2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
38 * The PL080 has a dual bus master, PL081 has a single master.
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
54 * Raise terminal count interrupt
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
63 * ASSUMES default (little) endianness for DMA transfers
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
78 #include <linux/amba/bus.h>
79 #include <linux/amba/pl08x.h>
80 #include <linux/debugfs.h>
81 #include <linux/delay.h>
82 #include <linux/device.h>
83 #include <linux/dmaengine.h>
84 #include <linux/dmapool.h>
85 #include <linux/dma-mapping.h>
86 #include <linux/export.h>
87 #include <linux/init.h>
88 #include <linux/interrupt.h>
89 #include <linux/module.h>
90 #include <linux/pm_runtime.h>
91 #include <linux/seq_file.h>
92 #include <linux/slab.h>
93 #include <linux/amba/pl080.h>
95 #include "dmaengine.h"
98 #define DRIVER_NAME "pl08xdmac"
100 static struct amba_driver pl08x_amba_driver
;
101 struct pl08x_driver_data
;
104 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
105 * @channels: the number of channels available in this variant
106 * @dualmaster: whether this version supports dual AHB masters or not.
107 * @nomadik: whether the channels have Nomadik security extension bits
108 * that need to be checked for permission before use and some registers are
110 * @pl080s: whether this version is a PL080S, which has separate register and
111 * LLI word for transfer size.
119 u32 max_transfer_size
;
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
129 struct pl08x_bus_data
{
135 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
138 * struct pl08x_phy_chan - holder for the physical channels
139 * @id: physical index to this channel
140 * @lock: a lock to use when altering an instance of this struct
141 * @serving: the virtual channel currently being served by this physical
143 * @locked: channel unavailable for the system, e.g. dedicated to secure
146 struct pl08x_phy_chan
{
149 void __iomem
*reg_config
;
151 struct pl08x_dma_chan
*serving
;
156 * struct pl08x_sg - structure containing data per sg
157 * @src_addr: src address of sg
158 * @dst_addr: dst address of sg
159 * @len: transfer len in bytes
160 * @node: node for txd's dsg_list
166 struct list_head node
;
170 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
171 * @vd: virtual DMA descriptor
172 * @dsg_list: list of children sg's
173 * @llis_bus: DMA memory address (physical) start for the LLIs
174 * @llis_va: virtual memory address start for the LLIs
175 * @cctl: control reg values for current txd
176 * @ccfg: config reg values for current txd
177 * @done: this marks completed descriptors, which should not have their
179 * @cyclic: indicate cyclic transfers
182 struct virt_dma_desc vd
;
183 struct list_head dsg_list
;
186 /* Default cctl value for LLIs */
189 * Settings to be put into the physical channel when we
190 * trigger this txd. Other registers are in llis_va[0].
198 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
200 * @PL08X_CHAN_IDLE: the channel is idle
201 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
202 * channel and is running a transfer on it
203 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
204 * channel, but the transfer is currently paused
205 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
206 * channel to become available (only pertains to memcpy channels)
208 enum pl08x_dma_chan_state
{
216 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
217 * @vc: wrappped virtual channel
218 * @phychan: the physical channel utilized by this channel, if there is one
219 * @name: name of channel
220 * @cd: channel platform data
221 * @runtime_addr: address for RX/TX according to the runtime config
222 * @at: active transaction on this channel
223 * @lock: a lock for this channel data
224 * @host: a pointer to the host (internal use)
225 * @state: whether the channel is idle, paused, running etc
226 * @slave: whether this channel is a device (slave) or for memcpy
227 * @signal: the physical DMA request signal which this channel is using
228 * @mux_use: count of descriptors using this DMA request signal setting
230 struct pl08x_dma_chan
{
231 struct virt_dma_chan vc
;
232 struct pl08x_phy_chan
*phychan
;
234 const struct pl08x_channel_data
*cd
;
235 struct dma_slave_config cfg
;
236 struct pl08x_txd
*at
;
237 struct pl08x_driver_data
*host
;
238 enum pl08x_dma_chan_state state
;
245 * struct pl08x_driver_data - the local state holder for the PL08x
246 * @slave: slave engine for this instance
247 * @memcpy: memcpy engine for this instance
248 * @base: virtual memory base (remapped) for the PL08x
249 * @adev: the corresponding AMBA (PrimeCell) bus entry
250 * @vd: vendor data for this PL08x variant
251 * @pd: platform data passed in from the platform/machine
252 * @phy_chans: array of data for the physical channels
253 * @pool: a pool for the LLI descriptors
254 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
256 * @mem_buses: set to indicate memory transfers on AHB2.
257 * @lock: a spinlock for this struct
259 struct pl08x_driver_data
{
260 struct dma_device slave
;
261 struct dma_device memcpy
;
263 struct amba_device
*adev
;
264 const struct vendor_data
*vd
;
265 struct pl08x_platform_data
*pd
;
266 struct pl08x_phy_chan
*phy_chans
;
267 struct dma_pool
*pool
;
274 * PL08X specific defines
277 /* The order of words in an LLI. */
278 #define PL080_LLI_SRC 0
279 #define PL080_LLI_DST 1
280 #define PL080_LLI_LLI 2
281 #define PL080_LLI_CCTL 3
282 #define PL080S_LLI_CCTL2 4
284 /* Total words in an LLI. */
285 #define PL080_LLI_WORDS 4
286 #define PL080S_LLI_WORDS 8
289 * Number of LLIs in each LLI buffer allocated for one transfer
290 * (maximum times we call dma_pool_alloc on this pool without freeing)
292 #define MAX_NUM_TSFR_LLIS 512
293 #define PL08X_ALIGN 8
295 static inline struct pl08x_dma_chan
*to_pl08x_chan(struct dma_chan
*chan
)
297 return container_of(chan
, struct pl08x_dma_chan
, vc
.chan
);
300 static inline struct pl08x_txd
*to_pl08x_txd(struct dma_async_tx_descriptor
*tx
)
302 return container_of(tx
, struct pl08x_txd
, vd
.tx
);
308 * This gives us the DMA request input to the PL08x primecell which the
309 * peripheral described by the channel data will be routed to, possibly
310 * via a board/SoC specific external MUX. One important point to note
311 * here is that this does not depend on the physical channel.
313 static int pl08x_request_mux(struct pl08x_dma_chan
*plchan
)
315 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
318 if (plchan
->mux_use
++ == 0 && pd
->get_xfer_signal
) {
319 ret
= pd
->get_xfer_signal(plchan
->cd
);
325 plchan
->signal
= ret
;
330 static void pl08x_release_mux(struct pl08x_dma_chan
*plchan
)
332 const struct pl08x_platform_data
*pd
= plchan
->host
->pd
;
334 if (plchan
->signal
>= 0) {
335 WARN_ON(plchan
->mux_use
== 0);
337 if (--plchan
->mux_use
== 0 && pd
->put_xfer_signal
) {
338 pd
->put_xfer_signal(plchan
->cd
, plchan
->signal
);
345 * Physical channel handling
348 /* Whether a certain channel is busy or not */
349 static int pl08x_phy_channel_busy(struct pl08x_phy_chan
*ch
)
353 val
= readl(ch
->reg_config
);
354 return val
& PL080_CONFIG_ACTIVE
;
357 static void pl08x_write_lli(struct pl08x_driver_data
*pl08x
,
358 struct pl08x_phy_chan
*phychan
, const u32
*lli
, u32 ccfg
)
360 if (pl08x
->vd
->pl080s
)
361 dev_vdbg(&pl08x
->adev
->dev
,
362 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
363 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
364 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
365 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
],
366 lli
[PL080S_LLI_CCTL2
], ccfg
);
368 dev_vdbg(&pl08x
->adev
->dev
,
369 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
370 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
371 phychan
->id
, lli
[PL080_LLI_SRC
], lli
[PL080_LLI_DST
],
372 lli
[PL080_LLI_LLI
], lli
[PL080_LLI_CCTL
], ccfg
);
374 writel_relaxed(lli
[PL080_LLI_SRC
], phychan
->base
+ PL080_CH_SRC_ADDR
);
375 writel_relaxed(lli
[PL080_LLI_DST
], phychan
->base
+ PL080_CH_DST_ADDR
);
376 writel_relaxed(lli
[PL080_LLI_LLI
], phychan
->base
+ PL080_CH_LLI
);
377 writel_relaxed(lli
[PL080_LLI_CCTL
], phychan
->base
+ PL080_CH_CONTROL
);
379 if (pl08x
->vd
->pl080s
)
380 writel_relaxed(lli
[PL080S_LLI_CCTL2
],
381 phychan
->base
+ PL080S_CH_CONTROL2
);
383 writel(ccfg
, phychan
->reg_config
);
387 * Set the initial DMA register values i.e. those for the first LLI
388 * The next LLI pointer and the configuration interrupt bit have
389 * been set when the LLIs were constructed. Poke them into the hardware
390 * and start the transfer.
392 static void pl08x_start_next_txd(struct pl08x_dma_chan
*plchan
)
394 struct pl08x_driver_data
*pl08x
= plchan
->host
;
395 struct pl08x_phy_chan
*phychan
= plchan
->phychan
;
396 struct virt_dma_desc
*vd
= vchan_next_desc(&plchan
->vc
);
397 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
400 list_del(&txd
->vd
.node
);
404 /* Wait for channel inactive */
405 while (pl08x_phy_channel_busy(phychan
))
408 pl08x_write_lli(pl08x
, phychan
, &txd
->llis_va
[0], txd
->ccfg
);
410 /* Enable the DMA channel */
411 /* Do not access config register until channel shows as disabled */
412 while (readl(pl08x
->base
+ PL080_EN_CHAN
) & (1 << phychan
->id
))
415 /* Do not access config register until channel shows as inactive */
416 val
= readl(phychan
->reg_config
);
417 while ((val
& PL080_CONFIG_ACTIVE
) || (val
& PL080_CONFIG_ENABLE
))
418 val
= readl(phychan
->reg_config
);
420 writel(val
| PL080_CONFIG_ENABLE
, phychan
->reg_config
);
424 * Pause the channel by setting the HALT bit.
426 * For M->P transfers, pause the DMAC first and then stop the peripheral -
427 * the FIFO can only drain if the peripheral is still requesting data.
428 * (note: this can still timeout if the DMAC FIFO never drains of data.)
430 * For P->M transfers, disable the peripheral first to stop it filling
431 * the DMAC FIFO, and then pause the DMAC.
433 static void pl08x_pause_phy_chan(struct pl08x_phy_chan
*ch
)
438 /* Set the HALT bit and wait for the FIFO to drain */
439 val
= readl(ch
->reg_config
);
440 val
|= PL080_CONFIG_HALT
;
441 writel(val
, ch
->reg_config
);
443 /* Wait for channel inactive */
444 for (timeout
= 1000; timeout
; timeout
--) {
445 if (!pl08x_phy_channel_busy(ch
))
449 if (pl08x_phy_channel_busy(ch
))
450 pr_err("pl08x: channel%u timeout waiting for pause\n", ch
->id
);
453 static void pl08x_resume_phy_chan(struct pl08x_phy_chan
*ch
)
457 /* Clear the HALT bit */
458 val
= readl(ch
->reg_config
);
459 val
&= ~PL080_CONFIG_HALT
;
460 writel(val
, ch
->reg_config
);
464 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
465 * clears any pending interrupt status. This should not be used for
466 * an on-going transfer, but as a method of shutting down a channel
467 * (eg, when it's no longer used) or terminating a transfer.
469 static void pl08x_terminate_phy_chan(struct pl08x_driver_data
*pl08x
,
470 struct pl08x_phy_chan
*ch
)
472 u32 val
= readl(ch
->reg_config
);
474 val
&= ~(PL080_CONFIG_ENABLE
| PL080_CONFIG_ERR_IRQ_MASK
|
475 PL080_CONFIG_TC_IRQ_MASK
);
477 writel(val
, ch
->reg_config
);
479 writel(1 << ch
->id
, pl08x
->base
+ PL080_ERR_CLEAR
);
480 writel(1 << ch
->id
, pl08x
->base
+ PL080_TC_CLEAR
);
483 static inline u32
get_bytes_in_cctl(u32 cctl
)
485 /* The source width defines the number of bytes */
486 u32 bytes
= cctl
& PL080_CONTROL_TRANSFER_SIZE_MASK
;
488 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
490 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
491 case PL080_WIDTH_8BIT
:
493 case PL080_WIDTH_16BIT
:
496 case PL080_WIDTH_32BIT
:
503 static inline u32
get_bytes_in_cctl_pl080s(u32 cctl
, u32 cctl1
)
505 /* The source width defines the number of bytes */
506 u32 bytes
= cctl1
& PL080S_CONTROL_TRANSFER_SIZE_MASK
;
508 cctl
&= PL080_CONTROL_SWIDTH_MASK
;
510 switch (cctl
>> PL080_CONTROL_SWIDTH_SHIFT
) {
511 case PL080_WIDTH_8BIT
:
513 case PL080_WIDTH_16BIT
:
516 case PL080_WIDTH_32BIT
:
523 /* The channel should be paused when calling this */
524 static u32
pl08x_getbytes_chan(struct pl08x_dma_chan
*plchan
)
526 struct pl08x_driver_data
*pl08x
= plchan
->host
;
527 const u32
*llis_va
, *llis_va_limit
;
528 struct pl08x_phy_chan
*ch
;
530 struct pl08x_txd
*txd
;
535 ch
= plchan
->phychan
;
542 * Follow the LLIs to get the number of remaining
543 * bytes in the currently active transaction.
545 clli
= readl(ch
->base
+ PL080_CH_LLI
) & ~PL080_LLI_LM_AHB2
;
547 /* First get the remaining bytes in the active transfer */
548 if (pl08x
->vd
->pl080s
)
549 bytes
= get_bytes_in_cctl_pl080s(
550 readl(ch
->base
+ PL080_CH_CONTROL
),
551 readl(ch
->base
+ PL080S_CH_CONTROL2
));
553 bytes
= get_bytes_in_cctl(readl(ch
->base
+ PL080_CH_CONTROL
));
558 llis_va
= txd
->llis_va
;
559 llis_bus
= txd
->llis_bus
;
561 llis_max_words
= pl08x
->lli_words
* MAX_NUM_TSFR_LLIS
;
562 BUG_ON(clli
< llis_bus
|| clli
>= llis_bus
+
563 sizeof(u32
) * llis_max_words
);
566 * Locate the next LLI - as this is an array,
567 * it's simple maths to find.
569 llis_va
+= (clli
- llis_bus
) / sizeof(u32
);
571 llis_va_limit
= llis_va
+ llis_max_words
;
573 for (; llis_va
< llis_va_limit
; llis_va
+= pl08x
->lli_words
) {
574 if (pl08x
->vd
->pl080s
)
575 bytes
+= get_bytes_in_cctl_pl080s(
576 llis_va
[PL080_LLI_CCTL
],
577 llis_va
[PL080S_LLI_CCTL2
]);
579 bytes
+= get_bytes_in_cctl(llis_va
[PL080_LLI_CCTL
]);
582 * A LLI pointer going backward terminates the LLI list
584 if (llis_va
[PL080_LLI_LLI
] <= clli
)
592 * Allocate a physical channel for a virtual channel
594 * Try to locate a physical channel to be used for this transfer. If all
595 * are taken return NULL and the requester will have to cope by using
596 * some fallback PIO mode or retrying later.
598 static struct pl08x_phy_chan
*
599 pl08x_get_phy_channel(struct pl08x_driver_data
*pl08x
,
600 struct pl08x_dma_chan
*virt_chan
)
602 struct pl08x_phy_chan
*ch
= NULL
;
606 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
607 ch
= &pl08x
->phy_chans
[i
];
609 spin_lock_irqsave(&ch
->lock
, flags
);
611 if (!ch
->locked
&& !ch
->serving
) {
612 ch
->serving
= virt_chan
;
613 spin_unlock_irqrestore(&ch
->lock
, flags
);
617 spin_unlock_irqrestore(&ch
->lock
, flags
);
620 if (i
== pl08x
->vd
->channels
) {
621 /* No physical channel available, cope with it */
628 /* Mark the physical channel as free. Note, this write is atomic. */
629 static inline void pl08x_put_phy_channel(struct pl08x_driver_data
*pl08x
,
630 struct pl08x_phy_chan
*ch
)
636 * Try to allocate a physical channel. When successful, assign it to
637 * this virtual channel, and initiate the next descriptor. The
638 * virtual channel lock must be held at this point.
640 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan
*plchan
)
642 struct pl08x_driver_data
*pl08x
= plchan
->host
;
643 struct pl08x_phy_chan
*ch
;
645 ch
= pl08x_get_phy_channel(pl08x
, plchan
);
647 dev_dbg(&pl08x
->adev
->dev
, "no physical channel available for xfer on %s\n", plchan
->name
);
648 plchan
->state
= PL08X_CHAN_WAITING
;
652 dev_dbg(&pl08x
->adev
->dev
, "allocated physical channel %d for xfer on %s\n",
653 ch
->id
, plchan
->name
);
655 plchan
->phychan
= ch
;
656 plchan
->state
= PL08X_CHAN_RUNNING
;
657 pl08x_start_next_txd(plchan
);
660 static void pl08x_phy_reassign_start(struct pl08x_phy_chan
*ch
,
661 struct pl08x_dma_chan
*plchan
)
663 struct pl08x_driver_data
*pl08x
= plchan
->host
;
665 dev_dbg(&pl08x
->adev
->dev
, "reassigned physical channel %d for xfer on %s\n",
666 ch
->id
, plchan
->name
);
669 * We do this without taking the lock; we're really only concerned
670 * about whether this pointer is NULL or not, and we're guaranteed
671 * that this will only be called when it _already_ is non-NULL.
673 ch
->serving
= plchan
;
674 plchan
->phychan
= ch
;
675 plchan
->state
= PL08X_CHAN_RUNNING
;
676 pl08x_start_next_txd(plchan
);
680 * Free a physical DMA channel, potentially reallocating it to another
681 * virtual channel if we have any pending.
683 static void pl08x_phy_free(struct pl08x_dma_chan
*plchan
)
685 struct pl08x_driver_data
*pl08x
= plchan
->host
;
686 struct pl08x_dma_chan
*p
, *next
;
691 /* Find a waiting virtual channel for the next transfer. */
692 list_for_each_entry(p
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
)
693 if (p
->state
== PL08X_CHAN_WAITING
) {
699 list_for_each_entry(p
, &pl08x
->slave
.channels
, vc
.chan
.device_node
)
700 if (p
->state
== PL08X_CHAN_WAITING
) {
706 /* Ensure that the physical channel is stopped */
707 pl08x_terminate_phy_chan(pl08x
, plchan
->phychan
);
713 * Eww. We know this isn't going to deadlock
714 * but lockdep probably doesn't.
716 spin_lock(&next
->vc
.lock
);
717 /* Re-check the state now that we have the lock */
718 success
= next
->state
== PL08X_CHAN_WAITING
;
720 pl08x_phy_reassign_start(plchan
->phychan
, next
);
721 spin_unlock(&next
->vc
.lock
);
723 /* If the state changed, try to find another channel */
727 /* No more jobs, so free up the physical channel */
728 pl08x_put_phy_channel(pl08x
, plchan
->phychan
);
731 plchan
->phychan
= NULL
;
732 plchan
->state
= PL08X_CHAN_IDLE
;
739 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded
)
742 case PL080_WIDTH_8BIT
:
744 case PL080_WIDTH_16BIT
:
746 case PL080_WIDTH_32BIT
:
755 static inline u32
pl08x_cctl_bits(u32 cctl
, u8 srcwidth
, u8 dstwidth
,
760 /* Remove all src, dst and transfer size bits */
761 retbits
&= ~PL080_CONTROL_DWIDTH_MASK
;
762 retbits
&= ~PL080_CONTROL_SWIDTH_MASK
;
763 retbits
&= ~PL080_CONTROL_TRANSFER_SIZE_MASK
;
765 /* Then set the bits according to the parameters */
768 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
771 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
774 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_SWIDTH_SHIFT
;
783 retbits
|= PL080_WIDTH_8BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
786 retbits
|= PL080_WIDTH_16BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
789 retbits
|= PL080_WIDTH_32BIT
<< PL080_CONTROL_DWIDTH_SHIFT
;
796 tsize
&= PL080_CONTROL_TRANSFER_SIZE_MASK
;
797 retbits
|= tsize
<< PL080_CONTROL_TRANSFER_SIZE_SHIFT
;
801 struct pl08x_lli_build_data
{
802 struct pl08x_txd
*txd
;
803 struct pl08x_bus_data srcbus
;
804 struct pl08x_bus_data dstbus
;
810 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
811 * victim in case src & dest are not similarly aligned. i.e. If after aligning
812 * masters address with width requirements of transfer (by sending few byte by
813 * byte data), slave is still not aligned, then its width will be reduced to
815 * - prefers the destination bus if both available
816 * - prefers bus with fixed address (i.e. peripheral)
818 static void pl08x_choose_master_bus(struct pl08x_lli_build_data
*bd
,
819 struct pl08x_bus_data
**mbus
, struct pl08x_bus_data
**sbus
, u32 cctl
)
821 if (!(cctl
& PL080_CONTROL_DST_INCR
)) {
824 } else if (!(cctl
& PL080_CONTROL_SRC_INCR
)) {
828 if (bd
->dstbus
.buswidth
>= bd
->srcbus
.buswidth
) {
839 * Fills in one LLI for a certain transfer descriptor and advance the counter
841 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data
*pl08x
,
842 struct pl08x_lli_build_data
*bd
,
843 int num_llis
, int len
, u32 cctl
, u32 cctl2
)
845 u32 offset
= num_llis
* pl08x
->lli_words
;
846 u32
*llis_va
= bd
->txd
->llis_va
+ offset
;
847 dma_addr_t llis_bus
= bd
->txd
->llis_bus
;
849 BUG_ON(num_llis
>= MAX_NUM_TSFR_LLIS
);
851 /* Advance the offset to next LLI. */
852 offset
+= pl08x
->lli_words
;
854 llis_va
[PL080_LLI_SRC
] = bd
->srcbus
.addr
;
855 llis_va
[PL080_LLI_DST
] = bd
->dstbus
.addr
;
856 llis_va
[PL080_LLI_LLI
] = (llis_bus
+ sizeof(u32
) * offset
);
857 llis_va
[PL080_LLI_LLI
] |= bd
->lli_bus
;
858 llis_va
[PL080_LLI_CCTL
] = cctl
;
859 if (pl08x
->vd
->pl080s
)
860 llis_va
[PL080S_LLI_CCTL2
] = cctl2
;
862 if (cctl
& PL080_CONTROL_SRC_INCR
)
863 bd
->srcbus
.addr
+= len
;
864 if (cctl
& PL080_CONTROL_DST_INCR
)
865 bd
->dstbus
.addr
+= len
;
867 BUG_ON(bd
->remainder
< len
);
869 bd
->remainder
-= len
;
872 static inline void prep_byte_width_lli(struct pl08x_driver_data
*pl08x
,
873 struct pl08x_lli_build_data
*bd
, u32
*cctl
, u32 len
,
874 int num_llis
, size_t *total_bytes
)
876 *cctl
= pl08x_cctl_bits(*cctl
, 1, 1, len
);
877 pl08x_fill_lli_for_desc(pl08x
, bd
, num_llis
, len
, *cctl
, len
);
878 (*total_bytes
) += len
;
882 static void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
883 const u32
*llis_va
, int num_llis
)
887 if (pl08x
->vd
->pl080s
) {
888 dev_vdbg(&pl08x
->adev
->dev
,
889 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
890 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
891 for (i
= 0; i
< num_llis
; i
++) {
892 dev_vdbg(&pl08x
->adev
->dev
,
893 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
894 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
895 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
896 llis_va
[PL080_LLI_CCTL
],
897 llis_va
[PL080S_LLI_CCTL2
]);
898 llis_va
+= pl08x
->lli_words
;
901 dev_vdbg(&pl08x
->adev
->dev
,
902 "%-3s %-9s %-10s %-10s %-10s %s\n",
903 "lli", "", "csrc", "cdst", "clli", "cctl");
904 for (i
= 0; i
< num_llis
; i
++) {
905 dev_vdbg(&pl08x
->adev
->dev
,
906 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
907 i
, llis_va
, llis_va
[PL080_LLI_SRC
],
908 llis_va
[PL080_LLI_DST
], llis_va
[PL080_LLI_LLI
],
909 llis_va
[PL080_LLI_CCTL
]);
910 llis_va
+= pl08x
->lli_words
;
915 static inline void pl08x_dump_lli(struct pl08x_driver_data
*pl08x
,
916 const u32
*llis_va
, int num_llis
) {}
920 * This fills in the table of LLIs for the transfer descriptor
921 * Note that we assume we never have to change the burst sizes
924 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data
*pl08x
,
925 struct pl08x_txd
*txd
)
927 struct pl08x_bus_data
*mbus
, *sbus
;
928 struct pl08x_lli_build_data bd
;
930 u32 cctl
, early_bytes
= 0;
931 size_t max_bytes_per_lli
, total_bytes
;
932 u32
*llis_va
, *last_lli
;
933 struct pl08x_sg
*dsg
;
935 txd
->llis_va
= dma_pool_alloc(pl08x
->pool
, GFP_NOWAIT
, &txd
->llis_bus
);
937 dev_err(&pl08x
->adev
->dev
, "%s no memory for llis\n", __func__
);
942 bd
.lli_bus
= (pl08x
->lli_buses
& PL08X_AHB2
) ? PL080_LLI_LM_AHB2
: 0;
945 /* Find maximum width of the source bus */
947 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_SWIDTH_MASK
) >>
948 PL080_CONTROL_SWIDTH_SHIFT
);
950 /* Find maximum width of the destination bus */
952 pl08x_get_bytes_for_cctl((cctl
& PL080_CONTROL_DWIDTH_MASK
) >>
953 PL080_CONTROL_DWIDTH_SHIFT
);
955 list_for_each_entry(dsg
, &txd
->dsg_list
, node
) {
959 bd
.srcbus
.addr
= dsg
->src_addr
;
960 bd
.dstbus
.addr
= dsg
->dst_addr
;
961 bd
.remainder
= dsg
->len
;
962 bd
.srcbus
.buswidth
= bd
.srcbus
.maxwidth
;
963 bd
.dstbus
.buswidth
= bd
.dstbus
.maxwidth
;
965 pl08x_choose_master_bus(&bd
, &mbus
, &sbus
, cctl
);
967 dev_vdbg(&pl08x
->adev
->dev
,
968 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
970 cctl
& PL080_CONTROL_SRC_INCR
? "+" : "",
973 cctl
& PL080_CONTROL_DST_INCR
? "+" : "",
976 dev_vdbg(&pl08x
->adev
->dev
, "mbus=%s sbus=%s\n",
977 mbus
== &bd
.srcbus
? "src" : "dst",
978 sbus
== &bd
.srcbus
? "src" : "dst");
981 * Zero length is only allowed if all these requirements are
983 * - flow controller is peripheral.
984 * - src.addr is aligned to src.width
985 * - dst.addr is aligned to dst.width
987 * sg_len == 1 should be true, as there can be two cases here:
989 * - Memory addresses are contiguous and are not scattered.
990 * Here, Only one sg will be passed by user driver, with
991 * memory address and zero length. We pass this to controller
992 * and after the transfer it will receive the last burst
993 * request from peripheral and so transfer finishes.
995 * - Memory addresses are scattered and are not contiguous.
996 * Here, Obviously as DMA controller doesn't know when a lli's
997 * transfer gets over, it can't load next lli. So in this
998 * case, there has to be an assumption that only one lli is
999 * supported. Thus, we can't have scattered addresses.
1001 if (!bd
.remainder
) {
1002 u32 fc
= (txd
->ccfg
& PL080_CONFIG_FLOW_CONTROL_MASK
) >>
1003 PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1004 if (!((fc
>= PL080_FLOW_SRC2DST_DST
) &&
1005 (fc
<= PL080_FLOW_SRC2DST_SRC
))) {
1006 dev_err(&pl08x
->adev
->dev
, "%s sg len can't be zero",
1011 if (!IS_BUS_ALIGNED(&bd
.srcbus
) ||
1012 !IS_BUS_ALIGNED(&bd
.dstbus
)) {
1013 dev_err(&pl08x
->adev
->dev
,
1014 "%s src & dst address must be aligned to src"
1015 " & dst width if peripheral is flow controller",
1020 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1021 bd
.dstbus
.buswidth
, 0);
1022 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1028 * Send byte by byte for following cases
1029 * - Less than a bus width available
1030 * - until master bus is aligned
1032 if (bd
.remainder
< mbus
->buswidth
)
1033 early_bytes
= bd
.remainder
;
1034 else if (!IS_BUS_ALIGNED(mbus
)) {
1035 early_bytes
= mbus
->buswidth
-
1036 (mbus
->addr
& (mbus
->buswidth
- 1));
1037 if ((bd
.remainder
- early_bytes
) < mbus
->buswidth
)
1038 early_bytes
= bd
.remainder
;
1042 dev_vdbg(&pl08x
->adev
->dev
,
1043 "%s byte width LLIs (remain 0x%08x)\n",
1044 __func__
, bd
.remainder
);
1045 prep_byte_width_lli(pl08x
, &bd
, &cctl
, early_bytes
,
1046 num_llis
++, &total_bytes
);
1051 * Master now aligned
1052 * - if slave is not then we must set its width down
1054 if (!IS_BUS_ALIGNED(sbus
)) {
1055 dev_dbg(&pl08x
->adev
->dev
,
1056 "%s set down bus width to one byte\n",
1063 * Bytes transferred = tsize * src width, not
1066 max_bytes_per_lli
= bd
.srcbus
.buswidth
*
1067 pl08x
->vd
->max_transfer_size
;
1068 dev_vdbg(&pl08x
->adev
->dev
,
1069 "%s max bytes per lli = %zu\n",
1070 __func__
, max_bytes_per_lli
);
1073 * Make largest possible LLIs until less than one bus
1076 while (bd
.remainder
> (mbus
->buswidth
- 1)) {
1077 size_t lli_len
, tsize
, width
;
1080 * If enough left try to send max possible,
1081 * otherwise try to send the remainder
1083 lli_len
= min(bd
.remainder
, max_bytes_per_lli
);
1086 * Check against maximum bus alignment:
1087 * Calculate actual transfer size in relation to
1088 * bus width an get a maximum remainder of the
1089 * highest bus width - 1
1091 width
= max(mbus
->buswidth
, sbus
->buswidth
);
1092 lli_len
= (lli_len
/ width
) * width
;
1093 tsize
= lli_len
/ bd
.srcbus
.buswidth
;
1095 dev_vdbg(&pl08x
->adev
->dev
,
1096 "%s fill lli with single lli chunk of "
1097 "size 0x%08zx (remainder 0x%08zx)\n",
1098 __func__
, lli_len
, bd
.remainder
);
1100 cctl
= pl08x_cctl_bits(cctl
, bd
.srcbus
.buswidth
,
1101 bd
.dstbus
.buswidth
, tsize
);
1102 pl08x_fill_lli_for_desc(pl08x
, &bd
, num_llis
++,
1103 lli_len
, cctl
, tsize
);
1104 total_bytes
+= lli_len
;
1108 * Send any odd bytes
1111 dev_vdbg(&pl08x
->adev
->dev
,
1112 "%s align with boundary, send odd bytes (remain %zu)\n",
1113 __func__
, bd
.remainder
);
1114 prep_byte_width_lli(pl08x
, &bd
, &cctl
,
1115 bd
.remainder
, num_llis
++, &total_bytes
);
1119 if (total_bytes
!= dsg
->len
) {
1120 dev_err(&pl08x
->adev
->dev
,
1121 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1122 __func__
, total_bytes
, dsg
->len
);
1126 if (num_llis
>= MAX_NUM_TSFR_LLIS
) {
1127 dev_err(&pl08x
->adev
->dev
,
1128 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1129 __func__
, MAX_NUM_TSFR_LLIS
);
1134 llis_va
= txd
->llis_va
;
1135 last_lli
= llis_va
+ (num_llis
- 1) * pl08x
->lli_words
;
1138 /* Link back to the first LLI. */
1139 last_lli
[PL080_LLI_LLI
] = txd
->llis_bus
| bd
.lli_bus
;
1141 /* The final LLI terminates the LLI. */
1142 last_lli
[PL080_LLI_LLI
] = 0;
1143 /* The final LLI element shall also fire an interrupt. */
1144 last_lli
[PL080_LLI_CCTL
] |= PL080_CONTROL_TC_IRQ_EN
;
1147 pl08x_dump_lli(pl08x
, llis_va
, num_llis
);
1152 static void pl08x_free_txd(struct pl08x_driver_data
*pl08x
,
1153 struct pl08x_txd
*txd
)
1155 struct pl08x_sg
*dsg
, *_dsg
;
1158 dma_pool_free(pl08x
->pool
, txd
->llis_va
, txd
->llis_bus
);
1160 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
1161 list_del(&dsg
->node
);
1168 static void pl08x_desc_free(struct virt_dma_desc
*vd
)
1170 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1171 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(vd
->tx
.chan
);
1173 dma_descriptor_unmap(&vd
->tx
);
1175 pl08x_release_mux(plchan
);
1177 pl08x_free_txd(plchan
->host
, txd
);
1180 static void pl08x_free_txd_list(struct pl08x_driver_data
*pl08x
,
1181 struct pl08x_dma_chan
*plchan
)
1185 vchan_get_all_descriptors(&plchan
->vc
, &head
);
1186 vchan_dma_desc_free_list(&plchan
->vc
, &head
);
1190 * The DMA ENGINE API
1192 static int pl08x_alloc_chan_resources(struct dma_chan
*chan
)
1197 static void pl08x_free_chan_resources(struct dma_chan
*chan
)
1199 /* Ensure all queued descriptors are freed */
1200 vchan_free_chan_resources(to_virt_chan(chan
));
1203 static struct dma_async_tx_descriptor
*pl08x_prep_dma_interrupt(
1204 struct dma_chan
*chan
, unsigned long flags
)
1206 struct dma_async_tx_descriptor
*retval
= NULL
;
1212 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1213 * If slaves are relying on interrupts to signal completion this function
1214 * must not be called with interrupts disabled.
1216 static enum dma_status
pl08x_dma_tx_status(struct dma_chan
*chan
,
1217 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
1219 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1220 struct virt_dma_desc
*vd
;
1221 unsigned long flags
;
1222 enum dma_status ret
;
1225 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1226 if (ret
== DMA_COMPLETE
)
1230 * There's no point calculating the residue if there's
1231 * no txstate to store the value.
1234 if (plchan
->state
== PL08X_CHAN_PAUSED
)
1239 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1240 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1241 if (ret
!= DMA_COMPLETE
) {
1242 vd
= vchan_find_desc(&plchan
->vc
, cookie
);
1244 /* On the issued list, so hasn't been processed yet */
1245 struct pl08x_txd
*txd
= to_pl08x_txd(&vd
->tx
);
1246 struct pl08x_sg
*dsg
;
1248 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
1251 bytes
= pl08x_getbytes_chan(plchan
);
1254 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1257 * This cookie not complete yet
1258 * Get number of bytes left in the active transactions and queue
1260 dma_set_residue(txstate
, bytes
);
1262 if (plchan
->state
== PL08X_CHAN_PAUSED
&& ret
== DMA_IN_PROGRESS
)
1265 /* Whether waiting or running, we're in progress */
1269 /* PrimeCell DMA extension */
1270 struct burst_table
{
1275 static const struct burst_table burst_sizes
[] = {
1278 .reg
= PL080_BSIZE_256
,
1282 .reg
= PL080_BSIZE_128
,
1286 .reg
= PL080_BSIZE_64
,
1290 .reg
= PL080_BSIZE_32
,
1294 .reg
= PL080_BSIZE_16
,
1298 .reg
= PL080_BSIZE_8
,
1302 .reg
= PL080_BSIZE_4
,
1306 .reg
= PL080_BSIZE_1
,
1311 * Given the source and destination available bus masks, select which
1312 * will be routed to each port. We try to have source and destination
1313 * on separate ports, but always respect the allowable settings.
1315 static u32
pl08x_select_bus(u8 src
, u8 dst
)
1319 if (!(dst
& PL08X_AHB1
) || ((dst
& PL08X_AHB2
) && (src
& PL08X_AHB1
)))
1320 cctl
|= PL080_CONTROL_DST_AHB2
;
1321 if (!(src
& PL08X_AHB1
) || ((src
& PL08X_AHB2
) && !(dst
& PL08X_AHB2
)))
1322 cctl
|= PL080_CONTROL_SRC_AHB2
;
1327 static u32
pl08x_cctl(u32 cctl
)
1329 cctl
&= ~(PL080_CONTROL_SRC_AHB2
| PL080_CONTROL_DST_AHB2
|
1330 PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
|
1331 PL080_CONTROL_PROT_MASK
);
1333 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1334 return cctl
| PL080_CONTROL_PROT_SYS
;
1337 static u32
pl08x_width(enum dma_slave_buswidth width
)
1340 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1341 return PL080_WIDTH_8BIT
;
1342 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1343 return PL080_WIDTH_16BIT
;
1344 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1345 return PL080_WIDTH_32BIT
;
1351 static u32
pl08x_burst(u32 maxburst
)
1355 for (i
= 0; i
< ARRAY_SIZE(burst_sizes
); i
++)
1356 if (burst_sizes
[i
].burstwords
<= maxburst
)
1359 return burst_sizes
[i
].reg
;
1362 static u32
pl08x_get_cctl(struct pl08x_dma_chan
*plchan
,
1363 enum dma_slave_buswidth addr_width
, u32 maxburst
)
1365 u32 width
, burst
, cctl
= 0;
1367 width
= pl08x_width(addr_width
);
1371 cctl
|= width
<< PL080_CONTROL_SWIDTH_SHIFT
;
1372 cctl
|= width
<< PL080_CONTROL_DWIDTH_SHIFT
;
1375 * If this channel will only request single transfers, set this
1376 * down to ONE element. Also select one element if no maxburst
1379 if (plchan
->cd
->single
)
1382 burst
= pl08x_burst(maxburst
);
1383 cctl
|= burst
<< PL080_CONTROL_SB_SIZE_SHIFT
;
1384 cctl
|= burst
<< PL080_CONTROL_DB_SIZE_SHIFT
;
1386 return pl08x_cctl(cctl
);
1389 static int dma_set_runtime_config(struct dma_chan
*chan
,
1390 struct dma_slave_config
*config
)
1392 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1393 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1398 /* Reject definitely invalid configurations */
1399 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
1400 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
1403 if (config
->device_fc
&& pl08x
->vd
->pl080s
) {
1404 dev_err(&pl08x
->adev
->dev
,
1405 "%s: PL080S does not support peripheral flow control\n",
1410 plchan
->cfg
= *config
;
1416 * Slave transactions callback to the slave device to allow
1417 * synchronization of slave DMA signals with the DMAC enable
1419 static void pl08x_issue_pending(struct dma_chan
*chan
)
1421 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1422 unsigned long flags
;
1424 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1425 if (vchan_issue_pending(&plchan
->vc
)) {
1426 if (!plchan
->phychan
&& plchan
->state
!= PL08X_CHAN_WAITING
)
1427 pl08x_phy_alloc_and_start(plchan
);
1429 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1432 static struct pl08x_txd
*pl08x_get_txd(struct pl08x_dma_chan
*plchan
)
1434 struct pl08x_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
1437 INIT_LIST_HEAD(&txd
->dsg_list
);
1439 /* Always enable error and terminal interrupts */
1440 txd
->ccfg
= PL080_CONFIG_ERR_IRQ_MASK
|
1441 PL080_CONFIG_TC_IRQ_MASK
;
1447 * Initialize a descriptor to be used by memcpy submit
1449 static struct dma_async_tx_descriptor
*pl08x_prep_dma_memcpy(
1450 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
1451 size_t len
, unsigned long flags
)
1453 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1454 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1455 struct pl08x_txd
*txd
;
1456 struct pl08x_sg
*dsg
;
1459 txd
= pl08x_get_txd(plchan
);
1461 dev_err(&pl08x
->adev
->dev
,
1462 "%s no memory for descriptor\n", __func__
);
1466 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1468 pl08x_free_txd(pl08x
, txd
);
1469 dev_err(&pl08x
->adev
->dev
, "%s no memory for pl080 sg\n",
1473 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1475 dsg
->src_addr
= src
;
1476 dsg
->dst_addr
= dest
;
1479 /* Set platform data for m2m */
1480 txd
->ccfg
|= PL080_FLOW_MEM2MEM
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1481 txd
->cctl
= pl08x
->pd
->memcpy_channel
.cctl_memcpy
&
1482 ~(PL080_CONTROL_DST_AHB2
| PL080_CONTROL_SRC_AHB2
);
1484 /* Both to be incremented or the code will break */
1485 txd
->cctl
|= PL080_CONTROL_SRC_INCR
| PL080_CONTROL_DST_INCR
;
1487 if (pl08x
->vd
->dualmaster
)
1488 txd
->cctl
|= pl08x_select_bus(pl08x
->mem_buses
,
1491 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1493 pl08x_free_txd(pl08x
, txd
);
1497 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1500 static struct pl08x_txd
*pl08x_init_txd(
1501 struct dma_chan
*chan
,
1502 enum dma_transfer_direction direction
,
1503 dma_addr_t
*slave_addr
)
1505 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1506 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1507 struct pl08x_txd
*txd
;
1508 enum dma_slave_buswidth addr_width
;
1510 u8 src_buses
, dst_buses
;
1513 txd
= pl08x_get_txd(plchan
);
1515 dev_err(&pl08x
->adev
->dev
, "%s no txd\n", __func__
);
1520 * Set up addresses, the PrimeCell configured address
1521 * will take precedence since this may configure the
1522 * channel target address dynamically at runtime.
1524 if (direction
== DMA_MEM_TO_DEV
) {
1525 cctl
= PL080_CONTROL_SRC_INCR
;
1526 *slave_addr
= plchan
->cfg
.dst_addr
;
1527 addr_width
= plchan
->cfg
.dst_addr_width
;
1528 maxburst
= plchan
->cfg
.dst_maxburst
;
1529 src_buses
= pl08x
->mem_buses
;
1530 dst_buses
= plchan
->cd
->periph_buses
;
1531 } else if (direction
== DMA_DEV_TO_MEM
) {
1532 cctl
= PL080_CONTROL_DST_INCR
;
1533 *slave_addr
= plchan
->cfg
.src_addr
;
1534 addr_width
= plchan
->cfg
.src_addr_width
;
1535 maxburst
= plchan
->cfg
.src_maxburst
;
1536 src_buses
= plchan
->cd
->periph_buses
;
1537 dst_buses
= pl08x
->mem_buses
;
1539 pl08x_free_txd(pl08x
, txd
);
1540 dev_err(&pl08x
->adev
->dev
,
1541 "%s direction unsupported\n", __func__
);
1545 cctl
|= pl08x_get_cctl(plchan
, addr_width
, maxburst
);
1547 pl08x_free_txd(pl08x
, txd
);
1548 dev_err(&pl08x
->adev
->dev
,
1549 "DMA slave configuration botched?\n");
1553 txd
->cctl
= cctl
| pl08x_select_bus(src_buses
, dst_buses
);
1555 if (plchan
->cfg
.device_fc
)
1556 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER_PER
:
1557 PL080_FLOW_PER2MEM_PER
;
1559 tmp
= (direction
== DMA_MEM_TO_DEV
) ? PL080_FLOW_MEM2PER
:
1562 txd
->ccfg
|= tmp
<< PL080_CONFIG_FLOW_CONTROL_SHIFT
;
1564 ret
= pl08x_request_mux(plchan
);
1566 pl08x_free_txd(pl08x
, txd
);
1567 dev_dbg(&pl08x
->adev
->dev
,
1568 "unable to mux for transfer on %s due to platform restrictions\n",
1573 dev_dbg(&pl08x
->adev
->dev
, "allocated DMA request signal %d for xfer on %s\n",
1574 plchan
->signal
, plchan
->name
);
1576 /* Assign the flow control signal to this channel */
1577 if (direction
== DMA_MEM_TO_DEV
)
1578 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_DST_SEL_SHIFT
;
1580 txd
->ccfg
|= plchan
->signal
<< PL080_CONFIG_SRC_SEL_SHIFT
;
1585 static int pl08x_tx_add_sg(struct pl08x_txd
*txd
,
1586 enum dma_transfer_direction direction
,
1587 dma_addr_t slave_addr
,
1588 dma_addr_t buf_addr
,
1591 struct pl08x_sg
*dsg
;
1593 dsg
= kzalloc(sizeof(struct pl08x_sg
), GFP_NOWAIT
);
1597 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1600 if (direction
== DMA_MEM_TO_DEV
) {
1601 dsg
->src_addr
= buf_addr
;
1602 dsg
->dst_addr
= slave_addr
;
1604 dsg
->src_addr
= slave_addr
;
1605 dsg
->dst_addr
= buf_addr
;
1611 static struct dma_async_tx_descriptor
*pl08x_prep_slave_sg(
1612 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1613 unsigned int sg_len
, enum dma_transfer_direction direction
,
1614 unsigned long flags
, void *context
)
1616 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1617 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1618 struct pl08x_txd
*txd
;
1619 struct scatterlist
*sg
;
1621 dma_addr_t slave_addr
;
1623 dev_dbg(&pl08x
->adev
->dev
, "%s prepare transaction of %d bytes from %s\n",
1624 __func__
, sg_dma_len(sgl
), plchan
->name
);
1626 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1630 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1631 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1635 pl08x_release_mux(plchan
);
1636 pl08x_free_txd(pl08x
, txd
);
1637 dev_err(&pl08x
->adev
->dev
, "%s no mem for pl080 sg\n",
1643 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1645 pl08x_release_mux(plchan
);
1646 pl08x_free_txd(pl08x
, txd
);
1650 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1653 static struct dma_async_tx_descriptor
*pl08x_prep_dma_cyclic(
1654 struct dma_chan
*chan
, dma_addr_t buf_addr
, size_t buf_len
,
1655 size_t period_len
, enum dma_transfer_direction direction
,
1656 unsigned long flags
, void *context
)
1658 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1659 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1660 struct pl08x_txd
*txd
;
1662 dma_addr_t slave_addr
;
1664 dev_dbg(&pl08x
->adev
->dev
,
1665 "%s prepare cyclic transaction of %d/%d bytes %s %s\n",
1666 __func__
, period_len
, buf_len
,
1667 direction
== DMA_MEM_TO_DEV
? "to" : "from",
1670 txd
= pl08x_init_txd(chan
, direction
, &slave_addr
);
1675 txd
->cctl
|= PL080_CONTROL_TC_IRQ_EN
;
1676 for (tmp
= 0; tmp
< buf_len
; tmp
+= period_len
) {
1677 ret
= pl08x_tx_add_sg(txd
, direction
, slave_addr
,
1678 buf_addr
+ tmp
, period_len
);
1680 pl08x_release_mux(plchan
);
1681 pl08x_free_txd(pl08x
, txd
);
1686 ret
= pl08x_fill_llis_for_desc(plchan
->host
, txd
);
1688 pl08x_release_mux(plchan
);
1689 pl08x_free_txd(pl08x
, txd
);
1693 return vchan_tx_prep(&plchan
->vc
, &txd
->vd
, flags
);
1696 static int pl08x_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
1699 struct pl08x_dma_chan
*plchan
= to_pl08x_chan(chan
);
1700 struct pl08x_driver_data
*pl08x
= plchan
->host
;
1701 unsigned long flags
;
1704 /* Controls applicable to inactive channels */
1705 if (cmd
== DMA_SLAVE_CONFIG
) {
1706 return dma_set_runtime_config(chan
,
1707 (struct dma_slave_config
*)arg
);
1711 * Anything succeeds on channels with no physical allocation and
1712 * no queued transfers.
1714 spin_lock_irqsave(&plchan
->vc
.lock
, flags
);
1715 if (!plchan
->phychan
&& !plchan
->at
) {
1716 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1721 case DMA_TERMINATE_ALL
:
1722 plchan
->state
= PL08X_CHAN_IDLE
;
1724 if (plchan
->phychan
) {
1726 * Mark physical channel as free and free any slave
1729 pl08x_phy_free(plchan
);
1731 /* Dequeue jobs and free LLIs */
1733 pl08x_desc_free(&plchan
->at
->vd
);
1736 /* Dequeue jobs not yet fired as well */
1737 pl08x_free_txd_list(pl08x
, plchan
);
1740 pl08x_pause_phy_chan(plchan
->phychan
);
1741 plchan
->state
= PL08X_CHAN_PAUSED
;
1744 pl08x_resume_phy_chan(plchan
->phychan
);
1745 plchan
->state
= PL08X_CHAN_RUNNING
;
1748 /* Unknown command */
1753 spin_unlock_irqrestore(&plchan
->vc
.lock
, flags
);
1758 bool pl08x_filter_id(struct dma_chan
*chan
, void *chan_id
)
1760 struct pl08x_dma_chan
*plchan
;
1761 char *name
= chan_id
;
1763 /* Reject channels for devices not bound to this driver */
1764 if (chan
->device
->dev
->driver
!= &pl08x_amba_driver
.drv
)
1767 plchan
= to_pl08x_chan(chan
);
1769 /* Check that the channel is not taken! */
1770 if (!strcmp(plchan
->name
, name
))
1775 EXPORT_SYMBOL_GPL(pl08x_filter_id
);
1778 * Just check that the device is there and active
1779 * TODO: turn this bit on/off depending on the number of physical channels
1780 * actually used, if it is zero... well shut it off. That will save some
1781 * power. Cut the clock at the same time.
1783 static void pl08x_ensure_on(struct pl08x_driver_data
*pl08x
)
1785 /* The Nomadik variant does not have the config register */
1786 if (pl08x
->vd
->nomadik
)
1788 writel(PL080_CONFIG_ENABLE
, pl08x
->base
+ PL080_CONFIG
);
1791 static irqreturn_t
pl08x_irq(int irq
, void *dev
)
1793 struct pl08x_driver_data
*pl08x
= dev
;
1794 u32 mask
= 0, err
, tc
, i
;
1796 /* check & clear - ERR & TC interrupts */
1797 err
= readl(pl08x
->base
+ PL080_ERR_STATUS
);
1799 dev_err(&pl08x
->adev
->dev
, "%s error interrupt, register value 0x%08x\n",
1801 writel(err
, pl08x
->base
+ PL080_ERR_CLEAR
);
1803 tc
= readl(pl08x
->base
+ PL080_TC_STATUS
);
1805 writel(tc
, pl08x
->base
+ PL080_TC_CLEAR
);
1810 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1811 if (((1 << i
) & err
) || ((1 << i
) & tc
)) {
1812 /* Locate physical channel */
1813 struct pl08x_phy_chan
*phychan
= &pl08x
->phy_chans
[i
];
1814 struct pl08x_dma_chan
*plchan
= phychan
->serving
;
1815 struct pl08x_txd
*tx
;
1818 dev_err(&pl08x
->adev
->dev
,
1819 "%s Error TC interrupt on unused channel: 0x%08x\n",
1824 spin_lock(&plchan
->vc
.lock
);
1826 if (tx
&& tx
->cyclic
) {
1827 vchan_cyclic_callback(&tx
->vd
);
1831 * This descriptor is done, release its mux
1834 pl08x_release_mux(plchan
);
1836 vchan_cookie_complete(&tx
->vd
);
1839 * And start the next descriptor (if any),
1840 * otherwise free this channel.
1842 if (vchan_next_desc(&plchan
->vc
))
1843 pl08x_start_next_txd(plchan
);
1845 pl08x_phy_free(plchan
);
1847 spin_unlock(&plchan
->vc
.lock
);
1853 return mask
? IRQ_HANDLED
: IRQ_NONE
;
1856 static void pl08x_dma_slave_init(struct pl08x_dma_chan
*chan
)
1859 chan
->name
= chan
->cd
->bus_id
;
1860 chan
->cfg
.src_addr
= chan
->cd
->addr
;
1861 chan
->cfg
.dst_addr
= chan
->cd
->addr
;
1865 * Initialise the DMAC memcpy/slave channels.
1866 * Make a local wrapper to hold required data
1868 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data
*pl08x
,
1869 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1871 struct pl08x_dma_chan
*chan
;
1874 INIT_LIST_HEAD(&dmadev
->channels
);
1877 * Register as many many memcpy as we have physical channels,
1878 * we won't always be able to use all but the code will have
1879 * to cope with that situation.
1881 for (i
= 0; i
< channels
; i
++) {
1882 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1884 dev_err(&pl08x
->adev
->dev
,
1885 "%s no memory for channel\n", __func__
);
1890 chan
->state
= PL08X_CHAN_IDLE
;
1894 chan
->cd
= &pl08x
->pd
->slave_channels
[i
];
1895 pl08x_dma_slave_init(chan
);
1897 chan
->cd
= &pl08x
->pd
->memcpy_channel
;
1898 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1904 dev_dbg(&pl08x
->adev
->dev
,
1905 "initialize virtual channel \"%s\"\n",
1908 chan
->vc
.desc_free
= pl08x_desc_free
;
1909 vchan_init(&chan
->vc
, dmadev
);
1911 dev_info(&pl08x
->adev
->dev
, "initialized %d virtual %s channels\n",
1912 i
, slave
? "slave" : "memcpy");
1916 static void pl08x_free_virtual_channels(struct dma_device
*dmadev
)
1918 struct pl08x_dma_chan
*chan
= NULL
;
1919 struct pl08x_dma_chan
*next
;
1921 list_for_each_entry_safe(chan
,
1922 next
, &dmadev
->channels
, vc
.chan
.device_node
) {
1923 list_del(&chan
->vc
.chan
.device_node
);
1928 #ifdef CONFIG_DEBUG_FS
1929 static const char *pl08x_state_str(enum pl08x_dma_chan_state state
)
1932 case PL08X_CHAN_IDLE
:
1934 case PL08X_CHAN_RUNNING
:
1936 case PL08X_CHAN_PAUSED
:
1938 case PL08X_CHAN_WAITING
:
1943 return "UNKNOWN STATE";
1946 static int pl08x_debugfs_show(struct seq_file
*s
, void *data
)
1948 struct pl08x_driver_data
*pl08x
= s
->private;
1949 struct pl08x_dma_chan
*chan
;
1950 struct pl08x_phy_chan
*ch
;
1951 unsigned long flags
;
1954 seq_printf(s
, "PL08x physical channels:\n");
1955 seq_printf(s
, "CHANNEL:\tUSER:\n");
1956 seq_printf(s
, "--------\t-----\n");
1957 for (i
= 0; i
< pl08x
->vd
->channels
; i
++) {
1958 struct pl08x_dma_chan
*virt_chan
;
1960 ch
= &pl08x
->phy_chans
[i
];
1962 spin_lock_irqsave(&ch
->lock
, flags
);
1963 virt_chan
= ch
->serving
;
1965 seq_printf(s
, "%d\t\t%s%s\n",
1967 virt_chan
? virt_chan
->name
: "(none)",
1968 ch
->locked
? " LOCKED" : "");
1970 spin_unlock_irqrestore(&ch
->lock
, flags
);
1973 seq_printf(s
, "\nPL08x virtual memcpy channels:\n");
1974 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1975 seq_printf(s
, "--------\t------\n");
1976 list_for_each_entry(chan
, &pl08x
->memcpy
.channels
, vc
.chan
.device_node
) {
1977 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1978 pl08x_state_str(chan
->state
));
1981 seq_printf(s
, "\nPL08x virtual slave channels:\n");
1982 seq_printf(s
, "CHANNEL:\tSTATE:\n");
1983 seq_printf(s
, "--------\t------\n");
1984 list_for_each_entry(chan
, &pl08x
->slave
.channels
, vc
.chan
.device_node
) {
1985 seq_printf(s
, "%s\t\t%s\n", chan
->name
,
1986 pl08x_state_str(chan
->state
));
1992 static int pl08x_debugfs_open(struct inode
*inode
, struct file
*file
)
1994 return single_open(file
, pl08x_debugfs_show
, inode
->i_private
);
1997 static const struct file_operations pl08x_debugfs_operations
= {
1998 .open
= pl08x_debugfs_open
,
2000 .llseek
= seq_lseek
,
2001 .release
= single_release
,
2004 static void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2006 /* Expose a simple debugfs interface to view all clocks */
2007 (void) debugfs_create_file(dev_name(&pl08x
->adev
->dev
),
2008 S_IFREG
| S_IRUGO
, NULL
, pl08x
,
2009 &pl08x_debugfs_operations
);
2013 static inline void init_pl08x_debugfs(struct pl08x_driver_data
*pl08x
)
2018 static int pl08x_probe(struct amba_device
*adev
, const struct amba_id
*id
)
2020 struct pl08x_driver_data
*pl08x
;
2021 const struct vendor_data
*vd
= id
->data
;
2026 ret
= amba_request_regions(adev
, NULL
);
2030 /* Ensure that we can do DMA */
2031 ret
= dma_set_mask_and_coherent(&adev
->dev
, DMA_BIT_MASK(32));
2035 /* Create the driver state holder */
2036 pl08x
= kzalloc(sizeof(*pl08x
), GFP_KERNEL
);
2042 /* Initialize memcpy engine */
2043 dma_cap_set(DMA_MEMCPY
, pl08x
->memcpy
.cap_mask
);
2044 pl08x
->memcpy
.dev
= &adev
->dev
;
2045 pl08x
->memcpy
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
2046 pl08x
->memcpy
.device_free_chan_resources
= pl08x_free_chan_resources
;
2047 pl08x
->memcpy
.device_prep_dma_memcpy
= pl08x_prep_dma_memcpy
;
2048 pl08x
->memcpy
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2049 pl08x
->memcpy
.device_tx_status
= pl08x_dma_tx_status
;
2050 pl08x
->memcpy
.device_issue_pending
= pl08x_issue_pending
;
2051 pl08x
->memcpy
.device_control
= pl08x_control
;
2053 /* Initialize slave engine */
2054 dma_cap_set(DMA_SLAVE
, pl08x
->slave
.cap_mask
);
2055 dma_cap_set(DMA_CYCLIC
, pl08x
->slave
.cap_mask
);
2056 pl08x
->slave
.dev
= &adev
->dev
;
2057 pl08x
->slave
.device_alloc_chan_resources
= pl08x_alloc_chan_resources
;
2058 pl08x
->slave
.device_free_chan_resources
= pl08x_free_chan_resources
;
2059 pl08x
->slave
.device_prep_dma_interrupt
= pl08x_prep_dma_interrupt
;
2060 pl08x
->slave
.device_tx_status
= pl08x_dma_tx_status
;
2061 pl08x
->slave
.device_issue_pending
= pl08x_issue_pending
;
2062 pl08x
->slave
.device_prep_slave_sg
= pl08x_prep_slave_sg
;
2063 pl08x
->slave
.device_prep_dma_cyclic
= pl08x_prep_dma_cyclic
;
2064 pl08x
->slave
.device_control
= pl08x_control
;
2066 /* Get the platform data */
2067 pl08x
->pd
= dev_get_platdata(&adev
->dev
);
2069 dev_err(&adev
->dev
, "no platform data supplied\n");
2071 goto out_no_platdata
;
2074 /* Assign useful pointers to the driver state */
2078 /* By default, AHB1 only. If dualmaster, from platform */
2079 pl08x
->lli_buses
= PL08X_AHB1
;
2080 pl08x
->mem_buses
= PL08X_AHB1
;
2081 if (pl08x
->vd
->dualmaster
) {
2082 pl08x
->lli_buses
= pl08x
->pd
->lli_buses
;
2083 pl08x
->mem_buses
= pl08x
->pd
->mem_buses
;
2087 pl08x
->lli_words
= PL080S_LLI_WORDS
;
2089 pl08x
->lli_words
= PL080_LLI_WORDS
;
2090 tsfr_size
= MAX_NUM_TSFR_LLIS
* pl08x
->lli_words
* sizeof(u32
);
2092 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2093 pl08x
->pool
= dma_pool_create(DRIVER_NAME
, &pl08x
->adev
->dev
,
2094 tsfr_size
, PL08X_ALIGN
, 0);
2097 goto out_no_lli_pool
;
2100 pl08x
->base
= ioremap(adev
->res
.start
, resource_size(&adev
->res
));
2103 goto out_no_ioremap
;
2106 /* Turn on the PL08x */
2107 pl08x_ensure_on(pl08x
);
2109 /* Attach the interrupt handler */
2110 writel(0x000000FF, pl08x
->base
+ PL080_ERR_CLEAR
);
2111 writel(0x000000FF, pl08x
->base
+ PL080_TC_CLEAR
);
2113 ret
= request_irq(adev
->irq
[0], pl08x_irq
, 0, DRIVER_NAME
, pl08x
);
2115 dev_err(&adev
->dev
, "%s failed to request interrupt %d\n",
2116 __func__
, adev
->irq
[0]);
2120 /* Initialize physical channels */
2121 pl08x
->phy_chans
= kzalloc((vd
->channels
* sizeof(*pl08x
->phy_chans
)),
2123 if (!pl08x
->phy_chans
) {
2124 dev_err(&adev
->dev
, "%s failed to allocate "
2125 "physical channel holders\n",
2128 goto out_no_phychans
;
2131 for (i
= 0; i
< vd
->channels
; i
++) {
2132 struct pl08x_phy_chan
*ch
= &pl08x
->phy_chans
[i
];
2135 ch
->base
= pl08x
->base
+ PL080_Cx_BASE(i
);
2136 ch
->reg_config
= ch
->base
+ vd
->config_offset
;
2137 spin_lock_init(&ch
->lock
);
2140 * Nomadik variants can have channels that are locked
2141 * down for the secure world only. Lock up these channels
2142 * by perpetually serving a dummy virtual channel.
2147 val
= readl(ch
->reg_config
);
2148 if (val
& (PL080N_CONFIG_ITPROT
| PL080N_CONFIG_SECPROT
)) {
2149 dev_info(&adev
->dev
, "physical channel %d reserved for secure access only\n", i
);
2154 dev_dbg(&adev
->dev
, "physical channel %d is %s\n",
2155 i
, pl08x_phy_channel_busy(ch
) ? "BUSY" : "FREE");
2158 /* Register as many memcpy channels as there are physical channels */
2159 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->memcpy
,
2160 pl08x
->vd
->channels
, false);
2162 dev_warn(&pl08x
->adev
->dev
,
2163 "%s failed to enumerate memcpy channels - %d\n",
2167 pl08x
->memcpy
.chancnt
= ret
;
2169 /* Register slave channels */
2170 ret
= pl08x_dma_init_virtual_channels(pl08x
, &pl08x
->slave
,
2171 pl08x
->pd
->num_slave_channels
, true);
2173 dev_warn(&pl08x
->adev
->dev
,
2174 "%s failed to enumerate slave channels - %d\n",
2178 pl08x
->slave
.chancnt
= ret
;
2180 ret
= dma_async_device_register(&pl08x
->memcpy
);
2182 dev_warn(&pl08x
->adev
->dev
,
2183 "%s failed to register memcpy as an async device - %d\n",
2185 goto out_no_memcpy_reg
;
2188 ret
= dma_async_device_register(&pl08x
->slave
);
2190 dev_warn(&pl08x
->adev
->dev
,
2191 "%s failed to register slave as an async device - %d\n",
2193 goto out_no_slave_reg
;
2196 amba_set_drvdata(adev
, pl08x
);
2197 init_pl08x_debugfs(pl08x
);
2198 dev_info(&pl08x
->adev
->dev
, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2199 amba_part(adev
), pl08x
->vd
->pl080s
? "s" : "", amba_rev(adev
),
2200 (unsigned long long)adev
->res
.start
, adev
->irq
[0]);
2205 dma_async_device_unregister(&pl08x
->memcpy
);
2207 pl08x_free_virtual_channels(&pl08x
->slave
);
2209 pl08x_free_virtual_channels(&pl08x
->memcpy
);
2211 kfree(pl08x
->phy_chans
);
2213 free_irq(adev
->irq
[0], pl08x
);
2215 iounmap(pl08x
->base
);
2217 dma_pool_destroy(pl08x
->pool
);
2222 amba_release_regions(adev
);
2226 /* PL080 has 8 channels and the PL080 have just 2 */
2227 static struct vendor_data vendor_pl080
= {
2228 .config_offset
= PL080_CH_CONFIG
,
2231 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2234 static struct vendor_data vendor_nomadik
= {
2235 .config_offset
= PL080_CH_CONFIG
,
2239 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2242 static struct vendor_data vendor_pl080s
= {
2243 .config_offset
= PL080S_CH_CONFIG
,
2246 .max_transfer_size
= PL080S_CONTROL_TRANSFER_SIZE_MASK
,
2249 static struct vendor_data vendor_pl081
= {
2250 .config_offset
= PL080_CH_CONFIG
,
2252 .dualmaster
= false,
2253 .max_transfer_size
= PL080_CONTROL_TRANSFER_SIZE_MASK
,
2256 static struct amba_id pl08x_ids
[] = {
2257 /* Samsung PL080S variant */
2261 .data
= &vendor_pl080s
,
2267 .data
= &vendor_pl080
,
2273 .data
= &vendor_pl081
,
2275 /* Nomadik 8815 PL080 variant */
2279 .data
= &vendor_nomadik
,
2284 MODULE_DEVICE_TABLE(amba
, pl08x_ids
);
2286 static struct amba_driver pl08x_amba_driver
= {
2287 .drv
.name
= DRIVER_NAME
,
2288 .id_table
= pl08x_ids
,
2289 .probe
= pl08x_probe
,
2292 static int __init
pl08x_init(void)
2295 retval
= amba_driver_register(&pl08x_amba_driver
);
2297 printk(KERN_WARNING DRIVER_NAME
2298 "failed to register as an AMBA device (%d)\n",
2302 subsys_initcall(pl08x_init
);