482 spin_unlock(&old
->i_lock
);
1483 spin_unlock(&inode_hash_lock
);
1485 if (unlikely(!inode_unhashed(old
))) {
1492 EXPORT_SYMBOL(insert_inode_locked
);
1494 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1495 int (*test
)(struct inode
*, void *), void *data
)
1499 inode
->i_state
|= I_CREATING
;
1500 old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1508 EXPORT_SYMBOL(insert_inode_locked4
);
1511 int generic_delete_inode(struct inode
*inode
)
1515 EXPORT_SYMBOL(generic_delete_inode
);
1518 * Called when we're dropping the last reference
1521 * Call the FS "drop_inode()" function, defaulting to
1522 * the legacy UNIX filesystem behaviour. If it tells
1523 * us to evict inode, do so. Otherwise, retain inode
1524 * in cache if fs is alive, sync and evict if fs is
1527 static void iput_final(struct inode
*inode
)
1529 struct super_block
*sb
= inode
->i_sb
;
1530 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1533 WARN_ON(inode
->i_state
& I_NEW
);
1536 drop
= op
->drop_inode(inode
);
1538 drop
= generic_drop_inode(inode
);
1540 if (!drop
&& (sb
->s_flags
& SB_ACTIVE
)) {
1541 inode_add_lru(inode
);
1542 spin_unlock(&inode
->i_lock
);
1547 inode
->i_state
|= I_WILL_FREE
;
1548 spin_unlock(&inode
->i_lock
);
1549 write_inode_now(inode
, 1);
1550 spin_lock(&inode
->i_lock
);
1551 WARN_ON(inode
->i_state
& I_NEW
);
1552 inode
->i_state
&= ~I_WILL_FREE
;
1555 inode
->i_state
|= I_FREEING
;
1556 if (!list_empty(&inode
->i_lru
))
1557 inode_lru_list_del(inode
);
1558 spin_unlock(&inode
->i_lock
);
1564 * iput - put an inode
1565 * @inode: inode to put
1567 * Puts an inode, dropping its usage count. If the inode use count hits
1568 * zero, the inode is then freed and may also be destroyed.
1570 * Consequently, iput() can sleep.
1572 void iput(struct inode
*inode
)
1576 BUG_ON(inode
->i_state
& I_CLEAR
);
1578 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1579 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1580 atomic_inc(&inode
->i_count
);
1581 spin_unlock(&inode
->i_lock
);
1582 trace_writeback_lazytime_iput(inode
);
1583 mark_inode_dirty_sync(inode
);
1589 EXPORT_SYMBOL(iput
);
1592 * bmap - find a block number in a file
1593 * @inode: inode of file
1594 * @block: block to find
1596 * Returns the block number on the device holding the inode that
1597 * is the disk block number for the block of the file requested.
1598 * That is, asked for block 4 of inode 1 the function will return the
1599 * disk block relative to the disk start that holds that block of the
1602 sector_t
bmap(struct inode
*inode
, sector_t block
)
1605 if (inode
->i_mapping
->a_ops
->bmap
)
1606 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1609 EXPORT_SYMBOL(bmap
);
1612 * With relative atime, only update atime if the previous atime is
1613 * earlier than either the ctime or mtime or if at least a day has
1614 * passed since the last atime update.
1616 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1617 struct timespec64 now
)
1620 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1623 * Is mtime younger than atime? If yes, update atime:
1625 if (timespec64_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1628 * Is ctime younger than atime? If yes, update atime:
1630 if (timespec64_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1634 * Is the previous atime value older than a day? If yes,
1637 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1640 * Good, we can skip the atime update:
1645 int generic_update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1647 int iflags
= I_DIRTY_TIME
;
1650 if (flags
& S_ATIME
)
1651 inode
->i_atime
= *time
;
1652 if (flags
& S_VERSION
)
1653 dirty
= inode_maybe_inc_iversion(inode
, false);
1654 if (flags
& S_CTIME
)
1655 inode
->i_ctime
= *time
;
1656 if (flags
& S_MTIME
)
1657 inode
->i_mtime
= *time
;
1658 if ((flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) &&
1659 !(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1663 iflags
|= I_DIRTY_SYNC
;
1664 __mark_inode_dirty(inode
, iflags
);
1667 EXPORT_SYMBOL(generic_update_time
);
1670 * This does the actual work of updating an inodes time or version. Must have
1671 * had called mnt_want_write() before calling this.
1673 static int update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1675 int (*update_time
)(struct inode
*, struct timespec64
*, int);
1677 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1678 generic_update_time
;
1680 return update_time(inode
, time
, flags
);
1684 * touch_atime - update the access time
1685 * @path: the &struct path to update
1686 * @inode: inode to update
1688 * Update the accessed time on an inode and mark it for writeback.
1689 * This function automatically handles read only file systems and media,
1690 * as well as the "noatime" flag and inode specific "noatime" markers.
1692 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1694 struct vfsmount
*mnt
= path
->mnt
;
1695 struct timespec64 now
;
1697 if (inode
->i_flags
& S_NOATIME
)
1700 /* Atime updates will likely cause i_uid and i_gid to be written
1701 * back improprely if their true value is unknown to the vfs.
1703 if (HAS_UNMAPPED_ID(inode
))
1706 if (IS_NOATIME(inode
))
1708 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1711 if (mnt
->mnt_flags
& MNT_NOATIME
)
1713 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1716 now
= current_time(inode
);
1718 if (!relatime_need_update(mnt
, inode
, now
))
1721 if (timespec64_equal(&inode
->i_atime
, &now
))
1727 void touch_atime(const struct path
*path
)
1729 struct vfsmount
*mnt
= path
->mnt
;
1730 struct inode
*inode
= d_inode(path
->dentry
);
1731 struct timespec64 now
;
1733 if (!atime_needs_update(path
, inode
))
1736 if (!sb_start_write_trylock(inode
->i_sb
))
1739 if (__mnt_want_write(mnt
) != 0)
1742 * File systems can error out when updating inodes if they need to
1743 * allocate new space to modify an inode (such is the case for
1744 * Btrfs), but since we touch atime while walking down the path we
1745 * really don't care if we failed to update the atime of the file,
1746 * so just ignore the return value.
1747 * We may also fail on filesystems that have the ability to make parts
1748 * of the fs read only, e.g. subvolumes in Btrfs.
1750 now
= current_time(inode
);
1751 update_time(inode
, &now
, S_ATIME
);
1752 __mnt_drop_write(mnt
);
1754 sb_end_write(inode
->i_sb
);
1756 EXPORT_SYMBOL(touch_atime
);
1759 * The logic we want is
1761 * if suid or (sgid and xgrp)
1764 int should_remove_suid(struct dentry
*dentry
)
1766 umode_t mode
= d_inode(dentry
)->i_mode
;
1769 /* suid always must be killed */
1770 if (unlikely(mode
& S_ISUID
))
1771 kill
= ATTR_KILL_SUID
;
1774 * sgid without any exec bits is just a mandatory locking mark; leave
1775 * it alone. If some exec bits are set, it's a real sgid; kill it.
1777 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1778 kill
|= ATTR_KILL_SGID
;
1780 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1785 EXPORT_SYMBOL(should_remove_suid
);
1788 * Return mask of changes for notify_change() that need to be done as a
1789 * response to write or truncate. Return 0 if nothing has to be changed.
1790 * Negative value on error (change should be denied).
1792 int dentry_needs_remove_privs(struct dentry
*dentry
)
1794 struct inode
*inode
= d_inode(dentry
);
1798 if (IS_NOSEC(inode
))
1801 mask
= should_remove_suid(dentry
);
1802 ret
= security_inode_need_killpriv(dentry
);
1806 mask
|= ATTR_KILL_PRIV
;
1810 static int __remove_privs(struct dentry
*dentry
, int kill
)
1812 struct iattr newattrs
;
1814 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1816 * Note we call this on write, so notify_change will not
1817 * encounter any conflicting delegations:
1819 return notify_change(dentry
, &newattrs
, NULL
);
1823 * Remove special file priviledges (suid, capabilities) when file is written
1826 int file_remove_privs(struct file
*file
)
1828 struct dentry
*dentry
= file_dentry(file
);
1829 struct inode
*inode
= file_inode(file
);
1834 * Fast path for nothing security related.
1835 * As well for non-regular files, e.g. blkdev inodes.
1836 * For example, blkdev_write_iter() might get here
1837 * trying to remove privs which it is not allowed to.
1839 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
1842 kill
= dentry_needs_remove_privs(dentry
);
1846 error
= __remove_privs(dentry
, kill
);
1848 inode_has_no_xattr(inode
);
1852 EXPORT_SYMBOL(file_remove_privs
);
1855 * file_update_time - update mtime and ctime time
1856 * @file: file accessed
1858 * Update the mtime and ctime members of an inode and mark the inode
1859 * for writeback. Note that this function is meant exclusively for
1860 * usage in the file write path of filesystems, and filesystems may
1861 * choose to explicitly ignore update via this function with the
1862 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1863 * timestamps are handled by the server. This can return an error for
1864 * file systems who need to allocate space in order to update an inode.
1867 int file_update_time(struct file
*file
)
1869 struct inode
*inode
= file_inode(file
);
1870 struct timespec64 now
;
1874 /* First try to exhaust all avenues to not sync */
1875 if (IS_NOCMTIME(inode
))
1878 now
= current_time(inode
);
1879 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1882 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1885 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
1886 sync_it
|= S_VERSION
;
1891 /* Finally allowed to write? Takes lock. */
1892 if (__mnt_want_write_file(file
))
1895 ret
= update_time(inode
, &now
, sync_it
);
1896 __mnt_drop_write_file(file
);
1900 EXPORT_SYMBOL(file_update_time
);
1902 int inode_needs_sync(struct inode
*inode
)
1906 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1910 EXPORT_SYMBOL(inode_needs_sync
);
1913 * If we try to find an inode in the inode hash while it is being
1914 * deleted, we have to wait until the filesystem completes its
1915 * deletion before reporting that it isn't found. This function waits
1916 * until the deletion _might_ have completed. Callers are responsible
1917 * to recheck inode state.
1919 * It doesn't matter if I_NEW is not set initially, a call to
1920 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1923 static void __wait_on_freeing_inode(struct inode
*inode
)
1925 wait_queue_head_t
*wq
;
1926 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1927 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1928 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
1929 spin_unlock(&inode
->i_lock
);
1930 spin_unlock(&inode_hash_lock
);
1932 finish_wait(wq
, &wait
.wq_entry
);
1933 spin_lock(&inode_hash_lock
);
1936 static __initdata
unsigned long ihash_entries
;
1937 static int __init
set_ihash_entries(char *str
)
1941 ihash_entries
= simple_strtoul(str
, &str
, 0);
1944 __setup("ihash_entries=", set_ihash_entries
);
1947 * Initialize the waitqueues and inode hash table.
1949 void __init
inode_init_early(void)
1951 /* If hashes are distributed across NUMA nodes, defer
1952 * hash allocation until vmalloc space is available.
1958 alloc_large_system_hash("Inode-cache",
1959 sizeof(struct hlist_head
),
1962 HASH_EARLY
| HASH_ZERO
,
1969 void __init
inode_init(void)
1971 /* inode slab cache */
1972 inode_cachep
= kmem_cache_create("inode_cache",
1973 sizeof(struct inode
),
1975 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1976 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1979 /* Hash may have been set up in inode_init_early */
1984 alloc_large_system_hash("Inode-cache",
1985 sizeof(struct hlist_head
),
1995 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1997 inode
->i_mode
= mode
;
1998 if (S_ISCHR(mode
)) {
1999 inode
->i_fop
= &def_chr_fops
;
2000 inode
->i_rdev
= rdev
;
2001 } else if (S_ISBLK(mode
)) {
2002 inode
->i_fop
= &def_blk_fops
;
2003 inode
->i_rdev
= rdev
;
2004 } else if (S_ISFIFO(mode
))
2005 inode
->i_fop
= &pipefifo_fops
;
2006 else if (S_ISSOCK(mode
))
2007 ; /* leave it no_open_fops */
2009 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
2010 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
2013 EXPORT_SYMBOL(init_special_inode
);
2016 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2018 * @dir: Directory inode
2019 * @mode: mode of the new inode
2021 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2024 inode
->i_uid
= current_fsuid();
2025 if (dir
&& dir
->i_mode
& S_ISGID
) {
2026 inode
->i_gid
= dir
->i_gid
;
2028 /* Directories are special, and always inherit S_ISGID */
2031 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
2032 !in_group_p(inode
->i_gid
) &&
2033 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
2036 inode
->i_gid
= current_fsgid();
2037 inode
->i_mode
= mode
;
2039 EXPORT_SYMBOL(inode_init_owner
);
2042 * inode_owner_or_capable - check current task permissions to inode
2043 * @inode: inode being checked
2045 * Return true if current either has CAP_FOWNER in a namespace with the
2046 * inode owner uid mapped, or owns the file.
2048 bool inode_owner_or_capable(const struct inode
*inode
)
2050 struct user_namespace
*ns
;
2052 if (uid_eq(current_fsuid(), inode
->i_uid
))
2055 ns
= current_user_ns();
2056 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2060 EXPORT_SYMBOL(inode_owner_or_capable
);
2063 * Direct i/o helper functions
2065 static void __inode_dio_wait(struct inode
*inode
)
2067 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2068 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2071 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2072 if (atomic_read(&inode
->i_dio_count
))
2074 } while (atomic_read(&inode
->i_dio_count
));
2075 finish_wait(wq
, &q
.wq_entry
);
2079 * inode_dio_wait - wait for outstanding DIO requests to finish
2080 * @inode: inode to wait for
2082 * Waits for all pending direct I/O requests to finish so that we can
2083 * proceed with a truncate or equivalent operation.
2085 * Must be called under a lock that serializes taking new references
2086 * to i_dio_count, usually by inode->i_mutex.
2088 void inode_dio_wait(struct inode
*inode
)
2090 if (atomic_read(&inode
->i_dio_count
))
2091 __inode_dio_wait(inode
);
2093 EXPORT_SYMBOL(inode_dio_wait
);
2096 * inode_set_flags - atomically set some inode flags
2098 * Note: the caller should be holding i_mutex, or else be sure that
2099 * they have exclusive access to the inode structure (i.e., while the
2100 * inode is being instantiated). The reason for the cmpxchg() loop
2101 * --- which wouldn't be necessary if all code paths which modify
2102 * i_flags actually followed this rule, is that there is at least one
2103 * code path which doesn't today so we use cmpxchg() out of an abundance
2106 * In the long run, i_mutex is overkill, and we should probably look
2107 * at using the i_lock spinlock to protect i_flags, and then make sure
2108 * it is so documented in include/linux/fs.h and that all code follows
2109 * the locking convention!!
2111 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2114 WARN_ON_ONCE(flags
& ~mask
);
2115 set_mask_bits(&inode
->i_flags
, mask
, flags
);
2117 EXPORT_SYMBOL(inode_set_flags
);
2119 void inode_nohighmem(struct inode
*inode
)
2121 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2123 EXPORT_SYMBOL(inode_nohighmem
);
2126 * timespec64_trunc - Truncate timespec64 to a granularity
2128 * @gran: Granularity in ns.
2130 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2131 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2133 struct timespec64
timespec64_trunc(struct timespec64 t
, unsigned gran
)
2135 /* Avoid division in the common cases 1 ns and 1 s. */
2138 } else if (gran
== NSEC_PER_SEC
) {
2140 } else if (gran
> 1 && gran
< NSEC_PER_SEC
) {
2141 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2143 WARN(1, "illegal file time granularity: %u", gran
);
2147 EXPORT_SYMBOL(timespec64_trunc
);
2150 * current_time - Return FS time
2153 * Return the current time truncated to the time granularity supported by
2156 * Note that inode and inode->sb cannot be NULL.
2157 * Otherwise, the function warns and returns time without truncation.
2159 struct timespec64
current_time(struct inode
*inode
)
2161 struct timespec64 now
;
2163 ktime_get_coarse_real_ts64(&now
);
2165 if (unlikely(!inode
->i_sb
)) {
2166 WARN(1, "current_time() called with uninitialized super_block in the inode");
2170 return timespec64_trunc(now
, inode
->i_sb
->s_time_gran
);
2172 EXPORT_SYMBOL(current_time
);