usb: dwc3: keystone: drop dma_mask configuration
[linux/fpc-iii.git] / drivers / dma / amba-pl08x.c
blob8114731a1c62d6450cd5f8bbd490f87c7800b1ea
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
30 * channel.
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
38 * The PL080 has a dual bus master, PL081 has a single master.
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
50 * Until no data left
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
53 * Clear burst request
54 * Raise terminal count interrupt
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
63 * ASSUMES default (little) endianness for DMA transfers
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
71 * are ignored.
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
78 #include <linux/amba/bus.h>
79 #include <linux/amba/pl08x.h>
80 #include <linux/debugfs.h>
81 #include <linux/delay.h>
82 #include <linux/device.h>
83 #include <linux/dmaengine.h>
84 #include <linux/dmapool.h>
85 #include <linux/dma-mapping.h>
86 #include <linux/export.h>
87 #include <linux/init.h>
88 #include <linux/interrupt.h>
89 #include <linux/module.h>
90 #include <linux/pm_runtime.h>
91 #include <linux/seq_file.h>
92 #include <linux/slab.h>
93 #include <linux/amba/pl080.h>
95 #include "dmaengine.h"
96 #include "virt-dma.h"
98 #define DRIVER_NAME "pl08xdmac"
100 static struct amba_driver pl08x_amba_driver;
101 struct pl08x_driver_data;
104 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
105 * @channels: the number of channels available in this variant
106 * @dualmaster: whether this version supports dual AHB masters or not.
107 * @nomadik: whether the channels have Nomadik security extension bits
108 * that need to be checked for permission before use and some registers are
109 * missing
110 * @pl080s: whether this version is a PL080S, which has separate register and
111 * LLI word for transfer size.
113 struct vendor_data {
114 u8 config_offset;
115 u8 channels;
116 bool dualmaster;
117 bool nomadik;
118 bool pl080s;
119 u32 max_transfer_size;
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
129 struct pl08x_bus_data {
130 dma_addr_t addr;
131 u8 maxwidth;
132 u8 buswidth;
135 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
138 * struct pl08x_phy_chan - holder for the physical channels
139 * @id: physical index to this channel
140 * @lock: a lock to use when altering an instance of this struct
141 * @serving: the virtual channel currently being served by this physical
142 * channel
143 * @locked: channel unavailable for the system, e.g. dedicated to secure
144 * world
146 struct pl08x_phy_chan {
147 unsigned int id;
148 void __iomem *base;
149 void __iomem *reg_config;
150 spinlock_t lock;
151 struct pl08x_dma_chan *serving;
152 bool locked;
156 * struct pl08x_sg - structure containing data per sg
157 * @src_addr: src address of sg
158 * @dst_addr: dst address of sg
159 * @len: transfer len in bytes
160 * @node: node for txd's dsg_list
162 struct pl08x_sg {
163 dma_addr_t src_addr;
164 dma_addr_t dst_addr;
165 size_t len;
166 struct list_head node;
170 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
171 * @vd: virtual DMA descriptor
172 * @dsg_list: list of children sg's
173 * @llis_bus: DMA memory address (physical) start for the LLIs
174 * @llis_va: virtual memory address start for the LLIs
175 * @cctl: control reg values for current txd
176 * @ccfg: config reg values for current txd
177 * @done: this marks completed descriptors, which should not have their
178 * mux released.
179 * @cyclic: indicate cyclic transfers
181 struct pl08x_txd {
182 struct virt_dma_desc vd;
183 struct list_head dsg_list;
184 dma_addr_t llis_bus;
185 u32 *llis_va;
186 /* Default cctl value for LLIs */
187 u32 cctl;
189 * Settings to be put into the physical channel when we
190 * trigger this txd. Other registers are in llis_va[0].
192 u32 ccfg;
193 bool done;
194 bool cyclic;
198 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
199 * states
200 * @PL08X_CHAN_IDLE: the channel is idle
201 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
202 * channel and is running a transfer on it
203 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
204 * channel, but the transfer is currently paused
205 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
206 * channel to become available (only pertains to memcpy channels)
208 enum pl08x_dma_chan_state {
209 PL08X_CHAN_IDLE,
210 PL08X_CHAN_RUNNING,
211 PL08X_CHAN_PAUSED,
212 PL08X_CHAN_WAITING,
216 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
217 * @vc: wrappped virtual channel
218 * @phychan: the physical channel utilized by this channel, if there is one
219 * @name: name of channel
220 * @cd: channel platform data
221 * @runtime_addr: address for RX/TX according to the runtime config
222 * @at: active transaction on this channel
223 * @lock: a lock for this channel data
224 * @host: a pointer to the host (internal use)
225 * @state: whether the channel is idle, paused, running etc
226 * @slave: whether this channel is a device (slave) or for memcpy
227 * @signal: the physical DMA request signal which this channel is using
228 * @mux_use: count of descriptors using this DMA request signal setting
230 struct pl08x_dma_chan {
231 struct virt_dma_chan vc;
232 struct pl08x_phy_chan *phychan;
233 const char *name;
234 const struct pl08x_channel_data *cd;
235 struct dma_slave_config cfg;
236 struct pl08x_txd *at;
237 struct pl08x_driver_data *host;
238 enum pl08x_dma_chan_state state;
239 bool slave;
240 int signal;
241 unsigned mux_use;
245 * struct pl08x_driver_data - the local state holder for the PL08x
246 * @slave: slave engine for this instance
247 * @memcpy: memcpy engine for this instance
248 * @base: virtual memory base (remapped) for the PL08x
249 * @adev: the corresponding AMBA (PrimeCell) bus entry
250 * @vd: vendor data for this PL08x variant
251 * @pd: platform data passed in from the platform/machine
252 * @phy_chans: array of data for the physical channels
253 * @pool: a pool for the LLI descriptors
254 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
255 * fetches
256 * @mem_buses: set to indicate memory transfers on AHB2.
257 * @lock: a spinlock for this struct
259 struct pl08x_driver_data {
260 struct dma_device slave;
261 struct dma_device memcpy;
262 void __iomem *base;
263 struct amba_device *adev;
264 const struct vendor_data *vd;
265 struct pl08x_platform_data *pd;
266 struct pl08x_phy_chan *phy_chans;
267 struct dma_pool *pool;
268 u8 lli_buses;
269 u8 mem_buses;
270 u8 lli_words;
274 * PL08X specific defines
277 /* The order of words in an LLI. */
278 #define PL080_LLI_SRC 0
279 #define PL080_LLI_DST 1
280 #define PL080_LLI_LLI 2
281 #define PL080_LLI_CCTL 3
282 #define PL080S_LLI_CCTL2 4
284 /* Total words in an LLI. */
285 #define PL080_LLI_WORDS 4
286 #define PL080S_LLI_WORDS 8
289 * Number of LLIs in each LLI buffer allocated for one transfer
290 * (maximum times we call dma_pool_alloc on this pool without freeing)
292 #define MAX_NUM_TSFR_LLIS 512
293 #define PL08X_ALIGN 8
295 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
297 return container_of(chan, struct pl08x_dma_chan, vc.chan);
300 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
302 return container_of(tx, struct pl08x_txd, vd.tx);
306 * Mux handling.
308 * This gives us the DMA request input to the PL08x primecell which the
309 * peripheral described by the channel data will be routed to, possibly
310 * via a board/SoC specific external MUX. One important point to note
311 * here is that this does not depend on the physical channel.
313 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
315 const struct pl08x_platform_data *pd = plchan->host->pd;
316 int ret;
318 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
319 ret = pd->get_xfer_signal(plchan->cd);
320 if (ret < 0) {
321 plchan->mux_use = 0;
322 return ret;
325 plchan->signal = ret;
327 return 0;
330 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
332 const struct pl08x_platform_data *pd = plchan->host->pd;
334 if (plchan->signal >= 0) {
335 WARN_ON(plchan->mux_use == 0);
337 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
338 pd->put_xfer_signal(plchan->cd, plchan->signal);
339 plchan->signal = -1;
345 * Physical channel handling
348 /* Whether a certain channel is busy or not */
349 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
351 unsigned int val;
353 val = readl(ch->reg_config);
354 return val & PL080_CONFIG_ACTIVE;
357 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
358 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
360 if (pl08x->vd->pl080s)
361 dev_vdbg(&pl08x->adev->dev,
362 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
363 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
364 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
365 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
366 lli[PL080S_LLI_CCTL2], ccfg);
367 else
368 dev_vdbg(&pl08x->adev->dev,
369 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
370 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
371 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
372 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
374 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
375 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
376 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
377 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
379 if (pl08x->vd->pl080s)
380 writel_relaxed(lli[PL080S_LLI_CCTL2],
381 phychan->base + PL080S_CH_CONTROL2);
383 writel(ccfg, phychan->reg_config);
387 * Set the initial DMA register values i.e. those for the first LLI
388 * The next LLI pointer and the configuration interrupt bit have
389 * been set when the LLIs were constructed. Poke them into the hardware
390 * and start the transfer.
392 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
394 struct pl08x_driver_data *pl08x = plchan->host;
395 struct pl08x_phy_chan *phychan = plchan->phychan;
396 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
397 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
398 u32 val;
400 list_del(&txd->vd.node);
402 plchan->at = txd;
404 /* Wait for channel inactive */
405 while (pl08x_phy_channel_busy(phychan))
406 cpu_relax();
408 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
410 /* Enable the DMA channel */
411 /* Do not access config register until channel shows as disabled */
412 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
413 cpu_relax();
415 /* Do not access config register until channel shows as inactive */
416 val = readl(phychan->reg_config);
417 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
418 val = readl(phychan->reg_config);
420 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
424 * Pause the channel by setting the HALT bit.
426 * For M->P transfers, pause the DMAC first and then stop the peripheral -
427 * the FIFO can only drain if the peripheral is still requesting data.
428 * (note: this can still timeout if the DMAC FIFO never drains of data.)
430 * For P->M transfers, disable the peripheral first to stop it filling
431 * the DMAC FIFO, and then pause the DMAC.
433 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
435 u32 val;
436 int timeout;
438 /* Set the HALT bit and wait for the FIFO to drain */
439 val = readl(ch->reg_config);
440 val |= PL080_CONFIG_HALT;
441 writel(val, ch->reg_config);
443 /* Wait for channel inactive */
444 for (timeout = 1000; timeout; timeout--) {
445 if (!pl08x_phy_channel_busy(ch))
446 break;
447 udelay(1);
449 if (pl08x_phy_channel_busy(ch))
450 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
453 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
455 u32 val;
457 /* Clear the HALT bit */
458 val = readl(ch->reg_config);
459 val &= ~PL080_CONFIG_HALT;
460 writel(val, ch->reg_config);
464 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
465 * clears any pending interrupt status. This should not be used for
466 * an on-going transfer, but as a method of shutting down a channel
467 * (eg, when it's no longer used) or terminating a transfer.
469 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
470 struct pl08x_phy_chan *ch)
472 u32 val = readl(ch->reg_config);
474 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
475 PL080_CONFIG_TC_IRQ_MASK);
477 writel(val, ch->reg_config);
479 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
480 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
483 static inline u32 get_bytes_in_cctl(u32 cctl)
485 /* The source width defines the number of bytes */
486 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
488 cctl &= PL080_CONTROL_SWIDTH_MASK;
490 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
491 case PL080_WIDTH_8BIT:
492 break;
493 case PL080_WIDTH_16BIT:
494 bytes *= 2;
495 break;
496 case PL080_WIDTH_32BIT:
497 bytes *= 4;
498 break;
500 return bytes;
503 static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
505 /* The source width defines the number of bytes */
506 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
508 cctl &= PL080_CONTROL_SWIDTH_MASK;
510 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
511 case PL080_WIDTH_8BIT:
512 break;
513 case PL080_WIDTH_16BIT:
514 bytes *= 2;
515 break;
516 case PL080_WIDTH_32BIT:
517 bytes *= 4;
518 break;
520 return bytes;
523 /* The channel should be paused when calling this */
524 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
526 struct pl08x_driver_data *pl08x = plchan->host;
527 const u32 *llis_va, *llis_va_limit;
528 struct pl08x_phy_chan *ch;
529 dma_addr_t llis_bus;
530 struct pl08x_txd *txd;
531 u32 llis_max_words;
532 size_t bytes;
533 u32 clli;
535 ch = plchan->phychan;
536 txd = plchan->at;
538 if (!ch || !txd)
539 return 0;
542 * Follow the LLIs to get the number of remaining
543 * bytes in the currently active transaction.
545 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
547 /* First get the remaining bytes in the active transfer */
548 if (pl08x->vd->pl080s)
549 bytes = get_bytes_in_cctl_pl080s(
550 readl(ch->base + PL080_CH_CONTROL),
551 readl(ch->base + PL080S_CH_CONTROL2));
552 else
553 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
555 if (!clli)
556 return bytes;
558 llis_va = txd->llis_va;
559 llis_bus = txd->llis_bus;
561 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
562 BUG_ON(clli < llis_bus || clli >= llis_bus +
563 sizeof(u32) * llis_max_words);
566 * Locate the next LLI - as this is an array,
567 * it's simple maths to find.
569 llis_va += (clli - llis_bus) / sizeof(u32);
571 llis_va_limit = llis_va + llis_max_words;
573 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
574 if (pl08x->vd->pl080s)
575 bytes += get_bytes_in_cctl_pl080s(
576 llis_va[PL080_LLI_CCTL],
577 llis_va[PL080S_LLI_CCTL2]);
578 else
579 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
582 * A LLI pointer going backward terminates the LLI list
584 if (llis_va[PL080_LLI_LLI] <= clli)
585 break;
588 return bytes;
592 * Allocate a physical channel for a virtual channel
594 * Try to locate a physical channel to be used for this transfer. If all
595 * are taken return NULL and the requester will have to cope by using
596 * some fallback PIO mode or retrying later.
598 static struct pl08x_phy_chan *
599 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
600 struct pl08x_dma_chan *virt_chan)
602 struct pl08x_phy_chan *ch = NULL;
603 unsigned long flags;
604 int i;
606 for (i = 0; i < pl08x->vd->channels; i++) {
607 ch = &pl08x->phy_chans[i];
609 spin_lock_irqsave(&ch->lock, flags);
611 if (!ch->locked && !ch->serving) {
612 ch->serving = virt_chan;
613 spin_unlock_irqrestore(&ch->lock, flags);
614 break;
617 spin_unlock_irqrestore(&ch->lock, flags);
620 if (i == pl08x->vd->channels) {
621 /* No physical channel available, cope with it */
622 return NULL;
625 return ch;
628 /* Mark the physical channel as free. Note, this write is atomic. */
629 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
630 struct pl08x_phy_chan *ch)
632 ch->serving = NULL;
636 * Try to allocate a physical channel. When successful, assign it to
637 * this virtual channel, and initiate the next descriptor. The
638 * virtual channel lock must be held at this point.
640 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
642 struct pl08x_driver_data *pl08x = plchan->host;
643 struct pl08x_phy_chan *ch;
645 ch = pl08x_get_phy_channel(pl08x, plchan);
646 if (!ch) {
647 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
648 plchan->state = PL08X_CHAN_WAITING;
649 return;
652 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
653 ch->id, plchan->name);
655 plchan->phychan = ch;
656 plchan->state = PL08X_CHAN_RUNNING;
657 pl08x_start_next_txd(plchan);
660 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
661 struct pl08x_dma_chan *plchan)
663 struct pl08x_driver_data *pl08x = plchan->host;
665 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
666 ch->id, plchan->name);
669 * We do this without taking the lock; we're really only concerned
670 * about whether this pointer is NULL or not, and we're guaranteed
671 * that this will only be called when it _already_ is non-NULL.
673 ch->serving = plchan;
674 plchan->phychan = ch;
675 plchan->state = PL08X_CHAN_RUNNING;
676 pl08x_start_next_txd(plchan);
680 * Free a physical DMA channel, potentially reallocating it to another
681 * virtual channel if we have any pending.
683 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
685 struct pl08x_driver_data *pl08x = plchan->host;
686 struct pl08x_dma_chan *p, *next;
688 retry:
689 next = NULL;
691 /* Find a waiting virtual channel for the next transfer. */
692 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
693 if (p->state == PL08X_CHAN_WAITING) {
694 next = p;
695 break;
698 if (!next) {
699 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
700 if (p->state == PL08X_CHAN_WAITING) {
701 next = p;
702 break;
706 /* Ensure that the physical channel is stopped */
707 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
709 if (next) {
710 bool success;
713 * Eww. We know this isn't going to deadlock
714 * but lockdep probably doesn't.
716 spin_lock(&next->vc.lock);
717 /* Re-check the state now that we have the lock */
718 success = next->state == PL08X_CHAN_WAITING;
719 if (success)
720 pl08x_phy_reassign_start(plchan->phychan, next);
721 spin_unlock(&next->vc.lock);
723 /* If the state changed, try to find another channel */
724 if (!success)
725 goto retry;
726 } else {
727 /* No more jobs, so free up the physical channel */
728 pl08x_put_phy_channel(pl08x, plchan->phychan);
731 plchan->phychan = NULL;
732 plchan->state = PL08X_CHAN_IDLE;
736 * LLI handling
739 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
741 switch (coded) {
742 case PL080_WIDTH_8BIT:
743 return 1;
744 case PL080_WIDTH_16BIT:
745 return 2;
746 case PL080_WIDTH_32BIT:
747 return 4;
748 default:
749 break;
751 BUG();
752 return 0;
755 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
756 size_t tsize)
758 u32 retbits = cctl;
760 /* Remove all src, dst and transfer size bits */
761 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
762 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
763 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
765 /* Then set the bits according to the parameters */
766 switch (srcwidth) {
767 case 1:
768 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
769 break;
770 case 2:
771 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
772 break;
773 case 4:
774 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
775 break;
776 default:
777 BUG();
778 break;
781 switch (dstwidth) {
782 case 1:
783 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
784 break;
785 case 2:
786 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
787 break;
788 case 4:
789 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
790 break;
791 default:
792 BUG();
793 break;
796 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
797 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
798 return retbits;
801 struct pl08x_lli_build_data {
802 struct pl08x_txd *txd;
803 struct pl08x_bus_data srcbus;
804 struct pl08x_bus_data dstbus;
805 size_t remainder;
806 u32 lli_bus;
810 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
811 * victim in case src & dest are not similarly aligned. i.e. If after aligning
812 * masters address with width requirements of transfer (by sending few byte by
813 * byte data), slave is still not aligned, then its width will be reduced to
814 * BYTE.
815 * - prefers the destination bus if both available
816 * - prefers bus with fixed address (i.e. peripheral)
818 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
819 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
821 if (!(cctl & PL080_CONTROL_DST_INCR)) {
822 *mbus = &bd->dstbus;
823 *sbus = &bd->srcbus;
824 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
825 *mbus = &bd->srcbus;
826 *sbus = &bd->dstbus;
827 } else {
828 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
829 *mbus = &bd->dstbus;
830 *sbus = &bd->srcbus;
831 } else {
832 *mbus = &bd->srcbus;
833 *sbus = &bd->dstbus;
839 * Fills in one LLI for a certain transfer descriptor and advance the counter
841 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
842 struct pl08x_lli_build_data *bd,
843 int num_llis, int len, u32 cctl, u32 cctl2)
845 u32 offset = num_llis * pl08x->lli_words;
846 u32 *llis_va = bd->txd->llis_va + offset;
847 dma_addr_t llis_bus = bd->txd->llis_bus;
849 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
851 /* Advance the offset to next LLI. */
852 offset += pl08x->lli_words;
854 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
855 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
856 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
857 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
858 llis_va[PL080_LLI_CCTL] = cctl;
859 if (pl08x->vd->pl080s)
860 llis_va[PL080S_LLI_CCTL2] = cctl2;
862 if (cctl & PL080_CONTROL_SRC_INCR)
863 bd->srcbus.addr += len;
864 if (cctl & PL080_CONTROL_DST_INCR)
865 bd->dstbus.addr += len;
867 BUG_ON(bd->remainder < len);
869 bd->remainder -= len;
872 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
873 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
874 int num_llis, size_t *total_bytes)
876 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
877 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
878 (*total_bytes) += len;
881 #ifdef VERBOSE_DEBUG
882 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
883 const u32 *llis_va, int num_llis)
885 int i;
887 if (pl08x->vd->pl080s) {
888 dev_vdbg(&pl08x->adev->dev,
889 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
890 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
891 for (i = 0; i < num_llis; i++) {
892 dev_vdbg(&pl08x->adev->dev,
893 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
894 i, llis_va, llis_va[PL080_LLI_SRC],
895 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
896 llis_va[PL080_LLI_CCTL],
897 llis_va[PL080S_LLI_CCTL2]);
898 llis_va += pl08x->lli_words;
900 } else {
901 dev_vdbg(&pl08x->adev->dev,
902 "%-3s %-9s %-10s %-10s %-10s %s\n",
903 "lli", "", "csrc", "cdst", "clli", "cctl");
904 for (i = 0; i < num_llis; i++) {
905 dev_vdbg(&pl08x->adev->dev,
906 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
907 i, llis_va, llis_va[PL080_LLI_SRC],
908 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
909 llis_va[PL080_LLI_CCTL]);
910 llis_va += pl08x->lli_words;
914 #else
915 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
916 const u32 *llis_va, int num_llis) {}
917 #endif
920 * This fills in the table of LLIs for the transfer descriptor
921 * Note that we assume we never have to change the burst sizes
922 * Return 0 for error
924 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
925 struct pl08x_txd *txd)
927 struct pl08x_bus_data *mbus, *sbus;
928 struct pl08x_lli_build_data bd;
929 int num_llis = 0;
930 u32 cctl, early_bytes = 0;
931 size_t max_bytes_per_lli, total_bytes;
932 u32 *llis_va, *last_lli;
933 struct pl08x_sg *dsg;
935 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
936 if (!txd->llis_va) {
937 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
938 return 0;
941 bd.txd = txd;
942 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
943 cctl = txd->cctl;
945 /* Find maximum width of the source bus */
946 bd.srcbus.maxwidth =
947 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
948 PL080_CONTROL_SWIDTH_SHIFT);
950 /* Find maximum width of the destination bus */
951 bd.dstbus.maxwidth =
952 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
953 PL080_CONTROL_DWIDTH_SHIFT);
955 list_for_each_entry(dsg, &txd->dsg_list, node) {
956 total_bytes = 0;
957 cctl = txd->cctl;
959 bd.srcbus.addr = dsg->src_addr;
960 bd.dstbus.addr = dsg->dst_addr;
961 bd.remainder = dsg->len;
962 bd.srcbus.buswidth = bd.srcbus.maxwidth;
963 bd.dstbus.buswidth = bd.dstbus.maxwidth;
965 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
967 dev_vdbg(&pl08x->adev->dev,
968 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
969 (u64)bd.srcbus.addr,
970 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
971 bd.srcbus.buswidth,
972 (u64)bd.dstbus.addr,
973 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
974 bd.dstbus.buswidth,
975 bd.remainder);
976 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
977 mbus == &bd.srcbus ? "src" : "dst",
978 sbus == &bd.srcbus ? "src" : "dst");
981 * Zero length is only allowed if all these requirements are
982 * met:
983 * - flow controller is peripheral.
984 * - src.addr is aligned to src.width
985 * - dst.addr is aligned to dst.width
987 * sg_len == 1 should be true, as there can be two cases here:
989 * - Memory addresses are contiguous and are not scattered.
990 * Here, Only one sg will be passed by user driver, with
991 * memory address and zero length. We pass this to controller
992 * and after the transfer it will receive the last burst
993 * request from peripheral and so transfer finishes.
995 * - Memory addresses are scattered and are not contiguous.
996 * Here, Obviously as DMA controller doesn't know when a lli's
997 * transfer gets over, it can't load next lli. So in this
998 * case, there has to be an assumption that only one lli is
999 * supported. Thus, we can't have scattered addresses.
1001 if (!bd.remainder) {
1002 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1003 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1004 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1005 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1006 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1007 __func__);
1008 return 0;
1011 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1012 !IS_BUS_ALIGNED(&bd.dstbus)) {
1013 dev_err(&pl08x->adev->dev,
1014 "%s src & dst address must be aligned to src"
1015 " & dst width if peripheral is flow controller",
1016 __func__);
1017 return 0;
1020 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1021 bd.dstbus.buswidth, 0);
1022 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1023 0, cctl, 0);
1024 break;
1028 * Send byte by byte for following cases
1029 * - Less than a bus width available
1030 * - until master bus is aligned
1032 if (bd.remainder < mbus->buswidth)
1033 early_bytes = bd.remainder;
1034 else if (!IS_BUS_ALIGNED(mbus)) {
1035 early_bytes = mbus->buswidth -
1036 (mbus->addr & (mbus->buswidth - 1));
1037 if ((bd.remainder - early_bytes) < mbus->buswidth)
1038 early_bytes = bd.remainder;
1041 if (early_bytes) {
1042 dev_vdbg(&pl08x->adev->dev,
1043 "%s byte width LLIs (remain 0x%08x)\n",
1044 __func__, bd.remainder);
1045 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1046 num_llis++, &total_bytes);
1049 if (bd.remainder) {
1051 * Master now aligned
1052 * - if slave is not then we must set its width down
1054 if (!IS_BUS_ALIGNED(sbus)) {
1055 dev_dbg(&pl08x->adev->dev,
1056 "%s set down bus width to one byte\n",
1057 __func__);
1059 sbus->buswidth = 1;
1063 * Bytes transferred = tsize * src width, not
1064 * MIN(buswidths)
1066 max_bytes_per_lli = bd.srcbus.buswidth *
1067 pl08x->vd->max_transfer_size;
1068 dev_vdbg(&pl08x->adev->dev,
1069 "%s max bytes per lli = %zu\n",
1070 __func__, max_bytes_per_lli);
1073 * Make largest possible LLIs until less than one bus
1074 * width left
1076 while (bd.remainder > (mbus->buswidth - 1)) {
1077 size_t lli_len, tsize, width;
1080 * If enough left try to send max possible,
1081 * otherwise try to send the remainder
1083 lli_len = min(bd.remainder, max_bytes_per_lli);
1086 * Check against maximum bus alignment:
1087 * Calculate actual transfer size in relation to
1088 * bus width an get a maximum remainder of the
1089 * highest bus width - 1
1091 width = max(mbus->buswidth, sbus->buswidth);
1092 lli_len = (lli_len / width) * width;
1093 tsize = lli_len / bd.srcbus.buswidth;
1095 dev_vdbg(&pl08x->adev->dev,
1096 "%s fill lli with single lli chunk of "
1097 "size 0x%08zx (remainder 0x%08zx)\n",
1098 __func__, lli_len, bd.remainder);
1100 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1101 bd.dstbus.buswidth, tsize);
1102 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1103 lli_len, cctl, tsize);
1104 total_bytes += lli_len;
1108 * Send any odd bytes
1110 if (bd.remainder) {
1111 dev_vdbg(&pl08x->adev->dev,
1112 "%s align with boundary, send odd bytes (remain %zu)\n",
1113 __func__, bd.remainder);
1114 prep_byte_width_lli(pl08x, &bd, &cctl,
1115 bd.remainder, num_llis++, &total_bytes);
1119 if (total_bytes != dsg->len) {
1120 dev_err(&pl08x->adev->dev,
1121 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1122 __func__, total_bytes, dsg->len);
1123 return 0;
1126 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1127 dev_err(&pl08x->adev->dev,
1128 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1129 __func__, MAX_NUM_TSFR_LLIS);
1130 return 0;
1134 llis_va = txd->llis_va;
1135 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1137 if (txd->cyclic) {
1138 /* Link back to the first LLI. */
1139 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1140 } else {
1141 /* The final LLI terminates the LLI. */
1142 last_lli[PL080_LLI_LLI] = 0;
1143 /* The final LLI element shall also fire an interrupt. */
1144 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1147 pl08x_dump_lli(pl08x, llis_va, num_llis);
1149 return num_llis;
1152 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1153 struct pl08x_txd *txd)
1155 struct pl08x_sg *dsg, *_dsg;
1157 if (txd->llis_va)
1158 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1160 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1161 list_del(&dsg->node);
1162 kfree(dsg);
1165 kfree(txd);
1168 static void pl08x_desc_free(struct virt_dma_desc *vd)
1170 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1171 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1173 dma_descriptor_unmap(&vd->tx);
1174 if (!txd->done)
1175 pl08x_release_mux(plchan);
1177 pl08x_free_txd(plchan->host, txd);
1180 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1181 struct pl08x_dma_chan *plchan)
1183 LIST_HEAD(head);
1185 vchan_get_all_descriptors(&plchan->vc, &head);
1186 vchan_dma_desc_free_list(&plchan->vc, &head);
1190 * The DMA ENGINE API
1192 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1194 return 0;
1197 static void pl08x_free_chan_resources(struct dma_chan *chan)
1199 /* Ensure all queued descriptors are freed */
1200 vchan_free_chan_resources(to_virt_chan(chan));
1203 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1204 struct dma_chan *chan, unsigned long flags)
1206 struct dma_async_tx_descriptor *retval = NULL;
1208 return retval;
1212 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1213 * If slaves are relying on interrupts to signal completion this function
1214 * must not be called with interrupts disabled.
1216 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1217 dma_cookie_t cookie, struct dma_tx_state *txstate)
1219 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1220 struct virt_dma_desc *vd;
1221 unsigned long flags;
1222 enum dma_status ret;
1223 size_t bytes = 0;
1225 ret = dma_cookie_status(chan, cookie, txstate);
1226 if (ret == DMA_COMPLETE)
1227 return ret;
1230 * There's no point calculating the residue if there's
1231 * no txstate to store the value.
1233 if (!txstate) {
1234 if (plchan->state == PL08X_CHAN_PAUSED)
1235 ret = DMA_PAUSED;
1236 return ret;
1239 spin_lock_irqsave(&plchan->vc.lock, flags);
1240 ret = dma_cookie_status(chan, cookie, txstate);
1241 if (ret != DMA_COMPLETE) {
1242 vd = vchan_find_desc(&plchan->vc, cookie);
1243 if (vd) {
1244 /* On the issued list, so hasn't been processed yet */
1245 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1246 struct pl08x_sg *dsg;
1248 list_for_each_entry(dsg, &txd->dsg_list, node)
1249 bytes += dsg->len;
1250 } else {
1251 bytes = pl08x_getbytes_chan(plchan);
1254 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1257 * This cookie not complete yet
1258 * Get number of bytes left in the active transactions and queue
1260 dma_set_residue(txstate, bytes);
1262 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1263 ret = DMA_PAUSED;
1265 /* Whether waiting or running, we're in progress */
1266 return ret;
1269 /* PrimeCell DMA extension */
1270 struct burst_table {
1271 u32 burstwords;
1272 u32 reg;
1275 static const struct burst_table burst_sizes[] = {
1277 .burstwords = 256,
1278 .reg = PL080_BSIZE_256,
1281 .burstwords = 128,
1282 .reg = PL080_BSIZE_128,
1285 .burstwords = 64,
1286 .reg = PL080_BSIZE_64,
1289 .burstwords = 32,
1290 .reg = PL080_BSIZE_32,
1293 .burstwords = 16,
1294 .reg = PL080_BSIZE_16,
1297 .burstwords = 8,
1298 .reg = PL080_BSIZE_8,
1301 .burstwords = 4,
1302 .reg = PL080_BSIZE_4,
1305 .burstwords = 0,
1306 .reg = PL080_BSIZE_1,
1311 * Given the source and destination available bus masks, select which
1312 * will be routed to each port. We try to have source and destination
1313 * on separate ports, but always respect the allowable settings.
1315 static u32 pl08x_select_bus(u8 src, u8 dst)
1317 u32 cctl = 0;
1319 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1320 cctl |= PL080_CONTROL_DST_AHB2;
1321 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1322 cctl |= PL080_CONTROL_SRC_AHB2;
1324 return cctl;
1327 static u32 pl08x_cctl(u32 cctl)
1329 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1330 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1331 PL080_CONTROL_PROT_MASK);
1333 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1334 return cctl | PL080_CONTROL_PROT_SYS;
1337 static u32 pl08x_width(enum dma_slave_buswidth width)
1339 switch (width) {
1340 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1341 return PL080_WIDTH_8BIT;
1342 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1343 return PL080_WIDTH_16BIT;
1344 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1345 return PL080_WIDTH_32BIT;
1346 default:
1347 return ~0;
1351 static u32 pl08x_burst(u32 maxburst)
1353 int i;
1355 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1356 if (burst_sizes[i].burstwords <= maxburst)
1357 break;
1359 return burst_sizes[i].reg;
1362 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1363 enum dma_slave_buswidth addr_width, u32 maxburst)
1365 u32 width, burst, cctl = 0;
1367 width = pl08x_width(addr_width);
1368 if (width == ~0)
1369 return ~0;
1371 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1372 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1375 * If this channel will only request single transfers, set this
1376 * down to ONE element. Also select one element if no maxburst
1377 * is specified.
1379 if (plchan->cd->single)
1380 maxburst = 1;
1382 burst = pl08x_burst(maxburst);
1383 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1384 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1386 return pl08x_cctl(cctl);
1389 static int dma_set_runtime_config(struct dma_chan *chan,
1390 struct dma_slave_config *config)
1392 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1393 struct pl08x_driver_data *pl08x = plchan->host;
1395 if (!plchan->slave)
1396 return -EINVAL;
1398 /* Reject definitely invalid configurations */
1399 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1400 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1401 return -EINVAL;
1403 if (config->device_fc && pl08x->vd->pl080s) {
1404 dev_err(&pl08x->adev->dev,
1405 "%s: PL080S does not support peripheral flow control\n",
1406 __func__);
1407 return -EINVAL;
1410 plchan->cfg = *config;
1412 return 0;
1416 * Slave transactions callback to the slave device to allow
1417 * synchronization of slave DMA signals with the DMAC enable
1419 static void pl08x_issue_pending(struct dma_chan *chan)
1421 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1422 unsigned long flags;
1424 spin_lock_irqsave(&plchan->vc.lock, flags);
1425 if (vchan_issue_pending(&plchan->vc)) {
1426 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1427 pl08x_phy_alloc_and_start(plchan);
1429 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1432 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1434 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1436 if (txd) {
1437 INIT_LIST_HEAD(&txd->dsg_list);
1439 /* Always enable error and terminal interrupts */
1440 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1441 PL080_CONFIG_TC_IRQ_MASK;
1443 return txd;
1447 * Initialize a descriptor to be used by memcpy submit
1449 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1450 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1451 size_t len, unsigned long flags)
1453 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1454 struct pl08x_driver_data *pl08x = plchan->host;
1455 struct pl08x_txd *txd;
1456 struct pl08x_sg *dsg;
1457 int ret;
1459 txd = pl08x_get_txd(plchan);
1460 if (!txd) {
1461 dev_err(&pl08x->adev->dev,
1462 "%s no memory for descriptor\n", __func__);
1463 return NULL;
1466 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1467 if (!dsg) {
1468 pl08x_free_txd(pl08x, txd);
1469 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1470 __func__);
1471 return NULL;
1473 list_add_tail(&dsg->node, &txd->dsg_list);
1475 dsg->src_addr = src;
1476 dsg->dst_addr = dest;
1477 dsg->len = len;
1479 /* Set platform data for m2m */
1480 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1481 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1482 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1484 /* Both to be incremented or the code will break */
1485 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1487 if (pl08x->vd->dualmaster)
1488 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1489 pl08x->mem_buses);
1491 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1492 if (!ret) {
1493 pl08x_free_txd(pl08x, txd);
1494 return NULL;
1497 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1500 static struct pl08x_txd *pl08x_init_txd(
1501 struct dma_chan *chan,
1502 enum dma_transfer_direction direction,
1503 dma_addr_t *slave_addr)
1505 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1506 struct pl08x_driver_data *pl08x = plchan->host;
1507 struct pl08x_txd *txd;
1508 enum dma_slave_buswidth addr_width;
1509 int ret, tmp;
1510 u8 src_buses, dst_buses;
1511 u32 maxburst, cctl;
1513 txd = pl08x_get_txd(plchan);
1514 if (!txd) {
1515 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1516 return NULL;
1520 * Set up addresses, the PrimeCell configured address
1521 * will take precedence since this may configure the
1522 * channel target address dynamically at runtime.
1524 if (direction == DMA_MEM_TO_DEV) {
1525 cctl = PL080_CONTROL_SRC_INCR;
1526 *slave_addr = plchan->cfg.dst_addr;
1527 addr_width = plchan->cfg.dst_addr_width;
1528 maxburst = plchan->cfg.dst_maxburst;
1529 src_buses = pl08x->mem_buses;
1530 dst_buses = plchan->cd->periph_buses;
1531 } else if (direction == DMA_DEV_TO_MEM) {
1532 cctl = PL080_CONTROL_DST_INCR;
1533 *slave_addr = plchan->cfg.src_addr;
1534 addr_width = plchan->cfg.src_addr_width;
1535 maxburst = plchan->cfg.src_maxburst;
1536 src_buses = plchan->cd->periph_buses;
1537 dst_buses = pl08x->mem_buses;
1538 } else {
1539 pl08x_free_txd(pl08x, txd);
1540 dev_err(&pl08x->adev->dev,
1541 "%s direction unsupported\n", __func__);
1542 return NULL;
1545 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1546 if (cctl == ~0) {
1547 pl08x_free_txd(pl08x, txd);
1548 dev_err(&pl08x->adev->dev,
1549 "DMA slave configuration botched?\n");
1550 return NULL;
1553 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1555 if (plchan->cfg.device_fc)
1556 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1557 PL080_FLOW_PER2MEM_PER;
1558 else
1559 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1560 PL080_FLOW_PER2MEM;
1562 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1564 ret = pl08x_request_mux(plchan);
1565 if (ret < 0) {
1566 pl08x_free_txd(pl08x, txd);
1567 dev_dbg(&pl08x->adev->dev,
1568 "unable to mux for transfer on %s due to platform restrictions\n",
1569 plchan->name);
1570 return NULL;
1573 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1574 plchan->signal, plchan->name);
1576 /* Assign the flow control signal to this channel */
1577 if (direction == DMA_MEM_TO_DEV)
1578 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1579 else
1580 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1582 return txd;
1585 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1586 enum dma_transfer_direction direction,
1587 dma_addr_t slave_addr,
1588 dma_addr_t buf_addr,
1589 unsigned int len)
1591 struct pl08x_sg *dsg;
1593 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1594 if (!dsg)
1595 return -ENOMEM;
1597 list_add_tail(&dsg->node, &txd->dsg_list);
1599 dsg->len = len;
1600 if (direction == DMA_MEM_TO_DEV) {
1601 dsg->src_addr = buf_addr;
1602 dsg->dst_addr = slave_addr;
1603 } else {
1604 dsg->src_addr = slave_addr;
1605 dsg->dst_addr = buf_addr;
1608 return 0;
1611 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1612 struct dma_chan *chan, struct scatterlist *sgl,
1613 unsigned int sg_len, enum dma_transfer_direction direction,
1614 unsigned long flags, void *context)
1616 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1617 struct pl08x_driver_data *pl08x = plchan->host;
1618 struct pl08x_txd *txd;
1619 struct scatterlist *sg;
1620 int ret, tmp;
1621 dma_addr_t slave_addr;
1623 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1624 __func__, sg_dma_len(sgl), plchan->name);
1626 txd = pl08x_init_txd(chan, direction, &slave_addr);
1627 if (!txd)
1628 return NULL;
1630 for_each_sg(sgl, sg, sg_len, tmp) {
1631 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1632 sg_dma_address(sg),
1633 sg_dma_len(sg));
1634 if (ret) {
1635 pl08x_release_mux(plchan);
1636 pl08x_free_txd(pl08x, txd);
1637 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1638 __func__);
1639 return NULL;
1643 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1644 if (!ret) {
1645 pl08x_release_mux(plchan);
1646 pl08x_free_txd(pl08x, txd);
1647 return NULL;
1650 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1653 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1654 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1655 size_t period_len, enum dma_transfer_direction direction,
1656 unsigned long flags, void *context)
1658 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1659 struct pl08x_driver_data *pl08x = plchan->host;
1660 struct pl08x_txd *txd;
1661 int ret, tmp;
1662 dma_addr_t slave_addr;
1664 dev_dbg(&pl08x->adev->dev,
1665 "%s prepare cyclic transaction of %d/%d bytes %s %s\n",
1666 __func__, period_len, buf_len,
1667 direction == DMA_MEM_TO_DEV ? "to" : "from",
1668 plchan->name);
1670 txd = pl08x_init_txd(chan, direction, &slave_addr);
1671 if (!txd)
1672 return NULL;
1674 txd->cyclic = true;
1675 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1676 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1677 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1678 buf_addr + tmp, period_len);
1679 if (ret) {
1680 pl08x_release_mux(plchan);
1681 pl08x_free_txd(pl08x, txd);
1682 return NULL;
1686 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1687 if (!ret) {
1688 pl08x_release_mux(plchan);
1689 pl08x_free_txd(pl08x, txd);
1690 return NULL;
1693 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1696 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1697 unsigned long arg)
1699 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1700 struct pl08x_driver_data *pl08x = plchan->host;
1701 unsigned long flags;
1702 int ret = 0;
1704 /* Controls applicable to inactive channels */
1705 if (cmd == DMA_SLAVE_CONFIG) {
1706 return dma_set_runtime_config(chan,
1707 (struct dma_slave_config *)arg);
1711 * Anything succeeds on channels with no physical allocation and
1712 * no queued transfers.
1714 spin_lock_irqsave(&plchan->vc.lock, flags);
1715 if (!plchan->phychan && !plchan->at) {
1716 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1717 return 0;
1720 switch (cmd) {
1721 case DMA_TERMINATE_ALL:
1722 plchan->state = PL08X_CHAN_IDLE;
1724 if (plchan->phychan) {
1726 * Mark physical channel as free and free any slave
1727 * signal
1729 pl08x_phy_free(plchan);
1731 /* Dequeue jobs and free LLIs */
1732 if (plchan->at) {
1733 pl08x_desc_free(&plchan->at->vd);
1734 plchan->at = NULL;
1736 /* Dequeue jobs not yet fired as well */
1737 pl08x_free_txd_list(pl08x, plchan);
1738 break;
1739 case DMA_PAUSE:
1740 pl08x_pause_phy_chan(plchan->phychan);
1741 plchan->state = PL08X_CHAN_PAUSED;
1742 break;
1743 case DMA_RESUME:
1744 pl08x_resume_phy_chan(plchan->phychan);
1745 plchan->state = PL08X_CHAN_RUNNING;
1746 break;
1747 default:
1748 /* Unknown command */
1749 ret = -ENXIO;
1750 break;
1753 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1755 return ret;
1758 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1760 struct pl08x_dma_chan *plchan;
1761 char *name = chan_id;
1763 /* Reject channels for devices not bound to this driver */
1764 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1765 return false;
1767 plchan = to_pl08x_chan(chan);
1769 /* Check that the channel is not taken! */
1770 if (!strcmp(plchan->name, name))
1771 return true;
1773 return false;
1775 EXPORT_SYMBOL_GPL(pl08x_filter_id);
1778 * Just check that the device is there and active
1779 * TODO: turn this bit on/off depending on the number of physical channels
1780 * actually used, if it is zero... well shut it off. That will save some
1781 * power. Cut the clock at the same time.
1783 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1785 /* The Nomadik variant does not have the config register */
1786 if (pl08x->vd->nomadik)
1787 return;
1788 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1791 static irqreturn_t pl08x_irq(int irq, void *dev)
1793 struct pl08x_driver_data *pl08x = dev;
1794 u32 mask = 0, err, tc, i;
1796 /* check & clear - ERR & TC interrupts */
1797 err = readl(pl08x->base + PL080_ERR_STATUS);
1798 if (err) {
1799 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1800 __func__, err);
1801 writel(err, pl08x->base + PL080_ERR_CLEAR);
1803 tc = readl(pl08x->base + PL080_TC_STATUS);
1804 if (tc)
1805 writel(tc, pl08x->base + PL080_TC_CLEAR);
1807 if (!err && !tc)
1808 return IRQ_NONE;
1810 for (i = 0; i < pl08x->vd->channels; i++) {
1811 if (((1 << i) & err) || ((1 << i) & tc)) {
1812 /* Locate physical channel */
1813 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1814 struct pl08x_dma_chan *plchan = phychan->serving;
1815 struct pl08x_txd *tx;
1817 if (!plchan) {
1818 dev_err(&pl08x->adev->dev,
1819 "%s Error TC interrupt on unused channel: 0x%08x\n",
1820 __func__, i);
1821 continue;
1824 spin_lock(&plchan->vc.lock);
1825 tx = plchan->at;
1826 if (tx && tx->cyclic) {
1827 vchan_cyclic_callback(&tx->vd);
1828 } else if (tx) {
1829 plchan->at = NULL;
1831 * This descriptor is done, release its mux
1832 * reservation.
1834 pl08x_release_mux(plchan);
1835 tx->done = true;
1836 vchan_cookie_complete(&tx->vd);
1839 * And start the next descriptor (if any),
1840 * otherwise free this channel.
1842 if (vchan_next_desc(&plchan->vc))
1843 pl08x_start_next_txd(plchan);
1844 else
1845 pl08x_phy_free(plchan);
1847 spin_unlock(&plchan->vc.lock);
1849 mask |= (1 << i);
1853 return mask ? IRQ_HANDLED : IRQ_NONE;
1856 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1858 chan->slave = true;
1859 chan->name = chan->cd->bus_id;
1860 chan->cfg.src_addr = chan->cd->addr;
1861 chan->cfg.dst_addr = chan->cd->addr;
1865 * Initialise the DMAC memcpy/slave channels.
1866 * Make a local wrapper to hold required data
1868 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1869 struct dma_device *dmadev, unsigned int channels, bool slave)
1871 struct pl08x_dma_chan *chan;
1872 int i;
1874 INIT_LIST_HEAD(&dmadev->channels);
1877 * Register as many many memcpy as we have physical channels,
1878 * we won't always be able to use all but the code will have
1879 * to cope with that situation.
1881 for (i = 0; i < channels; i++) {
1882 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1883 if (!chan) {
1884 dev_err(&pl08x->adev->dev,
1885 "%s no memory for channel\n", __func__);
1886 return -ENOMEM;
1889 chan->host = pl08x;
1890 chan->state = PL08X_CHAN_IDLE;
1891 chan->signal = -1;
1893 if (slave) {
1894 chan->cd = &pl08x->pd->slave_channels[i];
1895 pl08x_dma_slave_init(chan);
1896 } else {
1897 chan->cd = &pl08x->pd->memcpy_channel;
1898 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1899 if (!chan->name) {
1900 kfree(chan);
1901 return -ENOMEM;
1904 dev_dbg(&pl08x->adev->dev,
1905 "initialize virtual channel \"%s\"\n",
1906 chan->name);
1908 chan->vc.desc_free = pl08x_desc_free;
1909 vchan_init(&chan->vc, dmadev);
1911 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1912 i, slave ? "slave" : "memcpy");
1913 return i;
1916 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1918 struct pl08x_dma_chan *chan = NULL;
1919 struct pl08x_dma_chan *next;
1921 list_for_each_entry_safe(chan,
1922 next, &dmadev->channels, vc.chan.device_node) {
1923 list_del(&chan->vc.chan.device_node);
1924 kfree(chan);
1928 #ifdef CONFIG_DEBUG_FS
1929 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1931 switch (state) {
1932 case PL08X_CHAN_IDLE:
1933 return "idle";
1934 case PL08X_CHAN_RUNNING:
1935 return "running";
1936 case PL08X_CHAN_PAUSED:
1937 return "paused";
1938 case PL08X_CHAN_WAITING:
1939 return "waiting";
1940 default:
1941 break;
1943 return "UNKNOWN STATE";
1946 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1948 struct pl08x_driver_data *pl08x = s->private;
1949 struct pl08x_dma_chan *chan;
1950 struct pl08x_phy_chan *ch;
1951 unsigned long flags;
1952 int i;
1954 seq_printf(s, "PL08x physical channels:\n");
1955 seq_printf(s, "CHANNEL:\tUSER:\n");
1956 seq_printf(s, "--------\t-----\n");
1957 for (i = 0; i < pl08x->vd->channels; i++) {
1958 struct pl08x_dma_chan *virt_chan;
1960 ch = &pl08x->phy_chans[i];
1962 spin_lock_irqsave(&ch->lock, flags);
1963 virt_chan = ch->serving;
1965 seq_printf(s, "%d\t\t%s%s\n",
1966 ch->id,
1967 virt_chan ? virt_chan->name : "(none)",
1968 ch->locked ? " LOCKED" : "");
1970 spin_unlock_irqrestore(&ch->lock, flags);
1973 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1974 seq_printf(s, "CHANNEL:\tSTATE:\n");
1975 seq_printf(s, "--------\t------\n");
1976 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1977 seq_printf(s, "%s\t\t%s\n", chan->name,
1978 pl08x_state_str(chan->state));
1981 seq_printf(s, "\nPL08x virtual slave channels:\n");
1982 seq_printf(s, "CHANNEL:\tSTATE:\n");
1983 seq_printf(s, "--------\t------\n");
1984 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1985 seq_printf(s, "%s\t\t%s\n", chan->name,
1986 pl08x_state_str(chan->state));
1989 return 0;
1992 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1994 return single_open(file, pl08x_debugfs_show, inode->i_private);
1997 static const struct file_operations pl08x_debugfs_operations = {
1998 .open = pl08x_debugfs_open,
1999 .read = seq_read,
2000 .llseek = seq_lseek,
2001 .release = single_release,
2004 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2006 /* Expose a simple debugfs interface to view all clocks */
2007 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2008 S_IFREG | S_IRUGO, NULL, pl08x,
2009 &pl08x_debugfs_operations);
2012 #else
2013 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2016 #endif
2018 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2020 struct pl08x_driver_data *pl08x;
2021 const struct vendor_data *vd = id->data;
2022 u32 tsfr_size;
2023 int ret = 0;
2024 int i;
2026 ret = amba_request_regions(adev, NULL);
2027 if (ret)
2028 return ret;
2030 /* Ensure that we can do DMA */
2031 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2032 if (ret)
2033 goto out_no_pl08x;
2035 /* Create the driver state holder */
2036 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2037 if (!pl08x) {
2038 ret = -ENOMEM;
2039 goto out_no_pl08x;
2042 /* Initialize memcpy engine */
2043 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2044 pl08x->memcpy.dev = &adev->dev;
2045 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2046 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2047 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2048 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2049 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2050 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2051 pl08x->memcpy.device_control = pl08x_control;
2053 /* Initialize slave engine */
2054 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2055 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2056 pl08x->slave.dev = &adev->dev;
2057 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2058 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2059 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2060 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2061 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2062 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2063 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2064 pl08x->slave.device_control = pl08x_control;
2066 /* Get the platform data */
2067 pl08x->pd = dev_get_platdata(&adev->dev);
2068 if (!pl08x->pd) {
2069 dev_err(&adev->dev, "no platform data supplied\n");
2070 ret = -EINVAL;
2071 goto out_no_platdata;
2074 /* Assign useful pointers to the driver state */
2075 pl08x->adev = adev;
2076 pl08x->vd = vd;
2078 /* By default, AHB1 only. If dualmaster, from platform */
2079 pl08x->lli_buses = PL08X_AHB1;
2080 pl08x->mem_buses = PL08X_AHB1;
2081 if (pl08x->vd->dualmaster) {
2082 pl08x->lli_buses = pl08x->pd->lli_buses;
2083 pl08x->mem_buses = pl08x->pd->mem_buses;
2086 if (vd->pl080s)
2087 pl08x->lli_words = PL080S_LLI_WORDS;
2088 else
2089 pl08x->lli_words = PL080_LLI_WORDS;
2090 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2092 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2093 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2094 tsfr_size, PL08X_ALIGN, 0);
2095 if (!pl08x->pool) {
2096 ret = -ENOMEM;
2097 goto out_no_lli_pool;
2100 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2101 if (!pl08x->base) {
2102 ret = -ENOMEM;
2103 goto out_no_ioremap;
2106 /* Turn on the PL08x */
2107 pl08x_ensure_on(pl08x);
2109 /* Attach the interrupt handler */
2110 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2111 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2113 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2114 if (ret) {
2115 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2116 __func__, adev->irq[0]);
2117 goto out_no_irq;
2120 /* Initialize physical channels */
2121 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2122 GFP_KERNEL);
2123 if (!pl08x->phy_chans) {
2124 dev_err(&adev->dev, "%s failed to allocate "
2125 "physical channel holders\n",
2126 __func__);
2127 ret = -ENOMEM;
2128 goto out_no_phychans;
2131 for (i = 0; i < vd->channels; i++) {
2132 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2134 ch->id = i;
2135 ch->base = pl08x->base + PL080_Cx_BASE(i);
2136 ch->reg_config = ch->base + vd->config_offset;
2137 spin_lock_init(&ch->lock);
2140 * Nomadik variants can have channels that are locked
2141 * down for the secure world only. Lock up these channels
2142 * by perpetually serving a dummy virtual channel.
2144 if (vd->nomadik) {
2145 u32 val;
2147 val = readl(ch->reg_config);
2148 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2149 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2150 ch->locked = true;
2154 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2155 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2158 /* Register as many memcpy channels as there are physical channels */
2159 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2160 pl08x->vd->channels, false);
2161 if (ret <= 0) {
2162 dev_warn(&pl08x->adev->dev,
2163 "%s failed to enumerate memcpy channels - %d\n",
2164 __func__, ret);
2165 goto out_no_memcpy;
2167 pl08x->memcpy.chancnt = ret;
2169 /* Register slave channels */
2170 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2171 pl08x->pd->num_slave_channels, true);
2172 if (ret < 0) {
2173 dev_warn(&pl08x->adev->dev,
2174 "%s failed to enumerate slave channels - %d\n",
2175 __func__, ret);
2176 goto out_no_slave;
2178 pl08x->slave.chancnt = ret;
2180 ret = dma_async_device_register(&pl08x->memcpy);
2181 if (ret) {
2182 dev_warn(&pl08x->adev->dev,
2183 "%s failed to register memcpy as an async device - %d\n",
2184 __func__, ret);
2185 goto out_no_memcpy_reg;
2188 ret = dma_async_device_register(&pl08x->slave);
2189 if (ret) {
2190 dev_warn(&pl08x->adev->dev,
2191 "%s failed to register slave as an async device - %d\n",
2192 __func__, ret);
2193 goto out_no_slave_reg;
2196 amba_set_drvdata(adev, pl08x);
2197 init_pl08x_debugfs(pl08x);
2198 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2199 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2200 (unsigned long long)adev->res.start, adev->irq[0]);
2202 return 0;
2204 out_no_slave_reg:
2205 dma_async_device_unregister(&pl08x->memcpy);
2206 out_no_memcpy_reg:
2207 pl08x_free_virtual_channels(&pl08x->slave);
2208 out_no_slave:
2209 pl08x_free_virtual_channels(&pl08x->memcpy);
2210 out_no_memcpy:
2211 kfree(pl08x->phy_chans);
2212 out_no_phychans:
2213 free_irq(adev->irq[0], pl08x);
2214 out_no_irq:
2215 iounmap(pl08x->base);
2216 out_no_ioremap:
2217 dma_pool_destroy(pl08x->pool);
2218 out_no_lli_pool:
2219 out_no_platdata:
2220 kfree(pl08x);
2221 out_no_pl08x:
2222 amba_release_regions(adev);
2223 return ret;
2226 /* PL080 has 8 channels and the PL080 have just 2 */
2227 static struct vendor_data vendor_pl080 = {
2228 .config_offset = PL080_CH_CONFIG,
2229 .channels = 8,
2230 .dualmaster = true,
2231 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2234 static struct vendor_data vendor_nomadik = {
2235 .config_offset = PL080_CH_CONFIG,
2236 .channels = 8,
2237 .dualmaster = true,
2238 .nomadik = true,
2239 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2242 static struct vendor_data vendor_pl080s = {
2243 .config_offset = PL080S_CH_CONFIG,
2244 .channels = 8,
2245 .pl080s = true,
2246 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2249 static struct vendor_data vendor_pl081 = {
2250 .config_offset = PL080_CH_CONFIG,
2251 .channels = 2,
2252 .dualmaster = false,
2253 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2256 static struct amba_id pl08x_ids[] = {
2257 /* Samsung PL080S variant */
2259 .id = 0x0a141080,
2260 .mask = 0xffffffff,
2261 .data = &vendor_pl080s,
2263 /* PL080 */
2265 .id = 0x00041080,
2266 .mask = 0x000fffff,
2267 .data = &vendor_pl080,
2269 /* PL081 */
2271 .id = 0x00041081,
2272 .mask = 0x000fffff,
2273 .data = &vendor_pl081,
2275 /* Nomadik 8815 PL080 variant */
2277 .id = 0x00280080,
2278 .mask = 0x00ffffff,
2279 .data = &vendor_nomadik,
2281 { 0, 0 },
2284 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2286 static struct amba_driver pl08x_amba_driver = {
2287 .drv.name = DRIVER_NAME,
2288 .id_table = pl08x_ids,
2289 .probe = pl08x_probe,
2292 static int __init pl08x_init(void)
2294 int retval;
2295 retval = amba_driver_register(&pl08x_amba_driver);
2296 if (retval)
2297 printk(KERN_WARNING DRIVER_NAME
2298 "failed to register as an AMBA device (%d)\n",
2299 retval);
2300 return retval;
2302 subsys_initcall(pl08x_init);