2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
45 #include <linux/of_address.h>
46 #include <linux/of_irq.h>
47 #include <linux/of_platform.h>
49 #include <asm/dcr-regs.h>
51 #include "../dmaengine.h"
53 enum ppc_adma_init_code
{
58 PPC_ADMA_INIT_COHERENT
,
59 PPC_ADMA_INIT_CHANNEL
,
62 PPC_ADMA_INIT_REGISTER
65 static char *ppc_adma_errors
[] = {
66 [PPC_ADMA_INIT_OK
] = "ok",
67 [PPC_ADMA_INIT_MEMRES
] = "failed to get memory resource",
68 [PPC_ADMA_INIT_MEMREG
] = "failed to request memory region",
69 [PPC_ADMA_INIT_ALLOC
] = "failed to allocate memory for adev "
71 [PPC_ADMA_INIT_COHERENT
] = "failed to allocate coherent memory for "
72 "hardware descriptors",
73 [PPC_ADMA_INIT_CHANNEL
] = "failed to allocate memory for channel",
74 [PPC_ADMA_INIT_IRQ1
] = "failed to request first irq",
75 [PPC_ADMA_INIT_IRQ2
] = "failed to request second irq",
76 [PPC_ADMA_INIT_REGISTER
] = "failed to register dma async device",
79 static enum ppc_adma_init_code
80 ppc440spe_adma_devices
[PPC440SPE_ADMA_ENGINES_NUM
];
82 struct ppc_dma_chan_ref
{
83 struct dma_chan
*chan
;
84 struct list_head node
;
87 /* The list of channels exported by ppc440spe ADMA */
89 ppc440spe_adma_chan_list
= LIST_HEAD_INIT(ppc440spe_adma_chan_list
);
91 /* This flag is set when want to refetch the xor chain in the interrupt
94 static u32 do_xor_refetch
;
96 /* Pointer to DMA0, DMA1 CP/CS FIFO */
97 static void *ppc440spe_dma_fifo_buf
;
99 /* Pointers to last submitted to DMA0, DMA1 CDBs */
100 static struct ppc440spe_adma_desc_slot
*chan_last_sub
[3];
101 static struct ppc440spe_adma_desc_slot
*chan_first_cdb
[3];
103 /* Pointer to last linked and submitted xor CB */
104 static struct ppc440spe_adma_desc_slot
*xor_last_linked
;
105 static struct ppc440spe_adma_desc_slot
*xor_last_submit
;
107 /* This array is used in data-check operations for storing a pattern */
108 static char ppc440spe_qword
[16];
110 static atomic_t ppc440spe_adma_err_irq_ref
;
111 static dcr_host_t ppc440spe_mq_dcr_host
;
112 static unsigned int ppc440spe_mq_dcr_len
;
114 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
115 * the block size in transactions, then we do not allow to activate more than
116 * only one RXOR transactions simultaneously. So use this var to store
117 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
118 * set) or not (PPC440SPE_RXOR_RUN is clear).
120 static unsigned long ppc440spe_rxor_state
;
122 /* These are used in enable & check routines
124 static u32 ppc440spe_r6_enabled
;
125 static struct ppc440spe_adma_chan
*ppc440spe_r6_tchan
;
126 static struct completion ppc440spe_r6_test_comp
;
128 static int ppc440spe_adma_dma2rxor_prep_src(
129 struct ppc440spe_adma_desc_slot
*desc
,
130 struct ppc440spe_rxor
*cursor
, int index
,
131 int src_cnt
, u32 addr
);
132 static void ppc440spe_adma_dma2rxor_set_src(
133 struct ppc440spe_adma_desc_slot
*desc
,
134 int index
, dma_addr_t addr
);
135 static void ppc440spe_adma_dma2rxor_set_mult(
136 struct ppc440spe_adma_desc_slot
*desc
,
140 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
142 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
145 static void print_cb(struct ppc440spe_adma_chan
*chan
, void *block
)
151 switch (chan
->device
->id
) {
156 pr_debug("CDB at %p [%d]:\n"
157 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
158 "\t sg1u 0x%08x sg1l 0x%08x\n"
159 "\t sg2u 0x%08x sg2l 0x%08x\n"
160 "\t sg3u 0x%08x sg3l 0x%08x\n",
161 cdb
, chan
->device
->id
,
162 cdb
->attr
, cdb
->opc
, le32_to_cpu(cdb
->cnt
),
163 le32_to_cpu(cdb
->sg1u
), le32_to_cpu(cdb
->sg1l
),
164 le32_to_cpu(cdb
->sg2u
), le32_to_cpu(cdb
->sg2l
),
165 le32_to_cpu(cdb
->sg3u
), le32_to_cpu(cdb
->sg3l
)
171 pr_debug("CB at %p [%d]:\n"
172 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
173 "\t cbtah 0x%08x cbtal 0x%08x\n"
174 "\t cblah 0x%08x cblal 0x%08x\n",
175 cb
, chan
->device
->id
,
176 cb
->cbc
, cb
->cbbc
, cb
->cbs
,
177 cb
->cbtah
, cb
->cbtal
,
178 cb
->cblah
, cb
->cblal
);
179 for (i
= 0; i
< 16; i
++) {
180 if (i
&& !cb
->ops
[i
].h
&& !cb
->ops
[i
].l
)
182 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
183 i
, cb
->ops
[i
].h
, cb
->ops
[i
].l
);
189 static void print_cb_list(struct ppc440spe_adma_chan
*chan
,
190 struct ppc440spe_adma_desc_slot
*iter
)
192 for (; iter
; iter
= iter
->hw_next
)
193 print_cb(chan
, iter
->hw_desc
);
196 static void prep_dma_xor_dbg(int id
, dma_addr_t dst
, dma_addr_t
*src
,
197 unsigned int src_cnt
)
201 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
202 for (i
= 0; i
< src_cnt
; i
++)
203 pr_debug("\t0x%016llx ", src
[i
]);
204 pr_debug("dst:\n\t0x%016llx\n", dst
);
207 static void prep_dma_pq_dbg(int id
, dma_addr_t
*dst
, dma_addr_t
*src
,
208 unsigned int src_cnt
)
212 pr_debug("\n%s(%d):\nsrc: ", __func__
, id
);
213 for (i
= 0; i
< src_cnt
; i
++)
214 pr_debug("\t0x%016llx ", src
[i
]);
216 for (i
= 0; i
< 2; i
++)
217 pr_debug("\t0x%016llx ", dst
[i
]);
220 static void prep_dma_pqzero_sum_dbg(int id
, dma_addr_t
*src
,
221 unsigned int src_cnt
,
222 const unsigned char *scf
)
226 pr_debug("\n%s(%d):\nsrc(coef): ", __func__
, id
);
228 for (i
= 0; i
< src_cnt
; i
++)
229 pr_debug("\t0x%016llx(0x%02x) ", src
[i
], scf
[i
]);
231 for (i
= 0; i
< src_cnt
; i
++)
232 pr_debug("\t0x%016llx(no) ", src
[i
]);
236 for (i
= 0; i
< 2; i
++)
237 pr_debug("\t0x%016llx ", src
[src_cnt
+ i
]);
240 /******************************************************************************
241 * Command (Descriptor) Blocks low-level routines
242 ******************************************************************************/
244 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
247 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot
*desc
,
248 struct ppc440spe_adma_chan
*chan
)
252 switch (chan
->device
->id
) {
253 case PPC440SPE_XOR_ID
:
255 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
256 /* NOP with Command Block Complete Enable */
257 p
->cbc
= XOR_CBCR_CBCE_BIT
;
259 case PPC440SPE_DMA0_ID
:
260 case PPC440SPE_DMA1_ID
:
261 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
262 /* NOP with interrupt */
263 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
266 printk(KERN_ERR
"Unsupported id %d in %s\n", chan
->device
->id
,
273 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
276 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot
*desc
)
278 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
279 desc
->hw_next
= NULL
;
285 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
287 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot
*desc
,
288 int src_cnt
, unsigned long flags
)
290 struct xor_cb
*hw_desc
= desc
->hw_desc
;
292 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
293 desc
->hw_next
= NULL
;
294 desc
->src_cnt
= src_cnt
;
297 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
| src_cnt
;
298 if (flags
& DMA_PREP_INTERRUPT
)
299 /* Enable interrupt on completion */
300 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
304 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
305 * operation in DMA2 controller
307 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot
*desc
,
308 int dst_cnt
, int src_cnt
, unsigned long flags
)
310 struct xor_cb
*hw_desc
= desc
->hw_desc
;
312 memset(desc
->hw_desc
, 0, sizeof(struct xor_cb
));
313 desc
->hw_next
= NULL
;
314 desc
->src_cnt
= src_cnt
;
315 desc
->dst_cnt
= dst_cnt
;
316 memset(desc
->reverse_flags
, 0, sizeof(desc
->reverse_flags
));
317 desc
->descs_per_op
= 0;
319 hw_desc
->cbc
= XOR_CBCR_TGT_BIT
;
320 if (flags
& DMA_PREP_INTERRUPT
)
321 /* Enable interrupt on completion */
322 hw_desc
->cbc
|= XOR_CBCR_CBCE_BIT
;
325 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
326 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
327 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
330 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
333 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot
*desc
,
334 int dst_cnt
, int src_cnt
, unsigned long flags
,
337 struct dma_cdb
*hw_desc
;
338 struct ppc440spe_adma_desc_slot
*iter
;
341 /* Common initialization of a PQ descriptors chain */
342 set_bits(op
, &desc
->flags
);
343 desc
->src_cnt
= src_cnt
;
344 desc
->dst_cnt
= dst_cnt
;
346 /* WXOR MULTICAST if both P and Q are being computed
347 * MV_SG1_SG2 if Q only
349 dopc
= (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) ?
350 DMA_CDB_OPC_MULTICAST
: DMA_CDB_OPC_MV_SG1_SG2
;
352 list_for_each_entry(iter
, &desc
->group_list
, chain_node
) {
353 hw_desc
= iter
->hw_desc
;
354 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
356 if (likely(!list_is_last(&iter
->chain_node
,
357 &desc
->group_list
))) {
358 /* set 'next' pointer */
359 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
360 struct ppc440spe_adma_desc_slot
, chain_node
);
361 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
363 /* this is the last descriptor.
364 * this slot will be pasted from ADMA level
365 * each time it wants to configure parameters
366 * of the transaction (src, dst, ...)
368 iter
->hw_next
= NULL
;
369 if (flags
& DMA_PREP_INTERRUPT
)
370 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
372 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
376 /* Set OPS depending on WXOR/RXOR type of operation */
377 if (!test_bit(PPC440SPE_DESC_RXOR
, &desc
->flags
)) {
378 /* This is a WXOR only chain:
379 * - first descriptors are for zeroing destinations
380 * if PPC440SPE_ZERO_P/Q set;
381 * - descriptors remained are for GF-XOR operations.
383 iter
= list_first_entry(&desc
->group_list
,
384 struct ppc440spe_adma_desc_slot
,
387 if (test_bit(PPC440SPE_ZERO_P
, &desc
->flags
)) {
388 hw_desc
= iter
->hw_desc
;
389 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
390 iter
= list_first_entry(&iter
->chain_node
,
391 struct ppc440spe_adma_desc_slot
,
395 if (test_bit(PPC440SPE_ZERO_Q
, &desc
->flags
)) {
396 hw_desc
= iter
->hw_desc
;
397 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
398 iter
= list_first_entry(&iter
->chain_node
,
399 struct ppc440spe_adma_desc_slot
,
403 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
404 hw_desc
= iter
->hw_desc
;
408 /* This is either RXOR-only or mixed RXOR/WXOR */
410 /* The first 1 or 2 slots in chain are always RXOR,
411 * if need to calculate P & Q, then there are two
412 * RXOR slots; if only P or only Q, then there is one
414 iter
= list_first_entry(&desc
->group_list
,
415 struct ppc440spe_adma_desc_slot
,
417 hw_desc
= iter
->hw_desc
;
418 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
420 if (desc
->dst_cnt
== DMA_DEST_MAX_NUM
) {
421 iter
= list_first_entry(&iter
->chain_node
,
422 struct ppc440spe_adma_desc_slot
,
424 hw_desc
= iter
->hw_desc
;
425 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
428 /* The remaining descs (if any) are WXORs */
429 if (test_bit(PPC440SPE_DESC_WXOR
, &desc
->flags
)) {
430 iter
= list_first_entry(&iter
->chain_node
,
431 struct ppc440spe_adma_desc_slot
,
433 list_for_each_entry_from(iter
, &desc
->group_list
,
435 hw_desc
= iter
->hw_desc
;
443 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
444 * for PQ_ZERO_SUM operation
446 static void ppc440spe_desc_init_dma01pqzero_sum(
447 struct ppc440spe_adma_desc_slot
*desc
,
448 int dst_cnt
, int src_cnt
)
450 struct dma_cdb
*hw_desc
;
451 struct ppc440spe_adma_desc_slot
*iter
;
453 u8 dopc
= (dst_cnt
== 2) ? DMA_CDB_OPC_MULTICAST
:
454 DMA_CDB_OPC_MV_SG1_SG2
;
456 * Initialize starting from 2nd or 3rd descriptor dependent
457 * on dst_cnt. First one or two slots are for cloning P
458 * and/or Q to chan->pdest and/or chan->qdest as we have
459 * to preserve original P/Q.
461 iter
= list_first_entry(&desc
->group_list
,
462 struct ppc440spe_adma_desc_slot
, chain_node
);
463 iter
= list_entry(iter
->chain_node
.next
,
464 struct ppc440spe_adma_desc_slot
, chain_node
);
467 iter
= list_entry(iter
->chain_node
.next
,
468 struct ppc440spe_adma_desc_slot
, chain_node
);
470 /* initialize each source descriptor in chain */
471 list_for_each_entry_from(iter
, &desc
->group_list
, chain_node
) {
472 hw_desc
= iter
->hw_desc
;
473 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
477 /* This is a ZERO_SUM operation:
478 * - <src_cnt> descriptors starting from 2nd or 3rd
479 * descriptor are for GF-XOR operations;
480 * - remaining <dst_cnt> descriptors are for checking the result
483 /* MV_SG1_SG2 if only Q is being verified
484 * MULTICAST if both P and Q are being verified
488 /* DMA_CDB_OPC_DCHECK128 operation */
489 hw_desc
->opc
= DMA_CDB_OPC_DCHECK128
;
491 if (likely(!list_is_last(&iter
->chain_node
,
492 &desc
->group_list
))) {
493 /* set 'next' pointer */
494 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
495 struct ppc440spe_adma_desc_slot
,
498 /* this is the last descriptor.
499 * this slot will be pasted from ADMA level
500 * each time it wants to configure parameters
501 * of the transaction (src, dst, ...)
503 iter
->hw_next
= NULL
;
504 /* always enable interrupt generation since we get
505 * the status of pqzero from the handler
507 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
510 desc
->src_cnt
= src_cnt
;
511 desc
->dst_cnt
= dst_cnt
;
515 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
517 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot
*desc
,
520 struct dma_cdb
*hw_desc
= desc
->hw_desc
;
522 memset(desc
->hw_desc
, 0, sizeof(struct dma_cdb
));
523 desc
->hw_next
= NULL
;
527 if (flags
& DMA_PREP_INTERRUPT
)
528 set_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
530 clear_bit(PPC440SPE_DESC_INT
, &desc
->flags
);
532 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
536 * ppc440spe_desc_set_src_addr - set source address into the descriptor
538 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot
*desc
,
539 struct ppc440spe_adma_chan
*chan
,
540 int src_idx
, dma_addr_t addrh
,
543 struct dma_cdb
*dma_hw_desc
;
544 struct xor_cb
*xor_hw_desc
;
545 phys_addr_t addr64
, tmplow
, tmphi
;
547 switch (chan
->device
->id
) {
548 case PPC440SPE_DMA0_ID
:
549 case PPC440SPE_DMA1_ID
:
552 tmphi
= (addr64
>> 32);
553 tmplow
= (addr64
& 0xFFFFFFFF);
558 dma_hw_desc
= desc
->hw_desc
;
559 dma_hw_desc
->sg1l
= cpu_to_le32((u32
)tmplow
);
560 dma_hw_desc
->sg1u
|= cpu_to_le32((u32
)tmphi
);
562 case PPC440SPE_XOR_ID
:
563 xor_hw_desc
= desc
->hw_desc
;
564 xor_hw_desc
->ops
[src_idx
].l
= addrl
;
565 xor_hw_desc
->ops
[src_idx
].h
|= addrh
;
571 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
573 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot
*desc
,
574 struct ppc440spe_adma_chan
*chan
, u32 mult_index
,
575 int sg_index
, unsigned char mult_value
)
577 struct dma_cdb
*dma_hw_desc
;
578 struct xor_cb
*xor_hw_desc
;
581 switch (chan
->device
->id
) {
582 case PPC440SPE_DMA0_ID
:
583 case PPC440SPE_DMA1_ID
:
584 dma_hw_desc
= desc
->hw_desc
;
587 /* for RXOR operations set multiplier
588 * into source cued address
591 psgu
= &dma_hw_desc
->sg1u
;
593 /* for WXOR operations set multiplier
594 * into destination cued address(es)
596 case DMA_CDB_SG_DST1
:
597 psgu
= &dma_hw_desc
->sg2u
;
599 case DMA_CDB_SG_DST2
:
600 psgu
= &dma_hw_desc
->sg3u
;
606 *psgu
|= cpu_to_le32(mult_value
<< mult_index
);
608 case PPC440SPE_XOR_ID
:
609 xor_hw_desc
= desc
->hw_desc
;
617 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
619 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot
*desc
,
620 struct ppc440spe_adma_chan
*chan
,
621 dma_addr_t addrh
, dma_addr_t addrl
,
624 struct dma_cdb
*dma_hw_desc
;
625 struct xor_cb
*xor_hw_desc
;
626 phys_addr_t addr64
, tmphi
, tmplow
;
629 switch (chan
->device
->id
) {
630 case PPC440SPE_DMA0_ID
:
631 case PPC440SPE_DMA1_ID
:
634 tmphi
= (addr64
>> 32);
635 tmplow
= (addr64
& 0xFFFFFFFF);
640 dma_hw_desc
= desc
->hw_desc
;
642 psgu
= dst_idx
? &dma_hw_desc
->sg3u
: &dma_hw_desc
->sg2u
;
643 psgl
= dst_idx
? &dma_hw_desc
->sg3l
: &dma_hw_desc
->sg2l
;
645 *psgl
= cpu_to_le32((u32
)tmplow
);
646 *psgu
|= cpu_to_le32((u32
)tmphi
);
648 case PPC440SPE_XOR_ID
:
649 xor_hw_desc
= desc
->hw_desc
;
650 xor_hw_desc
->cbtal
= addrl
;
651 xor_hw_desc
->cbtah
|= addrh
;
657 * ppc440spe_desc_set_byte_count - set number of data bytes involved
660 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot
*desc
,
661 struct ppc440spe_adma_chan
*chan
,
664 struct dma_cdb
*dma_hw_desc
;
665 struct xor_cb
*xor_hw_desc
;
667 switch (chan
->device
->id
) {
668 case PPC440SPE_DMA0_ID
:
669 case PPC440SPE_DMA1_ID
:
670 dma_hw_desc
= desc
->hw_desc
;
671 dma_hw_desc
->cnt
= cpu_to_le32(byte_count
);
673 case PPC440SPE_XOR_ID
:
674 xor_hw_desc
= desc
->hw_desc
;
675 xor_hw_desc
->cbbc
= byte_count
;
681 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
683 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count
)
685 /* assume that byte_count is aligned on the 512-boundary;
686 * thus write it directly to the register (bits 23:31 are
689 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CF2H
, byte_count
);
693 * ppc440spe_desc_set_dcheck - set CHECK pattern
695 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot
*desc
,
696 struct ppc440spe_adma_chan
*chan
, u8
*qword
)
698 struct dma_cdb
*dma_hw_desc
;
700 switch (chan
->device
->id
) {
701 case PPC440SPE_DMA0_ID
:
702 case PPC440SPE_DMA1_ID
:
703 dma_hw_desc
= desc
->hw_desc
;
704 iowrite32(qword
[0], &dma_hw_desc
->sg3l
);
705 iowrite32(qword
[4], &dma_hw_desc
->sg3u
);
706 iowrite32(qword
[8], &dma_hw_desc
->sg2l
);
707 iowrite32(qword
[12], &dma_hw_desc
->sg2u
);
715 * ppc440spe_xor_set_link - set link address in xor CB
717 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot
*prev_desc
,
718 struct ppc440spe_adma_desc_slot
*next_desc
)
720 struct xor_cb
*xor_hw_desc
= prev_desc
->hw_desc
;
722 if (unlikely(!next_desc
|| !(next_desc
->phys
))) {
723 printk(KERN_ERR
"%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
725 next_desc
? next_desc
->phys
: 0);
729 xor_hw_desc
->cbs
= 0;
730 xor_hw_desc
->cblal
= next_desc
->phys
;
731 xor_hw_desc
->cblah
= 0;
732 xor_hw_desc
->cbc
|= XOR_CBCR_LNK_BIT
;
736 * ppc440spe_desc_set_link - set the address of descriptor following this
737 * descriptor in chain
739 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan
*chan
,
740 struct ppc440spe_adma_desc_slot
*prev_desc
,
741 struct ppc440spe_adma_desc_slot
*next_desc
)
744 struct ppc440spe_adma_desc_slot
*tail
= next_desc
;
746 if (unlikely(!prev_desc
|| !next_desc
||
747 (prev_desc
->hw_next
&& prev_desc
->hw_next
!= next_desc
))) {
748 /* If previous next is overwritten something is wrong.
749 * though we may refetch from append to initiate list
750 * processing; in this case - it's ok.
752 printk(KERN_ERR
"%s: prev_desc=0x%p; next_desc=0x%p; "
753 "prev->hw_next=0x%p\n", __func__
, prev_desc
,
754 next_desc
, prev_desc
? prev_desc
->hw_next
: 0);
758 local_irq_save(flags
);
760 /* do s/w chaining both for DMA and XOR descriptors */
761 prev_desc
->hw_next
= next_desc
;
763 switch (chan
->device
->id
) {
764 case PPC440SPE_DMA0_ID
:
765 case PPC440SPE_DMA1_ID
:
767 case PPC440SPE_XOR_ID
:
768 /* bind descriptor to the chain */
769 while (tail
->hw_next
)
770 tail
= tail
->hw_next
;
771 xor_last_linked
= tail
;
773 if (prev_desc
== xor_last_submit
)
774 /* do not link to the last submitted CB */
776 ppc440spe_xor_set_link(prev_desc
, next_desc
);
780 local_irq_restore(flags
);
784 * ppc440spe_desc_get_link - get the address of the descriptor that
787 static inline u32
ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot
*desc
,
788 struct ppc440spe_adma_chan
*chan
)
793 return desc
->hw_next
->phys
;
797 * ppc440spe_desc_is_aligned - check alignment
799 static inline int ppc440spe_desc_is_aligned(
800 struct ppc440spe_adma_desc_slot
*desc
, int num_slots
)
802 return (desc
->idx
& (num_slots
- 1)) ? 0 : 1;
806 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
809 static int ppc440spe_chan_xor_slot_count(size_t len
, int src_cnt
,
814 /* each XOR descriptor provides up to 16 source operands */
815 slot_cnt
= *slots_per_op
= (src_cnt
+ XOR_MAX_OPS
- 1)/XOR_MAX_OPS
;
817 if (likely(len
<= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
))
820 printk(KERN_ERR
"%s: len %d > max %d !!\n",
821 __func__
, len
, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
827 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
830 static int ppc440spe_dma2_pq_slot_count(dma_addr_t
*srcs
,
831 int src_cnt
, size_t len
)
833 signed long long order
= 0;
837 for (i
= 1; i
< src_cnt
; i
++) {
838 dma_addr_t cur_addr
= srcs
[i
];
839 dma_addr_t old_addr
= srcs
[i
-1];
842 if (cur_addr
== old_addr
+ len
) {
848 } else if (old_addr
== cur_addr
+ len
) {
859 if (i
== src_cnt
-2 || (order
== -1
860 && cur_addr
!= old_addr
- len
)) {
864 } else if (cur_addr
== old_addr
+ len
*order
) {
868 } else if (cur_addr
== old_addr
+ 2*len
) {
872 } else if (cur_addr
== old_addr
+ 3*len
) {
891 if (src_cnt
<= 1 || (state
!= 1 && state
!= 2)) {
892 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
893 __func__
, src_cnt
, state
, addr_count
, order
);
894 for (i
= 0; i
< src_cnt
; i
++)
895 pr_err("\t[%d] 0x%llx \n", i
, srcs
[i
]);
899 return (addr_count
+ XOR_MAX_OPS
- 1) / XOR_MAX_OPS
;
903 /******************************************************************************
904 * ADMA channel low-level routines
905 ******************************************************************************/
908 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
);
909 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
);
912 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
914 static void ppc440spe_adma_device_clear_eot_status(
915 struct ppc440spe_adma_chan
*chan
)
917 struct dma_regs
*dma_reg
;
918 struct xor_regs
*xor_reg
;
919 u8
*p
= chan
->device
->dma_desc_pool_virt
;
923 switch (chan
->device
->id
) {
924 case PPC440SPE_DMA0_ID
:
925 case PPC440SPE_DMA1_ID
:
926 /* read FIFO to ack */
927 dma_reg
= chan
->device
->dma_reg
;
928 while ((rv
= ioread32(&dma_reg
->csfpl
))) {
929 i
= rv
& DMA_CDB_ADDR_MSK
;
930 cdb
= (struct dma_cdb
*)&p
[i
-
931 (u32
)chan
->device
->dma_desc_pool
];
933 /* Clear opcode to ack. This is necessary for
934 * ZeroSum operations only
938 if (test_bit(PPC440SPE_RXOR_RUN
,
939 &ppc440spe_rxor_state
)) {
940 /* probably this is a completed RXOR op,
941 * get pointer to CDB using the fact that
942 * physical and virtual addresses of CDB
943 * in pools have the same offsets
945 if (le32_to_cpu(cdb
->sg1u
) &
948 clear_bit(PPC440SPE_RXOR_RUN
,
949 &ppc440spe_rxor_state
);
953 if (rv
& DMA_CDB_STATUS_MSK
) {
954 /* ZeroSum check failed
956 struct ppc440spe_adma_desc_slot
*iter
;
957 dma_addr_t phys
= rv
& ~DMA_CDB_MSK
;
960 * Update the status of corresponding
963 list_for_each_entry(iter
, &chan
->chain
,
965 if (iter
->phys
== phys
)
969 * if cannot find the corresponding
972 BUG_ON(&iter
->chain_node
== &chan
->chain
);
974 if (iter
->xor_check_result
) {
975 if (test_bit(PPC440SPE_DESC_PCHECK
,
977 *iter
->xor_check_result
|=
980 if (test_bit(PPC440SPE_DESC_QCHECK
,
982 *iter
->xor_check_result
|=
990 rv
= ioread32(&dma_reg
->dsts
);
992 pr_err("DMA%d err status: 0x%x\n",
993 chan
->device
->id
, rv
);
994 /* write back to clear */
995 iowrite32(rv
, &dma_reg
->dsts
);
998 case PPC440SPE_XOR_ID
:
999 /* reset status bits to ack */
1000 xor_reg
= chan
->device
->xor_reg
;
1001 rv
= ioread32be(&xor_reg
->sr
);
1002 iowrite32be(rv
, &xor_reg
->sr
);
1004 if (rv
& (XOR_IE_ICBIE_BIT
|XOR_IE_ICIE_BIT
|XOR_IE_RPTIE_BIT
)) {
1005 if (rv
& XOR_IE_RPTIE_BIT
) {
1006 /* Read PLB Timeout Error.
1007 * Try to resubmit the CB
1009 u32 val
= ioread32be(&xor_reg
->ccbalr
);
1011 iowrite32be(val
, &xor_reg
->cblalr
);
1013 val
= ioread32be(&xor_reg
->crsr
);
1014 iowrite32be(val
| XOR_CRSR_XAE_BIT
,
1017 pr_err("XOR ERR 0x%x status\n", rv
);
1021 /* if the XORcore is idle, but there are unprocessed CBs
1022 * then refetch the s/w chain here
1024 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) &&
1026 ppc440spe_chan_append(chan
);
1032 * ppc440spe_chan_is_busy - get the channel status
1034 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan
*chan
)
1036 struct dma_regs
*dma_reg
;
1037 struct xor_regs
*xor_reg
;
1040 switch (chan
->device
->id
) {
1041 case PPC440SPE_DMA0_ID
:
1042 case PPC440SPE_DMA1_ID
:
1043 dma_reg
= chan
->device
->dma_reg
;
1044 /* if command FIFO's head and tail pointers are equal and
1045 * status tail is the same as command, then channel is free
1047 if (ioread16(&dma_reg
->cpfhp
) != ioread16(&dma_reg
->cpftp
) ||
1048 ioread16(&dma_reg
->cpftp
) != ioread16(&dma_reg
->csftp
))
1051 case PPC440SPE_XOR_ID
:
1052 /* use the special status bit for the XORcore
1054 xor_reg
= chan
->device
->xor_reg
;
1055 busy
= (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
) ? 1 : 0;
1063 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1065 static void ppc440spe_chan_set_first_xor_descriptor(
1066 struct ppc440spe_adma_chan
*chan
,
1067 struct ppc440spe_adma_desc_slot
*next_desc
)
1069 struct xor_regs
*xor_reg
= chan
->device
->xor_reg
;
1071 if (ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)
1072 printk(KERN_INFO
"%s: Warn: XORcore is running "
1073 "when try to set the first CDB!\n",
1076 xor_last_submit
= xor_last_linked
= next_desc
;
1078 iowrite32be(XOR_CRSR_64BA_BIT
, &xor_reg
->crsr
);
1080 iowrite32be(next_desc
->phys
, &xor_reg
->cblalr
);
1081 iowrite32be(0, &xor_reg
->cblahr
);
1082 iowrite32be(ioread32be(&xor_reg
->cbcr
) | XOR_CBCR_LNK_BIT
,
1085 chan
->hw_chain_inited
= 1;
1089 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1090 * called with irqs disabled
1092 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan
*chan
,
1093 struct ppc440spe_adma_desc_slot
*desc
)
1096 struct dma_regs
*dma_reg
= chan
->device
->dma_reg
;
1099 if (!test_bit(PPC440SPE_DESC_INT
, &desc
->flags
))
1100 pcdb
|= DMA_CDB_NO_INT
;
1102 chan_last_sub
[chan
->device
->id
] = desc
;
1104 ADMA_LL_DBG(print_cb(chan
, desc
->hw_desc
));
1106 iowrite32(pcdb
, &dma_reg
->cpfpl
);
1110 * ppc440spe_chan_append - update the h/w chain in the channel
1112 static void ppc440spe_chan_append(struct ppc440spe_adma_chan
*chan
)
1114 struct xor_regs
*xor_reg
;
1115 struct ppc440spe_adma_desc_slot
*iter
;
1118 unsigned long flags
;
1120 local_irq_save(flags
);
1122 switch (chan
->device
->id
) {
1123 case PPC440SPE_DMA0_ID
:
1124 case PPC440SPE_DMA1_ID
:
1125 cur_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1127 if (likely(cur_desc
)) {
1128 iter
= chan_last_sub
[chan
->device
->id
];
1132 iter
= chan_first_cdb
[chan
->device
->id
];
1134 ppc440spe_dma_put_desc(chan
, iter
);
1135 chan
->hw_chain_inited
= 1;
1138 /* is there something new to append */
1142 /* flush descriptors from the s/w queue to fifo */
1143 list_for_each_entry_continue(iter
, &chan
->chain
, chain_node
) {
1144 ppc440spe_dma_put_desc(chan
, iter
);
1149 case PPC440SPE_XOR_ID
:
1150 /* update h/w links and refetch */
1151 if (!xor_last_submit
->hw_next
)
1154 xor_reg
= chan
->device
->xor_reg
;
1155 /* the last linked CDB has to generate an interrupt
1156 * that we'd be able to append the next lists to h/w
1157 * regardless of the XOR engine state at the moment of
1158 * appending of these next lists
1160 xcb
= xor_last_linked
->hw_desc
;
1161 xcb
->cbc
|= XOR_CBCR_CBCE_BIT
;
1163 if (!(ioread32be(&xor_reg
->sr
) & XOR_SR_XCP_BIT
)) {
1164 /* XORcore is idle. Refetch now */
1166 ppc440spe_xor_set_link(xor_last_submit
,
1167 xor_last_submit
->hw_next
);
1169 ADMA_LL_DBG(print_cb_list(chan
,
1170 xor_last_submit
->hw_next
));
1172 xor_last_submit
= xor_last_linked
;
1173 iowrite32be(ioread32be(&xor_reg
->crsr
) |
1174 XOR_CRSR_RCBE_BIT
| XOR_CRSR_64BA_BIT
,
1177 /* XORcore is running. Refetch later in the handler */
1184 local_irq_restore(flags
);
1188 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1191 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan
*chan
)
1193 struct dma_regs
*dma_reg
;
1194 struct xor_regs
*xor_reg
;
1196 if (unlikely(!chan
->hw_chain_inited
))
1197 /* h/w descriptor chain is not initialized yet */
1200 switch (chan
->device
->id
) {
1201 case PPC440SPE_DMA0_ID
:
1202 case PPC440SPE_DMA1_ID
:
1203 dma_reg
= chan
->device
->dma_reg
;
1204 return ioread32(&dma_reg
->acpl
) & (~DMA_CDB_MSK
);
1205 case PPC440SPE_XOR_ID
:
1206 xor_reg
= chan
->device
->xor_reg
;
1207 return ioread32be(&xor_reg
->ccbalr
);
1213 * ppc440spe_chan_run - enable the channel
1215 static void ppc440spe_chan_run(struct ppc440spe_adma_chan
*chan
)
1217 struct xor_regs
*xor_reg
;
1219 switch (chan
->device
->id
) {
1220 case PPC440SPE_DMA0_ID
:
1221 case PPC440SPE_DMA1_ID
:
1222 /* DMAs are always enabled, do nothing */
1224 case PPC440SPE_XOR_ID
:
1225 /* drain write buffer */
1226 xor_reg
= chan
->device
->xor_reg
;
1228 /* fetch descriptor pointed to in <link> */
1229 iowrite32be(XOR_CRSR_64BA_BIT
| XOR_CRSR_XAE_BIT
,
1235 /******************************************************************************
1237 ******************************************************************************/
1239 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
);
1240 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
);
1243 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
);
1245 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1246 dma_addr_t addr
, int index
);
1248 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1249 dma_addr_t addr
, int index
);
1252 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1253 dma_addr_t
*paddr
, unsigned long flags
);
1255 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*tx
,
1256 dma_addr_t addr
, int index
);
1258 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot
*tx
,
1259 unsigned char mult
, int index
, int dst_pos
);
1261 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot
*tx
,
1262 dma_addr_t paddr
, dma_addr_t qaddr
);
1264 static struct page
*ppc440spe_rxor_srcs
[32];
1267 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1269 static int ppc440spe_can_rxor(struct page
**srcs
, int src_cnt
, size_t len
)
1271 int i
, order
= 0, state
= 0;
1274 if (unlikely(!(src_cnt
> 1)))
1277 BUG_ON(src_cnt
> ARRAY_SIZE(ppc440spe_rxor_srcs
));
1279 /* Skip holes in the source list before checking */
1280 for (i
= 0; i
< src_cnt
; i
++) {
1283 ppc440spe_rxor_srcs
[idx
++] = srcs
[i
];
1287 for (i
= 1; i
< src_cnt
; i
++) {
1288 char *cur_addr
= page_address(ppc440spe_rxor_srcs
[i
]);
1289 char *old_addr
= page_address(ppc440spe_rxor_srcs
[i
- 1]);
1293 if (cur_addr
== old_addr
+ len
) {
1297 } else if (old_addr
== cur_addr
+ len
) {
1305 if ((i
== src_cnt
- 2) ||
1306 (order
== -1 && cur_addr
!= old_addr
- len
)) {
1309 } else if ((cur_addr
== old_addr
+ len
* order
) ||
1310 (cur_addr
== old_addr
+ 2 * len
) ||
1311 (cur_addr
== old_addr
+ 3 * len
)) {
1326 if (state
== 1 || state
== 2)
1333 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1334 * the operation given on this channel. It's assumed that 'chan' is
1335 * capable to process 'cap' type of operation.
1336 * @chan: channel to use
1337 * @cap: type of transaction
1338 * @dst_lst: array of destination pointers
1339 * @dst_cnt: number of destination operands
1340 * @src_lst: array of source pointers
1341 * @src_cnt: number of source operands
1342 * @src_sz: size of each source operand
1344 static int ppc440spe_adma_estimate(struct dma_chan
*chan
,
1345 enum dma_transaction_type cap
, struct page
**dst_lst
, int dst_cnt
,
1346 struct page
**src_lst
, int src_cnt
, size_t src_sz
)
1350 if (cap
== DMA_PQ
|| cap
== DMA_PQ_VAL
) {
1351 /* If RAID-6 capabilities were not activated don't try
1354 if (unlikely(!ppc440spe_r6_enabled
))
1357 /* In the current implementation of ppc440spe ADMA driver it
1358 * makes sense to pick out only pq case, because it may be
1360 * (1) either using Biskup method on DMA2;
1362 * Thus we give a favour to (1) if the sources are suitable;
1363 * else let it be processed on one of the DMA0/1 engines.
1364 * In the sum_product case where destination is also the
1365 * source process it on DMA0/1 only.
1367 if (cap
== DMA_PQ
&& chan
->chan_id
== PPC440SPE_XOR_ID
) {
1369 if (dst_cnt
== 1 && src_cnt
== 2 && dst_lst
[0] == src_lst
[1])
1370 ef
= 0; /* sum_product case, process on DMA0/1 */
1371 else if (ppc440spe_can_rxor(src_lst
, src_cnt
, src_sz
))
1372 ef
= 3; /* override (DMA0/1 + idle) */
1374 ef
= 0; /* can't process on DMA2 if !rxor */
1377 /* channel idleness increases the priority */
1379 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan
)))
1386 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap
,
1387 struct page
**dst_lst
, int dst_cnt
, struct page
**src_lst
,
1388 int src_cnt
, size_t src_sz
)
1390 struct dma_chan
*best_chan
= NULL
;
1391 struct ppc_dma_chan_ref
*ref
;
1394 if (unlikely(!src_sz
))
1396 if (src_sz
> PAGE_SIZE
) {
1398 * should a user of the api ever pass > PAGE_SIZE requests
1399 * we sort out cases where temporary page-sized buffers
1404 if (src_cnt
== 1 && dst_lst
[1] == src_lst
[0])
1406 if (src_cnt
== 2 && dst_lst
[1] == src_lst
[1])
1417 list_for_each_entry(ref
, &ppc440spe_adma_chan_list
, node
) {
1418 if (dma_has_cap(cap
, ref
->chan
->device
->cap_mask
)) {
1421 rank
= ppc440spe_adma_estimate(ref
->chan
, cap
, dst_lst
,
1422 dst_cnt
, src_lst
, src_cnt
, src_sz
);
1423 if (rank
> best_rank
) {
1425 best_chan
= ref
->chan
;
1432 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel
);
1435 * ppc440spe_get_group_entry - get group entry with index idx
1436 * @tdesc: is the last allocated slot in the group.
1438 static struct ppc440spe_adma_desc_slot
*
1439 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot
*tdesc
, u32 entry_idx
)
1441 struct ppc440spe_adma_desc_slot
*iter
= tdesc
->group_head
;
1444 if (entry_idx
< 0 || entry_idx
>= (tdesc
->src_cnt
+ tdesc
->dst_cnt
)) {
1445 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1446 __func__
, entry_idx
, tdesc
->src_cnt
, tdesc
->dst_cnt
);
1450 list_for_each_entry(iter
, &tdesc
->group_list
, chain_node
) {
1451 if (i
++ == entry_idx
)
1458 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1459 * @slot: Slot to free
1460 * Caller must hold &ppc440spe_chan->lock while calling this function
1462 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot
*slot
,
1463 struct ppc440spe_adma_chan
*chan
)
1465 int stride
= slot
->slots_per_op
;
1468 slot
->slots_per_op
= 0;
1469 slot
= list_entry(slot
->slot_node
.next
,
1470 struct ppc440spe_adma_desc_slot
,
1476 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1479 static dma_cookie_t
ppc440spe_adma_run_tx_complete_actions(
1480 struct ppc440spe_adma_desc_slot
*desc
,
1481 struct ppc440spe_adma_chan
*chan
,
1482 dma_cookie_t cookie
)
1484 BUG_ON(desc
->async_tx
.cookie
< 0);
1485 if (desc
->async_tx
.cookie
> 0) {
1486 cookie
= desc
->async_tx
.cookie
;
1487 desc
->async_tx
.cookie
= 0;
1489 /* call the callback (must not sleep or submit new
1490 * operations to this channel)
1492 if (desc
->async_tx
.callback
)
1493 desc
->async_tx
.callback(
1494 desc
->async_tx
.callback_param
);
1496 dma_descriptor_unmap(&desc
->async_tx
);
1499 /* run dependent operations */
1500 dma_run_dependencies(&desc
->async_tx
);
1506 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1508 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot
*desc
,
1509 struct ppc440spe_adma_chan
*chan
)
1511 /* the client is allowed to attach dependent operations
1512 * until 'ack' is set
1514 if (!async_tx_test_ack(&desc
->async_tx
))
1517 /* leave the last descriptor in the chain
1518 * so we can append to it
1520 if (list_is_last(&desc
->chain_node
, &chan
->chain
) ||
1521 desc
->phys
== ppc440spe_chan_get_current_descriptor(chan
))
1524 if (chan
->device
->id
!= PPC440SPE_XOR_ID
) {
1525 /* our DMA interrupt handler clears opc field of
1526 * each processed descriptor. For all types of
1527 * operations except for ZeroSum we do not actually
1528 * need ack from the interrupt handler. ZeroSum is a
1529 * special case since the result of this operation
1530 * is available from the handler only, so if we see
1531 * such type of descriptor (which is unprocessed yet)
1532 * then leave it in chain.
1534 struct dma_cdb
*cdb
= desc
->hw_desc
;
1535 if (cdb
->opc
== DMA_CDB_OPC_DCHECK128
)
1539 dev_dbg(chan
->device
->common
.dev
, "\tfree slot %llx: %d stride: %d\n",
1540 desc
->phys
, desc
->idx
, desc
->slots_per_op
);
1542 list_del(&desc
->chain_node
);
1543 ppc440spe_adma_free_slots(desc
, chan
);
1548 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1549 * which runs through the channel CDBs list until reach the descriptor
1550 * currently processed. When routine determines that all CDBs of group
1551 * are completed then corresponding callbacks (if any) are called and slots
1554 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1556 struct ppc440spe_adma_desc_slot
*iter
, *_iter
, *group_start
= NULL
;
1557 dma_cookie_t cookie
= 0;
1558 u32 current_desc
= ppc440spe_chan_get_current_descriptor(chan
);
1559 int busy
= ppc440spe_chan_is_busy(chan
);
1560 int seen_current
= 0, slot_cnt
= 0, slots_per_op
= 0;
1562 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: %s\n",
1563 chan
->device
->id
, __func__
);
1565 if (!current_desc
) {
1566 /* There were no transactions yet, so
1572 /* free completed slots from the chain starting with
1573 * the oldest descriptor
1575 list_for_each_entry_safe(iter
, _iter
, &chan
->chain
,
1577 dev_dbg(chan
->device
->common
.dev
, "\tcookie: %d slot: %d "
1578 "busy: %d this_desc: %#llx next_desc: %#x "
1579 "cur: %#x ack: %d\n",
1580 iter
->async_tx
.cookie
, iter
->idx
, busy
, iter
->phys
,
1581 ppc440spe_desc_get_link(iter
, chan
), current_desc
,
1582 async_tx_test_ack(&iter
->async_tx
));
1584 prefetch(&_iter
->async_tx
);
1586 /* do not advance past the current descriptor loaded into the
1587 * hardware channel,subsequent descriptors are either in process
1588 * or have not been submitted
1593 /* stop the search if we reach the current descriptor and the
1594 * channel is busy, or if it appears that the current descriptor
1595 * needs to be re-read (i.e. has been appended to)
1597 if (iter
->phys
== current_desc
) {
1598 BUG_ON(seen_current
++);
1599 if (busy
|| ppc440spe_desc_get_link(iter
, chan
)) {
1600 /* not all descriptors of the group have
1601 * been completed; exit.
1607 /* detect the start of a group transaction */
1608 if (!slot_cnt
&& !slots_per_op
) {
1609 slot_cnt
= iter
->slot_cnt
;
1610 slots_per_op
= iter
->slots_per_op
;
1611 if (slot_cnt
<= slots_per_op
) {
1620 slot_cnt
-= slots_per_op
;
1623 /* all the members of a group are complete */
1624 if (slots_per_op
!= 0 && slot_cnt
== 0) {
1625 struct ppc440spe_adma_desc_slot
*grp_iter
, *_grp_iter
;
1626 int end_of_chain
= 0;
1628 /* clean up the group */
1629 slot_cnt
= group_start
->slot_cnt
;
1630 grp_iter
= group_start
;
1631 list_for_each_entry_safe_from(grp_iter
, _grp_iter
,
1632 &chan
->chain
, chain_node
) {
1634 cookie
= ppc440spe_adma_run_tx_complete_actions(
1635 grp_iter
, chan
, cookie
);
1637 slot_cnt
-= slots_per_op
;
1638 end_of_chain
= ppc440spe_adma_clean_slot(
1640 if (end_of_chain
&& slot_cnt
) {
1641 /* Should wait for ZeroSum completion */
1643 chan
->common
.completed_cookie
= cookie
;
1647 if (slot_cnt
== 0 || end_of_chain
)
1651 /* the group should be complete at this point */
1660 } else if (slots_per_op
) /* wait for group completion */
1663 cookie
= ppc440spe_adma_run_tx_complete_actions(iter
, chan
,
1666 if (ppc440spe_adma_clean_slot(iter
, chan
))
1670 BUG_ON(!seen_current
);
1673 chan
->common
.completed_cookie
= cookie
;
1674 pr_debug("\tcompleted cookie %d\n", cookie
);
1680 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1682 static void ppc440spe_adma_tasklet(unsigned long data
)
1684 struct ppc440spe_adma_chan
*chan
= (struct ppc440spe_adma_chan
*) data
;
1686 spin_lock_nested(&chan
->lock
, SINGLE_DEPTH_NESTING
);
1687 __ppc440spe_adma_slot_cleanup(chan
);
1688 spin_unlock(&chan
->lock
);
1692 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1694 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan
*chan
)
1696 spin_lock_bh(&chan
->lock
);
1697 __ppc440spe_adma_slot_cleanup(chan
);
1698 spin_unlock_bh(&chan
->lock
);
1702 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1704 static struct ppc440spe_adma_desc_slot
*ppc440spe_adma_alloc_slots(
1705 struct ppc440spe_adma_chan
*chan
, int num_slots
,
1708 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *_iter
;
1709 struct ppc440spe_adma_desc_slot
*alloc_start
= NULL
;
1710 struct list_head chain
= LIST_HEAD_INIT(chain
);
1711 int slots_found
, retry
= 0;
1714 BUG_ON(!num_slots
|| !slots_per_op
);
1715 /* start search from the last allocated descrtiptor
1716 * if a contiguous allocation can not be found start searching
1717 * from the beginning of the list
1722 iter
= chan
->last_used
;
1724 iter
= list_entry(&chan
->all_slots
,
1725 struct ppc440spe_adma_desc_slot
,
1727 list_for_each_entry_safe_continue(iter
, _iter
, &chan
->all_slots
,
1730 prefetch(&_iter
->async_tx
);
1731 if (iter
->slots_per_op
) {
1736 /* start the allocation if the slot is correctly aligned */
1740 if (slots_found
== num_slots
) {
1741 struct ppc440spe_adma_desc_slot
*alloc_tail
= NULL
;
1742 struct ppc440spe_adma_desc_slot
*last_used
= NULL
;
1747 /* pre-ack all but the last descriptor */
1748 if (num_slots
!= slots_per_op
)
1749 async_tx_ack(&iter
->async_tx
);
1751 list_add_tail(&iter
->chain_node
, &chain
);
1753 iter
->async_tx
.cookie
= 0;
1754 iter
->hw_next
= NULL
;
1756 iter
->slot_cnt
= num_slots
;
1757 iter
->xor_check_result
= NULL
;
1758 for (i
= 0; i
< slots_per_op
; i
++) {
1759 iter
->slots_per_op
= slots_per_op
- i
;
1761 iter
= list_entry(iter
->slot_node
.next
,
1762 struct ppc440spe_adma_desc_slot
,
1765 num_slots
-= slots_per_op
;
1767 alloc_tail
->group_head
= alloc_start
;
1768 alloc_tail
->async_tx
.cookie
= -EBUSY
;
1769 list_splice(&chain
, &alloc_tail
->group_list
);
1770 chan
->last_used
= last_used
;
1777 /* try to free some slots if the allocation fails */
1778 tasklet_schedule(&chan
->irq_tasklet
);
1783 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
1785 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan
*chan
)
1787 struct ppc440spe_adma_chan
*ppc440spe_chan
;
1788 struct ppc440spe_adma_desc_slot
*slot
= NULL
;
1793 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
1794 init
= ppc440spe_chan
->slots_allocated
? 0 : 1;
1795 chan
->chan_id
= ppc440spe_chan
->device
->id
;
1797 /* Allocate descriptor slots */
1798 i
= ppc440spe_chan
->slots_allocated
;
1799 if (ppc440spe_chan
->device
->id
!= PPC440SPE_XOR_ID
)
1800 db_sz
= sizeof(struct dma_cdb
);
1802 db_sz
= sizeof(struct xor_cb
);
1804 for (; i
< (ppc440spe_chan
->device
->pool_size
/ db_sz
); i
++) {
1805 slot
= kzalloc(sizeof(struct ppc440spe_adma_desc_slot
),
1808 printk(KERN_INFO
"SPE ADMA Channel only initialized"
1809 " %d descriptor slots", i
--);
1813 hw_desc
= (char *) ppc440spe_chan
->device
->dma_desc_pool_virt
;
1814 slot
->hw_desc
= (void *) &hw_desc
[i
* db_sz
];
1815 dma_async_tx_descriptor_init(&slot
->async_tx
, chan
);
1816 slot
->async_tx
.tx_submit
= ppc440spe_adma_tx_submit
;
1817 INIT_LIST_HEAD(&slot
->chain_node
);
1818 INIT_LIST_HEAD(&slot
->slot_node
);
1819 INIT_LIST_HEAD(&slot
->group_list
);
1820 slot
->phys
= ppc440spe_chan
->device
->dma_desc_pool
+ i
* db_sz
;
1823 spin_lock_bh(&ppc440spe_chan
->lock
);
1824 ppc440spe_chan
->slots_allocated
++;
1825 list_add_tail(&slot
->slot_node
, &ppc440spe_chan
->all_slots
);
1826 spin_unlock_bh(&ppc440spe_chan
->lock
);
1829 if (i
&& !ppc440spe_chan
->last_used
) {
1830 ppc440spe_chan
->last_used
=
1831 list_entry(ppc440spe_chan
->all_slots
.next
,
1832 struct ppc440spe_adma_desc_slot
,
1836 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
1837 "ppc440spe adma%d: allocated %d descriptor slots\n",
1838 ppc440spe_chan
->device
->id
, i
);
1840 /* initialize the channel and the chain with a null operation */
1842 switch (ppc440spe_chan
->device
->id
) {
1843 case PPC440SPE_DMA0_ID
:
1844 case PPC440SPE_DMA1_ID
:
1845 ppc440spe_chan
->hw_chain_inited
= 0;
1846 /* Use WXOR for self-testing */
1847 if (!ppc440spe_r6_tchan
)
1848 ppc440spe_r6_tchan
= ppc440spe_chan
;
1850 case PPC440SPE_XOR_ID
:
1851 ppc440spe_chan_start_null_xor(ppc440spe_chan
);
1856 ppc440spe_chan
->needs_unmap
= 1;
1859 return (i
> 0) ? i
: -ENOMEM
;
1863 * ppc440spe_rxor_set_region_data -
1865 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot
*desc
,
1866 u8 xor_arg_no
, u32 mask
)
1868 struct xor_cb
*xcb
= desc
->hw_desc
;
1870 xcb
->ops
[xor_arg_no
].h
|= mask
;
1874 * ppc440spe_rxor_set_src -
1876 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot
*desc
,
1877 u8 xor_arg_no
, dma_addr_t addr
)
1879 struct xor_cb
*xcb
= desc
->hw_desc
;
1881 xcb
->ops
[xor_arg_no
].h
|= DMA_CUED_XOR_BASE
;
1882 xcb
->ops
[xor_arg_no
].l
= addr
;
1886 * ppc440spe_rxor_set_mult -
1888 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot
*desc
,
1889 u8 xor_arg_no
, u8 idx
, u8 mult
)
1891 struct xor_cb
*xcb
= desc
->hw_desc
;
1893 xcb
->ops
[xor_arg_no
].h
|= mult
<< (DMA_CUED_MULT1_OFF
+ idx
* 8);
1897 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1900 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan
*chan
)
1902 dev_dbg(chan
->device
->common
.dev
, "ppc440spe adma%d: pending: %d\n",
1903 chan
->device
->id
, chan
->pending
);
1905 if (chan
->pending
>= PPC440SPE_ADMA_THRESHOLD
) {
1907 ppc440spe_chan_append(chan
);
1912 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1913 * (it's not necessary that descriptors will be submitted to the h/w
1914 * chains too right now)
1916 static dma_cookie_t
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor
*tx
)
1918 struct ppc440spe_adma_desc_slot
*sw_desc
;
1919 struct ppc440spe_adma_chan
*chan
= to_ppc440spe_adma_chan(tx
->chan
);
1920 struct ppc440spe_adma_desc_slot
*group_start
, *old_chain_tail
;
1923 dma_cookie_t cookie
;
1925 sw_desc
= tx_to_ppc440spe_adma_slot(tx
);
1927 group_start
= sw_desc
->group_head
;
1928 slot_cnt
= group_start
->slot_cnt
;
1929 slots_per_op
= group_start
->slots_per_op
;
1931 spin_lock_bh(&chan
->lock
);
1932 cookie
= dma_cookie_assign(tx
);
1934 if (unlikely(list_empty(&chan
->chain
))) {
1936 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
1937 chan_first_cdb
[chan
->device
->id
] = group_start
;
1939 /* isn't first peer, bind CDBs to chain */
1940 old_chain_tail
= list_entry(chan
->chain
.prev
,
1941 struct ppc440spe_adma_desc_slot
,
1943 list_splice_init(&sw_desc
->group_list
,
1944 &old_chain_tail
->chain_node
);
1945 /* fix up the hardware chain */
1946 ppc440spe_desc_set_link(chan
, old_chain_tail
, group_start
);
1949 /* increment the pending count by the number of operations */
1950 chan
->pending
+= slot_cnt
/ slots_per_op
;
1951 ppc440spe_adma_check_threshold(chan
);
1952 spin_unlock_bh(&chan
->lock
);
1954 dev_dbg(chan
->device
->common
.dev
,
1955 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1956 chan
->device
->id
, __func__
,
1957 sw_desc
->async_tx
.cookie
, sw_desc
->idx
, sw_desc
);
1963 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1965 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_interrupt(
1966 struct dma_chan
*chan
, unsigned long flags
)
1968 struct ppc440spe_adma_chan
*ppc440spe_chan
;
1969 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
1970 int slot_cnt
, slots_per_op
;
1972 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
1974 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
1975 "ppc440spe adma%d: %s\n", ppc440spe_chan
->device
->id
,
1978 spin_lock_bh(&ppc440spe_chan
->lock
);
1979 slot_cnt
= slots_per_op
= 1;
1980 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
1983 group_start
= sw_desc
->group_head
;
1984 ppc440spe_desc_init_interrupt(group_start
, ppc440spe_chan
);
1985 group_start
->unmap_len
= 0;
1986 sw_desc
->async_tx
.flags
= flags
;
1988 spin_unlock_bh(&ppc440spe_chan
->lock
);
1990 return sw_desc
? &sw_desc
->async_tx
: NULL
;
1994 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1996 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_memcpy(
1997 struct dma_chan
*chan
, dma_addr_t dma_dest
,
1998 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
2000 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2001 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2002 int slot_cnt
, slots_per_op
;
2004 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2009 BUG_ON(len
> PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT
);
2011 spin_lock_bh(&ppc440spe_chan
->lock
);
2013 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2014 "ppc440spe adma%d: %s len: %u int_en %d\n",
2015 ppc440spe_chan
->device
->id
, __func__
, len
,
2016 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2017 slot_cnt
= slots_per_op
= 1;
2018 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2021 group_start
= sw_desc
->group_head
;
2022 ppc440spe_desc_init_memcpy(group_start
, flags
);
2023 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2024 ppc440spe_adma_memcpy_xor_set_src(group_start
, dma_src
, 0);
2025 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2026 sw_desc
->unmap_len
= len
;
2027 sw_desc
->async_tx
.flags
= flags
;
2029 spin_unlock_bh(&ppc440spe_chan
->lock
);
2031 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2035 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2037 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor(
2038 struct dma_chan
*chan
, dma_addr_t dma_dest
,
2039 dma_addr_t
*dma_src
, u32 src_cnt
, size_t len
,
2040 unsigned long flags
)
2042 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2043 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
2044 int slot_cnt
, slots_per_op
;
2046 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2048 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan
->device
->id
,
2049 dma_dest
, dma_src
, src_cnt
));
2052 BUG_ON(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
2054 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2055 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2056 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2057 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2059 spin_lock_bh(&ppc440spe_chan
->lock
);
2060 slot_cnt
= ppc440spe_chan_xor_slot_count(len
, src_cnt
, &slots_per_op
);
2061 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2064 group_start
= sw_desc
->group_head
;
2065 ppc440spe_desc_init_xor(group_start
, src_cnt
, flags
);
2066 ppc440spe_adma_set_dest(group_start
, dma_dest
, 0);
2068 ppc440spe_adma_memcpy_xor_set_src(group_start
,
2069 dma_src
[src_cnt
], src_cnt
);
2070 ppc440spe_desc_set_byte_count(group_start
, ppc440spe_chan
, len
);
2071 sw_desc
->unmap_len
= len
;
2072 sw_desc
->async_tx
.flags
= flags
;
2074 spin_unlock_bh(&ppc440spe_chan
->lock
);
2076 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2080 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot
*desc
,
2082 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
);
2085 * ppc440spe_adma_init_dma2rxor_slot -
2087 static void ppc440spe_adma_init_dma2rxor_slot(
2088 struct ppc440spe_adma_desc_slot
*desc
,
2089 dma_addr_t
*src
, int src_cnt
)
2093 /* initialize CDB */
2094 for (i
= 0; i
< src_cnt
; i
++) {
2095 ppc440spe_adma_dma2rxor_prep_src(desc
, &desc
->rxor_cursor
, i
,
2096 desc
->src_cnt
, (u32
)src
[i
]);
2101 * ppc440spe_dma01_prep_mult -
2102 * for Q operation where destination is also the source
2104 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_mult(
2105 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2106 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2107 const unsigned char *scf
, size_t len
, unsigned long flags
)
2109 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2110 unsigned long op
= 0;
2113 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2116 spin_lock_bh(&ppc440spe_chan
->lock
);
2118 /* use WXOR, each descriptor occupies one slot */
2119 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2121 struct ppc440spe_adma_chan
*chan
;
2122 struct ppc440spe_adma_desc_slot
*iter
;
2123 struct dma_cdb
*hw_desc
;
2125 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2126 set_bits(op
, &sw_desc
->flags
);
2127 sw_desc
->src_cnt
= src_cnt
;
2128 sw_desc
->dst_cnt
= dst_cnt
;
2129 /* First descriptor, zero data in the destination and copy it
2130 * to q page using MULTICAST transfer.
2132 iter
= list_first_entry(&sw_desc
->group_list
,
2133 struct ppc440spe_adma_desc_slot
,
2135 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2136 /* set 'next' pointer */
2137 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2138 struct ppc440spe_adma_desc_slot
,
2140 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2141 hw_desc
= iter
->hw_desc
;
2142 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2144 ppc440spe_desc_set_dest_addr(iter
, chan
,
2145 DMA_CUED_XOR_BASE
, dst
[0], 0);
2146 ppc440spe_desc_set_dest_addr(iter
, chan
, 0, dst
[1], 1);
2147 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2149 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2150 iter
->unmap_len
= len
;
2153 * Second descriptor, multiply data from the q page
2154 * and store the result in real destination.
2156 iter
= list_first_entry(&iter
->chain_node
,
2157 struct ppc440spe_adma_desc_slot
,
2159 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2160 iter
->hw_next
= NULL
;
2161 if (flags
& DMA_PREP_INTERRUPT
)
2162 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2164 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2166 hw_desc
= iter
->hw_desc
;
2167 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2168 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
2169 DMA_CUED_XOR_HB
, dst
[1]);
2170 ppc440spe_desc_set_dest_addr(iter
, chan
,
2171 DMA_CUED_XOR_BASE
, dst
[0], 0);
2173 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2174 DMA_CDB_SG_DST1
, scf
[0]);
2175 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2176 iter
->unmap_len
= len
;
2177 sw_desc
->async_tx
.flags
= flags
;
2180 spin_unlock_bh(&ppc440spe_chan
->lock
);
2186 * ppc440spe_dma01_prep_sum_product -
2187 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2190 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_sum_product(
2191 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2192 dma_addr_t
*dst
, dma_addr_t
*src
, int src_cnt
,
2193 const unsigned char *scf
, size_t len
, unsigned long flags
)
2195 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2196 unsigned long op
= 0;
2199 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2202 spin_lock_bh(&ppc440spe_chan
->lock
);
2204 /* WXOR, each descriptor occupies one slot */
2205 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2207 struct ppc440spe_adma_chan
*chan
;
2208 struct ppc440spe_adma_desc_slot
*iter
;
2209 struct dma_cdb
*hw_desc
;
2211 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2212 set_bits(op
, &sw_desc
->flags
);
2213 sw_desc
->src_cnt
= src_cnt
;
2214 sw_desc
->dst_cnt
= 1;
2215 /* 1st descriptor, src[1] data to q page and zero destination */
2216 iter
= list_first_entry(&sw_desc
->group_list
,
2217 struct ppc440spe_adma_desc_slot
,
2219 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2220 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2221 struct ppc440spe_adma_desc_slot
,
2223 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2224 hw_desc
= iter
->hw_desc
;
2225 hw_desc
->opc
= DMA_CDB_OPC_MULTICAST
;
2227 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2229 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2230 ppc440spe_chan
->qdest
, 1);
2231 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2233 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2234 iter
->unmap_len
= len
;
2236 /* 2nd descriptor, multiply src[1] data and store the
2237 * result in destination */
2238 iter
= list_first_entry(&iter
->chain_node
,
2239 struct ppc440spe_adma_desc_slot
,
2241 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2242 /* set 'next' pointer */
2243 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2244 struct ppc440spe_adma_desc_slot
,
2246 if (flags
& DMA_PREP_INTERRUPT
)
2247 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2249 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2251 hw_desc
= iter
->hw_desc
;
2252 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2253 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2254 ppc440spe_chan
->qdest
);
2255 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2257 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2258 DMA_CDB_SG_DST1
, scf
[1]);
2259 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2260 iter
->unmap_len
= len
;
2263 * 3rd descriptor, multiply src[0] data and xor it
2266 iter
= list_first_entry(&iter
->chain_node
,
2267 struct ppc440spe_adma_desc_slot
,
2269 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2270 iter
->hw_next
= NULL
;
2271 if (flags
& DMA_PREP_INTERRUPT
)
2272 set_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2274 clear_bit(PPC440SPE_DESC_INT
, &iter
->flags
);
2276 hw_desc
= iter
->hw_desc
;
2277 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2278 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
,
2280 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
,
2282 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2283 DMA_CDB_SG_DST1
, scf
[0]);
2284 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
, len
);
2285 iter
->unmap_len
= len
;
2286 sw_desc
->async_tx
.flags
= flags
;
2289 spin_unlock_bh(&ppc440spe_chan
->lock
);
2294 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma01_prep_pq(
2295 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2296 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2297 const unsigned char *scf
, size_t len
, unsigned long flags
)
2300 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2301 unsigned long op
= 0;
2302 unsigned char mult
= 1;
2304 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2305 __func__
, dst_cnt
, src_cnt
, len
);
2306 /* select operations WXOR/RXOR depending on the
2307 * source addresses of operators and the number
2308 * of destinations (RXOR support only Q-parity calculations)
2310 set_bit(PPC440SPE_DESC_WXOR
, &op
);
2311 if (!test_and_set_bit(PPC440SPE_RXOR_RUN
, &ppc440spe_rxor_state
)) {
2314 * - there are more than 1 source,
2315 * - len is aligned on 512-byte boundary,
2316 * - source addresses fit to one of 4 possible regions.
2319 !(len
& MQ0_CF2H_RXOR_BS_MASK
) &&
2320 (src
[0] + len
) == src
[1]) {
2321 /* may do RXOR R1 R2 */
2322 set_bit(PPC440SPE_DESC_RXOR
, &op
);
2324 /* may try to enhance region of RXOR */
2325 if ((src
[1] + len
) == src
[2]) {
2326 /* do RXOR R1 R2 R3 */
2327 set_bit(PPC440SPE_DESC_RXOR123
,
2329 } else if ((src
[1] + len
* 2) == src
[2]) {
2330 /* do RXOR R1 R2 R4 */
2331 set_bit(PPC440SPE_DESC_RXOR124
, &op
);
2332 } else if ((src
[1] + len
* 3) == src
[2]) {
2333 /* do RXOR R1 R2 R5 */
2334 set_bit(PPC440SPE_DESC_RXOR125
,
2338 set_bit(PPC440SPE_DESC_RXOR12
,
2343 set_bit(PPC440SPE_DESC_RXOR12
, &op
);
2347 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2348 /* can not do this operation with RXOR */
2349 clear_bit(PPC440SPE_RXOR_RUN
,
2350 &ppc440spe_rxor_state
);
2352 /* can do; set block size right now */
2353 ppc440spe_desc_set_rxor_block_size(len
);
2357 /* Number of necessary slots depends on operation type selected */
2358 if (!test_bit(PPC440SPE_DESC_RXOR
, &op
)) {
2359 /* This is a WXOR only chain. Need descriptors for each
2360 * source to GF-XOR them with WXOR, and need descriptors
2361 * for each destination to zero them with WXOR
2365 if (flags
& DMA_PREP_ZERO_P
) {
2367 set_bit(PPC440SPE_ZERO_P
, &op
);
2369 if (flags
& DMA_PREP_ZERO_Q
) {
2371 set_bit(PPC440SPE_ZERO_Q
, &op
);
2374 /* Need 1/2 descriptor for RXOR operation, and
2375 * need (src_cnt - (2 or 3)) for WXOR of sources
2380 if (flags
& DMA_PREP_ZERO_P
)
2381 set_bit(PPC440SPE_ZERO_P
, &op
);
2382 if (flags
& DMA_PREP_ZERO_Q
)
2383 set_bit(PPC440SPE_ZERO_Q
, &op
);
2385 if (test_bit(PPC440SPE_DESC_RXOR12
, &op
))
2386 slot_cnt
+= src_cnt
- 2;
2388 slot_cnt
+= src_cnt
- 3;
2390 /* Thus we have either RXOR only chain or
2393 if (slot_cnt
== dst_cnt
)
2394 /* RXOR only chain */
2395 clear_bit(PPC440SPE_DESC_WXOR
, &op
);
2398 spin_lock_bh(&ppc440spe_chan
->lock
);
2399 /* for both RXOR/WXOR each descriptor occupies one slot */
2400 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2402 ppc440spe_desc_init_dma01pq(sw_desc
, dst_cnt
, src_cnt
,
2405 /* setup dst/src/mult */
2406 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2407 __func__
, dst
[0], dst
[1]);
2408 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2410 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2413 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2414 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2415 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2416 * leads to zeroing source data after RXOR.
2417 * So, for P case set-up mult=1 explicitly.
2419 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2420 mult
= scf
[src_cnt
];
2421 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2422 mult
, src_cnt
, dst_cnt
- 1);
2425 /* Setup byte count foreach slot just allocated */
2426 sw_desc
->async_tx
.flags
= flags
;
2427 list_for_each_entry(iter
, &sw_desc
->group_list
,
2429 ppc440spe_desc_set_byte_count(iter
,
2430 ppc440spe_chan
, len
);
2431 iter
->unmap_len
= len
;
2434 spin_unlock_bh(&ppc440spe_chan
->lock
);
2439 static struct ppc440spe_adma_desc_slot
*ppc440spe_dma2_prep_pq(
2440 struct ppc440spe_adma_chan
*ppc440spe_chan
,
2441 dma_addr_t
*dst
, int dst_cnt
, dma_addr_t
*src
, int src_cnt
,
2442 const unsigned char *scf
, size_t len
, unsigned long flags
)
2444 int slot_cnt
, descs_per_op
;
2445 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
, *iter
;
2446 unsigned long op
= 0;
2447 unsigned char mult
= 1;
2450 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2451 __func__, dst_cnt, src_cnt, len);*/
2453 spin_lock_bh(&ppc440spe_chan
->lock
);
2454 descs_per_op
= ppc440spe_dma2_pq_slot_count(src
, src_cnt
, len
);
2455 if (descs_per_op
< 0) {
2456 spin_unlock_bh(&ppc440spe_chan
->lock
);
2460 /* depending on number of sources we have 1 or 2 RXOR chains */
2461 slot_cnt
= descs_per_op
* dst_cnt
;
2463 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
, 1);
2466 sw_desc
->async_tx
.flags
= flags
;
2467 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2468 ppc440spe_desc_init_dma2pq(iter
, dst_cnt
, src_cnt
,
2470 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2472 iter
->unmap_len
= len
;
2474 ppc440spe_init_rxor_cursor(&(iter
->rxor_cursor
));
2475 iter
->rxor_cursor
.len
= len
;
2476 iter
->descs_per_op
= descs_per_op
;
2479 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2481 if (op
% descs_per_op
== 0)
2482 ppc440spe_adma_init_dma2rxor_slot(iter
, src
,
2484 if (likely(!list_is_last(&iter
->chain_node
,
2485 &sw_desc
->group_list
))) {
2486 /* set 'next' pointer */
2488 list_entry(iter
->chain_node
.next
,
2489 struct ppc440spe_adma_desc_slot
,
2491 ppc440spe_xor_set_link(iter
, iter
->hw_next
);
2493 /* this is the last descriptor. */
2494 iter
->hw_next
= NULL
;
2498 /* fixup head descriptor */
2499 sw_desc
->dst_cnt
= dst_cnt
;
2500 if (flags
& DMA_PREP_ZERO_P
)
2501 set_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
);
2502 if (flags
& DMA_PREP_ZERO_Q
)
2503 set_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
);
2505 /* setup dst/src/mult */
2506 ppc440spe_adma_pq_set_dest(sw_desc
, dst
, flags
);
2509 /* handle descriptors (if dst_cnt == 2) inside
2510 * the ppc440spe_adma_pq_set_srcxxx() functions
2512 ppc440spe_adma_pq_set_src(sw_desc
, src
[src_cnt
],
2514 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
))
2515 mult
= scf
[src_cnt
];
2516 ppc440spe_adma_pq_set_src_mult(sw_desc
,
2517 mult
, src_cnt
, dst_cnt
- 1);
2520 spin_unlock_bh(&ppc440spe_chan
->lock
);
2521 ppc440spe_desc_set_rxor_block_size(len
);
2526 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2528 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pq(
2529 struct dma_chan
*chan
, dma_addr_t
*dst
, dma_addr_t
*src
,
2530 unsigned int src_cnt
, const unsigned char *scf
,
2531 size_t len
, unsigned long flags
)
2533 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2534 struct ppc440spe_adma_desc_slot
*sw_desc
= NULL
;
2537 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2539 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan
->device
->id
,
2540 dst
, src
, src_cnt
));
2542 BUG_ON(len
> PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT
);
2545 if (src_cnt
== 1 && dst
[1] == src
[0]) {
2548 /* dst[1] is real destination (Q) */
2550 /* this is the page to multicast source data to */
2551 dest
[1] = ppc440spe_chan
->qdest
;
2552 sw_desc
= ppc440spe_dma01_prep_mult(ppc440spe_chan
,
2553 dest
, 2, src
, src_cnt
, scf
, len
, flags
);
2554 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2557 if (src_cnt
== 2 && dst
[1] == src
[1]) {
2558 sw_desc
= ppc440spe_dma01_prep_sum_product(ppc440spe_chan
,
2559 &dst
[1], src
, 2, scf
, len
, flags
);
2560 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2563 if (!(flags
& DMA_PREP_PQ_DISABLE_P
)) {
2566 flags
|= DMA_PREP_ZERO_P
;
2569 if (!(flags
& DMA_PREP_PQ_DISABLE_Q
)) {
2572 flags
|= DMA_PREP_ZERO_Q
;
2577 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
2578 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2579 ppc440spe_chan
->device
->id
, __func__
, src_cnt
, len
,
2580 flags
& DMA_PREP_INTERRUPT
? 1 : 0);
2582 switch (ppc440spe_chan
->device
->id
) {
2583 case PPC440SPE_DMA0_ID
:
2584 case PPC440SPE_DMA1_ID
:
2585 sw_desc
= ppc440spe_dma01_prep_pq(ppc440spe_chan
,
2586 dst
, dst_cnt
, src
, src_cnt
, scf
,
2590 case PPC440SPE_XOR_ID
:
2591 sw_desc
= ppc440spe_dma2_prep_pq(ppc440spe_chan
,
2592 dst
, dst_cnt
, src
, src_cnt
, scf
,
2597 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2601 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2602 * a PQ_ZERO_SUM operation
2604 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_pqzero_sum(
2605 struct dma_chan
*chan
, dma_addr_t
*pq
, dma_addr_t
*src
,
2606 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
2607 enum sum_check_flags
*pqres
, unsigned long flags
)
2609 struct ppc440spe_adma_chan
*ppc440spe_chan
;
2610 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
2611 dma_addr_t pdest
, qdest
;
2612 int slot_cnt
, slots_per_op
, idst
, dst_cnt
;
2614 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
2616 if (flags
& DMA_PREP_PQ_DISABLE_P
)
2621 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
2626 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan
->device
->id
,
2627 src
, src_cnt
, scf
));
2629 /* Always use WXOR for P/Q calculations (two destinations).
2630 * Need 1 or 2 extra slots to verify results are zero.
2632 idst
= dst_cnt
= (pdest
&& qdest
) ? 2 : 1;
2634 /* One additional slot per destination to clone P/Q
2635 * before calculation (we have to preserve destinations).
2637 slot_cnt
= src_cnt
+ dst_cnt
* 2;
2640 spin_lock_bh(&ppc440spe_chan
->lock
);
2641 sw_desc
= ppc440spe_adma_alloc_slots(ppc440spe_chan
, slot_cnt
,
2644 ppc440spe_desc_init_dma01pqzero_sum(sw_desc
, dst_cnt
, src_cnt
);
2646 /* Setup byte count for each slot just allocated */
2647 sw_desc
->async_tx
.flags
= flags
;
2648 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
2649 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2651 iter
->unmap_len
= len
;
2655 struct dma_cdb
*hw_desc
;
2656 struct ppc440spe_adma_chan
*chan
;
2658 iter
= sw_desc
->group_head
;
2659 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
2660 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2661 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2662 struct ppc440spe_adma_desc_slot
,
2664 hw_desc
= iter
->hw_desc
;
2665 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2668 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2669 ppc440spe_chan
->pdest
, 0);
2670 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, pdest
);
2671 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2673 iter
->unmap_len
= 0;
2674 /* override pdest to preserve original P */
2675 pdest
= ppc440spe_chan
->pdest
;
2678 struct dma_cdb
*hw_desc
;
2679 struct ppc440spe_adma_chan
*chan
;
2681 iter
= list_first_entry(&sw_desc
->group_list
,
2682 struct ppc440spe_adma_desc_slot
,
2684 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
2687 iter
= list_entry(iter
->chain_node
.next
,
2688 struct ppc440spe_adma_desc_slot
,
2692 memset(iter
->hw_desc
, 0, sizeof(struct dma_cdb
));
2693 iter
->hw_next
= list_entry(iter
->chain_node
.next
,
2694 struct ppc440spe_adma_desc_slot
,
2696 hw_desc
= iter
->hw_desc
;
2697 hw_desc
->opc
= DMA_CDB_OPC_MV_SG1_SG2
;
2700 ppc440spe_desc_set_dest_addr(iter
, chan
, 0,
2701 ppc440spe_chan
->qdest
, 0);
2702 ppc440spe_desc_set_src_addr(iter
, chan
, 0, 0, qdest
);
2703 ppc440spe_desc_set_byte_count(iter
, ppc440spe_chan
,
2705 iter
->unmap_len
= 0;
2706 /* override qdest to preserve original Q */
2707 qdest
= ppc440spe_chan
->qdest
;
2710 /* Setup destinations for P/Q ops */
2711 ppc440spe_adma_pqzero_sum_set_dest(sw_desc
, pdest
, qdest
);
2713 /* Setup zero QWORDs into DCHECK CDBs */
2715 list_for_each_entry_reverse(iter
, &sw_desc
->group_list
,
2718 * The last CDB corresponds to Q-parity check,
2719 * the one before last CDB corresponds
2722 if (idst
== DMA_DEST_MAX_NUM
) {
2723 if (idst
== dst_cnt
) {
2724 set_bit(PPC440SPE_DESC_QCHECK
,
2727 set_bit(PPC440SPE_DESC_PCHECK
,
2732 set_bit(PPC440SPE_DESC_QCHECK
,
2735 set_bit(PPC440SPE_DESC_PCHECK
,
2739 iter
->xor_check_result
= pqres
;
2742 * set it to zero, if check fail then result will
2745 *iter
->xor_check_result
= 0;
2746 ppc440spe_desc_set_dcheck(iter
, ppc440spe_chan
,
2753 /* Setup sources and mults for P/Q ops */
2754 list_for_each_entry_continue_reverse(iter
, &sw_desc
->group_list
,
2756 struct ppc440spe_adma_chan
*chan
;
2759 chan
= to_ppc440spe_adma_chan(iter
->async_tx
.chan
);
2760 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
2764 mult_dst
= (dst_cnt
- 1) ? DMA_CDB_SG_DST2
:
2766 ppc440spe_desc_set_src_mult(iter
, chan
,
2775 spin_unlock_bh(&ppc440spe_chan
->lock
);
2776 return sw_desc
? &sw_desc
->async_tx
: NULL
;
2780 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2781 * XOR ZERO_SUM operation
2783 static struct dma_async_tx_descriptor
*ppc440spe_adma_prep_dma_xor_zero_sum(
2784 struct dma_chan
*chan
, dma_addr_t
*src
, unsigned int src_cnt
,
2785 size_t len
, enum sum_check_flags
*result
, unsigned long flags
)
2787 struct dma_async_tx_descriptor
*tx
;
2790 /* validate P, disable Q */
2793 flags
|= DMA_PREP_PQ_DISABLE_Q
;
2795 tx
= ppc440spe_adma_prep_dma_pqzero_sum(chan
, pq
, &src
[1],
2796 src_cnt
- 1, 0, len
,
2802 * ppc440spe_adma_set_dest - set destination address into descriptor
2804 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
2805 dma_addr_t addr
, int index
)
2807 struct ppc440spe_adma_chan
*chan
;
2809 BUG_ON(index
>= sw_desc
->dst_cnt
);
2811 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2813 switch (chan
->device
->id
) {
2814 case PPC440SPE_DMA0_ID
:
2815 case PPC440SPE_DMA1_ID
:
2816 /* to do: support transfers lengths >
2817 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2819 ppc440spe_desc_set_dest_addr(sw_desc
->group_head
,
2820 chan
, 0, addr
, index
);
2822 case PPC440SPE_XOR_ID
:
2823 sw_desc
= ppc440spe_get_group_entry(sw_desc
, index
);
2824 ppc440spe_desc_set_dest_addr(sw_desc
,
2825 chan
, 0, addr
, index
);
2830 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot
*iter
,
2831 struct ppc440spe_adma_chan
*chan
, dma_addr_t addr
)
2833 /* To clear destinations update the descriptor
2834 * (P or Q depending on index) as follows:
2835 * addr is destination (0 corresponds to SG2):
2837 ppc440spe_desc_set_dest_addr(iter
, chan
, DMA_CUED_XOR_BASE
, addr
, 0);
2839 /* ... and the addr is source: */
2840 ppc440spe_desc_set_src_addr(iter
, chan
, 0, DMA_CUED_XOR_HB
, addr
);
2842 /* addr is always SG2 then the mult is always DST1 */
2843 ppc440spe_desc_set_src_mult(iter
, chan
, DMA_CUED_MULT1_OFF
,
2844 DMA_CDB_SG_DST1
, 1);
2848 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2849 * for the PQXOR operation
2851 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot
*sw_desc
,
2852 dma_addr_t
*addrs
, unsigned long flags
)
2854 struct ppc440spe_adma_desc_slot
*iter
;
2855 struct ppc440spe_adma_chan
*chan
;
2856 dma_addr_t paddr
, qaddr
;
2857 dma_addr_t addr
= 0, ppath
, qpath
;
2860 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
2862 if (flags
& DMA_PREP_PQ_DISABLE_P
)
2867 if (flags
& DMA_PREP_PQ_DISABLE_Q
)
2872 if (!paddr
|| !qaddr
)
2873 addr
= paddr
? paddr
: qaddr
;
2875 switch (chan
->device
->id
) {
2876 case PPC440SPE_DMA0_ID
:
2877 case PPC440SPE_DMA1_ID
:
2878 /* walk through the WXOR source list and set P/Q-destinations
2881 if (!test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
2882 /* This is WXOR-only chain; may have 1/2 zero descs */
2883 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
2885 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
2888 iter
= ppc440spe_get_group_entry(sw_desc
, index
);
2890 /* one destination */
2891 list_for_each_entry_from(iter
,
2892 &sw_desc
->group_list
, chain_node
)
2893 ppc440spe_desc_set_dest_addr(iter
, chan
,
2894 DMA_CUED_XOR_BASE
, addr
, 0);
2896 /* two destinations */
2897 list_for_each_entry_from(iter
,
2898 &sw_desc
->group_list
, chain_node
) {
2899 ppc440spe_desc_set_dest_addr(iter
, chan
,
2900 DMA_CUED_XOR_BASE
, paddr
, 0);
2901 ppc440spe_desc_set_dest_addr(iter
, chan
,
2902 DMA_CUED_XOR_BASE
, qaddr
, 1);
2907 /* To clear destinations update the descriptor
2908 * (1st,2nd, or both depending on flags)
2911 if (test_bit(PPC440SPE_ZERO_P
,
2913 iter
= ppc440spe_get_group_entry(
2915 ppc440spe_adma_pq_zero_op(iter
, chan
,
2919 if (test_bit(PPC440SPE_ZERO_Q
,
2921 iter
= ppc440spe_get_group_entry(
2923 ppc440spe_adma_pq_zero_op(iter
, chan
,
2930 /* This is RXOR-only or RXOR/WXOR mixed chain */
2932 /* If we want to include destination into calculations,
2933 * then make dest addresses cued with mult=1 (XOR).
2935 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
2938 (1 << DMA_CUED_MULT1_OFF
);
2939 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
2942 (1 << DMA_CUED_MULT1_OFF
);
2944 /* Setup destination(s) in RXOR slot(s) */
2945 iter
= ppc440spe_get_group_entry(sw_desc
, index
++);
2946 ppc440spe_desc_set_dest_addr(iter
, chan
,
2947 paddr
? ppath
: qpath
,
2948 paddr
? paddr
: qaddr
, 0);
2950 /* two destinations */
2951 iter
= ppc440spe_get_group_entry(sw_desc
,
2953 ppc440spe_desc_set_dest_addr(iter
, chan
,
2957 if (test_bit(PPC440SPE_DESC_WXOR
, &sw_desc
->flags
)) {
2958 /* Setup destination(s) in remaining WXOR
2961 iter
= ppc440spe_get_group_entry(sw_desc
,
2964 /* one destination */
2965 list_for_each_entry_from(iter
,
2966 &sw_desc
->group_list
,
2968 ppc440spe_desc_set_dest_addr(
2974 /* two destinations */
2975 list_for_each_entry_from(iter
,
2976 &sw_desc
->group_list
,
2978 ppc440spe_desc_set_dest_addr(
2982 ppc440spe_desc_set_dest_addr(
2993 case PPC440SPE_XOR_ID
:
2994 /* DMA2 descriptors have only 1 destination, so there are
2995 * two chains - one for each dest.
2996 * If we want to include destination into calculations,
2997 * then make dest addresses cued with mult=1 (XOR).
2999 ppath
= test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
) ?
3002 (1 << DMA_CUED_MULT1_OFF
);
3004 qpath
= test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
) ?
3007 (1 << DMA_CUED_MULT1_OFF
);
3009 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3010 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3011 ppc440spe_desc_set_dest_addr(iter
, chan
,
3012 paddr
? ppath
: qpath
,
3013 paddr
? paddr
: qaddr
, 0);
3014 iter
= list_entry(iter
->chain_node
.next
,
3015 struct ppc440spe_adma_desc_slot
,
3020 /* Two destinations; setup Q here */
3021 iter
= ppc440spe_get_group_entry(sw_desc
,
3022 sw_desc
->descs_per_op
);
3023 for (i
= 0; i
< sw_desc
->descs_per_op
; i
++) {
3024 ppc440spe_desc_set_dest_addr(iter
,
3025 chan
, qpath
, qaddr
, 0);
3026 iter
= list_entry(iter
->chain_node
.next
,
3027 struct ppc440spe_adma_desc_slot
,
3037 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3038 * for the PQ_ZERO_SUM operation
3040 static void ppc440spe_adma_pqzero_sum_set_dest(
3041 struct ppc440spe_adma_desc_slot
*sw_desc
,
3042 dma_addr_t paddr
, dma_addr_t qaddr
)
3044 struct ppc440spe_adma_desc_slot
*iter
, *end
;
3045 struct ppc440spe_adma_chan
*chan
;
3046 dma_addr_t addr
= 0;
3049 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3051 /* walk through the WXOR source list and set P/Q-destinations
3054 idx
= (paddr
&& qaddr
) ? 2 : 1;
3056 list_for_each_entry_reverse(end
, &sw_desc
->group_list
,
3062 idx
= (paddr
&& qaddr
) ? 2 : 1;
3063 iter
= ppc440spe_get_group_entry(sw_desc
, idx
);
3065 if (paddr
&& qaddr
) {
3066 /* two destinations */
3067 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3069 if (unlikely(iter
== end
))
3071 ppc440spe_desc_set_dest_addr(iter
, chan
,
3072 DMA_CUED_XOR_BASE
, paddr
, 0);
3073 ppc440spe_desc_set_dest_addr(iter
, chan
,
3074 DMA_CUED_XOR_BASE
, qaddr
, 1);
3077 /* one destination */
3078 addr
= paddr
? paddr
: qaddr
;
3079 list_for_each_entry_from(iter
, &sw_desc
->group_list
,
3081 if (unlikely(iter
== end
))
3083 ppc440spe_desc_set_dest_addr(iter
, chan
,
3084 DMA_CUED_XOR_BASE
, addr
, 0);
3088 /* The remaining descriptors are DATACHECK. These have no need in
3089 * destination. Actually, these destinations are used there
3090 * as sources for check operation. So, set addr as source.
3092 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, addr
? addr
: paddr
);
3095 end
= list_entry(end
->chain_node
.next
,
3096 struct ppc440spe_adma_desc_slot
, chain_node
);
3097 ppc440spe_desc_set_src_addr(end
, chan
, 0, 0, qaddr
);
3102 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3104 static inline void ppc440spe_desc_set_xor_src_cnt(
3105 struct ppc440spe_adma_desc_slot
*desc
,
3108 struct xor_cb
*hw_desc
= desc
->hw_desc
;
3110 hw_desc
->cbc
&= ~XOR_CDCR_OAC_MSK
;
3111 hw_desc
->cbc
|= src_cnt
;
3115 * ppc440spe_adma_pq_set_src - set source address into descriptor
3117 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot
*sw_desc
,
3118 dma_addr_t addr
, int index
)
3120 struct ppc440spe_adma_chan
*chan
;
3121 dma_addr_t haddr
= 0;
3122 struct ppc440spe_adma_desc_slot
*iter
= NULL
;
3124 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3126 switch (chan
->device
->id
) {
3127 case PPC440SPE_DMA0_ID
:
3128 case PPC440SPE_DMA1_ID
:
3129 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3131 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3132 /* RXOR-only or RXOR/WXOR operation */
3133 int iskip
= test_bit(PPC440SPE_DESC_RXOR12
,
3134 &sw_desc
->flags
) ? 2 : 3;
3137 /* 1st slot (RXOR) */
3138 /* setup sources region (R1-2-3, R1-2-4,
3141 if (test_bit(PPC440SPE_DESC_RXOR12
,
3143 haddr
= DMA_RXOR12
<<
3144 DMA_CUED_REGION_OFF
;
3145 else if (test_bit(PPC440SPE_DESC_RXOR123
,
3147 haddr
= DMA_RXOR123
<<
3148 DMA_CUED_REGION_OFF
;
3149 else if (test_bit(PPC440SPE_DESC_RXOR124
,
3151 haddr
= DMA_RXOR124
<<
3152 DMA_CUED_REGION_OFF
;
3153 else if (test_bit(PPC440SPE_DESC_RXOR125
,
3155 haddr
= DMA_RXOR125
<<
3156 DMA_CUED_REGION_OFF
;
3159 haddr
|= DMA_CUED_XOR_BASE
;
3160 iter
= ppc440spe_get_group_entry(sw_desc
, 0);
3161 } else if (index
< iskip
) {
3163 * shall actually set source address only once
3164 * instead of first <iskip>
3168 /* 2nd/3d and next slots (WXOR);
3169 * skip first slot with RXOR
3171 haddr
= DMA_CUED_XOR_HB
;
3172 iter
= ppc440spe_get_group_entry(sw_desc
,
3173 index
- iskip
+ sw_desc
->dst_cnt
);
3178 /* WXOR-only operation; skip first slots with
3179 * zeroing destinations
3181 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3183 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3186 haddr
= DMA_CUED_XOR_HB
;
3187 iter
= ppc440spe_get_group_entry(sw_desc
,
3192 ppc440spe_desc_set_src_addr(iter
, chan
, 0, haddr
, addr
);
3195 test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
) &&
3196 sw_desc
->dst_cnt
== 2) {
3197 /* if we have two destinations for RXOR, then
3198 * setup source in the second descr too
3200 iter
= ppc440spe_get_group_entry(sw_desc
, 1);
3201 ppc440spe_desc_set_src_addr(iter
, chan
, 0,
3207 case PPC440SPE_XOR_ID
:
3208 /* DMA2 may do Biskup */
3209 iter
= sw_desc
->group_head
;
3210 if (iter
->dst_cnt
== 2) {
3211 /* both P & Q calculations required; set P src here */
3212 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3215 iter
= ppc440spe_get_group_entry(sw_desc
,
3216 sw_desc
->descs_per_op
);
3218 ppc440spe_adma_dma2rxor_set_src(iter
, index
, addr
);
3224 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3226 static void ppc440spe_adma_memcpy_xor_set_src(
3227 struct ppc440spe_adma_desc_slot
*sw_desc
,
3228 dma_addr_t addr
, int index
)
3230 struct ppc440spe_adma_chan
*chan
;
3232 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3233 sw_desc
= sw_desc
->group_head
;
3235 if (likely(sw_desc
))
3236 ppc440spe_desc_set_src_addr(sw_desc
, chan
, index
, 0, addr
);
3240 * ppc440spe_adma_dma2rxor_inc_addr -
3242 static void ppc440spe_adma_dma2rxor_inc_addr(
3243 struct ppc440spe_adma_desc_slot
*desc
,
3244 struct ppc440spe_rxor
*cursor
, int index
, int src_cnt
)
3246 cursor
->addr_count
++;
3247 if (index
== src_cnt
- 1) {
3248 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3249 } else if (cursor
->addr_count
== XOR_MAX_OPS
) {
3250 ppc440spe_desc_set_xor_src_cnt(desc
, cursor
->addr_count
);
3251 cursor
->addr_count
= 0;
3252 cursor
->desc_count
++;
3257 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3259 static int ppc440spe_adma_dma2rxor_prep_src(
3260 struct ppc440spe_adma_desc_slot
*hdesc
,
3261 struct ppc440spe_rxor
*cursor
, int index
,
3262 int src_cnt
, u32 addr
)
3266 struct ppc440spe_adma_desc_slot
*desc
= hdesc
;
3269 for (i
= 0; i
< cursor
->desc_count
; i
++) {
3270 desc
= list_entry(hdesc
->chain_node
.next
,
3271 struct ppc440spe_adma_desc_slot
,
3275 switch (cursor
->state
) {
3277 if (addr
== cursor
->addrl
+ cursor
->len
) {
3280 cursor
->xor_count
++;
3281 if (index
== src_cnt
-1) {
3282 ppc440spe_rxor_set_region(desc
,
3284 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3285 ppc440spe_adma_dma2rxor_inc_addr(
3286 desc
, cursor
, index
, src_cnt
);
3288 } else if (cursor
->addrl
== addr
+ cursor
->len
) {
3291 cursor
->xor_count
++;
3292 set_bit(cursor
->addr_count
, &desc
->reverse_flags
[0]);
3293 if (index
== src_cnt
-1) {
3294 ppc440spe_rxor_set_region(desc
,
3296 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3297 ppc440spe_adma_dma2rxor_inc_addr(
3298 desc
, cursor
, index
, src_cnt
);
3301 printk(KERN_ERR
"Cannot build "
3302 "DMA2 RXOR command block.\n");
3307 sign
= test_bit(cursor
->addr_count
,
3308 desc
->reverse_flags
)
3310 if (index
== src_cnt
-2 || (sign
== -1
3311 && addr
!= cursor
->addrl
- 2*cursor
->len
)) {
3313 cursor
->xor_count
= 1;
3314 cursor
->addrl
= addr
;
3315 ppc440spe_rxor_set_region(desc
,
3317 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3318 ppc440spe_adma_dma2rxor_inc_addr(
3319 desc
, cursor
, index
, src_cnt
);
3320 } else if (addr
== cursor
->addrl
+ 2*sign
*cursor
->len
) {
3322 cursor
->xor_count
= 0;
3323 ppc440spe_rxor_set_region(desc
,
3325 DMA_RXOR123
<< DMA_CUED_REGION_OFF
);
3326 if (index
== src_cnt
-1) {
3327 ppc440spe_adma_dma2rxor_inc_addr(
3328 desc
, cursor
, index
, src_cnt
);
3330 } else if (addr
== cursor
->addrl
+ 3*cursor
->len
) {
3332 cursor
->xor_count
= 0;
3333 ppc440spe_rxor_set_region(desc
,
3335 DMA_RXOR124
<< DMA_CUED_REGION_OFF
);
3336 if (index
== src_cnt
-1) {
3337 ppc440spe_adma_dma2rxor_inc_addr(
3338 desc
, cursor
, index
, src_cnt
);
3340 } else if (addr
== cursor
->addrl
+ 4*cursor
->len
) {
3342 cursor
->xor_count
= 0;
3343 ppc440spe_rxor_set_region(desc
,
3345 DMA_RXOR125
<< DMA_CUED_REGION_OFF
);
3346 if (index
== src_cnt
-1) {
3347 ppc440spe_adma_dma2rxor_inc_addr(
3348 desc
, cursor
, index
, src_cnt
);
3352 cursor
->xor_count
= 1;
3353 cursor
->addrl
= addr
;
3354 ppc440spe_rxor_set_region(desc
,
3356 DMA_RXOR12
<< DMA_CUED_REGION_OFF
);
3357 ppc440spe_adma_dma2rxor_inc_addr(
3358 desc
, cursor
, index
, src_cnt
);
3363 cursor
->addrl
= addr
;
3364 cursor
->xor_count
++;
3366 ppc440spe_adma_dma2rxor_inc_addr(
3367 desc
, cursor
, index
, src_cnt
);
3376 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3377 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3379 static void ppc440spe_adma_dma2rxor_set_src(
3380 struct ppc440spe_adma_desc_slot
*desc
,
3381 int index
, dma_addr_t addr
)
3383 struct xor_cb
*xcb
= desc
->hw_desc
;
3384 int k
= 0, op
= 0, lop
= 0;
3386 /* get the RXOR operand which corresponds to index addr */
3387 while (op
<= index
) {
3389 if (k
== XOR_MAX_OPS
) {
3391 desc
= list_entry(desc
->chain_node
.next
,
3392 struct ppc440spe_adma_desc_slot
, chain_node
);
3393 xcb
= desc
->hw_desc
;
3396 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3397 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3405 if (test_bit(k
-1, desc
->reverse_flags
)) {
3406 /* reverse operand order; put last op in RXOR group */
3407 if (index
== op
- 1)
3408 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3410 /* direct operand order; put first op in RXOR group */
3412 ppc440spe_rxor_set_src(desc
, k
- 1, addr
);
3417 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3418 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3420 static void ppc440spe_adma_dma2rxor_set_mult(
3421 struct ppc440spe_adma_desc_slot
*desc
,
3424 struct xor_cb
*xcb
= desc
->hw_desc
;
3425 int k
= 0, op
= 0, lop
= 0;
3427 /* get the RXOR operand which corresponds to index mult */
3428 while (op
<= index
) {
3430 if (k
== XOR_MAX_OPS
) {
3432 desc
= list_entry(desc
->chain_node
.next
,
3433 struct ppc440spe_adma_desc_slot
,
3435 xcb
= desc
->hw_desc
;
3438 if ((xcb
->ops
[k
++].h
& (DMA_RXOR12
<< DMA_CUED_REGION_OFF
)) ==
3439 (DMA_RXOR12
<< DMA_CUED_REGION_OFF
))
3446 if (test_bit(k
-1, desc
->reverse_flags
)) {
3448 ppc440spe_rxor_set_mult(desc
, k
- 1, op
- index
- 1, mult
);
3451 ppc440spe_rxor_set_mult(desc
, k
- 1, index
- lop
, mult
);
3456 * ppc440spe_init_rxor_cursor -
3458 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor
*cursor
)
3460 memset(cursor
, 0, sizeof(struct ppc440spe_rxor
));
3465 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3466 * descriptor for the PQXOR operation
3468 static void ppc440spe_adma_pq_set_src_mult(
3469 struct ppc440spe_adma_desc_slot
*sw_desc
,
3470 unsigned char mult
, int index
, int dst_pos
)
3472 struct ppc440spe_adma_chan
*chan
;
3473 u32 mult_idx
, mult_dst
;
3474 struct ppc440spe_adma_desc_slot
*iter
= NULL
, *iter1
= NULL
;
3476 chan
= to_ppc440spe_adma_chan(sw_desc
->async_tx
.chan
);
3478 switch (chan
->device
->id
) {
3479 case PPC440SPE_DMA0_ID
:
3480 case PPC440SPE_DMA1_ID
:
3481 if (test_bit(PPC440SPE_DESC_RXOR
, &sw_desc
->flags
)) {
3482 int region
= test_bit(PPC440SPE_DESC_RXOR12
,
3483 &sw_desc
->flags
) ? 2 : 3;
3485 if (index
< region
) {
3486 /* RXOR multipliers */
3487 iter
= ppc440spe_get_group_entry(sw_desc
,
3488 sw_desc
->dst_cnt
- 1);
3489 if (sw_desc
->dst_cnt
== 2)
3490 iter1
= ppc440spe_get_group_entry(
3493 mult_idx
= DMA_CUED_MULT1_OFF
+ (index
<< 3);
3494 mult_dst
= DMA_CDB_SG_SRC
;
3496 /* WXOR multiplier */
3497 iter
= ppc440spe_get_group_entry(sw_desc
,
3500 mult_idx
= DMA_CUED_MULT1_OFF
;
3501 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
:
3508 * skip first slots with destinations (if ZERO_DST has
3511 if (test_bit(PPC440SPE_ZERO_P
, &sw_desc
->flags
))
3513 if (test_bit(PPC440SPE_ZERO_Q
, &sw_desc
->flags
))
3516 iter
= ppc440spe_get_group_entry(sw_desc
, index
+ znum
);
3517 mult_idx
= DMA_CUED_MULT1_OFF
;
3518 mult_dst
= dst_pos
? DMA_CDB_SG_DST2
: DMA_CDB_SG_DST1
;
3522 ppc440spe_desc_set_src_mult(iter
, chan
,
3523 mult_idx
, mult_dst
, mult
);
3525 if (unlikely(iter1
)) {
3526 /* if we have two destinations for RXOR, then
3527 * we've just set Q mult. Set-up P now.
3529 ppc440spe_desc_set_src_mult(iter1
, chan
,
3530 mult_idx
, mult_dst
, 1);
3536 case PPC440SPE_XOR_ID
:
3537 iter
= sw_desc
->group_head
;
3538 if (sw_desc
->dst_cnt
== 2) {
3539 /* both P & Q calculations required; set P mult here */
3540 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, 1);
3542 /* and then set Q mult */
3543 iter
= ppc440spe_get_group_entry(sw_desc
,
3544 sw_desc
->descs_per_op
);
3546 ppc440spe_adma_dma2rxor_set_mult(iter
, index
, mult
);
3552 * ppc440spe_adma_free_chan_resources - free the resources allocated
3554 static void ppc440spe_adma_free_chan_resources(struct dma_chan
*chan
)
3556 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3557 struct ppc440spe_adma_desc_slot
*iter
, *_iter
;
3558 int in_use_descs
= 0;
3560 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3561 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3563 spin_lock_bh(&ppc440spe_chan
->lock
);
3564 list_for_each_entry_safe(iter
, _iter
, &ppc440spe_chan
->chain
,
3567 list_del(&iter
->chain_node
);
3569 list_for_each_entry_safe_reverse(iter
, _iter
,
3570 &ppc440spe_chan
->all_slots
, slot_node
) {
3571 list_del(&iter
->slot_node
);
3573 ppc440spe_chan
->slots_allocated
--;
3575 ppc440spe_chan
->last_used
= NULL
;
3577 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
3578 "ppc440spe adma%d %s slots_allocated %d\n",
3579 ppc440spe_chan
->device
->id
,
3580 __func__
, ppc440spe_chan
->slots_allocated
);
3581 spin_unlock_bh(&ppc440spe_chan
->lock
);
3583 /* one is ok since we left it on there on purpose */
3584 if (in_use_descs
> 1)
3585 printk(KERN_ERR
"SPE: Freeing %d in use descriptors!\n",
3590 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3591 * @chan: ADMA channel handle
3592 * @cookie: ADMA transaction identifier
3593 * @txstate: a holder for the current state of the channel
3595 static enum dma_status
ppc440spe_adma_tx_status(struct dma_chan
*chan
,
3596 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
3598 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3599 enum dma_status ret
;
3601 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3602 ret
= dma_cookie_status(chan
, cookie
, txstate
);
3603 if (ret
== DMA_COMPLETE
)
3606 ppc440spe_adma_slot_cleanup(ppc440spe_chan
);
3608 return dma_cookie_status(chan
, cookie
, txstate
);
3612 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3614 static irqreturn_t
ppc440spe_adma_eot_handler(int irq
, void *data
)
3616 struct ppc440spe_adma_chan
*chan
= data
;
3618 dev_dbg(chan
->device
->common
.dev
,
3619 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3621 tasklet_schedule(&chan
->irq_tasklet
);
3622 ppc440spe_adma_device_clear_eot_status(chan
);
3628 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3629 * do the same things as a eot handler
3631 static irqreturn_t
ppc440spe_adma_err_handler(int irq
, void *data
)
3633 struct ppc440spe_adma_chan
*chan
= data
;
3635 dev_dbg(chan
->device
->common
.dev
,
3636 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3638 tasklet_schedule(&chan
->irq_tasklet
);
3639 ppc440spe_adma_device_clear_eot_status(chan
);
3645 * ppc440spe_test_callback - called when test operation has been done
3647 static void ppc440spe_test_callback(void *unused
)
3649 complete(&ppc440spe_r6_test_comp
);
3653 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3655 static void ppc440spe_adma_issue_pending(struct dma_chan
*chan
)
3657 struct ppc440spe_adma_chan
*ppc440spe_chan
;
3659 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
3660 dev_dbg(ppc440spe_chan
->device
->common
.dev
,
3661 "ppc440spe adma%d: %s %d \n", ppc440spe_chan
->device
->id
,
3662 __func__
, ppc440spe_chan
->pending
);
3664 if (ppc440spe_chan
->pending
) {
3665 ppc440spe_chan
->pending
= 0;
3666 ppc440spe_chan_append(ppc440spe_chan
);
3671 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3672 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
3673 * specific operation)
3675 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan
*chan
)
3677 struct ppc440spe_adma_desc_slot
*sw_desc
, *group_start
;
3678 dma_cookie_t cookie
;
3679 int slot_cnt
, slots_per_op
;
3681 dev_dbg(chan
->device
->common
.dev
,
3682 "ppc440spe adma%d: %s\n", chan
->device
->id
, __func__
);
3684 spin_lock_bh(&chan
->lock
);
3685 slot_cnt
= ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op
);
3686 sw_desc
= ppc440spe_adma_alloc_slots(chan
, slot_cnt
, slots_per_op
);
3688 group_start
= sw_desc
->group_head
;
3689 list_splice_init(&sw_desc
->group_list
, &chan
->chain
);
3690 async_tx_ack(&sw_desc
->async_tx
);
3691 ppc440spe_desc_init_null_xor(group_start
);
3693 cookie
= dma_cookie_assign(&sw_desc
->async_tx
);
3695 /* initialize the completed cookie to be less than
3696 * the most recently used cookie
3698 chan
->common
.completed_cookie
= cookie
- 1;
3700 /* channel should not be busy */
3701 BUG_ON(ppc440spe_chan_is_busy(chan
));
3703 /* set the descriptor address */
3704 ppc440spe_chan_set_first_xor_descriptor(chan
, sw_desc
);
3706 /* run the descriptor */
3707 ppc440spe_chan_run(chan
);
3709 printk(KERN_ERR
"ppc440spe adma%d"
3710 " failed to allocate null descriptor\n",
3712 spin_unlock_bh(&chan
->lock
);
3716 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3717 * For this we just perform one WXOR operation with the same source
3718 * and destination addresses, the GF-multiplier is 1; so if RAID-6
3719 * capabilities are enabled then we'll get src/dst filled with zero.
3721 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan
*chan
)
3723 struct ppc440spe_adma_desc_slot
*sw_desc
, *iter
;
3726 dma_addr_t dma_addr
, addrs
[2];
3727 unsigned long op
= 0;
3730 set_bit(PPC440SPE_DESC_WXOR
, &op
);
3732 pg
= alloc_page(GFP_KERNEL
);
3736 spin_lock_bh(&chan
->lock
);
3737 sw_desc
= ppc440spe_adma_alloc_slots(chan
, 1, 1);
3739 /* 1 src, 1 dsr, int_ena, WXOR */
3740 ppc440spe_desc_init_dma01pq(sw_desc
, 1, 1, 1, op
);
3741 list_for_each_entry(iter
, &sw_desc
->group_list
, chain_node
) {
3742 ppc440spe_desc_set_byte_count(iter
, chan
, PAGE_SIZE
);
3743 iter
->unmap_len
= PAGE_SIZE
;
3747 spin_unlock_bh(&chan
->lock
);
3750 spin_unlock_bh(&chan
->lock
);
3752 /* Fill the test page with ones */
3753 memset(page_address(pg
), 0xFF, PAGE_SIZE
);
3754 dma_addr
= dma_map_page(chan
->device
->dev
, pg
, 0,
3755 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
3757 /* Setup addresses */
3758 ppc440spe_adma_pq_set_src(sw_desc
, dma_addr
, 0);
3759 ppc440spe_adma_pq_set_src_mult(sw_desc
, 1, 0, 0);
3760 addrs
[0] = dma_addr
;
3762 ppc440spe_adma_pq_set_dest(sw_desc
, addrs
, DMA_PREP_PQ_DISABLE_Q
);
3764 async_tx_ack(&sw_desc
->async_tx
);
3765 sw_desc
->async_tx
.callback
= ppc440spe_test_callback
;
3766 sw_desc
->async_tx
.callback_param
= NULL
;
3768 init_completion(&ppc440spe_r6_test_comp
);
3770 ppc440spe_adma_tx_submit(&sw_desc
->async_tx
);
3771 ppc440spe_adma_issue_pending(&chan
->common
);
3773 wait_for_completion(&ppc440spe_r6_test_comp
);
3775 /* Now check if the test page is zeroed */
3776 a
= page_address(pg
);
3777 if ((*(u32
*)a
) == 0 && memcmp(a
, a
+4, PAGE_SIZE
-4) == 0) {
3778 /* page is zero - RAID-6 enabled */
3781 /* RAID-6 was not enabled */
3789 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device
*adev
)
3792 case PPC440SPE_DMA0_ID
:
3793 case PPC440SPE_DMA1_ID
:
3794 dma_cap_set(DMA_MEMCPY
, adev
->common
.cap_mask
);
3795 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
3796 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
3797 dma_cap_set(DMA_PQ_VAL
, adev
->common
.cap_mask
);
3798 dma_cap_set(DMA_XOR_VAL
, adev
->common
.cap_mask
);
3800 case PPC440SPE_XOR_ID
:
3801 dma_cap_set(DMA_XOR
, adev
->common
.cap_mask
);
3802 dma_cap_set(DMA_PQ
, adev
->common
.cap_mask
);
3803 dma_cap_set(DMA_INTERRUPT
, adev
->common
.cap_mask
);
3804 adev
->common
.cap_mask
= adev
->common
.cap_mask
;
3808 /* Set base routines */
3809 adev
->common
.device_alloc_chan_resources
=
3810 ppc440spe_adma_alloc_chan_resources
;
3811 adev
->common
.device_free_chan_resources
=
3812 ppc440spe_adma_free_chan_resources
;
3813 adev
->common
.device_tx_status
= ppc440spe_adma_tx_status
;
3814 adev
->common
.device_issue_pending
= ppc440spe_adma_issue_pending
;
3816 /* Set prep routines based on capability */
3817 if (dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
)) {
3818 adev
->common
.device_prep_dma_memcpy
=
3819 ppc440spe_adma_prep_dma_memcpy
;
3821 if (dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
)) {
3822 adev
->common
.max_xor
= XOR_MAX_OPS
;
3823 adev
->common
.device_prep_dma_xor
=
3824 ppc440spe_adma_prep_dma_xor
;
3826 if (dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
)) {
3828 case PPC440SPE_DMA0_ID
:
3829 dma_set_maxpq(&adev
->common
,
3830 DMA0_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
3832 case PPC440SPE_DMA1_ID
:
3833 dma_set_maxpq(&adev
->common
,
3834 DMA1_FIFO_SIZE
/ sizeof(struct dma_cdb
), 0);
3836 case PPC440SPE_XOR_ID
:
3837 adev
->common
.max_pq
= XOR_MAX_OPS
* 3;
3840 adev
->common
.device_prep_dma_pq
=
3841 ppc440spe_adma_prep_dma_pq
;
3843 if (dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
)) {
3845 case PPC440SPE_DMA0_ID
:
3846 adev
->common
.max_pq
= DMA0_FIFO_SIZE
/
3847 sizeof(struct dma_cdb
);
3849 case PPC440SPE_DMA1_ID
:
3850 adev
->common
.max_pq
= DMA1_FIFO_SIZE
/
3851 sizeof(struct dma_cdb
);
3854 adev
->common
.device_prep_dma_pq_val
=
3855 ppc440spe_adma_prep_dma_pqzero_sum
;
3857 if (dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
)) {
3859 case PPC440SPE_DMA0_ID
:
3860 adev
->common
.max_xor
= DMA0_FIFO_SIZE
/
3861 sizeof(struct dma_cdb
);
3863 case PPC440SPE_DMA1_ID
:
3864 adev
->common
.max_xor
= DMA1_FIFO_SIZE
/
3865 sizeof(struct dma_cdb
);
3868 adev
->common
.device_prep_dma_xor_val
=
3869 ppc440spe_adma_prep_dma_xor_zero_sum
;
3871 if (dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
)) {
3872 adev
->common
.device_prep_dma_interrupt
=
3873 ppc440spe_adma_prep_dma_interrupt
;
3875 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3876 "( %s%s%s%s%s%s)\n",
3877 dev_name(adev
->dev
),
3878 dma_has_cap(DMA_PQ
, adev
->common
.cap_mask
) ? "pq " : "",
3879 dma_has_cap(DMA_PQ_VAL
, adev
->common
.cap_mask
) ? "pq_val " : "",
3880 dma_has_cap(DMA_XOR
, adev
->common
.cap_mask
) ? "xor " : "",
3881 dma_has_cap(DMA_XOR_VAL
, adev
->common
.cap_mask
) ? "xor_val " : "",
3882 dma_has_cap(DMA_MEMCPY
, adev
->common
.cap_mask
) ? "memcpy " : "",
3883 dma_has_cap(DMA_INTERRUPT
, adev
->common
.cap_mask
) ? "intr " : "");
3886 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device
*adev
,
3887 struct ppc440spe_adma_chan
*chan
,
3890 struct platform_device
*ofdev
;
3891 struct device_node
*np
;
3894 ofdev
= container_of(adev
->dev
, struct platform_device
, dev
);
3895 np
= ofdev
->dev
.of_node
;
3896 if (adev
->id
!= PPC440SPE_XOR_ID
) {
3897 adev
->err_irq
= irq_of_parse_and_map(np
, 1);
3898 if (adev
->err_irq
== NO_IRQ
) {
3899 dev_warn(adev
->dev
, "no err irq resource?\n");
3900 *initcode
= PPC_ADMA_INIT_IRQ2
;
3901 adev
->err_irq
= -ENXIO
;
3903 atomic_inc(&ppc440spe_adma_err_irq_ref
);
3905 adev
->err_irq
= -ENXIO
;
3908 adev
->irq
= irq_of_parse_and_map(np
, 0);
3909 if (adev
->irq
== NO_IRQ
) {
3910 dev_err(adev
->dev
, "no irq resource\n");
3911 *initcode
= PPC_ADMA_INIT_IRQ1
;
3915 dev_dbg(adev
->dev
, "irq %d, err irq %d\n",
3916 adev
->irq
, adev
->err_irq
);
3918 ret
= request_irq(adev
->irq
, ppc440spe_adma_eot_handler
,
3919 0, dev_driver_string(adev
->dev
), chan
);
3921 dev_err(adev
->dev
, "can't request irq %d\n",
3923 *initcode
= PPC_ADMA_INIT_IRQ1
;
3928 /* only DMA engines have a separate error IRQ
3929 * so it's Ok if err_irq < 0 in XOR engine case.
3931 if (adev
->err_irq
> 0) {
3932 /* both DMA engines share common error IRQ */
3933 ret
= request_irq(adev
->err_irq
,
3934 ppc440spe_adma_err_handler
,
3936 dev_driver_string(adev
->dev
),
3939 dev_err(adev
->dev
, "can't request irq %d\n",
3941 *initcode
= PPC_ADMA_INIT_IRQ2
;
3947 if (adev
->id
== PPC440SPE_XOR_ID
) {
3948 /* enable XOR engine interrupts */
3949 iowrite32be(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
3950 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
,
3951 &adev
->xor_reg
->ier
);
3955 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
3957 pr_err("%s: can't find I2O device tree node\n",
3962 adev
->i2o_reg
= of_iomap(np
, 0);
3963 if (!adev
->i2o_reg
) {
3964 pr_err("%s: failed to map I2O registers\n", __func__
);
3970 /* Unmask 'CS FIFO Attention' interrupts and
3971 * enable generating interrupts on errors
3973 enable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
3974 ~(I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
3975 ~(I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
3976 mask
= ioread32(&adev
->i2o_reg
->iopim
) & enable
;
3977 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
3982 free_irq(adev
->irq
, chan
);
3984 irq_dispose_mapping(adev
->irq
);
3986 if (adev
->err_irq
> 0) {
3987 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
))
3988 irq_dispose_mapping(adev
->err_irq
);
3993 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device
*adev
,
3994 struct ppc440spe_adma_chan
*chan
)
3998 if (adev
->id
== PPC440SPE_XOR_ID
) {
3999 /* disable XOR engine interrupts */
4000 mask
= ioread32be(&adev
->xor_reg
->ier
);
4001 mask
&= ~(XOR_IE_CBCIE_BIT
| XOR_IE_ICBIE_BIT
|
4002 XOR_IE_ICIE_BIT
| XOR_IE_RPTIE_BIT
);
4003 iowrite32be(mask
, &adev
->xor_reg
->ier
);
4005 /* disable DMAx engine interrupts */
4006 disable
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4007 (I2O_IOPIM_P0SNE
| I2O_IOPIM_P0EM
) :
4008 (I2O_IOPIM_P1SNE
| I2O_IOPIM_P1EM
);
4009 mask
= ioread32(&adev
->i2o_reg
->iopim
) | disable
;
4010 iowrite32(mask
, &adev
->i2o_reg
->iopim
);
4012 free_irq(adev
->irq
, chan
);
4013 irq_dispose_mapping(adev
->irq
);
4014 if (adev
->err_irq
> 0) {
4015 free_irq(adev
->err_irq
, chan
);
4016 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref
)) {
4017 irq_dispose_mapping(adev
->err_irq
);
4018 iounmap(adev
->i2o_reg
);
4024 * ppc440spe_adma_probe - probe the asynch device
4026 static int ppc440spe_adma_probe(struct platform_device
*ofdev
)
4028 struct device_node
*np
= ofdev
->dev
.of_node
;
4029 struct resource res
;
4030 struct ppc440spe_adma_device
*adev
;
4031 struct ppc440spe_adma_chan
*chan
;
4032 struct ppc_dma_chan_ref
*ref
, *_ref
;
4033 int ret
= 0, initcode
= PPC_ADMA_INIT_OK
;
4039 if (of_device_is_compatible(np
, "amcc,xor-accelerator")) {
4040 id
= PPC440SPE_XOR_ID
;
4041 /* As far as the XOR engine is concerned, it does not
4042 * use FIFOs but uses linked list. So there is no dependency
4043 * between pool size to allocate and the engine configuration.
4045 pool_size
= PAGE_SIZE
<< 1;
4047 /* it is DMA0 or DMA1 */
4048 idx
= of_get_property(np
, "cell-index", &len
);
4049 if (!idx
|| (len
!= sizeof(u32
))) {
4050 dev_err(&ofdev
->dev
, "Device node %s has missing "
4051 "or invalid cell-index property\n",
4056 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4057 * should allocate the pool accordingly to size of this
4058 * FIFO. Thus, the pool size depends on the FIFO depth:
4059 * how much CDBs pointers the FIFO may contain then so
4060 * much CDBs we should provide in the pool.
4063 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4064 * Pool size = CDBs number * CDB size =
4065 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4067 pool_size
= (id
== PPC440SPE_DMA0_ID
) ?
4068 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4072 if (of_address_to_resource(np
, 0, &res
)) {
4073 dev_err(&ofdev
->dev
, "failed to get memory resource\n");
4074 initcode
= PPC_ADMA_INIT_MEMRES
;
4079 if (!request_mem_region(res
.start
, resource_size(&res
),
4080 dev_driver_string(&ofdev
->dev
))) {
4081 dev_err(&ofdev
->dev
, "failed to request memory region %pR\n",
4083 initcode
= PPC_ADMA_INIT_MEMREG
;
4088 /* create a device */
4089 adev
= kzalloc(sizeof(*adev
), GFP_KERNEL
);
4091 dev_err(&ofdev
->dev
, "failed to allocate device\n");
4092 initcode
= PPC_ADMA_INIT_ALLOC
;
4094 goto err_adev_alloc
;
4098 adev
->pool_size
= pool_size
;
4099 /* allocate coherent memory for hardware descriptors */
4100 adev
->dma_desc_pool_virt
= dma_alloc_coherent(&ofdev
->dev
,
4101 adev
->pool_size
, &adev
->dma_desc_pool
,
4103 if (adev
->dma_desc_pool_virt
== NULL
) {
4104 dev_err(&ofdev
->dev
, "failed to allocate %d bytes of coherent "
4105 "memory for hardware descriptors\n",
4107 initcode
= PPC_ADMA_INIT_COHERENT
;
4111 dev_dbg(&ofdev
->dev
, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4112 adev
->dma_desc_pool_virt
, (u64
)adev
->dma_desc_pool
);
4114 regs
= ioremap(res
.start
, resource_size(&res
));
4116 dev_err(&ofdev
->dev
, "failed to ioremap regs!\n");
4118 goto err_regs_alloc
;
4121 if (adev
->id
== PPC440SPE_XOR_ID
) {
4122 adev
->xor_reg
= regs
;
4124 iowrite32be(XOR_CRSR_XASR_BIT
, &adev
->xor_reg
->crsr
);
4125 iowrite32be(XOR_CRSR_64BA_BIT
, &adev
->xor_reg
->crrr
);
4127 size_t fifo_size
= (adev
->id
== PPC440SPE_DMA0_ID
) ?
4128 DMA0_FIFO_SIZE
: DMA1_FIFO_SIZE
;
4129 adev
->dma_reg
= regs
;
4130 /* DMAx_FIFO_SIZE is defined in bytes,
4131 * <fsiz> - is defined in number of CDB pointers (8byte).
4132 * DMA FIFO Length = CSlength + CPlength, where
4133 * CSlength = CPlength = (fsiz + 1) * 8.
4135 iowrite32(DMA_FIFO_ENABLE
| ((fifo_size
>> 3) - 2),
4136 &adev
->dma_reg
->fsiz
);
4137 /* Configure DMA engine */
4138 iowrite32(DMA_CFG_DXEPR_HP
| DMA_CFG_DFMPP_HP
| DMA_CFG_FALGN
,
4139 &adev
->dma_reg
->cfg
);
4141 iowrite32(~0, &adev
->dma_reg
->dsts
);
4144 adev
->dev
= &ofdev
->dev
;
4145 adev
->common
.dev
= &ofdev
->dev
;
4146 INIT_LIST_HEAD(&adev
->common
.channels
);
4147 platform_set_drvdata(ofdev
, adev
);
4149 /* create a channel */
4150 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
4152 dev_err(&ofdev
->dev
, "can't allocate channel structure\n");
4153 initcode
= PPC_ADMA_INIT_CHANNEL
;
4155 goto err_chan_alloc
;
4158 spin_lock_init(&chan
->lock
);
4159 INIT_LIST_HEAD(&chan
->chain
);
4160 INIT_LIST_HEAD(&chan
->all_slots
);
4161 chan
->device
= adev
;
4162 chan
->common
.device
= &adev
->common
;
4163 dma_cookie_init(&chan
->common
);
4164 list_add_tail(&chan
->common
.device_node
, &adev
->common
.channels
);
4165 tasklet_init(&chan
->irq_tasklet
, ppc440spe_adma_tasklet
,
4166 (unsigned long)chan
);
4168 /* allocate and map helper pages for async validation or
4169 * async_mult/async_sum_product operations on DMA0/1.
4171 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4172 chan
->pdest_page
= alloc_page(GFP_KERNEL
);
4173 chan
->qdest_page
= alloc_page(GFP_KERNEL
);
4174 if (!chan
->pdest_page
||
4175 !chan
->qdest_page
) {
4176 if (chan
->pdest_page
)
4177 __free_page(chan
->pdest_page
);
4178 if (chan
->qdest_page
)
4179 __free_page(chan
->qdest_page
);
4181 goto err_page_alloc
;
4183 chan
->pdest
= dma_map_page(&ofdev
->dev
, chan
->pdest_page
, 0,
4184 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4185 chan
->qdest
= dma_map_page(&ofdev
->dev
, chan
->qdest_page
, 0,
4186 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4189 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
4191 ref
->chan
= &chan
->common
;
4192 INIT_LIST_HEAD(&ref
->node
);
4193 list_add_tail(&ref
->node
, &ppc440spe_adma_chan_list
);
4195 dev_err(&ofdev
->dev
, "failed to allocate channel reference!\n");
4200 ret
= ppc440spe_adma_setup_irqs(adev
, chan
, &initcode
);
4204 ppc440spe_adma_init_capabilities(adev
);
4206 ret
= dma_async_device_register(&adev
->common
);
4208 initcode
= PPC_ADMA_INIT_REGISTER
;
4209 dev_err(&ofdev
->dev
, "failed to register dma device\n");
4216 ppc440spe_adma_release_irqs(adev
, chan
);
4218 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
, node
) {
4219 if (chan
== to_ppc440spe_adma_chan(ref
->chan
)) {
4220 list_del(&ref
->node
);
4225 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4226 dma_unmap_page(&ofdev
->dev
, chan
->pdest
,
4227 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4228 dma_unmap_page(&ofdev
->dev
, chan
->qdest
,
4229 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4230 __free_page(chan
->pdest_page
);
4231 __free_page(chan
->qdest_page
);
4236 if (adev
->id
== PPC440SPE_XOR_ID
)
4237 iounmap(adev
->xor_reg
);
4239 iounmap(adev
->dma_reg
);
4241 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4242 adev
->dma_desc_pool_virt
,
4243 adev
->dma_desc_pool
);
4247 release_mem_region(res
.start
, resource_size(&res
));
4249 if (id
< PPC440SPE_ADMA_ENGINES_NUM
)
4250 ppc440spe_adma_devices
[id
] = initcode
;
4256 * ppc440spe_adma_remove - remove the asynch device
4258 static int ppc440spe_adma_remove(struct platform_device
*ofdev
)
4260 struct ppc440spe_adma_device
*adev
= platform_get_drvdata(ofdev
);
4261 struct device_node
*np
= ofdev
->dev
.of_node
;
4262 struct resource res
;
4263 struct dma_chan
*chan
, *_chan
;
4264 struct ppc_dma_chan_ref
*ref
, *_ref
;
4265 struct ppc440spe_adma_chan
*ppc440spe_chan
;
4267 if (adev
->id
< PPC440SPE_ADMA_ENGINES_NUM
)
4268 ppc440spe_adma_devices
[adev
->id
] = -1;
4270 dma_async_device_unregister(&adev
->common
);
4272 list_for_each_entry_safe(chan
, _chan
, &adev
->common
.channels
,
4274 ppc440spe_chan
= to_ppc440spe_adma_chan(chan
);
4275 ppc440spe_adma_release_irqs(adev
, ppc440spe_chan
);
4276 tasklet_kill(&ppc440spe_chan
->irq_tasklet
);
4277 if (adev
->id
!= PPC440SPE_XOR_ID
) {
4278 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->pdest
,
4279 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4280 dma_unmap_page(&ofdev
->dev
, ppc440spe_chan
->qdest
,
4281 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
4282 __free_page(ppc440spe_chan
->pdest_page
);
4283 __free_page(ppc440spe_chan
->qdest_page
);
4285 list_for_each_entry_safe(ref
, _ref
, &ppc440spe_adma_chan_list
,
4287 if (ppc440spe_chan
==
4288 to_ppc440spe_adma_chan(ref
->chan
)) {
4289 list_del(&ref
->node
);
4293 list_del(&chan
->device_node
);
4294 kfree(ppc440spe_chan
);
4297 dma_free_coherent(adev
->dev
, adev
->pool_size
,
4298 adev
->dma_desc_pool_virt
, adev
->dma_desc_pool
);
4299 if (adev
->id
== PPC440SPE_XOR_ID
)
4300 iounmap(adev
->xor_reg
);
4302 iounmap(adev
->dma_reg
);
4303 of_address_to_resource(np
, 0, &res
);
4304 release_mem_region(res
.start
, resource_size(&res
));
4310 * /sys driver interface to enable h/w RAID-6 capabilities
4311 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4312 * directory are "devices", "enable" and "poly".
4313 * "devices" shows available engines.
4314 * "enable" is used to enable RAID-6 capabilities or to check
4315 * whether these has been activated.
4316 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4319 static ssize_t
show_ppc440spe_devices(struct device_driver
*dev
, char *buf
)
4324 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++) {
4325 if (ppc440spe_adma_devices
[i
] == -1)
4327 size
+= snprintf(buf
+ size
, PAGE_SIZE
- size
,
4328 "PPC440SP(E)-ADMA.%d: %s\n", i
,
4329 ppc_adma_errors
[ppc440spe_adma_devices
[i
]]);
4334 static ssize_t
show_ppc440spe_r6enable(struct device_driver
*dev
, char *buf
)
4336 return snprintf(buf
, PAGE_SIZE
,
4337 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4338 ppc440spe_r6_enabled
? "EN" : "DIS");
4341 static ssize_t
store_ppc440spe_r6enable(struct device_driver
*dev
,
4342 const char *buf
, size_t count
)
4346 if (!count
|| count
> 11)
4349 if (!ppc440spe_r6_tchan
)
4353 sscanf(buf
, "%lx", &val
);
4354 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_XORBA
, val
);
4357 /* Verify whether it really works now */
4358 if (ppc440spe_test_raid6(ppc440spe_r6_tchan
) == 0) {
4359 pr_info("PPC440SP(e) RAID-6 has been activated "
4361 ppc440spe_r6_enabled
= 1;
4363 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4365 ppc440spe_r6_enabled
= 0;
4370 static ssize_t
show_ppc440spe_r6poly(struct device_driver
*dev
, char *buf
)
4376 /* 440SP has fixed polynomial */
4379 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4380 reg
>>= MQ0_CFBHL_POLY
;
4384 size
= snprintf(buf
, PAGE_SIZE
, "PPC440SP(e) RAID-6 driver "
4385 "uses 0x1%02x polynomial.\n", reg
);
4389 static ssize_t
store_ppc440spe_r6poly(struct device_driver
*dev
,
4390 const char *buf
, size_t count
)
4392 unsigned long reg
, val
;
4395 /* 440SP uses default 0x14D polynomial only */
4399 if (!count
|| count
> 6)
4402 /* e.g., 0x14D or 0x11D */
4403 sscanf(buf
, "%lx", &val
);
4409 reg
= dcr_read(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
);
4410 reg
&= ~(0xFF << MQ0_CFBHL_POLY
);
4411 reg
|= val
<< MQ0_CFBHL_POLY
;
4412 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
, reg
);
4417 static DRIVER_ATTR(devices
, S_IRUGO
, show_ppc440spe_devices
, NULL
);
4418 static DRIVER_ATTR(enable
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6enable
,
4419 store_ppc440spe_r6enable
);
4420 static DRIVER_ATTR(poly
, S_IRUGO
| S_IWUSR
, show_ppc440spe_r6poly
,
4421 store_ppc440spe_r6poly
);
4424 * Common initialisation for RAID engines; allocate memory for
4425 * DMAx FIFOs, perform configuration common for all DMA engines.
4426 * Further DMA engine specific configuration is done at probe time.
4428 static int ppc440spe_configure_raid_devices(void)
4430 struct device_node
*np
;
4431 struct resource i2o_res
;
4432 struct i2o_regs __iomem
*i2o_reg
;
4433 dcr_host_t i2o_dcr_host
;
4434 unsigned int dcr_base
, dcr_len
;
4437 np
= of_find_compatible_node(NULL
, NULL
, "ibm,i2o-440spe");
4439 pr_err("%s: can't find I2O device tree node\n",
4444 if (of_address_to_resource(np
, 0, &i2o_res
)) {
4449 i2o_reg
= of_iomap(np
, 0);
4451 pr_err("%s: failed to map I2O registers\n", __func__
);
4456 /* Get I2O DCRs base */
4457 dcr_base
= dcr_resource_start(np
, 0);
4458 dcr_len
= dcr_resource_len(np
, 0);
4459 if (!dcr_base
&& !dcr_len
) {
4460 pr_err("%s: can't get DCR registers base/len!\n",
4467 i2o_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4468 if (!DCR_MAP_OK(i2o_dcr_host
)) {
4469 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4476 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4477 * the base address of FIFO memory space.
4478 * Actually we need twice more physical memory than programmed in the
4479 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4481 ppc440spe_dma_fifo_buf
= kmalloc((DMA0_FIFO_SIZE
+ DMA1_FIFO_SIZE
) << 1,
4483 if (!ppc440spe_dma_fifo_buf
) {
4484 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__
);
4486 dcr_unmap(i2o_dcr_host
, dcr_len
);
4494 mtdcri(SDR0
, DCRN_SDR0_SRST
, DCRN_SDR0_SRST_I2ODMA
);
4495 mtdcri(SDR0
, DCRN_SDR0_SRST
, 0);
4497 /* Setup the base address of mmaped registers */
4498 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAH
, (u32
)(i2o_res
.start
>> 32));
4499 dcr_write(i2o_dcr_host
, DCRN_I2O0_IBAL
, (u32
)(i2o_res
.start
) |
4501 dcr_unmap(i2o_dcr_host
, dcr_len
);
4503 /* Setup FIFO memory space base address */
4504 iowrite32(0, &i2o_reg
->ifbah
);
4505 iowrite32(((u32
)__pa(ppc440spe_dma_fifo_buf
)), &i2o_reg
->ifbal
);
4507 /* set zero FIFO size for I2O, so the whole
4508 * ppc440spe_dma_fifo_buf is used by DMAs.
4509 * DMAx_FIFOs will be configured while probe.
4511 iowrite32(0, &i2o_reg
->ifsiz
);
4514 /* To prepare WXOR/RXOR functionality we need access to
4515 * Memory Queue Module DCRs (finally it will be enabled
4516 * via /sys interface of the ppc440spe ADMA driver).
4518 np
= of_find_compatible_node(NULL
, NULL
, "ibm,mq-440spe");
4520 pr_err("%s: can't find MQ device tree node\n",
4526 /* Get MQ DCRs base */
4527 dcr_base
= dcr_resource_start(np
, 0);
4528 dcr_len
= dcr_resource_len(np
, 0);
4529 if (!dcr_base
&& !dcr_len
) {
4530 pr_err("%s: can't get DCR registers base/len!\n",
4536 ppc440spe_mq_dcr_host
= dcr_map(np
, dcr_base
, dcr_len
);
4537 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host
)) {
4538 pr_err("%s: failed to map DCRs!\n", np
->full_name
);
4543 ppc440spe_mq_dcr_len
= dcr_len
;
4546 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_BAUH
, DMA_CUED_XOR_HB
);
4549 * - LL transaction passing limit to 1;
4550 * - Memory controller cycle limit to 1;
4551 * - Galois Polynomial to 0x14d (default)
4553 dcr_write(ppc440spe_mq_dcr_host
, DCRN_MQ0_CFBHL
,
4554 (1 << MQ0_CFBHL_TPLM
) | (1 << MQ0_CFBHL_HBCL
) |
4555 (PPC440SPE_DEFAULT_POLY
<< MQ0_CFBHL_POLY
));
4557 atomic_set(&ppc440spe_adma_err_irq_ref
, 0);
4558 for (i
= 0; i
< PPC440SPE_ADMA_ENGINES_NUM
; i
++)
4559 ppc440spe_adma_devices
[i
] = -1;
4566 kfree(ppc440spe_dma_fifo_buf
);
4570 static const struct of_device_id ppc440spe_adma_of_match
[] = {
4571 { .compatible
= "ibm,dma-440spe", },
4572 { .compatible
= "amcc,xor-accelerator", },
4575 MODULE_DEVICE_TABLE(of
, ppc440spe_adma_of_match
);
4577 static struct platform_driver ppc440spe_adma_driver
= {
4578 .probe
= ppc440spe_adma_probe
,
4579 .remove
= ppc440spe_adma_remove
,
4581 .name
= "PPC440SP(E)-ADMA",
4582 .owner
= THIS_MODULE
,
4583 .of_match_table
= ppc440spe_adma_of_match
,
4587 static __init
int ppc440spe_adma_init(void)
4591 ret
= ppc440spe_configure_raid_devices();
4595 ret
= platform_driver_register(&ppc440spe_adma_driver
);
4597 pr_err("%s: failed to register platform driver\n",
4602 /* Initialization status */
4603 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4604 &driver_attr_devices
);
4608 /* RAID-6 h/w enable entry */
4609 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4610 &driver_attr_enable
);
4614 /* GF polynomial to use */
4615 ret
= driver_create_file(&ppc440spe_adma_driver
.driver
,
4620 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4621 &driver_attr_enable
);
4623 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4624 &driver_attr_devices
);
4626 /* User will not be able to enable h/w RAID-6 */
4627 pr_err("%s: failed to create RAID-6 driver interface\n",
4629 platform_driver_unregister(&ppc440spe_adma_driver
);
4631 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
4632 kfree(ppc440spe_dma_fifo_buf
);
4636 static void __exit
ppc440spe_adma_exit(void)
4638 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4640 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4641 &driver_attr_enable
);
4642 driver_remove_file(&ppc440spe_adma_driver
.driver
,
4643 &driver_attr_devices
);
4644 platform_driver_unregister(&ppc440spe_adma_driver
);
4645 dcr_unmap(ppc440spe_mq_dcr_host
, ppc440spe_mq_dcr_len
);
4646 kfree(ppc440spe_dma_fifo_buf
);
4649 arch_initcall(ppc440spe_adma_init
);
4650 module_exit(ppc440spe_adma_exit
);
4652 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4653 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4654 MODULE_LICENSE("GPL");