usb: dwc3: keystone: drop dma_mask configuration
[linux/fpc-iii.git] / drivers / dma / ep93xx_dma.c
blobcb4bf682a70863e6253396eb717cc7e9ae86e453
1 /*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
4 * Copyright (C) 2011 Mika Westerberg
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 * This driver is based on dw_dmac and amba-pl08x drivers.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <linux/platform_data/dma-ep93xx.h>
31 #include "dmaengine.h"
33 /* M2P registers */
34 #define M2P_CONTROL 0x0000
35 #define M2P_CONTROL_STALLINT BIT(0)
36 #define M2P_CONTROL_NFBINT BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
38 #define M2P_CONTROL_ENABLE BIT(4)
39 #define M2P_CONTROL_ICE BIT(6)
41 #define M2P_INTERRUPT 0x0004
42 #define M2P_INTERRUPT_STALL BIT(0)
43 #define M2P_INTERRUPT_NFB BIT(1)
44 #define M2P_INTERRUPT_ERROR BIT(3)
46 #define M2P_PPALLOC 0x0008
47 #define M2P_STATUS 0x000c
49 #define M2P_MAXCNT0 0x0020
50 #define M2P_BASE0 0x0024
51 #define M2P_MAXCNT1 0x0030
52 #define M2P_BASE1 0x0034
54 #define M2P_STATE_IDLE 0
55 #define M2P_STATE_STALL 1
56 #define M2P_STATE_ON 2
57 #define M2P_STATE_NEXT 3
59 /* M2M registers */
60 #define M2M_CONTROL 0x0000
61 #define M2M_CONTROL_DONEINT BIT(2)
62 #define M2M_CONTROL_ENABLE BIT(3)
63 #define M2M_CONTROL_START BIT(4)
64 #define M2M_CONTROL_DAH BIT(11)
65 #define M2M_CONTROL_SAH BIT(12)
66 #define M2M_CONTROL_PW_SHIFT 9
67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT 13
72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT 22
76 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT 25
82 #define M2M_INTERRUPT 0x0004
83 #define M2M_INTERRUPT_MASK 6
85 #define M2M_STATUS 0x000c
86 #define M2M_STATUS_CTL_SHIFT 1
87 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT 4
94 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE BIT(6)
100 #define M2M_BCR0 0x0010
101 #define M2M_BCR1 0x0014
102 #define M2M_SAR_BASE0 0x0018
103 #define M2M_SAR_BASE1 0x001c
104 #define M2M_DAR_BASE0 0x002c
105 #define M2M_DAR_BASE1 0x0030
107 #define DMA_MAX_CHAN_BYTES 0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS 32
110 struct ep93xx_dma_engine;
113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114 * @src_addr: source address of the transaction
115 * @dst_addr: destination address of the transaction
116 * @size: size of the transaction (in bytes)
117 * @complete: this descriptor is completed
118 * @txd: dmaengine API descriptor
119 * @tx_list: list of linked descriptors
120 * @node: link used for putting this into a channel queue
122 struct ep93xx_dma_desc {
123 u32 src_addr;
124 u32 dst_addr;
125 size_t size;
126 bool complete;
127 struct dma_async_tx_descriptor txd;
128 struct list_head tx_list;
129 struct list_head node;
133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134 * @chan: dmaengine API channel
135 * @edma: pointer to to the engine device
136 * @regs: memory mapped registers
137 * @irq: interrupt number of the channel
138 * @clk: clock used by this channel
139 * @tasklet: channel specific tasklet used for callbacks
140 * @lock: lock protecting the fields following
141 * @flags: flags for the channel
142 * @buffer: which buffer to use next (0/1)
143 * @active: flattened chain of descriptors currently being processed
144 * @queue: pending descriptors which are handled next
145 * @free_list: list of free descriptors which can be used
146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
147 * is set via %DMA_SLAVE_CONFIG before slave operation is
148 * prepared
149 * @runtime_ctrl: M2M runtime values for the control register.
151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152 * will have slightly different scheme here: @active points to a head of
153 * flattened DMA descriptor chain.
155 * @queue holds pending transactions. These are linked through the first
156 * descriptor in the chain. When a descriptor is moved to the @active queue,
157 * the first and chained descriptors are flattened into a single list.
159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160 * necessary channel configuration information. For memcpy channels this must
161 * be %NULL.
163 struct ep93xx_dma_chan {
164 struct dma_chan chan;
165 const struct ep93xx_dma_engine *edma;
166 void __iomem *regs;
167 int irq;
168 struct clk *clk;
169 struct tasklet_struct tasklet;
170 /* protects the fields following */
171 spinlock_t lock;
172 unsigned long flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC 0
176 int buffer;
177 struct list_head active;
178 struct list_head queue;
179 struct list_head free_list;
180 u32 runtime_addr;
181 u32 runtime_ctrl;
185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186 * @dma_dev: holds the dmaengine device
187 * @m2m: is this an M2M or M2P device
188 * @hw_setup: method which sets the channel up for operation
189 * @hw_shutdown: shuts the channel down and flushes whatever is left
190 * @hw_submit: pushes active descriptor(s) to the hardware
191 * @hw_interrupt: handle the interrupt
192 * @num_channels: number of channels for this instance
193 * @channels: array of channels
195 * There is one instance of this struct for the M2P channels and one for the
196 * M2M channels. hw_xxx() methods are used to perform operations which are
197 * different on M2M and M2P channels. These methods are called with channel
198 * lock held and interrupts disabled so they cannot sleep.
200 struct ep93xx_dma_engine {
201 struct dma_device dma_dev;
202 bool m2m;
203 int (*hw_setup)(struct ep93xx_dma_chan *);
204 void (*hw_shutdown)(struct ep93xx_dma_chan *);
205 void (*hw_submit)(struct ep93xx_dma_chan *);
206 int (*hw_interrupt)(struct ep93xx_dma_chan *);
207 #define INTERRUPT_UNKNOWN 0
208 #define INTERRUPT_DONE 1
209 #define INTERRUPT_NEXT_BUFFER 2
211 size_t num_channels;
212 struct ep93xx_dma_chan channels[];
215 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
217 return &edmac->chan.dev->device;
220 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
222 return container_of(chan, struct ep93xx_dma_chan, chan);
226 * ep93xx_dma_set_active - set new active descriptor chain
227 * @edmac: channel
228 * @desc: head of the new active descriptor chain
230 * Sets @desc to be the head of the new active descriptor chain. This is the
231 * chain which is processed next. The active list must be empty before calling
232 * this function.
234 * Called with @edmac->lock held and interrupts disabled.
236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
237 struct ep93xx_dma_desc *desc)
239 BUG_ON(!list_empty(&edmac->active));
241 list_add_tail(&desc->node, &edmac->active);
243 /* Flatten the @desc->tx_list chain into @edmac->active list */
244 while (!list_empty(&desc->tx_list)) {
245 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
246 struct ep93xx_dma_desc, node);
249 * We copy the callback parameters from the first descriptor
250 * to all the chained descriptors. This way we can call the
251 * callback without having to find out the first descriptor in
252 * the chain. Useful for cyclic transfers.
254 d->txd.callback = desc->txd.callback;
255 d->txd.callback_param = desc->txd.callback_param;
257 list_move_tail(&d->node, &edmac->active);
261 /* Called with @edmac->lock held and interrupts disabled */
262 static struct ep93xx_dma_desc *
263 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
265 if (list_empty(&edmac->active))
266 return NULL;
268 return list_first_entry(&edmac->active, struct ep93xx_dma_desc, node);
272 * ep93xx_dma_advance_active - advances to the next active descriptor
273 * @edmac: channel
275 * Function advances active descriptor to the next in the @edmac->active and
276 * returns %true if we still have descriptors in the chain to process.
277 * Otherwise returns %false.
279 * When the channel is in cyclic mode always returns %true.
281 * Called with @edmac->lock held and interrupts disabled.
283 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
285 struct ep93xx_dma_desc *desc;
287 list_rotate_left(&edmac->active);
289 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
290 return true;
292 desc = ep93xx_dma_get_active(edmac);
293 if (!desc)
294 return false;
297 * If txd.cookie is set it means that we are back in the first
298 * descriptor in the chain and hence done with it.
300 return !desc->txd.cookie;
304 * M2P DMA implementation
307 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
309 writel(control, edmac->regs + M2P_CONTROL);
311 * EP93xx User's Guide states that we must perform a dummy read after
312 * write to the control register.
314 readl(edmac->regs + M2P_CONTROL);
317 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
319 struct ep93xx_dma_data *data = edmac->chan.private;
320 u32 control;
322 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
324 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
325 | M2P_CONTROL_ENABLE;
326 m2p_set_control(edmac, control);
328 return 0;
331 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
333 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
336 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
338 u32 control;
340 control = readl(edmac->regs + M2P_CONTROL);
341 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
342 m2p_set_control(edmac, control);
344 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
345 cpu_relax();
347 m2p_set_control(edmac, 0);
349 while (m2p_channel_state(edmac) == M2P_STATE_STALL)
350 cpu_relax();
353 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
355 struct ep93xx_dma_desc *desc;
356 u32 bus_addr;
358 desc = ep93xx_dma_get_active(edmac);
359 if (!desc) {
360 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
361 return;
364 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
365 bus_addr = desc->src_addr;
366 else
367 bus_addr = desc->dst_addr;
369 if (edmac->buffer == 0) {
370 writel(desc->size, edmac->regs + M2P_MAXCNT0);
371 writel(bus_addr, edmac->regs + M2P_BASE0);
372 } else {
373 writel(desc->size, edmac->regs + M2P_MAXCNT1);
374 writel(bus_addr, edmac->regs + M2P_BASE1);
377 edmac->buffer ^= 1;
380 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
382 u32 control = readl(edmac->regs + M2P_CONTROL);
384 m2p_fill_desc(edmac);
385 control |= M2P_CONTROL_STALLINT;
387 if (ep93xx_dma_advance_active(edmac)) {
388 m2p_fill_desc(edmac);
389 control |= M2P_CONTROL_NFBINT;
392 m2p_set_control(edmac, control);
395 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
397 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
398 u32 control;
400 if (irq_status & M2P_INTERRUPT_ERROR) {
401 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
403 /* Clear the error interrupt */
404 writel(1, edmac->regs + M2P_INTERRUPT);
407 * It seems that there is no easy way of reporting errors back
408 * to client so we just report the error here and continue as
409 * usual.
411 * Revisit this when there is a mechanism to report back the
412 * errors.
414 dev_err(chan2dev(edmac),
415 "DMA transfer failed! Details:\n"
416 "\tcookie : %d\n"
417 "\tsrc_addr : 0x%08x\n"
418 "\tdst_addr : 0x%08x\n"
419 "\tsize : %zu\n",
420 desc->txd.cookie, desc->src_addr, desc->dst_addr,
421 desc->size);
424 switch (irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)) {
425 case M2P_INTERRUPT_STALL:
426 /* Disable interrupts */
427 control = readl(edmac->regs + M2P_CONTROL);
428 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
429 m2p_set_control(edmac, control);
431 return INTERRUPT_DONE;
433 case M2P_INTERRUPT_NFB:
434 if (ep93xx_dma_advance_active(edmac))
435 m2p_fill_desc(edmac);
437 return INTERRUPT_NEXT_BUFFER;
440 return INTERRUPT_UNKNOWN;
444 * M2M DMA implementation
447 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
449 const struct ep93xx_dma_data *data = edmac->chan.private;
450 u32 control = 0;
452 if (!data) {
453 /* This is memcpy channel, nothing to configure */
454 writel(control, edmac->regs + M2M_CONTROL);
455 return 0;
458 switch (data->port) {
459 case EP93XX_DMA_SSP:
461 * This was found via experimenting - anything less than 5
462 * causes the channel to perform only a partial transfer which
463 * leads to problems since we don't get DONE interrupt then.
465 control = (5 << M2M_CONTROL_PWSC_SHIFT);
466 control |= M2M_CONTROL_NO_HDSK;
468 if (data->direction == DMA_MEM_TO_DEV) {
469 control |= M2M_CONTROL_DAH;
470 control |= M2M_CONTROL_TM_TX;
471 control |= M2M_CONTROL_RSS_SSPTX;
472 } else {
473 control |= M2M_CONTROL_SAH;
474 control |= M2M_CONTROL_TM_RX;
475 control |= M2M_CONTROL_RSS_SSPRX;
477 break;
479 case EP93XX_DMA_IDE:
481 * This IDE part is totally untested. Values below are taken
482 * from the EP93xx Users's Guide and might not be correct.
484 if (data->direction == DMA_MEM_TO_DEV) {
485 /* Worst case from the UG */
486 control = (3 << M2M_CONTROL_PWSC_SHIFT);
487 control |= M2M_CONTROL_DAH;
488 control |= M2M_CONTROL_TM_TX;
489 } else {
490 control = (2 << M2M_CONTROL_PWSC_SHIFT);
491 control |= M2M_CONTROL_SAH;
492 control |= M2M_CONTROL_TM_RX;
495 control |= M2M_CONTROL_NO_HDSK;
496 control |= M2M_CONTROL_RSS_IDE;
497 control |= M2M_CONTROL_PW_16;
498 break;
500 default:
501 return -EINVAL;
504 writel(control, edmac->regs + M2M_CONTROL);
505 return 0;
508 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
510 /* Just disable the channel */
511 writel(0, edmac->regs + M2M_CONTROL);
514 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
516 struct ep93xx_dma_desc *desc;
518 desc = ep93xx_dma_get_active(edmac);
519 if (!desc) {
520 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
521 return;
524 if (edmac->buffer == 0) {
525 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
526 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
527 writel(desc->size, edmac->regs + M2M_BCR0);
528 } else {
529 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
530 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
531 writel(desc->size, edmac->regs + M2M_BCR1);
534 edmac->buffer ^= 1;
537 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
539 struct ep93xx_dma_data *data = edmac->chan.private;
540 u32 control = readl(edmac->regs + M2M_CONTROL);
543 * Since we allow clients to configure PW (peripheral width) we always
544 * clear PW bits here and then set them according what is given in
545 * the runtime configuration.
547 control &= ~M2M_CONTROL_PW_MASK;
548 control |= edmac->runtime_ctrl;
550 m2m_fill_desc(edmac);
551 control |= M2M_CONTROL_DONEINT;
553 if (ep93xx_dma_advance_active(edmac)) {
554 m2m_fill_desc(edmac);
555 control |= M2M_CONTROL_NFBINT;
559 * Now we can finally enable the channel. For M2M channel this must be
560 * done _after_ the BCRx registers are programmed.
562 control |= M2M_CONTROL_ENABLE;
563 writel(control, edmac->regs + M2M_CONTROL);
565 if (!data) {
567 * For memcpy channels the software trigger must be asserted
568 * in order to start the memcpy operation.
570 control |= M2M_CONTROL_START;
571 writel(control, edmac->regs + M2M_CONTROL);
576 * According to EP93xx User's Guide, we should receive DONE interrupt when all
577 * M2M DMA controller transactions complete normally. This is not always the
578 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
579 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
580 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
581 * In effect, disabling the channel when only DONE bit is set could stop
582 * currently running DMA transfer. To avoid this, we use Buffer FSM and
583 * Control FSM to check current state of DMA channel.
585 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
587 u32 status = readl(edmac->regs + M2M_STATUS);
588 u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
589 u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
590 bool done = status & M2M_STATUS_DONE;
591 bool last_done;
592 u32 control;
593 struct ep93xx_dma_desc *desc;
595 /* Accept only DONE and NFB interrupts */
596 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
597 return INTERRUPT_UNKNOWN;
599 if (done) {
600 /* Clear the DONE bit */
601 writel(0, edmac->regs + M2M_INTERRUPT);
605 * Check whether we are done with descriptors or not. This, together
606 * with DMA channel state, determines action to take in interrupt.
608 desc = ep93xx_dma_get_active(edmac);
609 last_done = !desc || desc->txd.cookie;
612 * Use M2M DMA Buffer FSM and Control FSM to check current state of
613 * DMA channel. Using DONE and NFB bits from channel status register
614 * or bits from channel interrupt register is not reliable.
616 if (!last_done &&
617 (buf_fsm == M2M_STATUS_BUF_NO ||
618 buf_fsm == M2M_STATUS_BUF_ON)) {
620 * Two buffers are ready for update when Buffer FSM is in
621 * DMA_NO_BUF state. Only one buffer can be prepared without
622 * disabling the channel or polling the DONE bit.
623 * To simplify things, always prepare only one buffer.
625 if (ep93xx_dma_advance_active(edmac)) {
626 m2m_fill_desc(edmac);
627 if (done && !edmac->chan.private) {
628 /* Software trigger for memcpy channel */
629 control = readl(edmac->regs + M2M_CONTROL);
630 control |= M2M_CONTROL_START;
631 writel(control, edmac->regs + M2M_CONTROL);
633 return INTERRUPT_NEXT_BUFFER;
634 } else {
635 last_done = true;
640 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
641 * and Control FSM is in DMA_STALL state.
643 if (last_done &&
644 buf_fsm == M2M_STATUS_BUF_NO &&
645 ctl_fsm == M2M_STATUS_CTL_STALL) {
646 /* Disable interrupts and the channel */
647 control = readl(edmac->regs + M2M_CONTROL);
648 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
649 | M2M_CONTROL_ENABLE);
650 writel(control, edmac->regs + M2M_CONTROL);
651 return INTERRUPT_DONE;
655 * Nothing to do this time.
657 return INTERRUPT_NEXT_BUFFER;
661 * DMA engine API implementation
664 static struct ep93xx_dma_desc *
665 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
667 struct ep93xx_dma_desc *desc, *_desc;
668 struct ep93xx_dma_desc *ret = NULL;
669 unsigned long flags;
671 spin_lock_irqsave(&edmac->lock, flags);
672 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
673 if (async_tx_test_ack(&desc->txd)) {
674 list_del_init(&desc->node);
676 /* Re-initialize the descriptor */
677 desc->src_addr = 0;
678 desc->dst_addr = 0;
679 desc->size = 0;
680 desc->complete = false;
681 desc->txd.cookie = 0;
682 desc->txd.callback = NULL;
683 desc->txd.callback_param = NULL;
685 ret = desc;
686 break;
689 spin_unlock_irqrestore(&edmac->lock, flags);
690 return ret;
693 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
694 struct ep93xx_dma_desc *desc)
696 if (desc) {
697 unsigned long flags;
699 spin_lock_irqsave(&edmac->lock, flags);
700 list_splice_init(&desc->tx_list, &edmac->free_list);
701 list_add(&desc->node, &edmac->free_list);
702 spin_unlock_irqrestore(&edmac->lock, flags);
707 * ep93xx_dma_advance_work - start processing the next pending transaction
708 * @edmac: channel
710 * If we have pending transactions queued and we are currently idling, this
711 * function takes the next queued transaction from the @edmac->queue and
712 * pushes it to the hardware for execution.
714 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
716 struct ep93xx_dma_desc *new;
717 unsigned long flags;
719 spin_lock_irqsave(&edmac->lock, flags);
720 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
721 spin_unlock_irqrestore(&edmac->lock, flags);
722 return;
725 /* Take the next descriptor from the pending queue */
726 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
727 list_del_init(&new->node);
729 ep93xx_dma_set_active(edmac, new);
731 /* Push it to the hardware */
732 edmac->edma->hw_submit(edmac);
733 spin_unlock_irqrestore(&edmac->lock, flags);
736 static void ep93xx_dma_tasklet(unsigned long data)
738 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
739 struct ep93xx_dma_desc *desc, *d;
740 dma_async_tx_callback callback = NULL;
741 void *callback_param = NULL;
742 LIST_HEAD(list);
744 spin_lock_irq(&edmac->lock);
746 * If dma_terminate_all() was called before we get to run, the active
747 * list has become empty. If that happens we aren't supposed to do
748 * anything more than call ep93xx_dma_advance_work().
750 desc = ep93xx_dma_get_active(edmac);
751 if (desc) {
752 if (desc->complete) {
753 /* mark descriptor complete for non cyclic case only */
754 if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
755 dma_cookie_complete(&desc->txd);
756 list_splice_init(&edmac->active, &list);
758 callback = desc->txd.callback;
759 callback_param = desc->txd.callback_param;
761 spin_unlock_irq(&edmac->lock);
763 /* Pick up the next descriptor from the queue */
764 ep93xx_dma_advance_work(edmac);
766 /* Now we can release all the chained descriptors */
767 list_for_each_entry_safe(desc, d, &list, node) {
768 dma_descriptor_unmap(&desc->txd);
769 ep93xx_dma_desc_put(edmac, desc);
772 if (callback)
773 callback(callback_param);
776 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
778 struct ep93xx_dma_chan *edmac = dev_id;
779 struct ep93xx_dma_desc *desc;
780 irqreturn_t ret = IRQ_HANDLED;
782 spin_lock(&edmac->lock);
784 desc = ep93xx_dma_get_active(edmac);
785 if (!desc) {
786 dev_warn(chan2dev(edmac),
787 "got interrupt while active list is empty\n");
788 spin_unlock(&edmac->lock);
789 return IRQ_NONE;
792 switch (edmac->edma->hw_interrupt(edmac)) {
793 case INTERRUPT_DONE:
794 desc->complete = true;
795 tasklet_schedule(&edmac->tasklet);
796 break;
798 case INTERRUPT_NEXT_BUFFER:
799 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
800 tasklet_schedule(&edmac->tasklet);
801 break;
803 default:
804 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
805 ret = IRQ_NONE;
806 break;
809 spin_unlock(&edmac->lock);
810 return ret;
814 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
815 * @tx: descriptor to be executed
817 * Function will execute given descriptor on the hardware or if the hardware
818 * is busy, queue the descriptor to be executed later on. Returns cookie which
819 * can be used to poll the status of the descriptor.
821 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
823 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
824 struct ep93xx_dma_desc *desc;
825 dma_cookie_t cookie;
826 unsigned long flags;
828 spin_lock_irqsave(&edmac->lock, flags);
829 cookie = dma_cookie_assign(tx);
831 desc = container_of(tx, struct ep93xx_dma_desc, txd);
834 * If nothing is currently prosessed, we push this descriptor
835 * directly to the hardware. Otherwise we put the descriptor
836 * to the pending queue.
838 if (list_empty(&edmac->active)) {
839 ep93xx_dma_set_active(edmac, desc);
840 edmac->edma->hw_submit(edmac);
841 } else {
842 list_add_tail(&desc->node, &edmac->queue);
845 spin_unlock_irqrestore(&edmac->lock, flags);
846 return cookie;
850 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
851 * @chan: channel to allocate resources
853 * Function allocates necessary resources for the given DMA channel and
854 * returns number of allocated descriptors for the channel. Negative errno
855 * is returned in case of failure.
857 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
859 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
860 struct ep93xx_dma_data *data = chan->private;
861 const char *name = dma_chan_name(chan);
862 int ret, i;
864 /* Sanity check the channel parameters */
865 if (!edmac->edma->m2m) {
866 if (!data)
867 return -EINVAL;
868 if (data->port < EP93XX_DMA_I2S1 ||
869 data->port > EP93XX_DMA_IRDA)
870 return -EINVAL;
871 if (data->direction != ep93xx_dma_chan_direction(chan))
872 return -EINVAL;
873 } else {
874 if (data) {
875 switch (data->port) {
876 case EP93XX_DMA_SSP:
877 case EP93XX_DMA_IDE:
878 if (!is_slave_direction(data->direction))
879 return -EINVAL;
880 break;
881 default:
882 return -EINVAL;
887 if (data && data->name)
888 name = data->name;
890 ret = clk_enable(edmac->clk);
891 if (ret)
892 return ret;
894 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
895 if (ret)
896 goto fail_clk_disable;
898 spin_lock_irq(&edmac->lock);
899 dma_cookie_init(&edmac->chan);
900 ret = edmac->edma->hw_setup(edmac);
901 spin_unlock_irq(&edmac->lock);
903 if (ret)
904 goto fail_free_irq;
906 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
907 struct ep93xx_dma_desc *desc;
909 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
910 if (!desc) {
911 dev_warn(chan2dev(edmac), "not enough descriptors\n");
912 break;
915 INIT_LIST_HEAD(&desc->tx_list);
917 dma_async_tx_descriptor_init(&desc->txd, chan);
918 desc->txd.flags = DMA_CTRL_ACK;
919 desc->txd.tx_submit = ep93xx_dma_tx_submit;
921 ep93xx_dma_desc_put(edmac, desc);
924 return i;
926 fail_free_irq:
927 free_irq(edmac->irq, edmac);
928 fail_clk_disable:
929 clk_disable(edmac->clk);
931 return ret;
935 * ep93xx_dma_free_chan_resources - release resources for the channel
936 * @chan: channel
938 * Function releases all the resources allocated for the given channel.
939 * The channel must be idle when this is called.
941 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
943 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
944 struct ep93xx_dma_desc *desc, *d;
945 unsigned long flags;
946 LIST_HEAD(list);
948 BUG_ON(!list_empty(&edmac->active));
949 BUG_ON(!list_empty(&edmac->queue));
951 spin_lock_irqsave(&edmac->lock, flags);
952 edmac->edma->hw_shutdown(edmac);
953 edmac->runtime_addr = 0;
954 edmac->runtime_ctrl = 0;
955 edmac->buffer = 0;
956 list_splice_init(&edmac->free_list, &list);
957 spin_unlock_irqrestore(&edmac->lock, flags);
959 list_for_each_entry_safe(desc, d, &list, node)
960 kfree(desc);
962 clk_disable(edmac->clk);
963 free_irq(edmac->irq, edmac);
967 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
968 * @chan: channel
969 * @dest: destination bus address
970 * @src: source bus address
971 * @len: size of the transaction
972 * @flags: flags for the descriptor
974 * Returns a valid DMA descriptor or %NULL in case of failure.
976 static struct dma_async_tx_descriptor *
977 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
978 dma_addr_t src, size_t len, unsigned long flags)
980 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
981 struct ep93xx_dma_desc *desc, *first;
982 size_t bytes, offset;
984 first = NULL;
985 for (offset = 0; offset < len; offset += bytes) {
986 desc = ep93xx_dma_desc_get(edmac);
987 if (!desc) {
988 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
989 goto fail;
992 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
994 desc->src_addr = src + offset;
995 desc->dst_addr = dest + offset;
996 desc->size = bytes;
998 if (!first)
999 first = desc;
1000 else
1001 list_add_tail(&desc->node, &first->tx_list);
1004 first->txd.cookie = -EBUSY;
1005 first->txd.flags = flags;
1007 return &first->txd;
1008 fail:
1009 ep93xx_dma_desc_put(edmac, first);
1010 return NULL;
1014 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1015 * @chan: channel
1016 * @sgl: list of buffers to transfer
1017 * @sg_len: number of entries in @sgl
1018 * @dir: direction of tha DMA transfer
1019 * @flags: flags for the descriptor
1020 * @context: operation context (ignored)
1022 * Returns a valid DMA descriptor or %NULL in case of failure.
1024 static struct dma_async_tx_descriptor *
1025 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1026 unsigned int sg_len, enum dma_transfer_direction dir,
1027 unsigned long flags, void *context)
1029 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1030 struct ep93xx_dma_desc *desc, *first;
1031 struct scatterlist *sg;
1032 int i;
1034 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1035 dev_warn(chan2dev(edmac),
1036 "channel was configured with different direction\n");
1037 return NULL;
1040 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1041 dev_warn(chan2dev(edmac),
1042 "channel is already used for cyclic transfers\n");
1043 return NULL;
1046 first = NULL;
1047 for_each_sg(sgl, sg, sg_len, i) {
1048 size_t sg_len = sg_dma_len(sg);
1050 if (sg_len > DMA_MAX_CHAN_BYTES) {
1051 dev_warn(chan2dev(edmac), "too big transfer size %d\n",
1052 sg_len);
1053 goto fail;
1056 desc = ep93xx_dma_desc_get(edmac);
1057 if (!desc) {
1058 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1059 goto fail;
1062 if (dir == DMA_MEM_TO_DEV) {
1063 desc->src_addr = sg_dma_address(sg);
1064 desc->dst_addr = edmac->runtime_addr;
1065 } else {
1066 desc->src_addr = edmac->runtime_addr;
1067 desc->dst_addr = sg_dma_address(sg);
1069 desc->size = sg_len;
1071 if (!first)
1072 first = desc;
1073 else
1074 list_add_tail(&desc->node, &first->tx_list);
1077 first->txd.cookie = -EBUSY;
1078 first->txd.flags = flags;
1080 return &first->txd;
1082 fail:
1083 ep93xx_dma_desc_put(edmac, first);
1084 return NULL;
1088 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1089 * @chan: channel
1090 * @dma_addr: DMA mapped address of the buffer
1091 * @buf_len: length of the buffer (in bytes)
1092 * @period_len: length of a single period
1093 * @dir: direction of the operation
1094 * @flags: tx descriptor status flags
1095 * @context: operation context (ignored)
1097 * Prepares a descriptor for cyclic DMA operation. This means that once the
1098 * descriptor is submitted, we will be submitting in a @period_len sized
1099 * buffers and calling callback once the period has been elapsed. Transfer
1100 * terminates only when client calls dmaengine_terminate_all() for this
1101 * channel.
1103 * Returns a valid DMA descriptor or %NULL in case of failure.
1105 static struct dma_async_tx_descriptor *
1106 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1107 size_t buf_len, size_t period_len,
1108 enum dma_transfer_direction dir, unsigned long flags,
1109 void *context)
1111 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1112 struct ep93xx_dma_desc *desc, *first;
1113 size_t offset = 0;
1115 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1116 dev_warn(chan2dev(edmac),
1117 "channel was configured with different direction\n");
1118 return NULL;
1121 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1122 dev_warn(chan2dev(edmac),
1123 "channel is already used for cyclic transfers\n");
1124 return NULL;
1127 if (period_len > DMA_MAX_CHAN_BYTES) {
1128 dev_warn(chan2dev(edmac), "too big period length %d\n",
1129 period_len);
1130 return NULL;
1133 /* Split the buffer into period size chunks */
1134 first = NULL;
1135 for (offset = 0; offset < buf_len; offset += period_len) {
1136 desc = ep93xx_dma_desc_get(edmac);
1137 if (!desc) {
1138 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1139 goto fail;
1142 if (dir == DMA_MEM_TO_DEV) {
1143 desc->src_addr = dma_addr + offset;
1144 desc->dst_addr = edmac->runtime_addr;
1145 } else {
1146 desc->src_addr = edmac->runtime_addr;
1147 desc->dst_addr = dma_addr + offset;
1150 desc->size = period_len;
1152 if (!first)
1153 first = desc;
1154 else
1155 list_add_tail(&desc->node, &first->tx_list);
1158 first->txd.cookie = -EBUSY;
1160 return &first->txd;
1162 fail:
1163 ep93xx_dma_desc_put(edmac, first);
1164 return NULL;
1168 * ep93xx_dma_terminate_all - terminate all transactions
1169 * @edmac: channel
1171 * Stops all DMA transactions. All descriptors are put back to the
1172 * @edmac->free_list and callbacks are _not_ called.
1174 static int ep93xx_dma_terminate_all(struct ep93xx_dma_chan *edmac)
1176 struct ep93xx_dma_desc *desc, *_d;
1177 unsigned long flags;
1178 LIST_HEAD(list);
1180 spin_lock_irqsave(&edmac->lock, flags);
1181 /* First we disable and flush the DMA channel */
1182 edmac->edma->hw_shutdown(edmac);
1183 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1184 list_splice_init(&edmac->active, &list);
1185 list_splice_init(&edmac->queue, &list);
1187 * We then re-enable the channel. This way we can continue submitting
1188 * the descriptors by just calling ->hw_submit() again.
1190 edmac->edma->hw_setup(edmac);
1191 spin_unlock_irqrestore(&edmac->lock, flags);
1193 list_for_each_entry_safe(desc, _d, &list, node)
1194 ep93xx_dma_desc_put(edmac, desc);
1196 return 0;
1199 static int ep93xx_dma_slave_config(struct ep93xx_dma_chan *edmac,
1200 struct dma_slave_config *config)
1202 enum dma_slave_buswidth width;
1203 unsigned long flags;
1204 u32 addr, ctrl;
1206 if (!edmac->edma->m2m)
1207 return -EINVAL;
1209 switch (config->direction) {
1210 case DMA_DEV_TO_MEM:
1211 width = config->src_addr_width;
1212 addr = config->src_addr;
1213 break;
1215 case DMA_MEM_TO_DEV:
1216 width = config->dst_addr_width;
1217 addr = config->dst_addr;
1218 break;
1220 default:
1221 return -EINVAL;
1224 switch (width) {
1225 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1226 ctrl = 0;
1227 break;
1228 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1229 ctrl = M2M_CONTROL_PW_16;
1230 break;
1231 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1232 ctrl = M2M_CONTROL_PW_32;
1233 break;
1234 default:
1235 return -EINVAL;
1238 spin_lock_irqsave(&edmac->lock, flags);
1239 edmac->runtime_addr = addr;
1240 edmac->runtime_ctrl = ctrl;
1241 spin_unlock_irqrestore(&edmac->lock, flags);
1243 return 0;
1247 * ep93xx_dma_control - manipulate all pending operations on a channel
1248 * @chan: channel
1249 * @cmd: control command to perform
1250 * @arg: optional argument
1252 * Controls the channel. Function returns %0 in case of success or negative
1253 * error in case of failure.
1255 static int ep93xx_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1256 unsigned long arg)
1258 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1259 struct dma_slave_config *config;
1261 switch (cmd) {
1262 case DMA_TERMINATE_ALL:
1263 return ep93xx_dma_terminate_all(edmac);
1265 case DMA_SLAVE_CONFIG:
1266 config = (struct dma_slave_config *)arg;
1267 return ep93xx_dma_slave_config(edmac, config);
1269 default:
1270 break;
1273 return -ENOSYS;
1277 * ep93xx_dma_tx_status - check if a transaction is completed
1278 * @chan: channel
1279 * @cookie: transaction specific cookie
1280 * @state: state of the transaction is stored here if given
1282 * This function can be used to query state of a given transaction.
1284 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1285 dma_cookie_t cookie,
1286 struct dma_tx_state *state)
1288 return dma_cookie_status(chan, cookie, state);
1292 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1293 * @chan: channel
1295 * When this function is called, all pending transactions are pushed to the
1296 * hardware and executed.
1298 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1300 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1303 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1305 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1306 struct ep93xx_dma_engine *edma;
1307 struct dma_device *dma_dev;
1308 size_t edma_size;
1309 int ret, i;
1311 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1312 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1313 if (!edma)
1314 return -ENOMEM;
1316 dma_dev = &edma->dma_dev;
1317 edma->m2m = platform_get_device_id(pdev)->driver_data;
1318 edma->num_channels = pdata->num_channels;
1320 INIT_LIST_HEAD(&dma_dev->channels);
1321 for (i = 0; i < pdata->num_channels; i++) {
1322 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1323 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1325 edmac->chan.device = dma_dev;
1326 edmac->regs = cdata->base;
1327 edmac->irq = cdata->irq;
1328 edmac->edma = edma;
1330 edmac->clk = clk_get(NULL, cdata->name);
1331 if (IS_ERR(edmac->clk)) {
1332 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1333 cdata->name);
1334 continue;
1337 spin_lock_init(&edmac->lock);
1338 INIT_LIST_HEAD(&edmac->active);
1339 INIT_LIST_HEAD(&edmac->queue);
1340 INIT_LIST_HEAD(&edmac->free_list);
1341 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1342 (unsigned long)edmac);
1344 list_add_tail(&edmac->chan.device_node,
1345 &dma_dev->channels);
1348 dma_cap_zero(dma_dev->cap_mask);
1349 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1350 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1352 dma_dev->dev = &pdev->dev;
1353 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1354 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1355 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1356 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1357 dma_dev->device_control = ep93xx_dma_control;
1358 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1359 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1361 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1363 if (edma->m2m) {
1364 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1365 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1367 edma->hw_setup = m2m_hw_setup;
1368 edma->hw_shutdown = m2m_hw_shutdown;
1369 edma->hw_submit = m2m_hw_submit;
1370 edma->hw_interrupt = m2m_hw_interrupt;
1371 } else {
1372 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1374 edma->hw_setup = m2p_hw_setup;
1375 edma->hw_shutdown = m2p_hw_shutdown;
1376 edma->hw_submit = m2p_hw_submit;
1377 edma->hw_interrupt = m2p_hw_interrupt;
1380 ret = dma_async_device_register(dma_dev);
1381 if (unlikely(ret)) {
1382 for (i = 0; i < edma->num_channels; i++) {
1383 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1384 if (!IS_ERR_OR_NULL(edmac->clk))
1385 clk_put(edmac->clk);
1387 kfree(edma);
1388 } else {
1389 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1390 edma->m2m ? "M" : "P");
1393 return ret;
1396 static struct platform_device_id ep93xx_dma_driver_ids[] = {
1397 { "ep93xx-dma-m2p", 0 },
1398 { "ep93xx-dma-m2m", 1 },
1399 { },
1402 static struct platform_driver ep93xx_dma_driver = {
1403 .driver = {
1404 .name = "ep93xx-dma",
1406 .id_table = ep93xx_dma_driver_ids,
1409 static int __init ep93xx_dma_module_init(void)
1411 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1413 subsys_initcall(ep93xx_dma_module_init);
1415 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1416 MODULE_DESCRIPTION("EP93xx DMA driver");
1417 MODULE_LICENSE("GPL");