2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
80 DEFINE_MUTEX(cgroup_mutex
);
81 DEFINE_SPINLOCK(css_set_lock
);
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex
);
85 EXPORT_SYMBOL_GPL(css_set_lock
);
88 DEFINE_SPINLOCK(trace_cgroup_path_lock
);
89 char trace_cgroup_path
[TRACE_CGROUP_PATH_LEN
];
90 bool cgroup_debug __read_mostly
;
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
96 static DEFINE_SPINLOCK(cgroup_idr_lock
);
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys
*cgroup_subsys
[] = {
122 #include <linux/cgroup_subsys.h>
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name
[] = {
129 #include <linux/cgroup_subsys.h>
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
144 #include <linux/cgroup_subsys.h>
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
150 #include <linux/cgroup_subsys.h>
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu
, cgrp_dfl_root_rstat_cpu
);
157 * The default hierarchy, reserved for the subsystems that are otherwise
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
161 struct cgroup_root cgrp_dfl_root
= { .cgrp
.rstat_cpu
= &cgrp_dfl_root_rstat_cpu
};
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
168 static bool cgrp_dfl_visible
;
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask
;
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask
;
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask
;
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots
);
181 static int cgroup_root_count
;
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr
);
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
193 static u64 css_serial_nr_next
= 1;
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
199 static u16 have_fork_callback __read_mostly
;
200 static u16 have_exit_callback __read_mostly
;
201 static u16 have_release_callback __read_mostly
;
202 static u16 have_canfork_callback __read_mostly
;
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns
= {
206 .count
= REFCOUNT_INIT(2),
207 .user_ns
= &init_user_ns
,
208 .ns
.ops
= &cgroupns_operations
,
209 .ns
.inum
= PROC_CGROUP_INIT_INO
,
210 .root_cset
= &init_css_set
,
213 static struct file_system_type cgroup2_fs_type
;
214 static struct cftype cgroup_base_files
[];
216 static int cgroup_apply_control(struct cgroup
*cgrp
);
217 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
218 static void css_task_iter_skip(struct css_task_iter
*it
,
219 struct task_struct
*task
);
220 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
221 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
222 struct cgroup_subsys
*ss
);
223 static void css_release(struct percpu_ref
*ref
);
224 static void kill_css(struct cgroup_subsys_state
*css
);
225 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
226 struct cgroup
*cgrp
, struct cftype cfts
[],
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
237 bool cgroup_ssid_enabled(int ssid
)
239 if (CGROUP_SUBSYS_COUNT
== 0)
242 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
257 * List of changed behaviors:
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
262 * - When mounting an existing superblock, mount options should match.
264 * - Remount is disallowed.
266 * - rename(2) is disallowed.
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
277 * - "cgroup.clone_children" is removed.
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
294 * - blkcg: blk-throttle becomes properly hierarchical.
296 * - debug: disallowed on the default hierarchy.
298 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
300 return cgrp
->root
== &cgrp_dfl_root
;
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
309 idr_preload(gfp_mask
);
310 spin_lock_bh(&cgroup_idr_lock
);
311 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
312 spin_unlock_bh(&cgroup_idr_lock
);
317 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
321 spin_lock_bh(&cgroup_idr_lock
);
322 ret
= idr_replace(idr
, ptr
, id
);
323 spin_unlock_bh(&cgroup_idr_lock
);
327 static void cgroup_idr_remove(struct idr
*idr
, int id
)
329 spin_lock_bh(&cgroup_idr_lock
);
331 spin_unlock_bh(&cgroup_idr_lock
);
334 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
336 return cgrp
->nr_populated_csets
;
339 bool cgroup_is_threaded(struct cgroup
*cgrp
)
341 return cgrp
->dom_cgrp
!= cgrp
;
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
348 * Root isn't under domain level resource control exempting it from
349 * the no-internal-process constraint, so it can serve as a thread
350 * root and a parent of resource domains at the same time.
352 return !cgroup_parent(cgrp
);
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
358 /* mixables don't care */
359 if (cgroup_is_mixable(cgrp
))
362 /* domain roots can't be nested under threaded */
363 if (cgroup_is_threaded(cgrp
))
366 /* can only have either domain or threaded children */
367 if (cgrp
->nr_populated_domain_children
)
370 /* and no domain controllers can be enabled */
371 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
380 /* thread root should be a domain */
381 if (cgroup_is_threaded(cgrp
))
384 /* a domain w/ threaded children is a thread root */
385 if (cgrp
->nr_threaded_children
)
389 * A domain which has tasks and explicit threaded controllers
390 * enabled is a thread root.
392 if (cgroup_has_tasks(cgrp
) &&
393 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
402 /* the cgroup itself can be a thread root */
403 if (cgroup_is_threaded(cgrp
))
406 /* but the ancestors can't be unless mixable */
407 while ((cgrp
= cgroup_parent(cgrp
))) {
408 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
410 if (cgroup_is_threaded(cgrp
))
417 /* subsystems visibly enabled on a cgroup */
418 static u16
cgroup_control(struct cgroup
*cgrp
)
420 struct cgroup
*parent
= cgroup_parent(cgrp
);
421 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
424 u16 ss_mask
= parent
->subtree_control
;
426 /* threaded cgroups can only have threaded controllers */
427 if (cgroup_is_threaded(cgrp
))
428 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
432 if (cgroup_on_dfl(cgrp
))
433 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
434 cgrp_dfl_implicit_ss_mask
);
438 /* subsystems enabled on a cgroup */
439 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
441 struct cgroup
*parent
= cgroup_parent(cgrp
);
444 u16 ss_mask
= parent
->subtree_ss_mask
;
446 /* threaded cgroups can only have threaded controllers */
447 if (cgroup_is_threaded(cgrp
))
448 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
452 return cgrp
->root
->subsys_mask
;
456 * cgroup_css - obtain a cgroup's css for the specified subsystem
457 * @cgrp: the cgroup of interest
458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
461 * function must be called either under cgroup_mutex or rcu_read_lock() and
462 * the caller is responsible for pinning the returned css if it wants to
463 * keep accessing it outside the said locks. This function may return
464 * %NULL if @cgrp doesn't have @subsys_id enabled.
466 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
467 struct cgroup_subsys
*ss
)
470 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
471 lockdep_is_held(&cgroup_mutex
));
477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest
481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
482 * or is offline, %NULL is returned.
484 static struct cgroup_subsys_state
*cgroup_tryget_css(struct cgroup
*cgrp
,
485 struct cgroup_subsys
*ss
)
487 struct cgroup_subsys_state
*css
;
490 css
= cgroup_css(cgrp
, ss
);
491 if (!css
|| !css_tryget_online(css
))
499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500 * @cgrp: the cgroup of interest
501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
503 * Similar to cgroup_css() but returns the effective css, which is defined
504 * as the matching css of the nearest ancestor including self which has @ss
505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
506 * function is guaranteed to return non-NULL css.
508 static struct cgroup_subsys_state
*cgroup_e_css_by_mask(struct cgroup
*cgrp
,
509 struct cgroup_subsys
*ss
)
511 lockdep_assert_held(&cgroup_mutex
);
517 * This function is used while updating css associations and thus
518 * can't test the csses directly. Test ss_mask.
520 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
521 cgrp
= cgroup_parent(cgrp
);
526 return cgroup_css(cgrp
, ss
);
530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531 * @cgrp: the cgroup of interest
532 * @ss: the subsystem of interest
534 * Find and get the effective css of @cgrp for @ss. The effective css is
535 * defined as the matching css of the nearest ancestor including self which
536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
537 * the root css is returned, so this function always returns a valid css.
539 * The returned css is not guaranteed to be online, and therefore it is the
540 * callers responsiblity to tryget a reference for it.
542 struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
543 struct cgroup_subsys
*ss
)
545 struct cgroup_subsys_state
*css
;
548 css
= cgroup_css(cgrp
, ss
);
552 cgrp
= cgroup_parent(cgrp
);
555 return init_css_set
.subsys
[ss
->id
];
559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560 * @cgrp: the cgroup of interest
561 * @ss: the subsystem of interest
563 * Find and get the effective css of @cgrp for @ss. The effective css is
564 * defined as the matching css of the nearest ancestor including self which
565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
566 * the root css is returned, so this function always returns a valid css.
567 * The returned css must be put using css_put().
569 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
570 struct cgroup_subsys
*ss
)
572 struct cgroup_subsys_state
*css
;
577 css
= cgroup_css(cgrp
, ss
);
579 if (css
&& css_tryget_online(css
))
581 cgrp
= cgroup_parent(cgrp
);
584 css
= init_css_set
.subsys
[ss
->id
];
591 static void cgroup_get_live(struct cgroup
*cgrp
)
593 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
594 css_get(&cgrp
->self
);
598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599 * is responsible for taking the css_set_lock.
600 * @cgrp: the cgroup in question
602 int __cgroup_task_count(const struct cgroup
*cgrp
)
605 struct cgrp_cset_link
*link
;
607 lockdep_assert_held(&css_set_lock
);
609 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
610 count
+= link
->cset
->nr_tasks
;
616 * cgroup_task_count - count the number of tasks in a cgroup.
617 * @cgrp: the cgroup in question
619 int cgroup_task_count(const struct cgroup
*cgrp
)
623 spin_lock_irq(&css_set_lock
);
624 count
= __cgroup_task_count(cgrp
);
625 spin_unlock_irq(&css_set_lock
);
630 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
632 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
633 struct cftype
*cft
= of_cft(of
);
636 * This is open and unprotected implementation of cgroup_css().
637 * seq_css() is only called from a kernfs file operation which has
638 * an active reference on the file. Because all the subsystem
639 * files are drained before a css is disassociated with a cgroup,
640 * the matching css from the cgroup's subsys table is guaranteed to
641 * be and stay valid until the enclosing operation is complete.
644 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
648 EXPORT_SYMBOL_GPL(of_css
);
651 * for_each_css - iterate all css's of a cgroup
652 * @css: the iteration cursor
653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654 * @cgrp: the target cgroup to iterate css's of
656 * Should be called under cgroup_[tree_]mutex.
658 #define for_each_css(css, ssid, cgrp) \
659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
660 if (!((css) = rcu_dereference_check( \
661 (cgrp)->subsys[(ssid)], \
662 lockdep_is_held(&cgroup_mutex)))) { } \
666 * for_each_e_css - iterate all effective css's of a cgroup
667 * @css: the iteration cursor
668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669 * @cgrp: the target cgroup to iterate css's of
671 * Should be called under cgroup_[tree_]mutex.
673 #define for_each_e_css(css, ssid, cgrp) \
674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
675 if (!((css) = cgroup_e_css_by_mask(cgrp, \
676 cgroup_subsys[(ssid)]))) \
681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
682 * @ss: the iteration cursor
683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684 * @ss_mask: the bitmask
686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
690 unsigned long __ss_mask = (ss_mask); \
691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
696 (ss) = cgroup_subsys[ssid]; \
699 #define while_each_subsys_mask() \
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp) \
706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 if (({ lockdep_assert_held(&cgroup_mutex); \
708 cgroup_is_dead(child); })) \
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
715 if (({ lockdep_assert_held(&cgroup_mutex); \
716 (dsct) = (d_css)->cgroup; \
717 cgroup_is_dead(dsct); })) \
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
724 if (({ lockdep_assert_held(&cgroup_mutex); \
725 (dsct) = (d_css)->cgroup; \
726 cgroup_is_dead(dsct); })) \
731 * The default css_set - used by init and its children prior to any
732 * hierarchies being mounted. It contains a pointer to the root state
733 * for each subsystem. Also used to anchor the list of css_sets. Not
734 * reference-counted, to improve performance when child cgroups
735 * haven't been created.
737 struct css_set init_css_set
= {
738 .refcount
= REFCOUNT_INIT(1),
739 .dom_cset
= &init_css_set
,
740 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
741 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
742 .dying_tasks
= LIST_HEAD_INIT(init_css_set
.dying_tasks
),
743 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
744 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
745 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
746 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
747 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
750 * The following field is re-initialized when this cset gets linked
751 * in cgroup_init(). However, let's initialize the field
752 * statically too so that the default cgroup can be accessed safely
755 .dfl_cgrp
= &cgrp_dfl_root
.cgrp
,
758 static int css_set_count
= 1; /* 1 for init_css_set */
760 static bool css_set_threaded(struct css_set
*cset
)
762 return cset
->dom_cset
!= cset
;
766 * css_set_populated - does a css_set contain any tasks?
767 * @cset: target css_set
769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
770 * state. However, css_set_populated() can be called while a task is being
771 * added to or removed from the linked list before the nr_tasks is
772 * properly updated. Hence, we can't just look at ->nr_tasks here.
774 static bool css_set_populated(struct css_set
*cset
)
776 lockdep_assert_held(&css_set_lock
);
778 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
782 * cgroup_update_populated - update the populated count of a cgroup
783 * @cgrp: the target cgroup
784 * @populated: inc or dec populated count
786 * One of the css_sets associated with @cgrp is either getting its first
787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
788 * count is propagated towards root so that a given cgroup's
789 * nr_populated_children is zero iff none of its descendants contain any
792 * @cgrp's interface file "cgroup.populated" is zero if both
793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794 * 1 otherwise. When the sum changes from or to zero, userland is notified
795 * that the content of the interface file has changed. This can be used to
796 * detect when @cgrp and its descendants become populated or empty.
798 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
800 struct cgroup
*child
= NULL
;
801 int adj
= populated
? 1 : -1;
803 lockdep_assert_held(&css_set_lock
);
806 bool was_populated
= cgroup_is_populated(cgrp
);
809 cgrp
->nr_populated_csets
+= adj
;
811 if (cgroup_is_threaded(child
))
812 cgrp
->nr_populated_threaded_children
+= adj
;
814 cgrp
->nr_populated_domain_children
+= adj
;
817 if (was_populated
== cgroup_is_populated(cgrp
))
820 cgroup1_check_for_release(cgrp
);
821 TRACE_CGROUP_PATH(notify_populated
, cgrp
,
822 cgroup_is_populated(cgrp
));
823 cgroup_file_notify(&cgrp
->events_file
);
826 cgrp
= cgroup_parent(cgrp
);
831 * css_set_update_populated - update populated state of a css_set
832 * @cset: target css_set
833 * @populated: whether @cset is populated or depopulated
835 * @cset is either getting the first task or losing the last. Update the
836 * populated counters of all associated cgroups accordingly.
838 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
840 struct cgrp_cset_link
*link
;
842 lockdep_assert_held(&css_set_lock
);
844 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
845 cgroup_update_populated(link
->cgrp
, populated
);
849 * @task is leaving, advance task iterators which are pointing to it so
850 * that they can resume at the next position. Advancing an iterator might
851 * remove it from the list, use safe walk. See css_task_iter_skip() for
854 static void css_set_skip_task_iters(struct css_set
*cset
,
855 struct task_struct
*task
)
857 struct css_task_iter
*it
, *pos
;
859 list_for_each_entry_safe(it
, pos
, &cset
->task_iters
, iters_node
)
860 css_task_iter_skip(it
, task
);
864 * css_set_move_task - move a task from one css_set to another
865 * @task: task being moved
866 * @from_cset: css_set @task currently belongs to (may be NULL)
867 * @to_cset: new css_set @task is being moved to (may be NULL)
868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
871 * css_set, @from_cset can be NULL. If @task is being disassociated
872 * instead of moved, @to_cset can be NULL.
874 * This function automatically handles populated counter updates and
875 * css_task_iter adjustments but the caller is responsible for managing
876 * @from_cset and @to_cset's reference counts.
878 static void css_set_move_task(struct task_struct
*task
,
879 struct css_set
*from_cset
, struct css_set
*to_cset
,
882 lockdep_assert_held(&css_set_lock
);
884 if (to_cset
&& !css_set_populated(to_cset
))
885 css_set_update_populated(to_cset
, true);
888 WARN_ON_ONCE(list_empty(&task
->cg_list
));
890 css_set_skip_task_iters(from_cset
, task
);
891 list_del_init(&task
->cg_list
);
892 if (!css_set_populated(from_cset
))
893 css_set_update_populated(from_cset
, false);
895 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
900 * We are synchronized through cgroup_threadgroup_rwsem
901 * against PF_EXITING setting such that we can't race
902 * against cgroup_exit() changing the css_set to
903 * init_css_set and dropping the old one.
905 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
907 cgroup_move_task(task
, to_cset
);
908 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
914 * hash table for cgroup groups. This improves the performance to find
915 * an existing css_set. This hash doesn't (currently) take into
916 * account cgroups in empty hierarchies.
918 #define CSS_SET_HASH_BITS 7
919 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
921 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
923 unsigned long key
= 0UL;
924 struct cgroup_subsys
*ss
;
927 for_each_subsys(ss
, i
)
928 key
+= (unsigned long)css
[i
];
929 key
= (key
>> 16) ^ key
;
934 void put_css_set_locked(struct css_set
*cset
)
936 struct cgrp_cset_link
*link
, *tmp_link
;
937 struct cgroup_subsys
*ss
;
940 lockdep_assert_held(&css_set_lock
);
942 if (!refcount_dec_and_test(&cset
->refcount
))
945 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
947 /* This css_set is dead. unlink it and release cgroup and css refs */
948 for_each_subsys(ss
, ssid
) {
949 list_del(&cset
->e_cset_node
[ssid
]);
950 css_put(cset
->subsys
[ssid
]);
952 hash_del(&cset
->hlist
);
955 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
956 list_del(&link
->cset_link
);
957 list_del(&link
->cgrp_link
);
958 if (cgroup_parent(link
->cgrp
))
959 cgroup_put(link
->cgrp
);
963 if (css_set_threaded(cset
)) {
964 list_del(&cset
->threaded_csets_node
);
965 put_css_set_locked(cset
->dom_cset
);
968 kfree_rcu(cset
, rcu_head
);
972 * compare_css_sets - helper function for find_existing_css_set().
973 * @cset: candidate css_set being tested
974 * @old_cset: existing css_set for a task
975 * @new_cgrp: cgroup that's being entered by the task
976 * @template: desired set of css pointers in css_set (pre-calculated)
978 * Returns true if "cset" matches "old_cset" except for the hierarchy
979 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
981 static bool compare_css_sets(struct css_set
*cset
,
982 struct css_set
*old_cset
,
983 struct cgroup
*new_cgrp
,
984 struct cgroup_subsys_state
*template[])
986 struct cgroup
*new_dfl_cgrp
;
987 struct list_head
*l1
, *l2
;
990 * On the default hierarchy, there can be csets which are
991 * associated with the same set of cgroups but different csses.
992 * Let's first ensure that csses match.
994 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
998 /* @cset's domain should match the default cgroup's */
999 if (cgroup_on_dfl(new_cgrp
))
1000 new_dfl_cgrp
= new_cgrp
;
1002 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
1004 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
1008 * Compare cgroup pointers in order to distinguish between
1009 * different cgroups in hierarchies. As different cgroups may
1010 * share the same effective css, this comparison is always
1013 l1
= &cset
->cgrp_links
;
1014 l2
= &old_cset
->cgrp_links
;
1016 struct cgrp_cset_link
*link1
, *link2
;
1017 struct cgroup
*cgrp1
, *cgrp2
;
1021 /* See if we reached the end - both lists are equal length. */
1022 if (l1
== &cset
->cgrp_links
) {
1023 BUG_ON(l2
!= &old_cset
->cgrp_links
);
1026 BUG_ON(l2
== &old_cset
->cgrp_links
);
1028 /* Locate the cgroups associated with these links. */
1029 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
1030 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
1031 cgrp1
= link1
->cgrp
;
1032 cgrp2
= link2
->cgrp
;
1033 /* Hierarchies should be linked in the same order. */
1034 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
1037 * If this hierarchy is the hierarchy of the cgroup
1038 * that's changing, then we need to check that this
1039 * css_set points to the new cgroup; if it's any other
1040 * hierarchy, then this css_set should point to the
1041 * same cgroup as the old css_set.
1043 if (cgrp1
->root
== new_cgrp
->root
) {
1044 if (cgrp1
!= new_cgrp
)
1055 * find_existing_css_set - init css array and find the matching css_set
1056 * @old_cset: the css_set that we're using before the cgroup transition
1057 * @cgrp: the cgroup that we're moving into
1058 * @template: out param for the new set of csses, should be clear on entry
1060 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
1061 struct cgroup
*cgrp
,
1062 struct cgroup_subsys_state
*template[])
1064 struct cgroup_root
*root
= cgrp
->root
;
1065 struct cgroup_subsys
*ss
;
1066 struct css_set
*cset
;
1071 * Build the set of subsystem state objects that we want to see in the
1072 * new css_set. while subsystems can change globally, the entries here
1073 * won't change, so no need for locking.
1075 for_each_subsys(ss
, i
) {
1076 if (root
->subsys_mask
& (1UL << i
)) {
1078 * @ss is in this hierarchy, so we want the
1079 * effective css from @cgrp.
1081 template[i
] = cgroup_e_css_by_mask(cgrp
, ss
);
1084 * @ss is not in this hierarchy, so we don't want
1085 * to change the css.
1087 template[i
] = old_cset
->subsys
[i
];
1091 key
= css_set_hash(template);
1092 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
1093 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
1096 /* This css_set matches what we need */
1100 /* No existing cgroup group matched */
1104 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
1106 struct cgrp_cset_link
*link
, *tmp_link
;
1108 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
1109 list_del(&link
->cset_link
);
1115 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1116 * @count: the number of links to allocate
1117 * @tmp_links: list_head the allocated links are put on
1119 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1120 * through ->cset_link. Returns 0 on success or -errno.
1122 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1124 struct cgrp_cset_link
*link
;
1127 INIT_LIST_HEAD(tmp_links
);
1129 for (i
= 0; i
< count
; i
++) {
1130 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1132 free_cgrp_cset_links(tmp_links
);
1135 list_add(&link
->cset_link
, tmp_links
);
1141 * link_css_set - a helper function to link a css_set to a cgroup
1142 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1143 * @cset: the css_set to be linked
1144 * @cgrp: the destination cgroup
1146 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1147 struct cgroup
*cgrp
)
1149 struct cgrp_cset_link
*link
;
1151 BUG_ON(list_empty(tmp_links
));
1153 if (cgroup_on_dfl(cgrp
))
1154 cset
->dfl_cgrp
= cgrp
;
1156 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1161 * Always add links to the tail of the lists so that the lists are
1162 * in choronological order.
1164 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1165 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1167 if (cgroup_parent(cgrp
))
1168 cgroup_get_live(cgrp
);
1172 * find_css_set - return a new css_set with one cgroup updated
1173 * @old_cset: the baseline css_set
1174 * @cgrp: the cgroup to be updated
1176 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1177 * substituted into the appropriate hierarchy.
1179 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1180 struct cgroup
*cgrp
)
1182 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1183 struct css_set
*cset
;
1184 struct list_head tmp_links
;
1185 struct cgrp_cset_link
*link
;
1186 struct cgroup_subsys
*ss
;
1190 lockdep_assert_held(&cgroup_mutex
);
1192 /* First see if we already have a cgroup group that matches
1193 * the desired set */
1194 spin_lock_irq(&css_set_lock
);
1195 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1198 spin_unlock_irq(&css_set_lock
);
1203 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1207 /* Allocate all the cgrp_cset_link objects that we'll need */
1208 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1213 refcount_set(&cset
->refcount
, 1);
1214 cset
->dom_cset
= cset
;
1215 INIT_LIST_HEAD(&cset
->tasks
);
1216 INIT_LIST_HEAD(&cset
->mg_tasks
);
1217 INIT_LIST_HEAD(&cset
->dying_tasks
);
1218 INIT_LIST_HEAD(&cset
->task_iters
);
1219 INIT_LIST_HEAD(&cset
->threaded_csets
);
1220 INIT_HLIST_NODE(&cset
->hlist
);
1221 INIT_LIST_HEAD(&cset
->cgrp_links
);
1222 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1223 INIT_LIST_HEAD(&cset
->mg_node
);
1225 /* Copy the set of subsystem state objects generated in
1226 * find_existing_css_set() */
1227 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1229 spin_lock_irq(&css_set_lock
);
1230 /* Add reference counts and links from the new css_set. */
1231 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1232 struct cgroup
*c
= link
->cgrp
;
1234 if (c
->root
== cgrp
->root
)
1236 link_css_set(&tmp_links
, cset
, c
);
1239 BUG_ON(!list_empty(&tmp_links
));
1243 /* Add @cset to the hash table */
1244 key
= css_set_hash(cset
->subsys
);
1245 hash_add(css_set_table
, &cset
->hlist
, key
);
1247 for_each_subsys(ss
, ssid
) {
1248 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1250 list_add_tail(&cset
->e_cset_node
[ssid
],
1251 &css
->cgroup
->e_csets
[ssid
]);
1255 spin_unlock_irq(&css_set_lock
);
1258 * If @cset should be threaded, look up the matching dom_cset and
1259 * link them up. We first fully initialize @cset then look for the
1260 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1261 * to stay empty until we return.
1263 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1264 struct css_set
*dcset
;
1266 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1272 spin_lock_irq(&css_set_lock
);
1273 cset
->dom_cset
= dcset
;
1274 list_add_tail(&cset
->threaded_csets_node
,
1275 &dcset
->threaded_csets
);
1276 spin_unlock_irq(&css_set_lock
);
1282 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1284 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1286 return root_cgrp
->root
;
1289 static int cgroup_init_root_id(struct cgroup_root
*root
)
1293 lockdep_assert_held(&cgroup_mutex
);
1295 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1299 root
->hierarchy_id
= id
;
1303 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1305 lockdep_assert_held(&cgroup_mutex
);
1307 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1310 void cgroup_free_root(struct cgroup_root
*root
)
1313 idr_destroy(&root
->cgroup_idr
);
1318 static void cgroup_destroy_root(struct cgroup_root
*root
)
1320 struct cgroup
*cgrp
= &root
->cgrp
;
1321 struct cgrp_cset_link
*link
, *tmp_link
;
1323 trace_cgroup_destroy_root(root
);
1325 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1327 BUG_ON(atomic_read(&root
->nr_cgrps
));
1328 BUG_ON(!list_empty(&cgrp
->self
.children
));
1330 /* Rebind all subsystems back to the default hierarchy */
1331 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1334 * Release all the links from cset_links to this hierarchy's
1337 spin_lock_irq(&css_set_lock
);
1339 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1340 list_del(&link
->cset_link
);
1341 list_del(&link
->cgrp_link
);
1345 spin_unlock_irq(&css_set_lock
);
1347 if (!list_empty(&root
->root_list
)) {
1348 list_del(&root
->root_list
);
1349 cgroup_root_count
--;
1352 cgroup_exit_root_id(root
);
1354 mutex_unlock(&cgroup_mutex
);
1356 kernfs_destroy_root(root
->kf_root
);
1357 cgroup_free_root(root
);
1361 * look up cgroup associated with current task's cgroup namespace on the
1362 * specified hierarchy
1364 static struct cgroup
*
1365 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1367 struct cgroup
*res
= NULL
;
1368 struct css_set
*cset
;
1370 lockdep_assert_held(&css_set_lock
);
1374 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1375 if (cset
== &init_css_set
) {
1378 struct cgrp_cset_link
*link
;
1380 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1381 struct cgroup
*c
= link
->cgrp
;
1383 if (c
->root
== root
) {
1395 /* look up cgroup associated with given css_set on the specified hierarchy */
1396 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1397 struct cgroup_root
*root
)
1399 struct cgroup
*res
= NULL
;
1401 lockdep_assert_held(&cgroup_mutex
);
1402 lockdep_assert_held(&css_set_lock
);
1404 if (cset
== &init_css_set
) {
1406 } else if (root
== &cgrp_dfl_root
) {
1407 res
= cset
->dfl_cgrp
;
1409 struct cgrp_cset_link
*link
;
1411 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1412 struct cgroup
*c
= link
->cgrp
;
1414 if (c
->root
== root
) {
1426 * Return the cgroup for "task" from the given hierarchy. Must be
1427 * called with cgroup_mutex and css_set_lock held.
1429 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1430 struct cgroup_root
*root
)
1433 * No need to lock the task - since we hold cgroup_mutex the
1434 * task can't change groups, so the only thing that can happen
1435 * is that it exits and its css is set back to init_css_set.
1437 return cset_cgroup_from_root(task_css_set(task
), root
);
1441 * A task must hold cgroup_mutex to modify cgroups.
1443 * Any task can increment and decrement the count field without lock.
1444 * So in general, code holding cgroup_mutex can't rely on the count
1445 * field not changing. However, if the count goes to zero, then only
1446 * cgroup_attach_task() can increment it again. Because a count of zero
1447 * means that no tasks are currently attached, therefore there is no
1448 * way a task attached to that cgroup can fork (the other way to
1449 * increment the count). So code holding cgroup_mutex can safely
1450 * assume that if the count is zero, it will stay zero. Similarly, if
1451 * a task holds cgroup_mutex on a cgroup with zero count, it
1452 * knows that the cgroup won't be removed, as cgroup_rmdir()
1455 * A cgroup can only be deleted if both its 'count' of using tasks
1456 * is zero, and its list of 'children' cgroups is empty. Since all
1457 * tasks in the system use _some_ cgroup, and since there is always at
1458 * least one task in the system (init, pid == 1), therefore, root cgroup
1459 * always has either children cgroups and/or using tasks. So we don't
1460 * need a special hack to ensure that root cgroup cannot be deleted.
1462 * P.S. One more locking exception. RCU is used to guard the
1463 * update of a tasks cgroup pointer by cgroup_attach_task()
1466 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1468 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1471 struct cgroup_subsys
*ss
= cft
->ss
;
1473 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1474 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
)) {
1475 const char *dbg
= (cft
->flags
& CFTYPE_DEBUG
) ? ".__DEBUG__." : "";
1477 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s%s.%s",
1478 dbg
, cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1481 strscpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1487 * cgroup_file_mode - deduce file mode of a control file
1488 * @cft: the control file in question
1490 * S_IRUGO for read, S_IWUSR for write.
1492 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1496 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1499 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1500 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1510 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1511 * @subtree_control: the new subtree_control mask to consider
1512 * @this_ss_mask: available subsystems
1514 * On the default hierarchy, a subsystem may request other subsystems to be
1515 * enabled together through its ->depends_on mask. In such cases, more
1516 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1518 * This function calculates which subsystems need to be enabled if
1519 * @subtree_control is to be applied while restricted to @this_ss_mask.
1521 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1523 u16 cur_ss_mask
= subtree_control
;
1524 struct cgroup_subsys
*ss
;
1527 lockdep_assert_held(&cgroup_mutex
);
1529 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1532 u16 new_ss_mask
= cur_ss_mask
;
1534 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1535 new_ss_mask
|= ss
->depends_on
;
1536 } while_each_subsys_mask();
1539 * Mask out subsystems which aren't available. This can
1540 * happen only if some depended-upon subsystems were bound
1541 * to non-default hierarchies.
1543 new_ss_mask
&= this_ss_mask
;
1545 if (new_ss_mask
== cur_ss_mask
)
1547 cur_ss_mask
= new_ss_mask
;
1554 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1555 * @kn: the kernfs_node being serviced
1557 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1558 * the method finishes if locking succeeded. Note that once this function
1559 * returns the cgroup returned by cgroup_kn_lock_live() may become
1560 * inaccessible any time. If the caller intends to continue to access the
1561 * cgroup, it should pin it before invoking this function.
1563 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1565 struct cgroup
*cgrp
;
1567 if (kernfs_type(kn
) == KERNFS_DIR
)
1570 cgrp
= kn
->parent
->priv
;
1572 mutex_unlock(&cgroup_mutex
);
1574 kernfs_unbreak_active_protection(kn
);
1579 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1580 * @kn: the kernfs_node being serviced
1581 * @drain_offline: perform offline draining on the cgroup
1583 * This helper is to be used by a cgroup kernfs method currently servicing
1584 * @kn. It breaks the active protection, performs cgroup locking and
1585 * verifies that the associated cgroup is alive. Returns the cgroup if
1586 * alive; otherwise, %NULL. A successful return should be undone by a
1587 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1588 * cgroup is drained of offlining csses before return.
1590 * Any cgroup kernfs method implementation which requires locking the
1591 * associated cgroup should use this helper. It avoids nesting cgroup
1592 * locking under kernfs active protection and allows all kernfs operations
1593 * including self-removal.
1595 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1597 struct cgroup
*cgrp
;
1599 if (kernfs_type(kn
) == KERNFS_DIR
)
1602 cgrp
= kn
->parent
->priv
;
1605 * We're gonna grab cgroup_mutex which nests outside kernfs
1606 * active_ref. cgroup liveliness check alone provides enough
1607 * protection against removal. Ensure @cgrp stays accessible and
1608 * break the active_ref protection.
1610 if (!cgroup_tryget(cgrp
))
1612 kernfs_break_active_protection(kn
);
1615 cgroup_lock_and_drain_offline(cgrp
);
1617 mutex_lock(&cgroup_mutex
);
1619 if (!cgroup_is_dead(cgrp
))
1622 cgroup_kn_unlock(kn
);
1626 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1628 char name
[CGROUP_FILE_NAME_MAX
];
1630 lockdep_assert_held(&cgroup_mutex
);
1632 if (cft
->file_offset
) {
1633 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1634 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1636 spin_lock_irq(&cgroup_file_kn_lock
);
1638 spin_unlock_irq(&cgroup_file_kn_lock
);
1640 del_timer_sync(&cfile
->notify_timer
);
1643 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1647 * css_clear_dir - remove subsys files in a cgroup directory
1650 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1652 struct cgroup
*cgrp
= css
->cgroup
;
1653 struct cftype
*cfts
;
1655 if (!(css
->flags
& CSS_VISIBLE
))
1658 css
->flags
&= ~CSS_VISIBLE
;
1661 if (cgroup_on_dfl(cgrp
))
1662 cfts
= cgroup_base_files
;
1664 cfts
= cgroup1_base_files
;
1666 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1668 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1669 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1674 * css_populate_dir - create subsys files in a cgroup directory
1677 * On failure, no file is added.
1679 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1681 struct cgroup
*cgrp
= css
->cgroup
;
1682 struct cftype
*cfts
, *failed_cfts
;
1685 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1689 if (cgroup_on_dfl(cgrp
))
1690 cfts
= cgroup_base_files
;
1692 cfts
= cgroup1_base_files
;
1694 ret
= cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1698 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1699 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1707 css
->flags
|= CSS_VISIBLE
;
1711 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1712 if (cfts
== failed_cfts
)
1714 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1719 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1721 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1722 struct cgroup_subsys
*ss
;
1725 lockdep_assert_held(&cgroup_mutex
);
1727 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1729 * If @ss has non-root csses attached to it, can't move.
1730 * If @ss is an implicit controller, it is exempt from this
1731 * rule and can be stolen.
1733 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1734 !ss
->implicit_on_dfl
)
1737 /* can't move between two non-dummy roots either */
1738 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1740 } while_each_subsys_mask();
1742 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1743 struct cgroup_root
*src_root
= ss
->root
;
1744 struct cgroup
*scgrp
= &src_root
->cgrp
;
1745 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1746 struct css_set
*cset
;
1748 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1750 /* disable from the source */
1751 src_root
->subsys_mask
&= ~(1 << ssid
);
1752 WARN_ON(cgroup_apply_control(scgrp
));
1753 cgroup_finalize_control(scgrp
, 0);
1756 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1757 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1758 ss
->root
= dst_root
;
1759 css
->cgroup
= dcgrp
;
1761 spin_lock_irq(&css_set_lock
);
1762 hash_for_each(css_set_table
, i
, cset
, hlist
)
1763 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1764 &dcgrp
->e_csets
[ss
->id
]);
1765 spin_unlock_irq(&css_set_lock
);
1767 /* default hierarchy doesn't enable controllers by default */
1768 dst_root
->subsys_mask
|= 1 << ssid
;
1769 if (dst_root
== &cgrp_dfl_root
) {
1770 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1772 dcgrp
->subtree_control
|= 1 << ssid
;
1773 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1776 ret
= cgroup_apply_control(dcgrp
);
1778 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1783 } while_each_subsys_mask();
1785 kernfs_activate(dcgrp
->kn
);
1789 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1790 struct kernfs_root
*kf_root
)
1794 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1795 struct cgroup
*ns_cgroup
;
1797 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1801 spin_lock_irq(&css_set_lock
);
1802 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1803 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1804 spin_unlock_irq(&css_set_lock
);
1806 if (len
>= PATH_MAX
)
1809 seq_escape(sf
, buf
, " \t\n\\");
1816 enum cgroup2_param
{
1818 Opt_memory_localevents
,
1822 static const struct fs_parameter_spec cgroup2_param_specs
[] = {
1823 fsparam_flag("nsdelegate", Opt_nsdelegate
),
1824 fsparam_flag("memory_localevents", Opt_memory_localevents
),
1828 static const struct fs_parameter_description cgroup2_fs_parameters
= {
1830 .specs
= cgroup2_param_specs
,
1833 static int cgroup2_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1835 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1836 struct fs_parse_result result
;
1839 opt
= fs_parse(fc
, &cgroup2_fs_parameters
, param
, &result
);
1844 case Opt_nsdelegate
:
1845 ctx
->flags
|= CGRP_ROOT_NS_DELEGATE
;
1847 case Opt_memory_localevents
:
1848 ctx
->flags
|= CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1854 static void apply_cgroup_root_flags(unsigned int root_flags
)
1856 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1857 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1858 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1860 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1862 if (root_flags
& CGRP_ROOT_MEMORY_LOCAL_EVENTS
)
1863 cgrp_dfl_root
.flags
|= CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1865 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1869 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1871 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1872 seq_puts(seq
, ",nsdelegate");
1873 if (cgrp_dfl_root
.flags
& CGRP_ROOT_MEMORY_LOCAL_EVENTS
)
1874 seq_puts(seq
, ",memory_localevents");
1878 static int cgroup_reconfigure(struct fs_context
*fc
)
1880 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1882 apply_cgroup_root_flags(ctx
->flags
);
1887 * To reduce the fork() overhead for systems that are not actually using
1888 * their cgroups capability, we don't maintain the lists running through
1889 * each css_set to its tasks until we see the list actually used - in other
1890 * words after the first mount.
1892 static bool use_task_css_set_links __read_mostly
;
1894 static void cgroup_enable_task_cg_lists(void)
1896 struct task_struct
*p
, *g
;
1899 * We need tasklist_lock because RCU is not safe against
1900 * while_each_thread(). Besides, a forking task that has passed
1901 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1902 * is not guaranteed to have its child immediately visible in the
1903 * tasklist if we walk through it with RCU.
1905 read_lock(&tasklist_lock
);
1906 spin_lock_irq(&css_set_lock
);
1908 if (use_task_css_set_links
)
1911 use_task_css_set_links
= true;
1913 do_each_thread(g
, p
) {
1914 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1915 task_css_set(p
) != &init_css_set
);
1918 * We should check if the process is exiting, otherwise
1919 * it will race with cgroup_exit() in that the list
1920 * entry won't be deleted though the process has exited.
1921 * Do it while holding siglock so that we don't end up
1922 * racing against cgroup_exit().
1924 * Interrupts were already disabled while acquiring
1925 * the css_set_lock, so we do not need to disable it
1926 * again when acquiring the sighand->siglock here.
1928 spin_lock(&p
->sighand
->siglock
);
1929 if (!(p
->flags
& PF_EXITING
)) {
1930 struct css_set
*cset
= task_css_set(p
);
1932 if (!css_set_populated(cset
))
1933 css_set_update_populated(cset
, true);
1934 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1938 spin_unlock(&p
->sighand
->siglock
);
1939 } while_each_thread(g
, p
);
1941 spin_unlock_irq(&css_set_lock
);
1942 read_unlock(&tasklist_lock
);
1945 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1947 struct cgroup_subsys
*ss
;
1950 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1951 INIT_LIST_HEAD(&cgrp
->self
.children
);
1952 INIT_LIST_HEAD(&cgrp
->cset_links
);
1953 INIT_LIST_HEAD(&cgrp
->pidlists
);
1954 mutex_init(&cgrp
->pidlist_mutex
);
1955 cgrp
->self
.cgroup
= cgrp
;
1956 cgrp
->self
.flags
|= CSS_ONLINE
;
1957 cgrp
->dom_cgrp
= cgrp
;
1958 cgrp
->max_descendants
= INT_MAX
;
1959 cgrp
->max_depth
= INT_MAX
;
1960 INIT_LIST_HEAD(&cgrp
->rstat_css_list
);
1961 prev_cputime_init(&cgrp
->prev_cputime
);
1963 for_each_subsys(ss
, ssid
)
1964 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1966 init_waitqueue_head(&cgrp
->offline_waitq
);
1967 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1970 void init_cgroup_root(struct cgroup_fs_context
*ctx
)
1972 struct cgroup_root
*root
= ctx
->root
;
1973 struct cgroup
*cgrp
= &root
->cgrp
;
1975 INIT_LIST_HEAD(&root
->root_list
);
1976 atomic_set(&root
->nr_cgrps
, 1);
1978 init_cgroup_housekeeping(cgrp
);
1979 idr_init(&root
->cgroup_idr
);
1981 root
->flags
= ctx
->flags
;
1982 if (ctx
->release_agent
)
1983 strscpy(root
->release_agent_path
, ctx
->release_agent
, PATH_MAX
);
1985 strscpy(root
->name
, ctx
->name
, MAX_CGROUP_ROOT_NAMELEN
);
1986 if (ctx
->cpuset_clone_children
)
1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1990 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
)
1992 LIST_HEAD(tmp_links
);
1993 struct cgroup
*root_cgrp
= &root
->cgrp
;
1994 struct kernfs_syscall_ops
*kf_sops
;
1995 struct css_set
*cset
;
1998 lockdep_assert_held(&cgroup_mutex
);
2000 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
2003 root_cgrp
->id
= ret
;
2004 root_cgrp
->ancestor_ids
[0] = ret
;
2006 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
2012 * We're accessing css_set_count without locking css_set_lock here,
2013 * but that's OK - it can only be increased by someone holding
2014 * cgroup_lock, and that's us. Later rebinding may disable
2015 * controllers on the default hierarchy and thus create new csets,
2016 * which can't be more than the existing ones. Allocate 2x.
2018 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
2022 ret
= cgroup_init_root_id(root
);
2026 kf_sops
= root
== &cgrp_dfl_root
?
2027 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
2029 root
->kf_root
= kernfs_create_root(kf_sops
,
2030 KERNFS_ROOT_CREATE_DEACTIVATED
|
2031 KERNFS_ROOT_SUPPORT_EXPORTOP
,
2033 if (IS_ERR(root
->kf_root
)) {
2034 ret
= PTR_ERR(root
->kf_root
);
2037 root_cgrp
->kn
= root
->kf_root
->kn
;
2039 ret
= css_populate_dir(&root_cgrp
->self
);
2043 ret
= rebind_subsystems(root
, ss_mask
);
2047 ret
= cgroup_bpf_inherit(root_cgrp
);
2050 trace_cgroup_setup_root(root
);
2053 * There must be no failure case after here, since rebinding takes
2054 * care of subsystems' refcounts, which are explicitly dropped in
2055 * the failure exit path.
2057 list_add(&root
->root_list
, &cgroup_roots
);
2058 cgroup_root_count
++;
2061 * Link the root cgroup in this hierarchy into all the css_set
2064 spin_lock_irq(&css_set_lock
);
2065 hash_for_each(css_set_table
, i
, cset
, hlist
) {
2066 link_css_set(&tmp_links
, cset
, root_cgrp
);
2067 if (css_set_populated(cset
))
2068 cgroup_update_populated(root_cgrp
, true);
2070 spin_unlock_irq(&css_set_lock
);
2072 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
2073 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
2075 kernfs_activate(root_cgrp
->kn
);
2080 kernfs_destroy_root(root
->kf_root
);
2081 root
->kf_root
= NULL
;
2083 cgroup_exit_root_id(root
);
2085 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2087 free_cgrp_cset_links(&tmp_links
);
2091 int cgroup_do_get_tree(struct fs_context
*fc
)
2093 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2096 ctx
->kfc
.root
= ctx
->root
->kf_root
;
2097 if (fc
->fs_type
== &cgroup2_fs_type
)
2098 ctx
->kfc
.magic
= CGROUP2_SUPER_MAGIC
;
2100 ctx
->kfc
.magic
= CGROUP_SUPER_MAGIC
;
2101 ret
= kernfs_get_tree(fc
);
2104 * In non-init cgroup namespace, instead of root cgroup's dentry,
2105 * we return the dentry corresponding to the cgroupns->root_cgrp.
2107 if (!ret
&& ctx
->ns
!= &init_cgroup_ns
) {
2108 struct dentry
*nsdentry
;
2109 struct super_block
*sb
= fc
->root
->d_sb
;
2110 struct cgroup
*cgrp
;
2112 mutex_lock(&cgroup_mutex
);
2113 spin_lock_irq(&css_set_lock
);
2115 cgrp
= cset_cgroup_from_root(ctx
->ns
->root_cset
, ctx
->root
);
2117 spin_unlock_irq(&css_set_lock
);
2118 mutex_unlock(&cgroup_mutex
);
2120 nsdentry
= kernfs_node_dentry(cgrp
->kn
, sb
);
2122 fc
->root
= nsdentry
;
2123 if (IS_ERR(nsdentry
)) {
2124 ret
= PTR_ERR(nsdentry
);
2125 deactivate_locked_super(sb
);
2129 if (!ctx
->kfc
.new_sb_created
)
2130 cgroup_put(&ctx
->root
->cgrp
);
2136 * Destroy a cgroup filesystem context.
2138 static void cgroup_fs_context_free(struct fs_context
*fc
)
2140 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2143 kfree(ctx
->release_agent
);
2144 put_cgroup_ns(ctx
->ns
);
2145 kernfs_free_fs_context(fc
);
2149 static int cgroup_get_tree(struct fs_context
*fc
)
2151 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2154 cgrp_dfl_visible
= true;
2155 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2156 ctx
->root
= &cgrp_dfl_root
;
2158 ret
= cgroup_do_get_tree(fc
);
2160 apply_cgroup_root_flags(ctx
->flags
);
2164 static const struct fs_context_operations cgroup_fs_context_ops
= {
2165 .free
= cgroup_fs_context_free
,
2166 .parse_param
= cgroup2_parse_param
,
2167 .get_tree
= cgroup_get_tree
,
2168 .reconfigure
= cgroup_reconfigure
,
2171 static const struct fs_context_operations cgroup1_fs_context_ops
= {
2172 .free
= cgroup_fs_context_free
,
2173 .parse_param
= cgroup1_parse_param
,
2174 .get_tree
= cgroup1_get_tree
,
2175 .reconfigure
= cgroup1_reconfigure
,
2179 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2180 * we select the namespace we're going to use.
2182 static int cgroup_init_fs_context(struct fs_context
*fc
)
2184 struct cgroup_fs_context
*ctx
;
2186 ctx
= kzalloc(sizeof(struct cgroup_fs_context
), GFP_KERNEL
);
2191 * The first time anyone tries to mount a cgroup, enable the list
2192 * linking each css_set to its tasks and fix up all existing tasks.
2194 if (!use_task_css_set_links
)
2195 cgroup_enable_task_cg_lists();
2197 ctx
->ns
= current
->nsproxy
->cgroup_ns
;
2198 get_cgroup_ns(ctx
->ns
);
2199 fc
->fs_private
= &ctx
->kfc
;
2200 if (fc
->fs_type
== &cgroup2_fs_type
)
2201 fc
->ops
= &cgroup_fs_context_ops
;
2203 fc
->ops
= &cgroup1_fs_context_ops
;
2205 put_user_ns(fc
->user_ns
);
2206 fc
->user_ns
= get_user_ns(ctx
->ns
->user_ns
);
2211 static void cgroup_kill_sb(struct super_block
*sb
)
2213 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2214 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2217 * If @root doesn't have any children, start killing it.
2218 * This prevents new mounts by disabling percpu_ref_tryget_live().
2219 * cgroup_mount() may wait for @root's release.
2221 * And don't kill the default root.
2223 if (list_empty(&root
->cgrp
.self
.children
) && root
!= &cgrp_dfl_root
&&
2224 !percpu_ref_is_dying(&root
->cgrp
.self
.refcnt
))
2225 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2226 cgroup_put(&root
->cgrp
);
2230 struct file_system_type cgroup_fs_type
= {
2232 .init_fs_context
= cgroup_init_fs_context
,
2233 .parameters
= &cgroup1_fs_parameters
,
2234 .kill_sb
= cgroup_kill_sb
,
2235 .fs_flags
= FS_USERNS_MOUNT
,
2238 static struct file_system_type cgroup2_fs_type
= {
2240 .init_fs_context
= cgroup_init_fs_context
,
2241 .parameters
= &cgroup2_fs_parameters
,
2242 .kill_sb
= cgroup_kill_sb
,
2243 .fs_flags
= FS_USERNS_MOUNT
,
2246 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2247 struct cgroup_namespace
*ns
)
2249 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2251 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2254 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2255 struct cgroup_namespace
*ns
)
2259 mutex_lock(&cgroup_mutex
);
2260 spin_lock_irq(&css_set_lock
);
2262 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2264 spin_unlock_irq(&css_set_lock
);
2265 mutex_unlock(&cgroup_mutex
);
2269 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2272 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2273 * @task: target task
2274 * @buf: the buffer to write the path into
2275 * @buflen: the length of the buffer
2277 * Determine @task's cgroup on the first (the one with the lowest non-zero
2278 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2279 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2280 * cgroup controller callbacks.
2282 * Return value is the same as kernfs_path().
2284 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2286 struct cgroup_root
*root
;
2287 struct cgroup
*cgrp
;
2288 int hierarchy_id
= 1;
2291 mutex_lock(&cgroup_mutex
);
2292 spin_lock_irq(&css_set_lock
);
2294 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2297 cgrp
= task_cgroup_from_root(task
, root
);
2298 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2300 /* if no hierarchy exists, everyone is in "/" */
2301 ret
= strlcpy(buf
, "/", buflen
);
2304 spin_unlock_irq(&css_set_lock
);
2305 mutex_unlock(&cgroup_mutex
);
2308 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2311 * cgroup_migrate_add_task - add a migration target task to a migration context
2312 * @task: target task
2313 * @mgctx: target migration context
2315 * Add @task, which is a migration target, to @mgctx->tset. This function
2316 * becomes noop if @task doesn't need to be migrated. @task's css_set
2317 * should have been added as a migration source and @task->cg_list will be
2318 * moved from the css_set's tasks list to mg_tasks one.
2320 static void cgroup_migrate_add_task(struct task_struct
*task
,
2321 struct cgroup_mgctx
*mgctx
)
2323 struct css_set
*cset
;
2325 lockdep_assert_held(&css_set_lock
);
2327 /* @task either already exited or can't exit until the end */
2328 if (task
->flags
& PF_EXITING
)
2331 /* leave @task alone if post_fork() hasn't linked it yet */
2332 if (list_empty(&task
->cg_list
))
2335 cset
= task_css_set(task
);
2336 if (!cset
->mg_src_cgrp
)
2339 mgctx
->tset
.nr_tasks
++;
2341 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2342 if (list_empty(&cset
->mg_node
))
2343 list_add_tail(&cset
->mg_node
,
2344 &mgctx
->tset
.src_csets
);
2345 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2346 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2347 &mgctx
->tset
.dst_csets
);
2351 * cgroup_taskset_first - reset taskset and return the first task
2352 * @tset: taskset of interest
2353 * @dst_cssp: output variable for the destination css
2355 * @tset iteration is initialized and the first task is returned.
2357 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2358 struct cgroup_subsys_state
**dst_cssp
)
2360 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2361 tset
->cur_task
= NULL
;
2363 return cgroup_taskset_next(tset
, dst_cssp
);
2367 * cgroup_taskset_next - iterate to the next task in taskset
2368 * @tset: taskset of interest
2369 * @dst_cssp: output variable for the destination css
2371 * Return the next task in @tset. Iteration must have been initialized
2372 * with cgroup_taskset_first().
2374 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2375 struct cgroup_subsys_state
**dst_cssp
)
2377 struct css_set
*cset
= tset
->cur_cset
;
2378 struct task_struct
*task
= tset
->cur_task
;
2380 while (&cset
->mg_node
!= tset
->csets
) {
2382 task
= list_first_entry(&cset
->mg_tasks
,
2383 struct task_struct
, cg_list
);
2385 task
= list_next_entry(task
, cg_list
);
2387 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2388 tset
->cur_cset
= cset
;
2389 tset
->cur_task
= task
;
2392 * This function may be called both before and
2393 * after cgroup_taskset_migrate(). The two cases
2394 * can be distinguished by looking at whether @cset
2395 * has its ->mg_dst_cset set.
2397 if (cset
->mg_dst_cset
)
2398 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2400 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2405 cset
= list_next_entry(cset
, mg_node
);
2413 * cgroup_taskset_migrate - migrate a taskset
2414 * @mgctx: migration context
2416 * Migrate tasks in @mgctx as setup by migration preparation functions.
2417 * This function fails iff one of the ->can_attach callbacks fails and
2418 * guarantees that either all or none of the tasks in @mgctx are migrated.
2419 * @mgctx is consumed regardless of success.
2421 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2423 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2424 struct cgroup_subsys
*ss
;
2425 struct task_struct
*task
, *tmp_task
;
2426 struct css_set
*cset
, *tmp_cset
;
2427 int ssid
, failed_ssid
, ret
;
2429 /* check that we can legitimately attach to the cgroup */
2430 if (tset
->nr_tasks
) {
2431 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2432 if (ss
->can_attach
) {
2434 ret
= ss
->can_attach(tset
);
2437 goto out_cancel_attach
;
2440 } while_each_subsys_mask();
2444 * Now that we're guaranteed success, proceed to move all tasks to
2445 * the new cgroup. There are no failure cases after here, so this
2446 * is the commit point.
2448 spin_lock_irq(&css_set_lock
);
2449 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2450 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2451 struct css_set
*from_cset
= task_css_set(task
);
2452 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2454 get_css_set(to_cset
);
2455 to_cset
->nr_tasks
++;
2456 css_set_move_task(task
, from_cset
, to_cset
, true);
2457 from_cset
->nr_tasks
--;
2459 * If the source or destination cgroup is frozen,
2460 * the task might require to change its state.
2462 cgroup_freezer_migrate_task(task
, from_cset
->dfl_cgrp
,
2464 put_css_set_locked(from_cset
);
2468 spin_unlock_irq(&css_set_lock
);
2471 * Migration is committed, all target tasks are now on dst_csets.
2472 * Nothing is sensitive to fork() after this point. Notify
2473 * controllers that migration is complete.
2475 tset
->csets
= &tset
->dst_csets
;
2477 if (tset
->nr_tasks
) {
2478 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2483 } while_each_subsys_mask();
2487 goto out_release_tset
;
2490 if (tset
->nr_tasks
) {
2491 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2492 if (ssid
== failed_ssid
)
2494 if (ss
->cancel_attach
) {
2496 ss
->cancel_attach(tset
);
2498 } while_each_subsys_mask();
2501 spin_lock_irq(&css_set_lock
);
2502 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2503 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2504 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2505 list_del_init(&cset
->mg_node
);
2507 spin_unlock_irq(&css_set_lock
);
2510 * Re-initialize the cgroup_taskset structure in case it is reused
2511 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2515 tset
->csets
= &tset
->src_csets
;
2520 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2521 * @dst_cgrp: destination cgroup to test
2523 * On the default hierarchy, except for the mixable, (possible) thread root
2524 * and threaded cgroups, subtree_control must be zero for migration
2525 * destination cgroups with tasks so that child cgroups don't compete
2528 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2530 /* v1 doesn't have any restriction */
2531 if (!cgroup_on_dfl(dst_cgrp
))
2534 /* verify @dst_cgrp can host resources */
2535 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2538 /* mixables don't care */
2539 if (cgroup_is_mixable(dst_cgrp
))
2543 * If @dst_cgrp is already or can become a thread root or is
2544 * threaded, it doesn't matter.
2546 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2549 /* apply no-internal-process constraint */
2550 if (dst_cgrp
->subtree_control
)
2557 * cgroup_migrate_finish - cleanup after attach
2558 * @mgctx: migration context
2560 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2561 * those functions for details.
2563 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2565 LIST_HEAD(preloaded
);
2566 struct css_set
*cset
, *tmp_cset
;
2568 lockdep_assert_held(&cgroup_mutex
);
2570 spin_lock_irq(&css_set_lock
);
2572 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2573 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2575 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2576 cset
->mg_src_cgrp
= NULL
;
2577 cset
->mg_dst_cgrp
= NULL
;
2578 cset
->mg_dst_cset
= NULL
;
2579 list_del_init(&cset
->mg_preload_node
);
2580 put_css_set_locked(cset
);
2583 spin_unlock_irq(&css_set_lock
);
2587 * cgroup_migrate_add_src - add a migration source css_set
2588 * @src_cset: the source css_set to add
2589 * @dst_cgrp: the destination cgroup
2590 * @mgctx: migration context
2592 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2593 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2594 * up by cgroup_migrate_finish().
2596 * This function may be called without holding cgroup_threadgroup_rwsem
2597 * even if the target is a process. Threads may be created and destroyed
2598 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2599 * into play and the preloaded css_sets are guaranteed to cover all
2602 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2603 struct cgroup
*dst_cgrp
,
2604 struct cgroup_mgctx
*mgctx
)
2606 struct cgroup
*src_cgrp
;
2608 lockdep_assert_held(&cgroup_mutex
);
2609 lockdep_assert_held(&css_set_lock
);
2612 * If ->dead, @src_set is associated with one or more dead cgroups
2613 * and doesn't contain any migratable tasks. Ignore it early so
2614 * that the rest of migration path doesn't get confused by it.
2619 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2621 if (!list_empty(&src_cset
->mg_preload_node
))
2624 WARN_ON(src_cset
->mg_src_cgrp
);
2625 WARN_ON(src_cset
->mg_dst_cgrp
);
2626 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2627 WARN_ON(!list_empty(&src_cset
->mg_node
));
2629 src_cset
->mg_src_cgrp
= src_cgrp
;
2630 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2631 get_css_set(src_cset
);
2632 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2636 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2637 * @mgctx: migration context
2639 * Tasks are about to be moved and all the source css_sets have been
2640 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2641 * pins all destination css_sets, links each to its source, and append them
2642 * to @mgctx->preloaded_dst_csets.
2644 * This function must be called after cgroup_migrate_add_src() has been
2645 * called on each migration source css_set. After migration is performed
2646 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2649 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2651 struct css_set
*src_cset
, *tmp_cset
;
2653 lockdep_assert_held(&cgroup_mutex
);
2655 /* look up the dst cset for each src cset and link it to src */
2656 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2658 struct css_set
*dst_cset
;
2659 struct cgroup_subsys
*ss
;
2662 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2666 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2669 * If src cset equals dst, it's noop. Drop the src.
2670 * cgroup_migrate() will skip the cset too. Note that we
2671 * can't handle src == dst as some nodes are used by both.
2673 if (src_cset
== dst_cset
) {
2674 src_cset
->mg_src_cgrp
= NULL
;
2675 src_cset
->mg_dst_cgrp
= NULL
;
2676 list_del_init(&src_cset
->mg_preload_node
);
2677 put_css_set(src_cset
);
2678 put_css_set(dst_cset
);
2682 src_cset
->mg_dst_cset
= dst_cset
;
2684 if (list_empty(&dst_cset
->mg_preload_node
))
2685 list_add_tail(&dst_cset
->mg_preload_node
,
2686 &mgctx
->preloaded_dst_csets
);
2688 put_css_set(dst_cset
);
2690 for_each_subsys(ss
, ssid
)
2691 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2692 mgctx
->ss_mask
|= 1 << ssid
;
2699 * cgroup_migrate - migrate a process or task to a cgroup
2700 * @leader: the leader of the process or the task to migrate
2701 * @threadgroup: whether @leader points to the whole process or a single task
2702 * @mgctx: migration context
2704 * Migrate a process or task denoted by @leader. If migrating a process,
2705 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2706 * responsible for invoking cgroup_migrate_add_src() and
2707 * cgroup_migrate_prepare_dst() on the targets before invoking this
2708 * function and following up with cgroup_migrate_finish().
2710 * As long as a controller's ->can_attach() doesn't fail, this function is
2711 * guaranteed to succeed. This means that, excluding ->can_attach()
2712 * failure, when migrating multiple targets, the success or failure can be
2713 * decided for all targets by invoking group_migrate_prepare_dst() before
2714 * actually starting migrating.
2716 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2717 struct cgroup_mgctx
*mgctx
)
2719 struct task_struct
*task
;
2722 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2723 * already PF_EXITING could be freed from underneath us unless we
2724 * take an rcu_read_lock.
2726 spin_lock_irq(&css_set_lock
);
2730 cgroup_migrate_add_task(task
, mgctx
);
2733 } while_each_thread(leader
, task
);
2735 spin_unlock_irq(&css_set_lock
);
2737 return cgroup_migrate_execute(mgctx
);
2741 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2742 * @dst_cgrp: the cgroup to attach to
2743 * @leader: the task or the leader of the threadgroup to be attached
2744 * @threadgroup: attach the whole threadgroup?
2746 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2748 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2751 DEFINE_CGROUP_MGCTX(mgctx
);
2752 struct task_struct
*task
;
2755 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
2759 /* look up all src csets */
2760 spin_lock_irq(&css_set_lock
);
2764 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2767 } while_each_thread(leader
, task
);
2769 spin_unlock_irq(&css_set_lock
);
2771 /* prepare dst csets and commit */
2772 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2774 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2776 cgroup_migrate_finish(&mgctx
);
2779 TRACE_CGROUP_PATH(attach_task
, dst_cgrp
, leader
, threadgroup
);
2784 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
)
2785 __acquires(&cgroup_threadgroup_rwsem
)
2787 struct task_struct
*tsk
;
2790 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2791 return ERR_PTR(-EINVAL
);
2793 percpu_down_write(&cgroup_threadgroup_rwsem
);
2797 tsk
= find_task_by_vpid(pid
);
2799 tsk
= ERR_PTR(-ESRCH
);
2800 goto out_unlock_threadgroup
;
2807 tsk
= tsk
->group_leader
;
2810 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2811 * If userland migrates such a kthread to a non-root cgroup, it can
2812 * become trapped in a cpuset, or RT kthread may be born in a
2813 * cgroup with no rt_runtime allocated. Just say no.
2815 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2816 tsk
= ERR_PTR(-EINVAL
);
2817 goto out_unlock_threadgroup
;
2820 get_task_struct(tsk
);
2821 goto out_unlock_rcu
;
2823 out_unlock_threadgroup
:
2824 percpu_up_write(&cgroup_threadgroup_rwsem
);
2830 void cgroup_procs_write_finish(struct task_struct
*task
)
2831 __releases(&cgroup_threadgroup_rwsem
)
2833 struct cgroup_subsys
*ss
;
2836 /* release reference from cgroup_procs_write_start() */
2837 put_task_struct(task
);
2839 percpu_up_write(&cgroup_threadgroup_rwsem
);
2840 for_each_subsys(ss
, ssid
)
2841 if (ss
->post_attach
)
2845 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2847 struct cgroup_subsys
*ss
;
2848 bool printed
= false;
2851 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2854 seq_printf(seq
, "%s", ss
->name
);
2856 } while_each_subsys_mask();
2858 seq_putc(seq
, '\n');
2861 /* show controllers which are enabled from the parent */
2862 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2864 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2866 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2870 /* show controllers which are enabled for a given cgroup's children */
2871 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2873 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2875 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2880 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2881 * @cgrp: root of the subtree to update csses for
2883 * @cgrp's control masks have changed and its subtree's css associations
2884 * need to be updated accordingly. This function looks up all css_sets
2885 * which are attached to the subtree, creates the matching updated css_sets
2886 * and migrates the tasks to the new ones.
2888 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2890 DEFINE_CGROUP_MGCTX(mgctx
);
2891 struct cgroup_subsys_state
*d_css
;
2892 struct cgroup
*dsct
;
2893 struct css_set
*src_cset
;
2896 lockdep_assert_held(&cgroup_mutex
);
2898 percpu_down_write(&cgroup_threadgroup_rwsem
);
2900 /* look up all csses currently attached to @cgrp's subtree */
2901 spin_lock_irq(&css_set_lock
);
2902 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2903 struct cgrp_cset_link
*link
;
2905 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2906 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2908 spin_unlock_irq(&css_set_lock
);
2910 /* NULL dst indicates self on default hierarchy */
2911 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2915 spin_lock_irq(&css_set_lock
);
2916 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2917 struct task_struct
*task
, *ntask
;
2919 /* all tasks in src_csets need to be migrated */
2920 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2921 cgroup_migrate_add_task(task
, &mgctx
);
2923 spin_unlock_irq(&css_set_lock
);
2925 ret
= cgroup_migrate_execute(&mgctx
);
2927 cgroup_migrate_finish(&mgctx
);
2928 percpu_up_write(&cgroup_threadgroup_rwsem
);
2933 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2934 * @cgrp: root of the target subtree
2936 * Because css offlining is asynchronous, userland may try to re-enable a
2937 * controller while the previous css is still around. This function grabs
2938 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2940 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2941 __acquires(&cgroup_mutex
)
2943 struct cgroup
*dsct
;
2944 struct cgroup_subsys_state
*d_css
;
2945 struct cgroup_subsys
*ss
;
2949 mutex_lock(&cgroup_mutex
);
2951 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2952 for_each_subsys(ss
, ssid
) {
2953 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2956 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2959 cgroup_get_live(dsct
);
2960 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2961 TASK_UNINTERRUPTIBLE
);
2963 mutex_unlock(&cgroup_mutex
);
2965 finish_wait(&dsct
->offline_waitq
, &wait
);
2974 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2975 * @cgrp: root of the target subtree
2977 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2978 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2981 static void cgroup_save_control(struct cgroup
*cgrp
)
2983 struct cgroup
*dsct
;
2984 struct cgroup_subsys_state
*d_css
;
2986 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2987 dsct
->old_subtree_control
= dsct
->subtree_control
;
2988 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2989 dsct
->old_dom_cgrp
= dsct
->dom_cgrp
;
2994 * cgroup_propagate_control - refresh control masks of a subtree
2995 * @cgrp: root of the target subtree
2997 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2998 * ->subtree_control and propagate controller availability through the
2999 * subtree so that descendants don't have unavailable controllers enabled.
3001 static void cgroup_propagate_control(struct cgroup
*cgrp
)
3003 struct cgroup
*dsct
;
3004 struct cgroup_subsys_state
*d_css
;
3006 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3007 dsct
->subtree_control
&= cgroup_control(dsct
);
3008 dsct
->subtree_ss_mask
=
3009 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
3010 cgroup_ss_mask(dsct
));
3015 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3016 * @cgrp: root of the target subtree
3018 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3019 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3022 static void cgroup_restore_control(struct cgroup
*cgrp
)
3024 struct cgroup
*dsct
;
3025 struct cgroup_subsys_state
*d_css
;
3027 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3028 dsct
->subtree_control
= dsct
->old_subtree_control
;
3029 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
3030 dsct
->dom_cgrp
= dsct
->old_dom_cgrp
;
3034 static bool css_visible(struct cgroup_subsys_state
*css
)
3036 struct cgroup_subsys
*ss
= css
->ss
;
3037 struct cgroup
*cgrp
= css
->cgroup
;
3039 if (cgroup_control(cgrp
) & (1 << ss
->id
))
3041 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
3043 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
3047 * cgroup_apply_control_enable - enable or show csses according to control
3048 * @cgrp: root of the target subtree
3050 * Walk @cgrp's subtree and create new csses or make the existing ones
3051 * visible. A css is created invisible if it's being implicitly enabled
3052 * through dependency. An invisible css is made visible when the userland
3053 * explicitly enables it.
3055 * Returns 0 on success, -errno on failure. On failure, csses which have
3056 * been processed already aren't cleaned up. The caller is responsible for
3057 * cleaning up with cgroup_apply_control_disable().
3059 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
3061 struct cgroup
*dsct
;
3062 struct cgroup_subsys_state
*d_css
;
3063 struct cgroup_subsys
*ss
;
3066 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3067 for_each_subsys(ss
, ssid
) {
3068 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3070 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3072 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
3076 css
= css_create(dsct
, ss
);
3078 return PTR_ERR(css
);
3081 if (css_visible(css
)) {
3082 ret
= css_populate_dir(css
);
3093 * cgroup_apply_control_disable - kill or hide csses according to control
3094 * @cgrp: root of the target subtree
3096 * Walk @cgrp's subtree and kill and hide csses so that they match
3097 * cgroup_ss_mask() and cgroup_visible_mask().
3099 * A css is hidden when the userland requests it to be disabled while other
3100 * subsystems are still depending on it. The css must not actively control
3101 * resources and be in the vanilla state if it's made visible again later.
3102 * Controllers which may be depended upon should provide ->css_reset() for
3105 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
3107 struct cgroup
*dsct
;
3108 struct cgroup_subsys_state
*d_css
;
3109 struct cgroup_subsys
*ss
;
3112 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3113 for_each_subsys(ss
, ssid
) {
3114 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3116 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3122 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
3124 } else if (!css_visible(css
)) {
3134 * cgroup_apply_control - apply control mask updates to the subtree
3135 * @cgrp: root of the target subtree
3137 * subsystems can be enabled and disabled in a subtree using the following
3140 * 1. Call cgroup_save_control() to stash the current state.
3141 * 2. Update ->subtree_control masks in the subtree as desired.
3142 * 3. Call cgroup_apply_control() to apply the changes.
3143 * 4. Optionally perform other related operations.
3144 * 5. Call cgroup_finalize_control() to finish up.
3146 * This function implements step 3 and propagates the mask changes
3147 * throughout @cgrp's subtree, updates csses accordingly and perform
3148 * process migrations.
3150 static int cgroup_apply_control(struct cgroup
*cgrp
)
3154 cgroup_propagate_control(cgrp
);
3156 ret
= cgroup_apply_control_enable(cgrp
);
3161 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3162 * making the following cgroup_update_dfl_csses() properly update
3163 * css associations of all tasks in the subtree.
3165 ret
= cgroup_update_dfl_csses(cgrp
);
3173 * cgroup_finalize_control - finalize control mask update
3174 * @cgrp: root of the target subtree
3175 * @ret: the result of the update
3177 * Finalize control mask update. See cgroup_apply_control() for more info.
3179 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3182 cgroup_restore_control(cgrp
);
3183 cgroup_propagate_control(cgrp
);
3186 cgroup_apply_control_disable(cgrp
);
3189 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
3191 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
3193 /* if nothing is getting enabled, nothing to worry about */
3197 /* can @cgrp host any resources? */
3198 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3201 /* mixables don't care */
3202 if (cgroup_is_mixable(cgrp
))
3205 if (domain_enable
) {
3206 /* can't enable domain controllers inside a thread subtree */
3207 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3211 * Threaded controllers can handle internal competitions
3212 * and are always allowed inside a (prospective) thread
3215 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3220 * Controllers can't be enabled for a cgroup with tasks to avoid
3221 * child cgroups competing against tasks.
3223 if (cgroup_has_tasks(cgrp
))
3229 /* change the enabled child controllers for a cgroup in the default hierarchy */
3230 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3231 char *buf
, size_t nbytes
,
3234 u16 enable
= 0, disable
= 0;
3235 struct cgroup
*cgrp
, *child
;
3236 struct cgroup_subsys
*ss
;
3241 * Parse input - space separated list of subsystem names prefixed
3242 * with either + or -.
3244 buf
= strstrip(buf
);
3245 while ((tok
= strsep(&buf
, " "))) {
3248 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3249 if (!cgroup_ssid_enabled(ssid
) ||
3250 strcmp(tok
+ 1, ss
->name
))
3254 enable
|= 1 << ssid
;
3255 disable
&= ~(1 << ssid
);
3256 } else if (*tok
== '-') {
3257 disable
|= 1 << ssid
;
3258 enable
&= ~(1 << ssid
);
3263 } while_each_subsys_mask();
3264 if (ssid
== CGROUP_SUBSYS_COUNT
)
3268 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3272 for_each_subsys(ss
, ssid
) {
3273 if (enable
& (1 << ssid
)) {
3274 if (cgrp
->subtree_control
& (1 << ssid
)) {
3275 enable
&= ~(1 << ssid
);
3279 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3283 } else if (disable
& (1 << ssid
)) {
3284 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3285 disable
&= ~(1 << ssid
);
3289 /* a child has it enabled? */
3290 cgroup_for_each_live_child(child
, cgrp
) {
3291 if (child
->subtree_control
& (1 << ssid
)) {
3299 if (!enable
&& !disable
) {
3304 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3308 /* save and update control masks and prepare csses */
3309 cgroup_save_control(cgrp
);
3311 cgrp
->subtree_control
|= enable
;
3312 cgrp
->subtree_control
&= ~disable
;
3314 ret
= cgroup_apply_control(cgrp
);
3315 cgroup_finalize_control(cgrp
, ret
);
3319 kernfs_activate(cgrp
->kn
);
3321 cgroup_kn_unlock(of
->kn
);
3322 return ret
?: nbytes
;
3326 * cgroup_enable_threaded - make @cgrp threaded
3327 * @cgrp: the target cgroup
3329 * Called when "threaded" is written to the cgroup.type interface file and
3330 * tries to make @cgrp threaded and join the parent's resource domain.
3331 * This function is never called on the root cgroup as cgroup.type doesn't
3334 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3336 struct cgroup
*parent
= cgroup_parent(cgrp
);
3337 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3338 struct cgroup
*dsct
;
3339 struct cgroup_subsys_state
*d_css
;
3342 lockdep_assert_held(&cgroup_mutex
);
3344 /* noop if already threaded */
3345 if (cgroup_is_threaded(cgrp
))
3349 * If @cgroup is populated or has domain controllers enabled, it
3350 * can't be switched. While the below cgroup_can_be_thread_root()
3351 * test can catch the same conditions, that's only when @parent is
3352 * not mixable, so let's check it explicitly.
3354 if (cgroup_is_populated(cgrp
) ||
3355 cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
3358 /* we're joining the parent's domain, ensure its validity */
3359 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3360 !cgroup_can_be_thread_root(dom_cgrp
))
3364 * The following shouldn't cause actual migrations and should
3367 cgroup_save_control(cgrp
);
3369 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
)
3370 if (dsct
== cgrp
|| cgroup_is_threaded(dsct
))
3371 dsct
->dom_cgrp
= dom_cgrp
;
3373 ret
= cgroup_apply_control(cgrp
);
3375 parent
->nr_threaded_children
++;
3377 cgroup_finalize_control(cgrp
, ret
);
3381 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3383 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3385 if (cgroup_is_threaded(cgrp
))
3386 seq_puts(seq
, "threaded\n");
3387 else if (!cgroup_is_valid_domain(cgrp
))
3388 seq_puts(seq
, "domain invalid\n");
3389 else if (cgroup_is_thread_root(cgrp
))
3390 seq_puts(seq
, "domain threaded\n");
3392 seq_puts(seq
, "domain\n");
3397 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3398 size_t nbytes
, loff_t off
)
3400 struct cgroup
*cgrp
;
3403 /* only switching to threaded mode is supported */
3404 if (strcmp(strstrip(buf
), "threaded"))
3407 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3411 /* threaded can only be enabled */
3412 ret
= cgroup_enable_threaded(cgrp
);
3414 cgroup_kn_unlock(of
->kn
);
3415 return ret
?: nbytes
;
3418 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3420 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3421 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3423 if (descendants
== INT_MAX
)
3424 seq_puts(seq
, "max\n");
3426 seq_printf(seq
, "%d\n", descendants
);
3431 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3432 char *buf
, size_t nbytes
, loff_t off
)
3434 struct cgroup
*cgrp
;
3438 buf
= strstrip(buf
);
3439 if (!strcmp(buf
, "max")) {
3440 descendants
= INT_MAX
;
3442 ret
= kstrtoint(buf
, 0, &descendants
);
3447 if (descendants
< 0)
3450 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3454 cgrp
->max_descendants
= descendants
;
3456 cgroup_kn_unlock(of
->kn
);
3461 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3463 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3464 int depth
= READ_ONCE(cgrp
->max_depth
);
3466 if (depth
== INT_MAX
)
3467 seq_puts(seq
, "max\n");
3469 seq_printf(seq
, "%d\n", depth
);
3474 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3475 char *buf
, size_t nbytes
, loff_t off
)
3477 struct cgroup
*cgrp
;
3481 buf
= strstrip(buf
);
3482 if (!strcmp(buf
, "max")) {
3485 ret
= kstrtoint(buf
, 0, &depth
);
3493 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3497 cgrp
->max_depth
= depth
;
3499 cgroup_kn_unlock(of
->kn
);
3504 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3506 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3508 seq_printf(seq
, "populated %d\n", cgroup_is_populated(cgrp
));
3509 seq_printf(seq
, "frozen %d\n", test_bit(CGRP_FROZEN
, &cgrp
->flags
));
3514 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3516 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3518 seq_printf(seq
, "nr_descendants %d\n",
3519 cgroup
->nr_descendants
);
3520 seq_printf(seq
, "nr_dying_descendants %d\n",
3521 cgroup
->nr_dying_descendants
);
3526 static int __maybe_unused
cgroup_extra_stat_show(struct seq_file
*seq
,
3527 struct cgroup
*cgrp
, int ssid
)
3529 struct cgroup_subsys
*ss
= cgroup_subsys
[ssid
];
3530 struct cgroup_subsys_state
*css
;
3533 if (!ss
->css_extra_stat_show
)
3536 css
= cgroup_tryget_css(cgrp
, ss
);
3540 ret
= ss
->css_extra_stat_show(seq
, css
);
3545 static int cpu_stat_show(struct seq_file
*seq
, void *v
)
3547 struct cgroup __maybe_unused
*cgrp
= seq_css(seq
)->cgroup
;
3550 cgroup_base_stat_cputime_show(seq
);
3551 #ifdef CONFIG_CGROUP_SCHED
3552 ret
= cgroup_extra_stat_show(seq
, cgrp
, cpu_cgrp_id
);
3558 static int cgroup_io_pressure_show(struct seq_file
*seq
, void *v
)
3560 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3561 struct psi_group
*psi
= cgroup
->id
== 1 ? &psi_system
: &cgroup
->psi
;
3563 return psi_show(seq
, psi
, PSI_IO
);
3565 static int cgroup_memory_pressure_show(struct seq_file
*seq
, void *v
)
3567 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3568 struct psi_group
*psi
= cgroup
->id
== 1 ? &psi_system
: &cgroup
->psi
;
3570 return psi_show(seq
, psi
, PSI_MEM
);
3572 static int cgroup_cpu_pressure_show(struct seq_file
*seq
, void *v
)
3574 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3575 struct psi_group
*psi
= cgroup
->id
== 1 ? &psi_system
: &cgroup
->psi
;
3577 return psi_show(seq
, psi
, PSI_CPU
);
3580 static ssize_t
cgroup_pressure_write(struct kernfs_open_file
*of
, char *buf
,
3581 size_t nbytes
, enum psi_res res
)
3583 struct psi_trigger
*new;
3584 struct cgroup
*cgrp
;
3586 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3591 cgroup_kn_unlock(of
->kn
);
3593 new = psi_trigger_create(&cgrp
->psi
, buf
, nbytes
, res
);
3596 return PTR_ERR(new);
3599 psi_trigger_replace(&of
->priv
, new);
3606 static ssize_t
cgroup_io_pressure_write(struct kernfs_open_file
*of
,
3607 char *buf
, size_t nbytes
,
3610 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_IO
);
3613 static ssize_t
cgroup_memory_pressure_write(struct kernfs_open_file
*of
,
3614 char *buf
, size_t nbytes
,
3617 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_MEM
);
3620 static ssize_t
cgroup_cpu_pressure_write(struct kernfs_open_file
*of
,
3621 char *buf
, size_t nbytes
,
3624 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_CPU
);
3627 static __poll_t
cgroup_pressure_poll(struct kernfs_open_file
*of
,
3630 return psi_trigger_poll(&of
->priv
, of
->file
, pt
);
3633 static void cgroup_pressure_release(struct kernfs_open_file
*of
)
3635 psi_trigger_replace(&of
->priv
, NULL
);
3637 #endif /* CONFIG_PSI */
3639 static int cgroup_freeze_show(struct seq_file
*seq
, void *v
)
3641 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3643 seq_printf(seq
, "%d\n", cgrp
->freezer
.freeze
);
3648 static ssize_t
cgroup_freeze_write(struct kernfs_open_file
*of
,
3649 char *buf
, size_t nbytes
, loff_t off
)
3651 struct cgroup
*cgrp
;
3655 ret
= kstrtoint(strstrip(buf
), 0, &freeze
);
3659 if (freeze
< 0 || freeze
> 1)
3662 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3666 cgroup_freeze(cgrp
, freeze
);
3668 cgroup_kn_unlock(of
->kn
);
3673 static int cgroup_file_open(struct kernfs_open_file
*of
)
3675 struct cftype
*cft
= of
->kn
->priv
;
3678 return cft
->open(of
);
3682 static void cgroup_file_release(struct kernfs_open_file
*of
)
3684 struct cftype
*cft
= of
->kn
->priv
;
3690 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3691 size_t nbytes
, loff_t off
)
3693 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3694 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3695 struct cftype
*cft
= of
->kn
->priv
;
3696 struct cgroup_subsys_state
*css
;
3700 * If namespaces are delegation boundaries, disallow writes to
3701 * files in an non-init namespace root from inside the namespace
3702 * except for the files explicitly marked delegatable -
3703 * cgroup.procs and cgroup.subtree_control.
3705 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3706 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3707 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3711 return cft
->write(of
, buf
, nbytes
, off
);
3714 * kernfs guarantees that a file isn't deleted with operations in
3715 * flight, which means that the matching css is and stays alive and
3716 * doesn't need to be pinned. The RCU locking is not necessary
3717 * either. It's just for the convenience of using cgroup_css().
3720 css
= cgroup_css(cgrp
, cft
->ss
);
3723 if (cft
->write_u64
) {
3724 unsigned long long v
;
3725 ret
= kstrtoull(buf
, 0, &v
);
3727 ret
= cft
->write_u64(css
, cft
, v
);
3728 } else if (cft
->write_s64
) {
3730 ret
= kstrtoll(buf
, 0, &v
);
3732 ret
= cft
->write_s64(css
, cft
, v
);
3737 return ret
?: nbytes
;
3740 static __poll_t
cgroup_file_poll(struct kernfs_open_file
*of
, poll_table
*pt
)
3742 struct cftype
*cft
= of
->kn
->priv
;
3745 return cft
->poll(of
, pt
);
3747 return kernfs_generic_poll(of
, pt
);
3750 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3752 return seq_cft(seq
)->seq_start(seq
, ppos
);
3755 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3757 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3760 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3762 if (seq_cft(seq
)->seq_stop
)
3763 seq_cft(seq
)->seq_stop(seq
, v
);
3766 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3768 struct cftype
*cft
= seq_cft(m
);
3769 struct cgroup_subsys_state
*css
= seq_css(m
);
3772 return cft
->seq_show(m
, arg
);
3775 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3776 else if (cft
->read_s64
)
3777 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3783 static struct kernfs_ops cgroup_kf_single_ops
= {
3784 .atomic_write_len
= PAGE_SIZE
,
3785 .open
= cgroup_file_open
,
3786 .release
= cgroup_file_release
,
3787 .write
= cgroup_file_write
,
3788 .poll
= cgroup_file_poll
,
3789 .seq_show
= cgroup_seqfile_show
,
3792 static struct kernfs_ops cgroup_kf_ops
= {
3793 .atomic_write_len
= PAGE_SIZE
,
3794 .open
= cgroup_file_open
,
3795 .release
= cgroup_file_release
,
3796 .write
= cgroup_file_write
,
3797 .poll
= cgroup_file_poll
,
3798 .seq_start
= cgroup_seqfile_start
,
3799 .seq_next
= cgroup_seqfile_next
,
3800 .seq_stop
= cgroup_seqfile_stop
,
3801 .seq_show
= cgroup_seqfile_show
,
3804 /* set uid and gid of cgroup dirs and files to that of the creator */
3805 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3807 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3808 .ia_uid
= current_fsuid(),
3809 .ia_gid
= current_fsgid(), };
3811 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3812 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3815 return kernfs_setattr(kn
, &iattr
);
3818 static void cgroup_file_notify_timer(struct timer_list
*timer
)
3820 cgroup_file_notify(container_of(timer
, struct cgroup_file
,
3824 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3827 char name
[CGROUP_FILE_NAME_MAX
];
3828 struct kernfs_node
*kn
;
3829 struct lock_class_key
*key
= NULL
;
3832 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3833 key
= &cft
->lockdep_key
;
3835 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3836 cgroup_file_mode(cft
),
3837 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
3838 0, cft
->kf_ops
, cft
,
3843 ret
= cgroup_kn_set_ugid(kn
);
3849 if (cft
->file_offset
) {
3850 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3852 timer_setup(&cfile
->notify_timer
, cgroup_file_notify_timer
, 0);
3854 spin_lock_irq(&cgroup_file_kn_lock
);
3856 spin_unlock_irq(&cgroup_file_kn_lock
);
3863 * cgroup_addrm_files - add or remove files to a cgroup directory
3864 * @css: the target css
3865 * @cgrp: the target cgroup (usually css->cgroup)
3866 * @cfts: array of cftypes to be added
3867 * @is_add: whether to add or remove
3869 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3870 * For removals, this function never fails.
3872 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3873 struct cgroup
*cgrp
, struct cftype cfts
[],
3876 struct cftype
*cft
, *cft_end
= NULL
;
3879 lockdep_assert_held(&cgroup_mutex
);
3882 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3883 /* does cft->flags tell us to skip this file on @cgrp? */
3884 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3886 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3888 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3890 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3892 if ((cft
->flags
& CFTYPE_DEBUG
) && !cgroup_debug
)
3895 ret
= cgroup_add_file(css
, cgrp
, cft
);
3897 pr_warn("%s: failed to add %s, err=%d\n",
3898 __func__
, cft
->name
, ret
);
3904 cgroup_rm_file(cgrp
, cft
);
3910 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3912 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3913 struct cgroup
*root
= &ss
->root
->cgrp
;
3914 struct cgroup_subsys_state
*css
;
3917 lockdep_assert_held(&cgroup_mutex
);
3919 /* add/rm files for all cgroups created before */
3920 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3921 struct cgroup
*cgrp
= css
->cgroup
;
3923 if (!(css
->flags
& CSS_VISIBLE
))
3926 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3932 kernfs_activate(root
->kn
);
3936 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3940 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3941 /* free copy for custom atomic_write_len, see init_cftypes() */
3942 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3947 /* revert flags set by cgroup core while adding @cfts */
3948 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3952 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3956 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3957 struct kernfs_ops
*kf_ops
;
3959 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3962 kf_ops
= &cgroup_kf_ops
;
3964 kf_ops
= &cgroup_kf_single_ops
;
3967 * Ugh... if @cft wants a custom max_write_len, we need to
3968 * make a copy of kf_ops to set its atomic_write_len.
3970 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3971 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3973 cgroup_exit_cftypes(cfts
);
3976 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3979 cft
->kf_ops
= kf_ops
;
3986 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3988 lockdep_assert_held(&cgroup_mutex
);
3990 if (!cfts
|| !cfts
[0].ss
)
3993 list_del(&cfts
->node
);
3994 cgroup_apply_cftypes(cfts
, false);
3995 cgroup_exit_cftypes(cfts
);
4000 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4001 * @cfts: zero-length name terminated array of cftypes
4003 * Unregister @cfts. Files described by @cfts are removed from all
4004 * existing cgroups and all future cgroups won't have them either. This
4005 * function can be called anytime whether @cfts' subsys is attached or not.
4007 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4010 int cgroup_rm_cftypes(struct cftype
*cfts
)
4014 mutex_lock(&cgroup_mutex
);
4015 ret
= cgroup_rm_cftypes_locked(cfts
);
4016 mutex_unlock(&cgroup_mutex
);
4021 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4022 * @ss: target cgroup subsystem
4023 * @cfts: zero-length name terminated array of cftypes
4025 * Register @cfts to @ss. Files described by @cfts are created for all
4026 * existing cgroups to which @ss is attached and all future cgroups will
4027 * have them too. This function can be called anytime whether @ss is
4030 * Returns 0 on successful registration, -errno on failure. Note that this
4031 * function currently returns 0 as long as @cfts registration is successful
4032 * even if some file creation attempts on existing cgroups fail.
4034 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4038 if (!cgroup_ssid_enabled(ss
->id
))
4041 if (!cfts
|| cfts
[0].name
[0] == '\0')
4044 ret
= cgroup_init_cftypes(ss
, cfts
);
4048 mutex_lock(&cgroup_mutex
);
4050 list_add_tail(&cfts
->node
, &ss
->cfts
);
4051 ret
= cgroup_apply_cftypes(cfts
, true);
4053 cgroup_rm_cftypes_locked(cfts
);
4055 mutex_unlock(&cgroup_mutex
);
4060 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4061 * @ss: target cgroup subsystem
4062 * @cfts: zero-length name terminated array of cftypes
4064 * Similar to cgroup_add_cftypes() but the added files are only used for
4065 * the default hierarchy.
4067 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4071 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4072 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
4073 return cgroup_add_cftypes(ss
, cfts
);
4077 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4078 * @ss: target cgroup subsystem
4079 * @cfts: zero-length name terminated array of cftypes
4081 * Similar to cgroup_add_cftypes() but the added files are only used for
4082 * the legacy hierarchies.
4084 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4088 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4089 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
4090 return cgroup_add_cftypes(ss
, cfts
);
4094 * cgroup_file_notify - generate a file modified event for a cgroup_file
4095 * @cfile: target cgroup_file
4097 * @cfile must have been obtained by setting cftype->file_offset.
4099 void cgroup_file_notify(struct cgroup_file
*cfile
)
4101 unsigned long flags
;
4103 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
4105 unsigned long last
= cfile
->notified_at
;
4106 unsigned long next
= last
+ CGROUP_FILE_NOTIFY_MIN_INTV
;
4108 if (time_in_range(jiffies
, last
, next
)) {
4109 timer_reduce(&cfile
->notify_timer
, next
);
4111 kernfs_notify(cfile
->kn
);
4112 cfile
->notified_at
= jiffies
;
4115 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
4119 * css_next_child - find the next child of a given css
4120 * @pos: the current position (%NULL to initiate traversal)
4121 * @parent: css whose children to walk
4123 * This function returns the next child of @parent and should be called
4124 * under either cgroup_mutex or RCU read lock. The only requirement is
4125 * that @parent and @pos are accessible. The next sibling is guaranteed to
4126 * be returned regardless of their states.
4128 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4129 * css which finished ->css_online() is guaranteed to be visible in the
4130 * future iterations and will stay visible until the last reference is put.
4131 * A css which hasn't finished ->css_online() or already finished
4132 * ->css_offline() may show up during traversal. It's each subsystem's
4133 * responsibility to synchronize against on/offlining.
4135 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
4136 struct cgroup_subsys_state
*parent
)
4138 struct cgroup_subsys_state
*next
;
4140 cgroup_assert_mutex_or_rcu_locked();
4143 * @pos could already have been unlinked from the sibling list.
4144 * Once a cgroup is removed, its ->sibling.next is no longer
4145 * updated when its next sibling changes. CSS_RELEASED is set when
4146 * @pos is taken off list, at which time its next pointer is valid,
4147 * and, as releases are serialized, the one pointed to by the next
4148 * pointer is guaranteed to not have started release yet. This
4149 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4150 * critical section, the one pointed to by its next pointer is
4151 * guaranteed to not have finished its RCU grace period even if we
4152 * have dropped rcu_read_lock() inbetween iterations.
4154 * If @pos has CSS_RELEASED set, its next pointer can't be
4155 * dereferenced; however, as each css is given a monotonically
4156 * increasing unique serial number and always appended to the
4157 * sibling list, the next one can be found by walking the parent's
4158 * children until the first css with higher serial number than
4159 * @pos's. While this path can be slower, it happens iff iteration
4160 * races against release and the race window is very small.
4163 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
4164 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
4165 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
4167 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
4168 if (next
->serial_nr
> pos
->serial_nr
)
4173 * @next, if not pointing to the head, can be dereferenced and is
4176 if (&next
->sibling
!= &parent
->children
)
4182 * css_next_descendant_pre - find the next descendant for pre-order walk
4183 * @pos: the current position (%NULL to initiate traversal)
4184 * @root: css whose descendants to walk
4186 * To be used by css_for_each_descendant_pre(). Find the next descendant
4187 * to visit for pre-order traversal of @root's descendants. @root is
4188 * included in the iteration and the first node to be visited.
4190 * While this function requires cgroup_mutex or RCU read locking, it
4191 * doesn't require the whole traversal to be contained in a single critical
4192 * section. This function will return the correct next descendant as long
4193 * as both @pos and @root are accessible and @pos is a descendant of @root.
4195 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4196 * css which finished ->css_online() is guaranteed to be visible in the
4197 * future iterations and will stay visible until the last reference is put.
4198 * A css which hasn't finished ->css_online() or already finished
4199 * ->css_offline() may show up during traversal. It's each subsystem's
4200 * responsibility to synchronize against on/offlining.
4202 struct cgroup_subsys_state
*
4203 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
4204 struct cgroup_subsys_state
*root
)
4206 struct cgroup_subsys_state
*next
;
4208 cgroup_assert_mutex_or_rcu_locked();
4210 /* if first iteration, visit @root */
4214 /* visit the first child if exists */
4215 next
= css_next_child(NULL
, pos
);
4219 /* no child, visit my or the closest ancestor's next sibling */
4220 while (pos
!= root
) {
4221 next
= css_next_child(pos
, pos
->parent
);
4231 * css_rightmost_descendant - return the rightmost descendant of a css
4232 * @pos: css of interest
4234 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4235 * is returned. This can be used during pre-order traversal to skip
4238 * While this function requires cgroup_mutex or RCU read locking, it
4239 * doesn't require the whole traversal to be contained in a single critical
4240 * section. This function will return the correct rightmost descendant as
4241 * long as @pos is accessible.
4243 struct cgroup_subsys_state
*
4244 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
4246 struct cgroup_subsys_state
*last
, *tmp
;
4248 cgroup_assert_mutex_or_rcu_locked();
4252 /* ->prev isn't RCU safe, walk ->next till the end */
4254 css_for_each_child(tmp
, last
)
4261 static struct cgroup_subsys_state
*
4262 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
4264 struct cgroup_subsys_state
*last
;
4268 pos
= css_next_child(NULL
, pos
);
4275 * css_next_descendant_post - find the next descendant for post-order walk
4276 * @pos: the current position (%NULL to initiate traversal)
4277 * @root: css whose descendants to walk
4279 * To be used by css_for_each_descendant_post(). Find the next descendant
4280 * to visit for post-order traversal of @root's descendants. @root is
4281 * included in the iteration and the last node to be visited.
4283 * While this function requires cgroup_mutex or RCU read locking, it
4284 * doesn't require the whole traversal to be contained in a single critical
4285 * section. This function will return the correct next descendant as long
4286 * as both @pos and @cgroup are accessible and @pos is a descendant of
4289 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4290 * css which finished ->css_online() is guaranteed to be visible in the
4291 * future iterations and will stay visible until the last reference is put.
4292 * A css which hasn't finished ->css_online() or already finished
4293 * ->css_offline() may show up during traversal. It's each subsystem's
4294 * responsibility to synchronize against on/offlining.
4296 struct cgroup_subsys_state
*
4297 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4298 struct cgroup_subsys_state
*root
)
4300 struct cgroup_subsys_state
*next
;
4302 cgroup_assert_mutex_or_rcu_locked();
4304 /* if first iteration, visit leftmost descendant which may be @root */
4306 return css_leftmost_descendant(root
);
4308 /* if we visited @root, we're done */
4312 /* if there's an unvisited sibling, visit its leftmost descendant */
4313 next
= css_next_child(pos
, pos
->parent
);
4315 return css_leftmost_descendant(next
);
4317 /* no sibling left, visit parent */
4322 * css_has_online_children - does a css have online children
4323 * @css: the target css
4325 * Returns %true if @css has any online children; otherwise, %false. This
4326 * function can be called from any context but the caller is responsible
4327 * for synchronizing against on/offlining as necessary.
4329 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4331 struct cgroup_subsys_state
*child
;
4335 css_for_each_child(child
, css
) {
4336 if (child
->flags
& CSS_ONLINE
) {
4345 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
4347 struct list_head
*l
;
4348 struct cgrp_cset_link
*link
;
4349 struct css_set
*cset
;
4351 lockdep_assert_held(&css_set_lock
);
4353 /* find the next threaded cset */
4354 if (it
->tcset_pos
) {
4355 l
= it
->tcset_pos
->next
;
4357 if (l
!= it
->tcset_head
) {
4359 return container_of(l
, struct css_set
,
4360 threaded_csets_node
);
4363 it
->tcset_pos
= NULL
;
4366 /* find the next cset */
4369 if (l
== it
->cset_head
) {
4370 it
->cset_pos
= NULL
;
4375 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
4377 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4383 /* initialize threaded css_set walking */
4384 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
4386 put_css_set_locked(it
->cur_dcset
);
4387 it
->cur_dcset
= cset
;
4390 it
->tcset_head
= &cset
->threaded_csets
;
4391 it
->tcset_pos
= &cset
->threaded_csets
;
4398 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4399 * @it: the iterator to advance
4401 * Advance @it to the next css_set to walk.
4403 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4405 struct css_set
*cset
;
4407 lockdep_assert_held(&css_set_lock
);
4409 /* Advance to the next non-empty css_set */
4411 cset
= css_task_iter_next_css_set(it
);
4413 it
->task_pos
= NULL
;
4416 } while (!css_set_populated(cset
) && list_empty(&cset
->dying_tasks
));
4418 if (!list_empty(&cset
->tasks
))
4419 it
->task_pos
= cset
->tasks
.next
;
4420 else if (!list_empty(&cset
->mg_tasks
))
4421 it
->task_pos
= cset
->mg_tasks
.next
;
4423 it
->task_pos
= cset
->dying_tasks
.next
;
4425 it
->tasks_head
= &cset
->tasks
;
4426 it
->mg_tasks_head
= &cset
->mg_tasks
;
4427 it
->dying_tasks_head
= &cset
->dying_tasks
;
4430 * We don't keep css_sets locked across iteration steps and thus
4431 * need to take steps to ensure that iteration can be resumed after
4432 * the lock is re-acquired. Iteration is performed at two levels -
4433 * css_sets and tasks in them.
4435 * Once created, a css_set never leaves its cgroup lists, so a
4436 * pinned css_set is guaranteed to stay put and we can resume
4437 * iteration afterwards.
4439 * Tasks may leave @cset across iteration steps. This is resolved
4440 * by registering each iterator with the css_set currently being
4441 * walked and making css_set_move_task() advance iterators whose
4442 * next task is leaving.
4445 list_del(&it
->iters_node
);
4446 put_css_set_locked(it
->cur_cset
);
4449 it
->cur_cset
= cset
;
4450 list_add(&it
->iters_node
, &cset
->task_iters
);
4453 static void css_task_iter_skip(struct css_task_iter
*it
,
4454 struct task_struct
*task
)
4456 lockdep_assert_held(&css_set_lock
);
4458 if (it
->task_pos
== &task
->cg_list
) {
4459 it
->task_pos
= it
->task_pos
->next
;
4460 it
->flags
|= CSS_TASK_ITER_SKIPPED
;
4464 static void css_task_iter_advance(struct css_task_iter
*it
)
4466 struct task_struct
*task
;
4468 lockdep_assert_held(&css_set_lock
);
4472 * Advance iterator to find next entry. cset->tasks is
4473 * consumed first and then ->mg_tasks. After ->mg_tasks,
4474 * we move onto the next cset.
4476 if (it
->flags
& CSS_TASK_ITER_SKIPPED
)
4477 it
->flags
&= ~CSS_TASK_ITER_SKIPPED
;
4479 it
->task_pos
= it
->task_pos
->next
;
4481 if (it
->task_pos
== it
->tasks_head
)
4482 it
->task_pos
= it
->mg_tasks_head
->next
;
4483 if (it
->task_pos
== it
->mg_tasks_head
)
4484 it
->task_pos
= it
->dying_tasks_head
->next
;
4485 if (it
->task_pos
== it
->dying_tasks_head
)
4486 css_task_iter_advance_css_set(it
);
4488 /* called from start, proceed to the first cset */
4489 css_task_iter_advance_css_set(it
);
4495 task
= list_entry(it
->task_pos
, struct task_struct
, cg_list
);
4497 if (it
->flags
& CSS_TASK_ITER_PROCS
) {
4498 /* if PROCS, skip over tasks which aren't group leaders */
4499 if (!thread_group_leader(task
))
4502 /* and dying leaders w/o live member threads */
4503 if (!atomic_read(&task
->signal
->live
))
4506 /* skip all dying ones */
4507 if (task
->flags
& PF_EXITING
)
4513 * css_task_iter_start - initiate task iteration
4514 * @css: the css to walk tasks of
4515 * @flags: CSS_TASK_ITER_* flags
4516 * @it: the task iterator to use
4518 * Initiate iteration through the tasks of @css. The caller can call
4519 * css_task_iter_next() to walk through the tasks until the function
4520 * returns NULL. On completion of iteration, css_task_iter_end() must be
4523 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4524 struct css_task_iter
*it
)
4526 /* no one should try to iterate before mounting cgroups */
4527 WARN_ON_ONCE(!use_task_css_set_links
);
4529 memset(it
, 0, sizeof(*it
));
4531 spin_lock_irq(&css_set_lock
);
4537 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4539 it
->cset_pos
= &css
->cgroup
->cset_links
;
4541 it
->cset_head
= it
->cset_pos
;
4543 css_task_iter_advance(it
);
4545 spin_unlock_irq(&css_set_lock
);
4549 * css_task_iter_next - return the next task for the iterator
4550 * @it: the task iterator being iterated
4552 * The "next" function for task iteration. @it should have been
4553 * initialized via css_task_iter_start(). Returns NULL when the iteration
4556 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4559 put_task_struct(it
->cur_task
);
4560 it
->cur_task
= NULL
;
4563 spin_lock_irq(&css_set_lock
);
4565 /* @it may be half-advanced by skips, finish advancing */
4566 if (it
->flags
& CSS_TASK_ITER_SKIPPED
)
4567 css_task_iter_advance(it
);
4570 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4572 get_task_struct(it
->cur_task
);
4573 css_task_iter_advance(it
);
4576 spin_unlock_irq(&css_set_lock
);
4578 return it
->cur_task
;
4582 * css_task_iter_end - finish task iteration
4583 * @it: the task iterator to finish
4585 * Finish task iteration started by css_task_iter_start().
4587 void css_task_iter_end(struct css_task_iter
*it
)
4590 spin_lock_irq(&css_set_lock
);
4591 list_del(&it
->iters_node
);
4592 put_css_set_locked(it
->cur_cset
);
4593 spin_unlock_irq(&css_set_lock
);
4597 put_css_set(it
->cur_dcset
);
4600 put_task_struct(it
->cur_task
);
4603 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4606 css_task_iter_end(of
->priv
);
4611 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4613 struct kernfs_open_file
*of
= s
->private;
4614 struct css_task_iter
*it
= of
->priv
;
4616 return css_task_iter_next(it
);
4619 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4620 unsigned int iter_flags
)
4622 struct kernfs_open_file
*of
= s
->private;
4623 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4624 struct css_task_iter
*it
= of
->priv
;
4627 * When a seq_file is seeked, it's always traversed sequentially
4628 * from position 0, so we can simply keep iterating on !0 *pos.
4631 if (WARN_ON_ONCE((*pos
)++))
4632 return ERR_PTR(-EINVAL
);
4634 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4636 return ERR_PTR(-ENOMEM
);
4638 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4639 } else if (!(*pos
)++) {
4640 css_task_iter_end(it
);
4641 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4644 return cgroup_procs_next(s
, NULL
, NULL
);
4647 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4649 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4652 * All processes of a threaded subtree belong to the domain cgroup
4653 * of the subtree. Only threads can be distributed across the
4654 * subtree. Reject reads on cgroup.procs in the subtree proper.
4655 * They're always empty anyway.
4657 if (cgroup_is_threaded(cgrp
))
4658 return ERR_PTR(-EOPNOTSUPP
);
4660 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4661 CSS_TASK_ITER_THREADED
);
4664 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4666 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4670 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4671 struct cgroup
*dst_cgrp
,
4672 struct super_block
*sb
)
4674 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4675 struct cgroup
*com_cgrp
= src_cgrp
;
4676 struct inode
*inode
;
4679 lockdep_assert_held(&cgroup_mutex
);
4681 /* find the common ancestor */
4682 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4683 com_cgrp
= cgroup_parent(com_cgrp
);
4685 /* %current should be authorized to migrate to the common ancestor */
4686 inode
= kernfs_get_inode(sb
, com_cgrp
->procs_file
.kn
);
4690 ret
= inode_permission(inode
, MAY_WRITE
);
4696 * If namespaces are delegation boundaries, %current must be able
4697 * to see both source and destination cgroups from its namespace.
4699 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4700 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4701 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4707 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4708 char *buf
, size_t nbytes
, loff_t off
)
4710 struct cgroup
*src_cgrp
, *dst_cgrp
;
4711 struct task_struct
*task
;
4714 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4718 task
= cgroup_procs_write_start(buf
, true);
4719 ret
= PTR_ERR_OR_ZERO(task
);
4723 /* find the source cgroup */
4724 spin_lock_irq(&css_set_lock
);
4725 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4726 spin_unlock_irq(&css_set_lock
);
4728 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4729 of
->file
->f_path
.dentry
->d_sb
);
4733 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4736 cgroup_procs_write_finish(task
);
4738 cgroup_kn_unlock(of
->kn
);
4740 return ret
?: nbytes
;
4743 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4745 return __cgroup_procs_start(s
, pos
, 0);
4748 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4749 char *buf
, size_t nbytes
, loff_t off
)
4751 struct cgroup
*src_cgrp
, *dst_cgrp
;
4752 struct task_struct
*task
;
4755 buf
= strstrip(buf
);
4757 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4761 task
= cgroup_procs_write_start(buf
, false);
4762 ret
= PTR_ERR_OR_ZERO(task
);
4766 /* find the source cgroup */
4767 spin_lock_irq(&css_set_lock
);
4768 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4769 spin_unlock_irq(&css_set_lock
);
4771 /* thread migrations follow the cgroup.procs delegation rule */
4772 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4773 of
->file
->f_path
.dentry
->d_sb
);
4777 /* and must be contained in the same domain */
4779 if (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
)
4782 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4785 cgroup_procs_write_finish(task
);
4787 cgroup_kn_unlock(of
->kn
);
4789 return ret
?: nbytes
;
4792 /* cgroup core interface files for the default hierarchy */
4793 static struct cftype cgroup_base_files
[] = {
4795 .name
= "cgroup.type",
4796 .flags
= CFTYPE_NOT_ON_ROOT
,
4797 .seq_show
= cgroup_type_show
,
4798 .write
= cgroup_type_write
,
4801 .name
= "cgroup.procs",
4802 .flags
= CFTYPE_NS_DELEGATABLE
,
4803 .file_offset
= offsetof(struct cgroup
, procs_file
),
4804 .release
= cgroup_procs_release
,
4805 .seq_start
= cgroup_procs_start
,
4806 .seq_next
= cgroup_procs_next
,
4807 .seq_show
= cgroup_procs_show
,
4808 .write
= cgroup_procs_write
,
4811 .name
= "cgroup.threads",
4812 .flags
= CFTYPE_NS_DELEGATABLE
,
4813 .release
= cgroup_procs_release
,
4814 .seq_start
= cgroup_threads_start
,
4815 .seq_next
= cgroup_procs_next
,
4816 .seq_show
= cgroup_procs_show
,
4817 .write
= cgroup_threads_write
,
4820 .name
= "cgroup.controllers",
4821 .seq_show
= cgroup_controllers_show
,
4824 .name
= "cgroup.subtree_control",
4825 .flags
= CFTYPE_NS_DELEGATABLE
,
4826 .seq_show
= cgroup_subtree_control_show
,
4827 .write
= cgroup_subtree_control_write
,
4830 .name
= "cgroup.events",
4831 .flags
= CFTYPE_NOT_ON_ROOT
,
4832 .file_offset
= offsetof(struct cgroup
, events_file
),
4833 .seq_show
= cgroup_events_show
,
4836 .name
= "cgroup.max.descendants",
4837 .seq_show
= cgroup_max_descendants_show
,
4838 .write
= cgroup_max_descendants_write
,
4841 .name
= "cgroup.max.depth",
4842 .seq_show
= cgroup_max_depth_show
,
4843 .write
= cgroup_max_depth_write
,
4846 .name
= "cgroup.stat",
4847 .seq_show
= cgroup_stat_show
,
4850 .name
= "cgroup.freeze",
4851 .flags
= CFTYPE_NOT_ON_ROOT
,
4852 .seq_show
= cgroup_freeze_show
,
4853 .write
= cgroup_freeze_write
,
4857 .flags
= CFTYPE_NOT_ON_ROOT
,
4858 .seq_show
= cpu_stat_show
,
4862 .name
= "io.pressure",
4863 .seq_show
= cgroup_io_pressure_show
,
4864 .write
= cgroup_io_pressure_write
,
4865 .poll
= cgroup_pressure_poll
,
4866 .release
= cgroup_pressure_release
,
4869 .name
= "memory.pressure",
4870 .seq_show
= cgroup_memory_pressure_show
,
4871 .write
= cgroup_memory_pressure_write
,
4872 .poll
= cgroup_pressure_poll
,
4873 .release
= cgroup_pressure_release
,
4876 .name
= "cpu.pressure",
4877 .seq_show
= cgroup_cpu_pressure_show
,
4878 .write
= cgroup_cpu_pressure_write
,
4879 .poll
= cgroup_pressure_poll
,
4880 .release
= cgroup_pressure_release
,
4882 #endif /* CONFIG_PSI */
4887 * css destruction is four-stage process.
4889 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4890 * Implemented in kill_css().
4892 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4893 * and thus css_tryget_online() is guaranteed to fail, the css can be
4894 * offlined by invoking offline_css(). After offlining, the base ref is
4895 * put. Implemented in css_killed_work_fn().
4897 * 3. When the percpu_ref reaches zero, the only possible remaining
4898 * accessors are inside RCU read sections. css_release() schedules the
4901 * 4. After the grace period, the css can be freed. Implemented in
4902 * css_free_work_fn().
4904 * It is actually hairier because both step 2 and 4 require process context
4905 * and thus involve punting to css->destroy_work adding two additional
4906 * steps to the already complex sequence.
4908 static void css_free_rwork_fn(struct work_struct
*work
)
4910 struct cgroup_subsys_state
*css
= container_of(to_rcu_work(work
),
4911 struct cgroup_subsys_state
, destroy_rwork
);
4912 struct cgroup_subsys
*ss
= css
->ss
;
4913 struct cgroup
*cgrp
= css
->cgroup
;
4915 percpu_ref_exit(&css
->refcnt
);
4919 struct cgroup_subsys_state
*parent
= css
->parent
;
4923 cgroup_idr_remove(&ss
->css_idr
, id
);
4929 /* cgroup free path */
4930 atomic_dec(&cgrp
->root
->nr_cgrps
);
4931 cgroup1_pidlist_destroy_all(cgrp
);
4932 cancel_work_sync(&cgrp
->release_agent_work
);
4934 if (cgroup_parent(cgrp
)) {
4936 * We get a ref to the parent, and put the ref when
4937 * this cgroup is being freed, so it's guaranteed
4938 * that the parent won't be destroyed before its
4941 cgroup_put(cgroup_parent(cgrp
));
4942 kernfs_put(cgrp
->kn
);
4943 psi_cgroup_free(cgrp
);
4944 if (cgroup_on_dfl(cgrp
))
4945 cgroup_rstat_exit(cgrp
);
4949 * This is root cgroup's refcnt reaching zero,
4950 * which indicates that the root should be
4953 cgroup_destroy_root(cgrp
->root
);
4958 static void css_release_work_fn(struct work_struct
*work
)
4960 struct cgroup_subsys_state
*css
=
4961 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4962 struct cgroup_subsys
*ss
= css
->ss
;
4963 struct cgroup
*cgrp
= css
->cgroup
;
4965 mutex_lock(&cgroup_mutex
);
4967 css
->flags
|= CSS_RELEASED
;
4968 list_del_rcu(&css
->sibling
);
4971 /* css release path */
4972 if (!list_empty(&css
->rstat_css_node
)) {
4973 cgroup_rstat_flush(cgrp
);
4974 list_del_rcu(&css
->rstat_css_node
);
4977 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4978 if (ss
->css_released
)
4979 ss
->css_released(css
);
4981 struct cgroup
*tcgrp
;
4983 /* cgroup release path */
4984 TRACE_CGROUP_PATH(release
, cgrp
);
4986 if (cgroup_on_dfl(cgrp
))
4987 cgroup_rstat_flush(cgrp
);
4989 spin_lock_irq(&css_set_lock
);
4990 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
4991 tcgrp
= cgroup_parent(tcgrp
))
4992 tcgrp
->nr_dying_descendants
--;
4993 spin_unlock_irq(&css_set_lock
);
4995 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4999 * There are two control paths which try to determine
5000 * cgroup from dentry without going through kernfs -
5001 * cgroupstats_build() and css_tryget_online_from_dir().
5002 * Those are supported by RCU protecting clearing of
5003 * cgrp->kn->priv backpointer.
5006 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
5009 cgroup_bpf_put(cgrp
);
5012 mutex_unlock(&cgroup_mutex
);
5014 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
5015 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
5018 static void css_release(struct percpu_ref
*ref
)
5020 struct cgroup_subsys_state
*css
=
5021 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5023 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
5024 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5027 static void init_and_link_css(struct cgroup_subsys_state
*css
,
5028 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
5030 lockdep_assert_held(&cgroup_mutex
);
5032 cgroup_get_live(cgrp
);
5034 memset(css
, 0, sizeof(*css
));
5038 INIT_LIST_HEAD(&css
->sibling
);
5039 INIT_LIST_HEAD(&css
->children
);
5040 INIT_LIST_HEAD(&css
->rstat_css_node
);
5041 css
->serial_nr
= css_serial_nr_next
++;
5042 atomic_set(&css
->online_cnt
, 0);
5044 if (cgroup_parent(cgrp
)) {
5045 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
5046 css_get(css
->parent
);
5049 if (cgroup_on_dfl(cgrp
) && ss
->css_rstat_flush
)
5050 list_add_rcu(&css
->rstat_css_node
, &cgrp
->rstat_css_list
);
5052 BUG_ON(cgroup_css(cgrp
, ss
));
5055 /* invoke ->css_online() on a new CSS and mark it online if successful */
5056 static int online_css(struct cgroup_subsys_state
*css
)
5058 struct cgroup_subsys
*ss
= css
->ss
;
5061 lockdep_assert_held(&cgroup_mutex
);
5064 ret
= ss
->css_online(css
);
5066 css
->flags
|= CSS_ONLINE
;
5067 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
5069 atomic_inc(&css
->online_cnt
);
5071 atomic_inc(&css
->parent
->online_cnt
);
5076 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5077 static void offline_css(struct cgroup_subsys_state
*css
)
5079 struct cgroup_subsys
*ss
= css
->ss
;
5081 lockdep_assert_held(&cgroup_mutex
);
5083 if (!(css
->flags
& CSS_ONLINE
))
5086 if (ss
->css_offline
)
5087 ss
->css_offline(css
);
5089 css
->flags
&= ~CSS_ONLINE
;
5090 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
5092 wake_up_all(&css
->cgroup
->offline_waitq
);
5096 * css_create - create a cgroup_subsys_state
5097 * @cgrp: the cgroup new css will be associated with
5098 * @ss: the subsys of new css
5100 * Create a new css associated with @cgrp - @ss pair. On success, the new
5101 * css is online and installed in @cgrp. This function doesn't create the
5102 * interface files. Returns 0 on success, -errno on failure.
5104 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
5105 struct cgroup_subsys
*ss
)
5107 struct cgroup
*parent
= cgroup_parent(cgrp
);
5108 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
5109 struct cgroup_subsys_state
*css
;
5112 lockdep_assert_held(&cgroup_mutex
);
5114 css
= ss
->css_alloc(parent_css
);
5116 css
= ERR_PTR(-ENOMEM
);
5120 init_and_link_css(css
, ss
, cgrp
);
5122 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
5126 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
5131 /* @css is ready to be brought online now, make it visible */
5132 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
5133 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
5135 err
= online_css(css
);
5139 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
5140 cgroup_parent(parent
)) {
5141 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5142 current
->comm
, current
->pid
, ss
->name
);
5143 if (!strcmp(ss
->name
, "memory"))
5144 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5145 ss
->warned_broken_hierarchy
= true;
5151 list_del_rcu(&css
->sibling
);
5153 list_del_rcu(&css
->rstat_css_node
);
5154 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
5155 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
5156 return ERR_PTR(err
);
5160 * The returned cgroup is fully initialized including its control mask, but
5161 * it isn't associated with its kernfs_node and doesn't have the control
5164 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
5166 struct cgroup_root
*root
= parent
->root
;
5167 struct cgroup
*cgrp
, *tcgrp
;
5168 int level
= parent
->level
+ 1;
5171 /* allocate the cgroup and its ID, 0 is reserved for the root */
5172 cgrp
= kzalloc(struct_size(cgrp
, ancestor_ids
, (level
+ 1)),
5175 return ERR_PTR(-ENOMEM
);
5177 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
5181 if (cgroup_on_dfl(parent
)) {
5182 ret
= cgroup_rstat_init(cgrp
);
5184 goto out_cancel_ref
;
5188 * Temporarily set the pointer to NULL, so idr_find() won't return
5189 * a half-baked cgroup.
5191 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
5197 init_cgroup_housekeeping(cgrp
);
5199 cgrp
->self
.parent
= &parent
->self
;
5201 cgrp
->level
= level
;
5203 ret
= psi_cgroup_alloc(cgrp
);
5207 ret
= cgroup_bpf_inherit(cgrp
);
5212 * New cgroup inherits effective freeze counter, and
5213 * if the parent has to be frozen, the child has too.
5215 cgrp
->freezer
.e_freeze
= parent
->freezer
.e_freeze
;
5216 if (cgrp
->freezer
.e_freeze
)
5217 set_bit(CGRP_FROZEN
, &cgrp
->flags
);
5219 spin_lock_irq(&css_set_lock
);
5220 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5221 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
5223 if (tcgrp
!= cgrp
) {
5224 tcgrp
->nr_descendants
++;
5227 * If the new cgroup is frozen, all ancestor cgroups
5228 * get a new frozen descendant, but their state can't
5229 * change because of this.
5231 if (cgrp
->freezer
.e_freeze
)
5232 tcgrp
->freezer
.nr_frozen_descendants
++;
5235 spin_unlock_irq(&css_set_lock
);
5237 if (notify_on_release(parent
))
5238 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
5240 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
5241 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
5243 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5245 /* allocation complete, commit to creation */
5246 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5247 atomic_inc(&root
->nr_cgrps
);
5248 cgroup_get_live(parent
);
5251 * @cgrp is now fully operational. If something fails after this
5252 * point, it'll be released via the normal destruction path.
5254 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
5257 * On the default hierarchy, a child doesn't automatically inherit
5258 * subtree_control from the parent. Each is configured manually.
5260 if (!cgroup_on_dfl(cgrp
))
5261 cgrp
->subtree_control
= cgroup_control(cgrp
);
5263 cgroup_propagate_control(cgrp
);
5268 psi_cgroup_free(cgrp
);
5270 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
5272 if (cgroup_on_dfl(parent
))
5273 cgroup_rstat_exit(cgrp
);
5275 percpu_ref_exit(&cgrp
->self
.refcnt
);
5278 return ERR_PTR(ret
);
5281 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
5283 struct cgroup
*cgroup
;
5287 lockdep_assert_held(&cgroup_mutex
);
5289 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
5290 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
5293 if (level
> cgroup
->max_depth
)
5304 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
5306 struct cgroup
*parent
, *cgrp
;
5307 struct kernfs_node
*kn
;
5310 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5311 if (strchr(name
, '\n'))
5314 parent
= cgroup_kn_lock_live(parent_kn
, false);
5318 if (!cgroup_check_hierarchy_limits(parent
)) {
5323 cgrp
= cgroup_create(parent
);
5325 ret
= PTR_ERR(cgrp
);
5329 /* create the directory */
5330 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
5338 * This extra ref will be put in cgroup_free_fn() and guarantees
5339 * that @cgrp->kn is always accessible.
5343 ret
= cgroup_kn_set_ugid(kn
);
5347 ret
= css_populate_dir(&cgrp
->self
);
5351 ret
= cgroup_apply_control_enable(cgrp
);
5355 TRACE_CGROUP_PATH(mkdir
, cgrp
);
5357 /* let's create and online css's */
5358 kernfs_activate(kn
);
5364 cgroup_destroy_locked(cgrp
);
5366 cgroup_kn_unlock(parent_kn
);
5371 * This is called when the refcnt of a css is confirmed to be killed.
5372 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5373 * initate destruction and put the css ref from kill_css().
5375 static void css_killed_work_fn(struct work_struct
*work
)
5377 struct cgroup_subsys_state
*css
=
5378 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5380 mutex_lock(&cgroup_mutex
);
5385 /* @css can't go away while we're holding cgroup_mutex */
5387 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5389 mutex_unlock(&cgroup_mutex
);
5392 /* css kill confirmation processing requires process context, bounce */
5393 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5395 struct cgroup_subsys_state
*css
=
5396 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5398 if (atomic_dec_and_test(&css
->online_cnt
)) {
5399 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5400 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5405 * kill_css - destroy a css
5406 * @css: css to destroy
5408 * This function initiates destruction of @css by removing cgroup interface
5409 * files and putting its base reference. ->css_offline() will be invoked
5410 * asynchronously once css_tryget_online() is guaranteed to fail and when
5411 * the reference count reaches zero, @css will be released.
5413 static void kill_css(struct cgroup_subsys_state
*css
)
5415 lockdep_assert_held(&cgroup_mutex
);
5417 if (css
->flags
& CSS_DYING
)
5420 css
->flags
|= CSS_DYING
;
5423 * This must happen before css is disassociated with its cgroup.
5424 * See seq_css() for details.
5429 * Killing would put the base ref, but we need to keep it alive
5430 * until after ->css_offline().
5435 * cgroup core guarantees that, by the time ->css_offline() is
5436 * invoked, no new css reference will be given out via
5437 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5438 * proceed to offlining css's because percpu_ref_kill() doesn't
5439 * guarantee that the ref is seen as killed on all CPUs on return.
5441 * Use percpu_ref_kill_and_confirm() to get notifications as each
5442 * css is confirmed to be seen as killed on all CPUs.
5444 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5448 * cgroup_destroy_locked - the first stage of cgroup destruction
5449 * @cgrp: cgroup to be destroyed
5451 * css's make use of percpu refcnts whose killing latency shouldn't be
5452 * exposed to userland and are RCU protected. Also, cgroup core needs to
5453 * guarantee that css_tryget_online() won't succeed by the time
5454 * ->css_offline() is invoked. To satisfy all the requirements,
5455 * destruction is implemented in the following two steps.
5457 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5458 * userland visible parts and start killing the percpu refcnts of
5459 * css's. Set up so that the next stage will be kicked off once all
5460 * the percpu refcnts are confirmed to be killed.
5462 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5463 * rest of destruction. Once all cgroup references are gone, the
5464 * cgroup is RCU-freed.
5466 * This function implements s1. After this step, @cgrp is gone as far as
5467 * the userland is concerned and a new cgroup with the same name may be
5468 * created. As cgroup doesn't care about the names internally, this
5469 * doesn't cause any problem.
5471 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5472 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5474 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
5475 struct cgroup_subsys_state
*css
;
5476 struct cgrp_cset_link
*link
;
5479 lockdep_assert_held(&cgroup_mutex
);
5482 * Only migration can raise populated from zero and we're already
5483 * holding cgroup_mutex.
5485 if (cgroup_is_populated(cgrp
))
5489 * Make sure there's no live children. We can't test emptiness of
5490 * ->self.children as dead children linger on it while being
5491 * drained; otherwise, "rmdir parent/child parent" may fail.
5493 if (css_has_online_children(&cgrp
->self
))
5497 * Mark @cgrp and the associated csets dead. The former prevents
5498 * further task migration and child creation by disabling
5499 * cgroup_lock_live_group(). The latter makes the csets ignored by
5500 * the migration path.
5502 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5504 spin_lock_irq(&css_set_lock
);
5505 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5506 link
->cset
->dead
= true;
5507 spin_unlock_irq(&css_set_lock
);
5509 /* initiate massacre of all css's */
5510 for_each_css(css
, ssid
, cgrp
)
5513 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5514 css_clear_dir(&cgrp
->self
);
5515 kernfs_remove(cgrp
->kn
);
5517 if (parent
&& cgroup_is_threaded(cgrp
))
5518 parent
->nr_threaded_children
--;
5520 spin_lock_irq(&css_set_lock
);
5521 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5522 tcgrp
->nr_descendants
--;
5523 tcgrp
->nr_dying_descendants
++;
5525 * If the dying cgroup is frozen, decrease frozen descendants
5526 * counters of ancestor cgroups.
5528 if (test_bit(CGRP_FROZEN
, &cgrp
->flags
))
5529 tcgrp
->freezer
.nr_frozen_descendants
--;
5531 spin_unlock_irq(&css_set_lock
);
5533 cgroup1_check_for_release(parent
);
5535 /* put the base reference */
5536 percpu_ref_kill(&cgrp
->self
.refcnt
);
5541 int cgroup_rmdir(struct kernfs_node
*kn
)
5543 struct cgroup
*cgrp
;
5546 cgrp
= cgroup_kn_lock_live(kn
, false);
5550 ret
= cgroup_destroy_locked(cgrp
);
5552 TRACE_CGROUP_PATH(rmdir
, cgrp
);
5554 cgroup_kn_unlock(kn
);
5558 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5559 .show_options
= cgroup_show_options
,
5560 .mkdir
= cgroup_mkdir
,
5561 .rmdir
= cgroup_rmdir
,
5562 .show_path
= cgroup_show_path
,
5565 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5567 struct cgroup_subsys_state
*css
;
5569 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5571 mutex_lock(&cgroup_mutex
);
5573 idr_init(&ss
->css_idr
);
5574 INIT_LIST_HEAD(&ss
->cfts
);
5576 /* Create the root cgroup state for this subsystem */
5577 ss
->root
= &cgrp_dfl_root
;
5578 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5579 /* We don't handle early failures gracefully */
5580 BUG_ON(IS_ERR(css
));
5581 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5584 * Root csses are never destroyed and we can't initialize
5585 * percpu_ref during early init. Disable refcnting.
5587 css
->flags
|= CSS_NO_REF
;
5590 /* allocation can't be done safely during early init */
5593 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5594 BUG_ON(css
->id
< 0);
5597 /* Update the init_css_set to contain a subsys
5598 * pointer to this state - since the subsystem is
5599 * newly registered, all tasks and hence the
5600 * init_css_set is in the subsystem's root cgroup. */
5601 init_css_set
.subsys
[ss
->id
] = css
;
5603 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5604 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5605 have_release_callback
|= (bool)ss
->release
<< ss
->id
;
5606 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5608 /* At system boot, before all subsystems have been
5609 * registered, no tasks have been forked, so we don't
5610 * need to invoke fork callbacks here. */
5611 BUG_ON(!list_empty(&init_task
.tasks
));
5613 BUG_ON(online_css(css
));
5615 mutex_unlock(&cgroup_mutex
);
5619 * cgroup_init_early - cgroup initialization at system boot
5621 * Initialize cgroups at system boot, and initialize any
5622 * subsystems that request early init.
5624 int __init
cgroup_init_early(void)
5626 static struct cgroup_fs_context __initdata ctx
;
5627 struct cgroup_subsys
*ss
;
5630 ctx
.root
= &cgrp_dfl_root
;
5631 init_cgroup_root(&ctx
);
5632 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5634 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5636 for_each_subsys(ss
, i
) {
5637 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5638 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5639 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5641 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5642 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5645 ss
->name
= cgroup_subsys_name
[i
];
5646 if (!ss
->legacy_name
)
5647 ss
->legacy_name
= cgroup_subsys_name
[i
];
5650 cgroup_init_subsys(ss
, true);
5655 static u16 cgroup_disable_mask __initdata
;
5658 * cgroup_init - cgroup initialization
5660 * Register cgroup filesystem and /proc file, and initialize
5661 * any subsystems that didn't request early init.
5663 int __init
cgroup_init(void)
5665 struct cgroup_subsys
*ss
;
5668 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5669 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5670 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5671 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5673 cgroup_rstat_boot();
5676 * The latency of the synchronize_rcu() is too high for cgroups,
5677 * avoid it at the cost of forcing all readers into the slow path.
5679 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5681 get_user_ns(init_cgroup_ns
.user_ns
);
5683 mutex_lock(&cgroup_mutex
);
5686 * Add init_css_set to the hash table so that dfl_root can link to
5689 hash_add(css_set_table
, &init_css_set
.hlist
,
5690 css_set_hash(init_css_set
.subsys
));
5692 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5694 mutex_unlock(&cgroup_mutex
);
5696 for_each_subsys(ss
, ssid
) {
5697 if (ss
->early_init
) {
5698 struct cgroup_subsys_state
*css
=
5699 init_css_set
.subsys
[ss
->id
];
5701 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5703 BUG_ON(css
->id
< 0);
5705 cgroup_init_subsys(ss
, false);
5708 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5709 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5712 * Setting dfl_root subsys_mask needs to consider the
5713 * disabled flag and cftype registration needs kmalloc,
5714 * both of which aren't available during early_init.
5716 if (cgroup_disable_mask
& (1 << ssid
)) {
5717 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5718 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5723 if (cgroup1_ssid_disabled(ssid
))
5724 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5727 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5729 /* implicit controllers must be threaded too */
5730 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5732 if (ss
->implicit_on_dfl
)
5733 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5734 else if (!ss
->dfl_cftypes
)
5735 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5738 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5740 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5741 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5743 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5744 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5748 ss
->bind(init_css_set
.subsys
[ssid
]);
5750 mutex_lock(&cgroup_mutex
);
5751 css_populate_dir(init_css_set
.subsys
[ssid
]);
5752 mutex_unlock(&cgroup_mutex
);
5755 /* init_css_set.subsys[] has been updated, re-hash */
5756 hash_del(&init_css_set
.hlist
);
5757 hash_add(css_set_table
, &init_css_set
.hlist
,
5758 css_set_hash(init_css_set
.subsys
));
5760 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5761 WARN_ON(register_filesystem(&cgroup_fs_type
));
5762 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5763 WARN_ON(!proc_create_single("cgroups", 0, NULL
, proc_cgroupstats_show
));
5768 static int __init
cgroup_wq_init(void)
5771 * There isn't much point in executing destruction path in
5772 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5773 * Use 1 for @max_active.
5775 * We would prefer to do this in cgroup_init() above, but that
5776 * is called before init_workqueues(): so leave this until after.
5778 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5779 BUG_ON(!cgroup_destroy_wq
);
5782 core_initcall(cgroup_wq_init
);
5784 void cgroup_path_from_kernfs_id(const union kernfs_node_id
*id
,
5785 char *buf
, size_t buflen
)
5787 struct kernfs_node
*kn
;
5789 kn
= kernfs_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5792 kernfs_path(kn
, buf
, buflen
);
5797 * proc_cgroup_show()
5798 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5799 * - Used for /proc/<pid>/cgroup.
5801 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5802 struct pid
*pid
, struct task_struct
*tsk
)
5806 struct cgroup_root
*root
;
5809 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5813 mutex_lock(&cgroup_mutex
);
5814 spin_lock_irq(&css_set_lock
);
5816 for_each_root(root
) {
5817 struct cgroup_subsys
*ss
;
5818 struct cgroup
*cgrp
;
5819 int ssid
, count
= 0;
5821 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5824 seq_printf(m
, "%d:", root
->hierarchy_id
);
5825 if (root
!= &cgrp_dfl_root
)
5826 for_each_subsys(ss
, ssid
)
5827 if (root
->subsys_mask
& (1 << ssid
))
5828 seq_printf(m
, "%s%s", count
++ ? "," : "",
5830 if (strlen(root
->name
))
5831 seq_printf(m
, "%sname=%s", count
? "," : "",
5835 cgrp
= task_cgroup_from_root(tsk
, root
);
5838 * On traditional hierarchies, all zombie tasks show up as
5839 * belonging to the root cgroup. On the default hierarchy,
5840 * while a zombie doesn't show up in "cgroup.procs" and
5841 * thus can't be migrated, its /proc/PID/cgroup keeps
5842 * reporting the cgroup it belonged to before exiting. If
5843 * the cgroup is removed before the zombie is reaped,
5844 * " (deleted)" is appended to the cgroup path.
5846 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5847 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5848 current
->nsproxy
->cgroup_ns
);
5849 if (retval
>= PATH_MAX
)
5850 retval
= -ENAMETOOLONG
;
5859 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5860 seq_puts(m
, " (deleted)\n");
5867 spin_unlock_irq(&css_set_lock
);
5868 mutex_unlock(&cgroup_mutex
);
5875 * cgroup_fork - initialize cgroup related fields during copy_process()
5876 * @child: pointer to task_struct of forking parent process.
5878 * A task is associated with the init_css_set until cgroup_post_fork()
5879 * attaches it to the parent's css_set. Empty cg_list indicates that
5880 * @child isn't holding reference to its css_set.
5882 void cgroup_fork(struct task_struct
*child
)
5884 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5885 INIT_LIST_HEAD(&child
->cg_list
);
5889 * cgroup_can_fork - called on a new task before the process is exposed
5890 * @child: the task in question.
5892 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5893 * returns an error, the fork aborts with that error code. This allows for
5894 * a cgroup subsystem to conditionally allow or deny new forks.
5896 int cgroup_can_fork(struct task_struct
*child
)
5898 struct cgroup_subsys
*ss
;
5901 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5902 ret
= ss
->can_fork(child
);
5905 } while_each_subsys_mask();
5910 for_each_subsys(ss
, j
) {
5913 if (ss
->cancel_fork
)
5914 ss
->cancel_fork(child
);
5921 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5922 * @child: the task in question
5924 * This calls the cancel_fork() callbacks if a fork failed *after*
5925 * cgroup_can_fork() succeded.
5927 void cgroup_cancel_fork(struct task_struct
*child
)
5929 struct cgroup_subsys
*ss
;
5932 for_each_subsys(ss
, i
)
5933 if (ss
->cancel_fork
)
5934 ss
->cancel_fork(child
);
5938 * cgroup_post_fork - called on a new task after adding it to the task list
5939 * @child: the task in question
5941 * Adds the task to the list running through its css_set if necessary and
5942 * call the subsystem fork() callbacks. Has to be after the task is
5943 * visible on the task list in case we race with the first call to
5944 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5947 void cgroup_post_fork(struct task_struct
*child
)
5949 struct cgroup_subsys
*ss
;
5953 * This may race against cgroup_enable_task_cg_lists(). As that
5954 * function sets use_task_css_set_links before grabbing
5955 * tasklist_lock and we just went through tasklist_lock to add
5956 * @child, it's guaranteed that either we see the set
5957 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5958 * @child during its iteration.
5960 * If we won the race, @child is associated with %current's
5961 * css_set. Grabbing css_set_lock guarantees both that the
5962 * association is stable, and, on completion of the parent's
5963 * migration, @child is visible in the source of migration or
5964 * already in the destination cgroup. This guarantee is necessary
5965 * when implementing operations which need to migrate all tasks of
5966 * a cgroup to another.
5968 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5969 * will remain in init_css_set. This is safe because all tasks are
5970 * in the init_css_set before cg_links is enabled and there's no
5971 * operation which transfers all tasks out of init_css_set.
5973 if (use_task_css_set_links
) {
5974 struct css_set
*cset
;
5976 spin_lock_irq(&css_set_lock
);
5977 cset
= task_css_set(current
);
5978 if (list_empty(&child
->cg_list
)) {
5981 css_set_move_task(child
, NULL
, cset
, false);
5985 * If the cgroup has to be frozen, the new task has too.
5986 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5987 * the task into the frozen state.
5989 if (unlikely(cgroup_task_freeze(child
))) {
5990 spin_lock(&child
->sighand
->siglock
);
5991 WARN_ON_ONCE(child
->frozen
);
5992 child
->jobctl
|= JOBCTL_TRAP_FREEZE
;
5993 spin_unlock(&child
->sighand
->siglock
);
5996 * Calling cgroup_update_frozen() isn't required here,
5997 * because it will be called anyway a bit later
5998 * from do_freezer_trap(). So we avoid cgroup's
5999 * transient switch from the frozen state and back.
6003 spin_unlock_irq(&css_set_lock
);
6007 * Call ss->fork(). This must happen after @child is linked on
6008 * css_set; otherwise, @child might change state between ->fork()
6009 * and addition to css_set.
6011 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
6013 } while_each_subsys_mask();
6017 * cgroup_exit - detach cgroup from exiting task
6018 * @tsk: pointer to task_struct of exiting process
6020 * Description: Detach cgroup from @tsk and release it.
6022 * Note that cgroups marked notify_on_release force every task in
6023 * them to take the global cgroup_mutex mutex when exiting.
6024 * This could impact scaling on very large systems. Be reluctant to
6025 * use notify_on_release cgroups where very high task exit scaling
6026 * is required on large systems.
6028 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6029 * call cgroup_exit() while the task is still competent to handle
6030 * notify_on_release(), then leave the task attached to the root cgroup in
6031 * each hierarchy for the remainder of its exit. No need to bother with
6032 * init_css_set refcnting. init_css_set never goes away and we can't race
6033 * with migration path - PF_EXITING is visible to migration path.
6035 void cgroup_exit(struct task_struct
*tsk
)
6037 struct cgroup_subsys
*ss
;
6038 struct css_set
*cset
;
6042 * Unlink from @tsk from its css_set. As migration path can't race
6043 * with us, we can check css_set and cg_list without synchronization.
6045 cset
= task_css_set(tsk
);
6047 if (!list_empty(&tsk
->cg_list
)) {
6048 spin_lock_irq(&css_set_lock
);
6049 css_set_move_task(tsk
, cset
, NULL
, false);
6050 list_add_tail(&tsk
->cg_list
, &cset
->dying_tasks
);
6053 WARN_ON_ONCE(cgroup_task_frozen(tsk
));
6054 if (unlikely(cgroup_task_freeze(tsk
)))
6055 cgroup_update_frozen(task_dfl_cgroup(tsk
));
6057 spin_unlock_irq(&css_set_lock
);
6062 /* see cgroup_post_fork() for details */
6063 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
6065 } while_each_subsys_mask();
6068 void cgroup_release(struct task_struct
*task
)
6070 struct cgroup_subsys
*ss
;
6073 do_each_subsys_mask(ss
, ssid
, have_release_callback
) {
6075 } while_each_subsys_mask();
6077 if (use_task_css_set_links
) {
6078 spin_lock_irq(&css_set_lock
);
6079 css_set_skip_task_iters(task_css_set(task
), task
);
6080 list_del_init(&task
->cg_list
);
6081 spin_unlock_irq(&css_set_lock
);
6085 void cgroup_free(struct task_struct
*task
)
6087 struct css_set
*cset
= task_css_set(task
);
6091 static int __init
cgroup_disable(char *str
)
6093 struct cgroup_subsys
*ss
;
6097 while ((token
= strsep(&str
, ",")) != NULL
) {
6101 for_each_subsys(ss
, i
) {
6102 if (strcmp(token
, ss
->name
) &&
6103 strcmp(token
, ss
->legacy_name
))
6105 cgroup_disable_mask
|= 1 << i
;
6110 __setup("cgroup_disable=", cgroup_disable
);
6112 void __init __weak
enable_debug_cgroup(void) { }
6114 static int __init
enable_cgroup_debug(char *str
)
6116 cgroup_debug
= true;
6117 enable_debug_cgroup();
6120 __setup("cgroup_debug", enable_cgroup_debug
);
6123 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6124 * @dentry: directory dentry of interest
6125 * @ss: subsystem of interest
6127 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6128 * to get the corresponding css and return it. If such css doesn't exist
6129 * or can't be pinned, an ERR_PTR value is returned.
6131 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
6132 struct cgroup_subsys
*ss
)
6134 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
6135 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
6136 struct cgroup_subsys_state
*css
= NULL
;
6137 struct cgroup
*cgrp
;
6139 /* is @dentry a cgroup dir? */
6140 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
6141 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
6142 return ERR_PTR(-EBADF
);
6147 * This path doesn't originate from kernfs and @kn could already
6148 * have been or be removed at any point. @kn->priv is RCU
6149 * protected for this access. See css_release_work_fn() for details.
6151 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
6153 css
= cgroup_css(cgrp
, ss
);
6155 if (!css
|| !css_tryget_online(css
))
6156 css
= ERR_PTR(-ENOENT
);
6163 * css_from_id - lookup css by id
6164 * @id: the cgroup id
6165 * @ss: cgroup subsys to be looked into
6167 * Returns the css if there's valid one with @id, otherwise returns NULL.
6168 * Should be called under rcu_read_lock().
6170 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
6172 WARN_ON_ONCE(!rcu_read_lock_held());
6173 return idr_find(&ss
->css_idr
, id
);
6177 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6178 * @path: path on the default hierarchy
6180 * Find the cgroup at @path on the default hierarchy, increment its
6181 * reference count and return it. Returns pointer to the found cgroup on
6182 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6183 * if @path points to a non-directory.
6185 struct cgroup
*cgroup_get_from_path(const char *path
)
6187 struct kernfs_node
*kn
;
6188 struct cgroup
*cgrp
;
6190 mutex_lock(&cgroup_mutex
);
6192 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
6194 if (kernfs_type(kn
) == KERNFS_DIR
) {
6196 cgroup_get_live(cgrp
);
6198 cgrp
= ERR_PTR(-ENOTDIR
);
6202 cgrp
= ERR_PTR(-ENOENT
);
6205 mutex_unlock(&cgroup_mutex
);
6208 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
6211 * cgroup_get_from_fd - get a cgroup pointer from a fd
6212 * @fd: fd obtained by open(cgroup2_dir)
6214 * Find the cgroup from a fd which should be obtained
6215 * by opening a cgroup directory. Returns a pointer to the
6216 * cgroup on success. ERR_PTR is returned if the cgroup
6219 struct cgroup
*cgroup_get_from_fd(int fd
)
6221 struct cgroup_subsys_state
*css
;
6222 struct cgroup
*cgrp
;
6227 return ERR_PTR(-EBADF
);
6229 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
6232 return ERR_CAST(css
);
6235 if (!cgroup_on_dfl(cgrp
)) {
6237 return ERR_PTR(-EBADF
);
6242 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
6245 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6246 * definition in cgroup-defs.h.
6248 #ifdef CONFIG_SOCK_CGROUP_DATA
6250 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6252 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
6253 static bool cgroup_sk_alloc_disabled __read_mostly
;
6255 void cgroup_sk_alloc_disable(void)
6257 if (cgroup_sk_alloc_disabled
)
6259 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6260 cgroup_sk_alloc_disabled
= true;
6265 #define cgroup_sk_alloc_disabled false
6269 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
6271 if (cgroup_sk_alloc_disabled
)
6274 /* Socket clone path */
6277 * We might be cloning a socket which is left in an empty
6278 * cgroup and the cgroup might have already been rmdir'd.
6279 * Don't use cgroup_get_live().
6281 cgroup_get(sock_cgroup_ptr(skcd
));
6288 struct css_set
*cset
;
6290 cset
= task_css_set(current
);
6291 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
6292 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
6301 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
6303 cgroup_put(sock_cgroup_ptr(skcd
));
6306 #endif /* CONFIG_SOCK_CGROUP_DATA */
6308 #ifdef CONFIG_CGROUP_BPF
6309 int cgroup_bpf_attach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
6310 enum bpf_attach_type type
, u32 flags
)
6314 mutex_lock(&cgroup_mutex
);
6315 ret
= __cgroup_bpf_attach(cgrp
, prog
, type
, flags
);
6316 mutex_unlock(&cgroup_mutex
);
6319 int cgroup_bpf_detach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
6320 enum bpf_attach_type type
, u32 flags
)
6324 mutex_lock(&cgroup_mutex
);
6325 ret
= __cgroup_bpf_detach(cgrp
, prog
, type
);
6326 mutex_unlock(&cgroup_mutex
);
6329 int cgroup_bpf_query(struct cgroup
*cgrp
, const union bpf_attr
*attr
,
6330 union bpf_attr __user
*uattr
)
6334 mutex_lock(&cgroup_mutex
);
6335 ret
= __cgroup_bpf_query(cgrp
, attr
, uattr
);
6336 mutex_unlock(&cgroup_mutex
);
6339 #endif /* CONFIG_CGROUP_BPF */
6342 static ssize_t
show_delegatable_files(struct cftype
*files
, char *buf
,
6343 ssize_t size
, const char *prefix
)
6348 for (cft
= files
; cft
&& cft
->name
[0] != '\0'; cft
++) {
6349 if (!(cft
->flags
& CFTYPE_NS_DELEGATABLE
))
6353 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s.", prefix
);
6355 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s\n", cft
->name
);
6357 if (WARN_ON(ret
>= size
))
6364 static ssize_t
delegate_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6367 struct cgroup_subsys
*ss
;
6371 ret
= show_delegatable_files(cgroup_base_files
, buf
, PAGE_SIZE
- ret
,
6374 for_each_subsys(ss
, ssid
)
6375 ret
+= show_delegatable_files(ss
->dfl_cftypes
, buf
+ ret
,
6377 cgroup_subsys_name
[ssid
]);
6381 static struct kobj_attribute cgroup_delegate_attr
= __ATTR_RO(delegate
);
6383 static ssize_t
features_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6386 return snprintf(buf
, PAGE_SIZE
, "nsdelegate\nmemory_localevents\n");
6388 static struct kobj_attribute cgroup_features_attr
= __ATTR_RO(features
);
6390 static struct attribute
*cgroup_sysfs_attrs
[] = {
6391 &cgroup_delegate_attr
.attr
,
6392 &cgroup_features_attr
.attr
,
6396 static const struct attribute_group cgroup_sysfs_attr_group
= {
6397 .attrs
= cgroup_sysfs_attrs
,
6401 static int __init
cgroup_sysfs_init(void)
6403 return sysfs_create_group(kernel_kobj
, &cgroup_sysfs_attr_group
);
6405 subsys_initcall(cgroup_sysfs_init
);
6406 #endif /* CONFIG_SYSFS */