usb: dwc3: keystone: drop dma_mask configuration
[linux/fpc-iii.git] / drivers / regulator / core.c
bloba2e836478549b83f4bb1bf3c8db0b88648921839
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
38 #include "dummy.h"
39 #include "internal.h"
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio {
79 struct list_head list;
80 int gpio;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
112 static const char *rdev_get_name(struct regulator_dev *rdev)
114 if (rdev->constraints && rdev->constraints->name)
115 return rdev->constraints->name;
116 else if (rdev->desc->name)
117 return rdev->desc->name;
118 else
119 return "";
122 static bool have_full_constraints(void)
124 return has_full_constraints || of_have_populated_dt();
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
151 return regnode;
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 if (!rdev->constraints)
157 return 0;
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
169 BUG_ON(*min_uV > *max_uV);
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
191 return 0;
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
200 struct regulator *regulator;
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
222 return 0;
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
229 BUG_ON(*min_uA > *max_uA);
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
251 return 0;
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
286 return -EINVAL;
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
300 return 0;
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
313 return ret;
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 static DEVICE_ATTR_RO(name);
335 static ssize_t regulator_print_opmode(char *buf, int mode)
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
347 return sprintf(buf, "unknown\n");
350 static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359 static ssize_t regulator_print_state(char *buf, int state)
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
369 static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
379 return ret;
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383 static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
426 return sprintf(buf, "%s\n", label);
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
499 static DEVICE_ATTR_RO(num_users);
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
512 return sprintf(buf, "unknown\n");
514 static DEVICE_ATTR_RO(type);
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
612 static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
629 return sprintf(buf, "%s\n", report);
631 static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
644 ATTRIBUTE_GROUPS(regulator_dev);
646 static void regulator_dev_release(struct device *dev)
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
652 static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
701 static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
704 int ret = 0;
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
749 return ret;
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 if (!rdev->constraints)
756 return -EINVAL;
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
773 static void print_constraints(struct regulator_dev *rdev)
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[160] = "";
777 int count = 0;
778 int ret;
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
827 if (!count)
828 sprintf(buf, "no parameters");
830 rdev_info(rdev, "%s\n", buf);
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 int current_uV = _regulator_get_voltage(rdev);
848 if (current_uV < 0) {
849 rdev_err(rdev, "failed to get the current voltage\n");
850 return current_uV;
852 if (current_uV < rdev->constraints->min_uV ||
853 current_uV > rdev->constraints->max_uV) {
854 ret = _regulator_do_set_voltage(
855 rdev, rdev->constraints->min_uV,
856 rdev->constraints->max_uV);
857 if (ret < 0) {
858 rdev_err(rdev,
859 "failed to apply %duV constraint\n",
860 rdev->constraints->min_uV);
861 return ret;
866 /* constrain machine-level voltage specs to fit
867 * the actual range supported by this regulator.
869 if (ops->list_voltage && rdev->desc->n_voltages) {
870 int count = rdev->desc->n_voltages;
871 int i;
872 int min_uV = INT_MAX;
873 int max_uV = INT_MIN;
874 int cmin = constraints->min_uV;
875 int cmax = constraints->max_uV;
877 /* it's safe to autoconfigure fixed-voltage supplies
878 and the constraints are used by list_voltage. */
879 if (count == 1 && !cmin) {
880 cmin = 1;
881 cmax = INT_MAX;
882 constraints->min_uV = cmin;
883 constraints->max_uV = cmax;
886 /* voltage constraints are optional */
887 if ((cmin == 0) && (cmax == 0))
888 return 0;
890 /* else require explicit machine-level constraints */
891 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
892 rdev_err(rdev, "invalid voltage constraints\n");
893 return -EINVAL;
896 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
897 for (i = 0; i < count; i++) {
898 int value;
900 value = ops->list_voltage(rdev, i);
901 if (value <= 0)
902 continue;
904 /* maybe adjust [min_uV..max_uV] */
905 if (value >= cmin && value < min_uV)
906 min_uV = value;
907 if (value <= cmax && value > max_uV)
908 max_uV = value;
911 /* final: [min_uV..max_uV] valid iff constraints valid */
912 if (max_uV < min_uV) {
913 rdev_err(rdev,
914 "unsupportable voltage constraints %u-%uuV\n",
915 min_uV, max_uV);
916 return -EINVAL;
919 /* use regulator's subset of machine constraints */
920 if (constraints->min_uV < min_uV) {
921 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
922 constraints->min_uV, min_uV);
923 constraints->min_uV = min_uV;
925 if (constraints->max_uV > max_uV) {
926 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
927 constraints->max_uV, max_uV);
928 constraints->max_uV = max_uV;
932 return 0;
935 static int machine_constraints_current(struct regulator_dev *rdev,
936 struct regulation_constraints *constraints)
938 struct regulator_ops *ops = rdev->desc->ops;
939 int ret;
941 if (!constraints->min_uA && !constraints->max_uA)
942 return 0;
944 if (constraints->min_uA > constraints->max_uA) {
945 rdev_err(rdev, "Invalid current constraints\n");
946 return -EINVAL;
949 if (!ops->set_current_limit || !ops->get_current_limit) {
950 rdev_warn(rdev, "Operation of current configuration missing\n");
951 return 0;
954 /* Set regulator current in constraints range */
955 ret = ops->set_current_limit(rdev, constraints->min_uA,
956 constraints->max_uA);
957 if (ret < 0) {
958 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
959 return ret;
962 return 0;
965 static int _regulator_do_enable(struct regulator_dev *rdev);
968 * set_machine_constraints - sets regulator constraints
969 * @rdev: regulator source
970 * @constraints: constraints to apply
972 * Allows platform initialisation code to define and constrain
973 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
974 * Constraints *must* be set by platform code in order for some
975 * regulator operations to proceed i.e. set_voltage, set_current_limit,
976 * set_mode.
978 static int set_machine_constraints(struct regulator_dev *rdev,
979 const struct regulation_constraints *constraints)
981 int ret = 0;
982 struct regulator_ops *ops = rdev->desc->ops;
984 if (constraints)
985 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
986 GFP_KERNEL);
987 else
988 rdev->constraints = kzalloc(sizeof(*constraints),
989 GFP_KERNEL);
990 if (!rdev->constraints)
991 return -ENOMEM;
993 ret = machine_constraints_voltage(rdev, rdev->constraints);
994 if (ret != 0)
995 goto out;
997 ret = machine_constraints_current(rdev, rdev->constraints);
998 if (ret != 0)
999 goto out;
1001 /* do we need to setup our suspend state */
1002 if (rdev->constraints->initial_state) {
1003 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1004 if (ret < 0) {
1005 rdev_err(rdev, "failed to set suspend state\n");
1006 goto out;
1010 if (rdev->constraints->initial_mode) {
1011 if (!ops->set_mode) {
1012 rdev_err(rdev, "no set_mode operation\n");
1013 ret = -EINVAL;
1014 goto out;
1017 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1018 if (ret < 0) {
1019 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1020 goto out;
1024 /* If the constraints say the regulator should be on at this point
1025 * and we have control then make sure it is enabled.
1027 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1028 ret = _regulator_do_enable(rdev);
1029 if (ret < 0 && ret != -EINVAL) {
1030 rdev_err(rdev, "failed to enable\n");
1031 goto out;
1035 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1036 && ops->set_ramp_delay) {
1037 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1038 if (ret < 0) {
1039 rdev_err(rdev, "failed to set ramp_delay\n");
1040 goto out;
1044 print_constraints(rdev);
1045 return 0;
1046 out:
1047 kfree(rdev->constraints);
1048 rdev->constraints = NULL;
1049 return ret;
1053 * set_supply - set regulator supply regulator
1054 * @rdev: regulator name
1055 * @supply_rdev: supply regulator name
1057 * Called by platform initialisation code to set the supply regulator for this
1058 * regulator. This ensures that a regulators supply will also be enabled by the
1059 * core if it's child is enabled.
1061 static int set_supply(struct regulator_dev *rdev,
1062 struct regulator_dev *supply_rdev)
1064 int err;
1066 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1068 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1069 if (rdev->supply == NULL) {
1070 err = -ENOMEM;
1071 return err;
1073 supply_rdev->open_count++;
1075 return 0;
1079 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080 * @rdev: regulator source
1081 * @consumer_dev_name: dev_name() string for device supply applies to
1082 * @supply: symbolic name for supply
1084 * Allows platform initialisation code to map physical regulator
1085 * sources to symbolic names for supplies for use by devices. Devices
1086 * should use these symbolic names to request regulators, avoiding the
1087 * need to provide board-specific regulator names as platform data.
1089 static int set_consumer_device_supply(struct regulator_dev *rdev,
1090 const char *consumer_dev_name,
1091 const char *supply)
1093 struct regulator_map *node;
1094 int has_dev;
1096 if (supply == NULL)
1097 return -EINVAL;
1099 if (consumer_dev_name != NULL)
1100 has_dev = 1;
1101 else
1102 has_dev = 0;
1104 list_for_each_entry(node, &regulator_map_list, list) {
1105 if (node->dev_name && consumer_dev_name) {
1106 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1107 continue;
1108 } else if (node->dev_name || consumer_dev_name) {
1109 continue;
1112 if (strcmp(node->supply, supply) != 0)
1113 continue;
1115 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1116 consumer_dev_name,
1117 dev_name(&node->regulator->dev),
1118 node->regulator->desc->name,
1119 supply,
1120 dev_name(&rdev->dev), rdev_get_name(rdev));
1121 return -EBUSY;
1124 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1125 if (node == NULL)
1126 return -ENOMEM;
1128 node->regulator = rdev;
1129 node->supply = supply;
1131 if (has_dev) {
1132 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1133 if (node->dev_name == NULL) {
1134 kfree(node);
1135 return -ENOMEM;
1139 list_add(&node->list, &regulator_map_list);
1140 return 0;
1143 static void unset_regulator_supplies(struct regulator_dev *rdev)
1145 struct regulator_map *node, *n;
1147 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1148 if (rdev == node->regulator) {
1149 list_del(&node->list);
1150 kfree(node->dev_name);
1151 kfree(node);
1156 #define REG_STR_SIZE 64
1158 static struct regulator *create_regulator(struct regulator_dev *rdev,
1159 struct device *dev,
1160 const char *supply_name)
1162 struct regulator *regulator;
1163 char buf[REG_STR_SIZE];
1164 int err, size;
1166 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1167 if (regulator == NULL)
1168 return NULL;
1170 mutex_lock(&rdev->mutex);
1171 regulator->rdev = rdev;
1172 list_add(&regulator->list, &rdev->consumer_list);
1174 if (dev) {
1175 regulator->dev = dev;
1177 /* Add a link to the device sysfs entry */
1178 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1179 dev->kobj.name, supply_name);
1180 if (size >= REG_STR_SIZE)
1181 goto overflow_err;
1183 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1184 if (regulator->supply_name == NULL)
1185 goto overflow_err;
1187 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1188 buf);
1189 if (err) {
1190 rdev_warn(rdev, "could not add device link %s err %d\n",
1191 dev->kobj.name, err);
1192 /* non-fatal */
1194 } else {
1195 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1196 if (regulator->supply_name == NULL)
1197 goto overflow_err;
1200 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1201 rdev->debugfs);
1202 if (!regulator->debugfs) {
1203 rdev_warn(rdev, "Failed to create debugfs directory\n");
1204 } else {
1205 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1206 &regulator->uA_load);
1207 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1208 &regulator->min_uV);
1209 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1210 &regulator->max_uV);
1214 * Check now if the regulator is an always on regulator - if
1215 * it is then we don't need to do nearly so much work for
1216 * enable/disable calls.
1218 if (!_regulator_can_change_status(rdev) &&
1219 _regulator_is_enabled(rdev))
1220 regulator->always_on = true;
1222 mutex_unlock(&rdev->mutex);
1223 return regulator;
1224 overflow_err:
1225 list_del(&regulator->list);
1226 kfree(regulator);
1227 mutex_unlock(&rdev->mutex);
1228 return NULL;
1231 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1233 if (rdev->constraints && rdev->constraints->enable_time)
1234 return rdev->constraints->enable_time;
1235 if (!rdev->desc->ops->enable_time)
1236 return rdev->desc->enable_time;
1237 return rdev->desc->ops->enable_time(rdev);
1240 static struct regulator_supply_alias *regulator_find_supply_alias(
1241 struct device *dev, const char *supply)
1243 struct regulator_supply_alias *map;
1245 list_for_each_entry(map, &regulator_supply_alias_list, list)
1246 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1247 return map;
1249 return NULL;
1252 static void regulator_supply_alias(struct device **dev, const char **supply)
1254 struct regulator_supply_alias *map;
1256 map = regulator_find_supply_alias(*dev, *supply);
1257 if (map) {
1258 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1259 *supply, map->alias_supply,
1260 dev_name(map->alias_dev));
1261 *dev = map->alias_dev;
1262 *supply = map->alias_supply;
1266 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1267 const char *supply,
1268 int *ret)
1270 struct regulator_dev *r;
1271 struct device_node *node;
1272 struct regulator_map *map;
1273 const char *devname = NULL;
1275 regulator_supply_alias(&dev, &supply);
1277 /* first do a dt based lookup */
1278 if (dev && dev->of_node) {
1279 node = of_get_regulator(dev, supply);
1280 if (node) {
1281 list_for_each_entry(r, &regulator_list, list)
1282 if (r->dev.parent &&
1283 node == r->dev.of_node)
1284 return r;
1285 *ret = -EPROBE_DEFER;
1286 return NULL;
1287 } else {
1289 * If we couldn't even get the node then it's
1290 * not just that the device didn't register
1291 * yet, there's no node and we'll never
1292 * succeed.
1294 *ret = -ENODEV;
1298 /* if not found, try doing it non-dt way */
1299 if (dev)
1300 devname = dev_name(dev);
1302 list_for_each_entry(r, &regulator_list, list)
1303 if (strcmp(rdev_get_name(r), supply) == 0)
1304 return r;
1306 list_for_each_entry(map, &regulator_map_list, list) {
1307 /* If the mapping has a device set up it must match */
1308 if (map->dev_name &&
1309 (!devname || strcmp(map->dev_name, devname)))
1310 continue;
1312 if (strcmp(map->supply, supply) == 0)
1313 return map->regulator;
1317 return NULL;
1320 /* Internal regulator request function */
1321 static struct regulator *_regulator_get(struct device *dev, const char *id,
1322 bool exclusive, bool allow_dummy)
1324 struct regulator_dev *rdev;
1325 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1326 const char *devname = NULL;
1327 int ret;
1329 if (id == NULL) {
1330 pr_err("get() with no identifier\n");
1331 return ERR_PTR(-EINVAL);
1334 if (dev)
1335 devname = dev_name(dev);
1337 if (have_full_constraints())
1338 ret = -ENODEV;
1339 else
1340 ret = -EPROBE_DEFER;
1342 mutex_lock(&regulator_list_mutex);
1344 rdev = regulator_dev_lookup(dev, id, &ret);
1345 if (rdev)
1346 goto found;
1348 regulator = ERR_PTR(ret);
1351 * If we have return value from dev_lookup fail, we do not expect to
1352 * succeed, so, quit with appropriate error value
1354 if (ret && ret != -ENODEV)
1355 goto out;
1357 if (!devname)
1358 devname = "deviceless";
1361 * Assume that a regulator is physically present and enabled
1362 * even if it isn't hooked up and just provide a dummy.
1364 if (have_full_constraints() && allow_dummy) {
1365 pr_warn("%s supply %s not found, using dummy regulator\n",
1366 devname, id);
1368 rdev = dummy_regulator_rdev;
1369 goto found;
1370 /* Don't log an error when called from regulator_get_optional() */
1371 } else if (!have_full_constraints() || exclusive) {
1372 dev_warn(dev, "dummy supplies not allowed\n");
1375 mutex_unlock(&regulator_list_mutex);
1376 return regulator;
1378 found:
1379 if (rdev->exclusive) {
1380 regulator = ERR_PTR(-EPERM);
1381 goto out;
1384 if (exclusive && rdev->open_count) {
1385 regulator = ERR_PTR(-EBUSY);
1386 goto out;
1389 if (!try_module_get(rdev->owner))
1390 goto out;
1392 regulator = create_regulator(rdev, dev, id);
1393 if (regulator == NULL) {
1394 regulator = ERR_PTR(-ENOMEM);
1395 module_put(rdev->owner);
1396 goto out;
1399 rdev->open_count++;
1400 if (exclusive) {
1401 rdev->exclusive = 1;
1403 ret = _regulator_is_enabled(rdev);
1404 if (ret > 0)
1405 rdev->use_count = 1;
1406 else
1407 rdev->use_count = 0;
1410 out:
1411 mutex_unlock(&regulator_list_mutex);
1413 return regulator;
1417 * regulator_get - lookup and obtain a reference to a regulator.
1418 * @dev: device for regulator "consumer"
1419 * @id: Supply name or regulator ID.
1421 * Returns a struct regulator corresponding to the regulator producer,
1422 * or IS_ERR() condition containing errno.
1424 * Use of supply names configured via regulator_set_device_supply() is
1425 * strongly encouraged. It is recommended that the supply name used
1426 * should match the name used for the supply and/or the relevant
1427 * device pins in the datasheet.
1429 struct regulator *regulator_get(struct device *dev, const char *id)
1431 return _regulator_get(dev, id, false, true);
1433 EXPORT_SYMBOL_GPL(regulator_get);
1436 * regulator_get_exclusive - obtain exclusive access to a regulator.
1437 * @dev: device for regulator "consumer"
1438 * @id: Supply name or regulator ID.
1440 * Returns a struct regulator corresponding to the regulator producer,
1441 * or IS_ERR() condition containing errno. Other consumers will be
1442 * unable to obtain this regulator while this reference is held and the
1443 * use count for the regulator will be initialised to reflect the current
1444 * state of the regulator.
1446 * This is intended for use by consumers which cannot tolerate shared
1447 * use of the regulator such as those which need to force the
1448 * regulator off for correct operation of the hardware they are
1449 * controlling.
1451 * Use of supply names configured via regulator_set_device_supply() is
1452 * strongly encouraged. It is recommended that the supply name used
1453 * should match the name used for the supply and/or the relevant
1454 * device pins in the datasheet.
1456 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1458 return _regulator_get(dev, id, true, false);
1460 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1463 * regulator_get_optional - obtain optional access to a regulator.
1464 * @dev: device for regulator "consumer"
1465 * @id: Supply name or regulator ID.
1467 * Returns a struct regulator corresponding to the regulator producer,
1468 * or IS_ERR() condition containing errno.
1470 * This is intended for use by consumers for devices which can have
1471 * some supplies unconnected in normal use, such as some MMC devices.
1472 * It can allow the regulator core to provide stub supplies for other
1473 * supplies requested using normal regulator_get() calls without
1474 * disrupting the operation of drivers that can handle absent
1475 * supplies.
1477 * Use of supply names configured via regulator_set_device_supply() is
1478 * strongly encouraged. It is recommended that the supply name used
1479 * should match the name used for the supply and/or the relevant
1480 * device pins in the datasheet.
1482 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1484 return _regulator_get(dev, id, false, false);
1486 EXPORT_SYMBOL_GPL(regulator_get_optional);
1488 /* regulator_list_mutex lock held by regulator_put() */
1489 static void _regulator_put(struct regulator *regulator)
1491 struct regulator_dev *rdev;
1493 if (regulator == NULL || IS_ERR(regulator))
1494 return;
1496 rdev = regulator->rdev;
1498 debugfs_remove_recursive(regulator->debugfs);
1500 /* remove any sysfs entries */
1501 if (regulator->dev)
1502 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1503 mutex_lock(&rdev->mutex);
1504 kfree(regulator->supply_name);
1505 list_del(&regulator->list);
1506 kfree(regulator);
1508 rdev->open_count--;
1509 rdev->exclusive = 0;
1510 mutex_unlock(&rdev->mutex);
1512 module_put(rdev->owner);
1516 * regulator_put - "free" the regulator source
1517 * @regulator: regulator source
1519 * Note: drivers must ensure that all regulator_enable calls made on this
1520 * regulator source are balanced by regulator_disable calls prior to calling
1521 * this function.
1523 void regulator_put(struct regulator *regulator)
1525 mutex_lock(&regulator_list_mutex);
1526 _regulator_put(regulator);
1527 mutex_unlock(&regulator_list_mutex);
1529 EXPORT_SYMBOL_GPL(regulator_put);
1532 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 * @dev: device that will be given as the regulator "consumer"
1535 * @id: Supply name or regulator ID
1536 * @alias_dev: device that should be used to lookup the supply
1537 * @alias_id: Supply name or regulator ID that should be used to lookup the
1538 * supply
1540 * All lookups for id on dev will instead be conducted for alias_id on
1541 * alias_dev.
1543 int regulator_register_supply_alias(struct device *dev, const char *id,
1544 struct device *alias_dev,
1545 const char *alias_id)
1547 struct regulator_supply_alias *map;
1549 map = regulator_find_supply_alias(dev, id);
1550 if (map)
1551 return -EEXIST;
1553 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1554 if (!map)
1555 return -ENOMEM;
1557 map->src_dev = dev;
1558 map->src_supply = id;
1559 map->alias_dev = alias_dev;
1560 map->alias_supply = alias_id;
1562 list_add(&map->list, &regulator_supply_alias_list);
1564 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1565 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567 return 0;
1569 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1572 * regulator_unregister_supply_alias - Remove device alias
1574 * @dev: device that will be given as the regulator "consumer"
1575 * @id: Supply name or regulator ID
1577 * Remove a lookup alias if one exists for id on dev.
1579 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 struct regulator_supply_alias *map;
1583 map = regulator_find_supply_alias(dev, id);
1584 if (map) {
1585 list_del(&map->list);
1586 kfree(map);
1589 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1592 * regulator_bulk_register_supply_alias - register multiple aliases
1594 * @dev: device that will be given as the regulator "consumer"
1595 * @id: List of supply names or regulator IDs
1596 * @alias_dev: device that should be used to lookup the supply
1597 * @alias_id: List of supply names or regulator IDs that should be used to
1598 * lookup the supply
1599 * @num_id: Number of aliases to register
1601 * @return 0 on success, an errno on failure.
1603 * This helper function allows drivers to register several supply
1604 * aliases in one operation. If any of the aliases cannot be
1605 * registered any aliases that were registered will be removed
1606 * before returning to the caller.
1608 int regulator_bulk_register_supply_alias(struct device *dev,
1609 const char *const *id,
1610 struct device *alias_dev,
1611 const char *const *alias_id,
1612 int num_id)
1614 int i;
1615 int ret;
1617 for (i = 0; i < num_id; ++i) {
1618 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1619 alias_id[i]);
1620 if (ret < 0)
1621 goto err;
1624 return 0;
1626 err:
1627 dev_err(dev,
1628 "Failed to create supply alias %s,%s -> %s,%s\n",
1629 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631 while (--i >= 0)
1632 regulator_unregister_supply_alias(dev, id[i]);
1634 return ret;
1636 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1639 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 * @dev: device that will be given as the regulator "consumer"
1642 * @id: List of supply names or regulator IDs
1643 * @num_id: Number of aliases to unregister
1645 * This helper function allows drivers to unregister several supply
1646 * aliases in one operation.
1648 void regulator_bulk_unregister_supply_alias(struct device *dev,
1649 const char *const *id,
1650 int num_id)
1652 int i;
1654 for (i = 0; i < num_id; ++i)
1655 regulator_unregister_supply_alias(dev, id[i]);
1657 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1660 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1661 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1662 const struct regulator_config *config)
1664 struct regulator_enable_gpio *pin;
1665 int ret;
1667 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1668 if (pin->gpio == config->ena_gpio) {
1669 rdev_dbg(rdev, "GPIO %d is already used\n",
1670 config->ena_gpio);
1671 goto update_ena_gpio_to_rdev;
1675 ret = gpio_request_one(config->ena_gpio,
1676 GPIOF_DIR_OUT | config->ena_gpio_flags,
1677 rdev_get_name(rdev));
1678 if (ret)
1679 return ret;
1681 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1682 if (pin == NULL) {
1683 gpio_free(config->ena_gpio);
1684 return -ENOMEM;
1687 pin->gpio = config->ena_gpio;
1688 pin->ena_gpio_invert = config->ena_gpio_invert;
1689 list_add(&pin->list, &regulator_ena_gpio_list);
1691 update_ena_gpio_to_rdev:
1692 pin->request_count++;
1693 rdev->ena_pin = pin;
1694 return 0;
1697 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1699 struct regulator_enable_gpio *pin, *n;
1701 if (!rdev->ena_pin)
1702 return;
1704 /* Free the GPIO only in case of no use */
1705 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1706 if (pin->gpio == rdev->ena_pin->gpio) {
1707 if (pin->request_count <= 1) {
1708 pin->request_count = 0;
1709 gpio_free(pin->gpio);
1710 list_del(&pin->list);
1711 kfree(pin);
1712 } else {
1713 pin->request_count--;
1720 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1721 * @rdev: regulator_dev structure
1722 * @enable: enable GPIO at initial use?
1724 * GPIO is enabled in case of initial use. (enable_count is 0)
1725 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1727 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1729 struct regulator_enable_gpio *pin = rdev->ena_pin;
1731 if (!pin)
1732 return -EINVAL;
1734 if (enable) {
1735 /* Enable GPIO at initial use */
1736 if (pin->enable_count == 0)
1737 gpio_set_value_cansleep(pin->gpio,
1738 !pin->ena_gpio_invert);
1740 pin->enable_count++;
1741 } else {
1742 if (pin->enable_count > 1) {
1743 pin->enable_count--;
1744 return 0;
1747 /* Disable GPIO if not used */
1748 if (pin->enable_count <= 1) {
1749 gpio_set_value_cansleep(pin->gpio,
1750 pin->ena_gpio_invert);
1751 pin->enable_count = 0;
1755 return 0;
1758 static int _regulator_do_enable(struct regulator_dev *rdev)
1760 int ret, delay;
1762 /* Query before enabling in case configuration dependent. */
1763 ret = _regulator_get_enable_time(rdev);
1764 if (ret >= 0) {
1765 delay = ret;
1766 } else {
1767 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1768 delay = 0;
1771 trace_regulator_enable(rdev_get_name(rdev));
1773 if (rdev->ena_pin) {
1774 if (!rdev->ena_gpio_state) {
1775 ret = regulator_ena_gpio_ctrl(rdev, true);
1776 if (ret < 0)
1777 return ret;
1778 rdev->ena_gpio_state = 1;
1780 } else if (rdev->desc->ops->enable) {
1781 ret = rdev->desc->ops->enable(rdev);
1782 if (ret < 0)
1783 return ret;
1784 } else {
1785 return -EINVAL;
1788 /* Allow the regulator to ramp; it would be useful to extend
1789 * this for bulk operations so that the regulators can ramp
1790 * together. */
1791 trace_regulator_enable_delay(rdev_get_name(rdev));
1794 * Delay for the requested amount of time as per the guidelines in:
1796 * Documentation/timers/timers-howto.txt
1798 * The assumption here is that regulators will never be enabled in
1799 * atomic context and therefore sleeping functions can be used.
1801 if (delay) {
1802 unsigned int ms = delay / 1000;
1803 unsigned int us = delay % 1000;
1805 if (ms > 0) {
1807 * For small enough values, handle super-millisecond
1808 * delays in the usleep_range() call below.
1810 if (ms < 20)
1811 us += ms * 1000;
1812 else
1813 msleep(ms);
1817 * Give the scheduler some room to coalesce with any other
1818 * wakeup sources. For delays shorter than 10 us, don't even
1819 * bother setting up high-resolution timers and just busy-
1820 * loop.
1822 if (us >= 10)
1823 usleep_range(us, us + 100);
1824 else
1825 udelay(us);
1828 trace_regulator_enable_complete(rdev_get_name(rdev));
1830 return 0;
1833 /* locks held by regulator_enable() */
1834 static int _regulator_enable(struct regulator_dev *rdev)
1836 int ret;
1838 /* check voltage and requested load before enabling */
1839 if (rdev->constraints &&
1840 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1841 drms_uA_update(rdev);
1843 if (rdev->use_count == 0) {
1844 /* The regulator may on if it's not switchable or left on */
1845 ret = _regulator_is_enabled(rdev);
1846 if (ret == -EINVAL || ret == 0) {
1847 if (!_regulator_can_change_status(rdev))
1848 return -EPERM;
1850 ret = _regulator_do_enable(rdev);
1851 if (ret < 0)
1852 return ret;
1854 } else if (ret < 0) {
1855 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1856 return ret;
1858 /* Fallthrough on positive return values - already enabled */
1861 rdev->use_count++;
1863 return 0;
1867 * regulator_enable - enable regulator output
1868 * @regulator: regulator source
1870 * Request that the regulator be enabled with the regulator output at
1871 * the predefined voltage or current value. Calls to regulator_enable()
1872 * must be balanced with calls to regulator_disable().
1874 * NOTE: the output value can be set by other drivers, boot loader or may be
1875 * hardwired in the regulator.
1877 int regulator_enable(struct regulator *regulator)
1879 struct regulator_dev *rdev = regulator->rdev;
1880 int ret = 0;
1882 if (regulator->always_on)
1883 return 0;
1885 if (rdev->supply) {
1886 ret = regulator_enable(rdev->supply);
1887 if (ret != 0)
1888 return ret;
1891 mutex_lock(&rdev->mutex);
1892 ret = _regulator_enable(rdev);
1893 mutex_unlock(&rdev->mutex);
1895 if (ret != 0 && rdev->supply)
1896 regulator_disable(rdev->supply);
1898 return ret;
1900 EXPORT_SYMBOL_GPL(regulator_enable);
1902 static int _regulator_do_disable(struct regulator_dev *rdev)
1904 int ret;
1906 trace_regulator_disable(rdev_get_name(rdev));
1908 if (rdev->ena_pin) {
1909 if (rdev->ena_gpio_state) {
1910 ret = regulator_ena_gpio_ctrl(rdev, false);
1911 if (ret < 0)
1912 return ret;
1913 rdev->ena_gpio_state = 0;
1916 } else if (rdev->desc->ops->disable) {
1917 ret = rdev->desc->ops->disable(rdev);
1918 if (ret != 0)
1919 return ret;
1922 trace_regulator_disable_complete(rdev_get_name(rdev));
1924 return 0;
1927 /* locks held by regulator_disable() */
1928 static int _regulator_disable(struct regulator_dev *rdev)
1930 int ret = 0;
1932 if (WARN(rdev->use_count <= 0,
1933 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1934 return -EIO;
1936 /* are we the last user and permitted to disable ? */
1937 if (rdev->use_count == 1 &&
1938 (rdev->constraints && !rdev->constraints->always_on)) {
1940 /* we are last user */
1941 if (_regulator_can_change_status(rdev)) {
1942 ret = _regulator_do_disable(rdev);
1943 if (ret < 0) {
1944 rdev_err(rdev, "failed to disable\n");
1945 return ret;
1947 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1948 NULL);
1951 rdev->use_count = 0;
1952 } else if (rdev->use_count > 1) {
1954 if (rdev->constraints &&
1955 (rdev->constraints->valid_ops_mask &
1956 REGULATOR_CHANGE_DRMS))
1957 drms_uA_update(rdev);
1959 rdev->use_count--;
1962 return ret;
1966 * regulator_disable - disable regulator output
1967 * @regulator: regulator source
1969 * Disable the regulator output voltage or current. Calls to
1970 * regulator_enable() must be balanced with calls to
1971 * regulator_disable().
1973 * NOTE: this will only disable the regulator output if no other consumer
1974 * devices have it enabled, the regulator device supports disabling and
1975 * machine constraints permit this operation.
1977 int regulator_disable(struct regulator *regulator)
1979 struct regulator_dev *rdev = regulator->rdev;
1980 int ret = 0;
1982 if (regulator->always_on)
1983 return 0;
1985 mutex_lock(&rdev->mutex);
1986 ret = _regulator_disable(rdev);
1987 mutex_unlock(&rdev->mutex);
1989 if (ret == 0 && rdev->supply)
1990 regulator_disable(rdev->supply);
1992 return ret;
1994 EXPORT_SYMBOL_GPL(regulator_disable);
1996 /* locks held by regulator_force_disable() */
1997 static int _regulator_force_disable(struct regulator_dev *rdev)
1999 int ret = 0;
2001 ret = _regulator_do_disable(rdev);
2002 if (ret < 0) {
2003 rdev_err(rdev, "failed to force disable\n");
2004 return ret;
2007 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2008 REGULATOR_EVENT_DISABLE, NULL);
2010 return 0;
2014 * regulator_force_disable - force disable regulator output
2015 * @regulator: regulator source
2017 * Forcibly disable the regulator output voltage or current.
2018 * NOTE: this *will* disable the regulator output even if other consumer
2019 * devices have it enabled. This should be used for situations when device
2020 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2022 int regulator_force_disable(struct regulator *regulator)
2024 struct regulator_dev *rdev = regulator->rdev;
2025 int ret;
2027 mutex_lock(&rdev->mutex);
2028 regulator->uA_load = 0;
2029 ret = _regulator_force_disable(regulator->rdev);
2030 mutex_unlock(&rdev->mutex);
2032 if (rdev->supply)
2033 while (rdev->open_count--)
2034 regulator_disable(rdev->supply);
2036 return ret;
2038 EXPORT_SYMBOL_GPL(regulator_force_disable);
2040 static void regulator_disable_work(struct work_struct *work)
2042 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2043 disable_work.work);
2044 int count, i, ret;
2046 mutex_lock(&rdev->mutex);
2048 BUG_ON(!rdev->deferred_disables);
2050 count = rdev->deferred_disables;
2051 rdev->deferred_disables = 0;
2053 for (i = 0; i < count; i++) {
2054 ret = _regulator_disable(rdev);
2055 if (ret != 0)
2056 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2059 mutex_unlock(&rdev->mutex);
2061 if (rdev->supply) {
2062 for (i = 0; i < count; i++) {
2063 ret = regulator_disable(rdev->supply);
2064 if (ret != 0) {
2065 rdev_err(rdev,
2066 "Supply disable failed: %d\n", ret);
2073 * regulator_disable_deferred - disable regulator output with delay
2074 * @regulator: regulator source
2075 * @ms: miliseconds until the regulator is disabled
2077 * Execute regulator_disable() on the regulator after a delay. This
2078 * is intended for use with devices that require some time to quiesce.
2080 * NOTE: this will only disable the regulator output if no other consumer
2081 * devices have it enabled, the regulator device supports disabling and
2082 * machine constraints permit this operation.
2084 int regulator_disable_deferred(struct regulator *regulator, int ms)
2086 struct regulator_dev *rdev = regulator->rdev;
2087 int ret;
2089 if (regulator->always_on)
2090 return 0;
2092 if (!ms)
2093 return regulator_disable(regulator);
2095 mutex_lock(&rdev->mutex);
2096 rdev->deferred_disables++;
2097 mutex_unlock(&rdev->mutex);
2099 ret = queue_delayed_work(system_power_efficient_wq,
2100 &rdev->disable_work,
2101 msecs_to_jiffies(ms));
2102 if (ret < 0)
2103 return ret;
2104 else
2105 return 0;
2107 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2109 static int _regulator_is_enabled(struct regulator_dev *rdev)
2111 /* A GPIO control always takes precedence */
2112 if (rdev->ena_pin)
2113 return rdev->ena_gpio_state;
2115 /* If we don't know then assume that the regulator is always on */
2116 if (!rdev->desc->ops->is_enabled)
2117 return 1;
2119 return rdev->desc->ops->is_enabled(rdev);
2123 * regulator_is_enabled - is the regulator output enabled
2124 * @regulator: regulator source
2126 * Returns positive if the regulator driver backing the source/client
2127 * has requested that the device be enabled, zero if it hasn't, else a
2128 * negative errno code.
2130 * Note that the device backing this regulator handle can have multiple
2131 * users, so it might be enabled even if regulator_enable() was never
2132 * called for this particular source.
2134 int regulator_is_enabled(struct regulator *regulator)
2136 int ret;
2138 if (regulator->always_on)
2139 return 1;
2141 mutex_lock(&regulator->rdev->mutex);
2142 ret = _regulator_is_enabled(regulator->rdev);
2143 mutex_unlock(&regulator->rdev->mutex);
2145 return ret;
2147 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2150 * regulator_can_change_voltage - check if regulator can change voltage
2151 * @regulator: regulator source
2153 * Returns positive if the regulator driver backing the source/client
2154 * can change its voltage, false otherwise. Useful for detecting fixed
2155 * or dummy regulators and disabling voltage change logic in the client
2156 * driver.
2158 int regulator_can_change_voltage(struct regulator *regulator)
2160 struct regulator_dev *rdev = regulator->rdev;
2162 if (rdev->constraints &&
2163 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2164 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2165 return 1;
2167 if (rdev->desc->continuous_voltage_range &&
2168 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2169 rdev->constraints->min_uV != rdev->constraints->max_uV)
2170 return 1;
2173 return 0;
2175 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2178 * regulator_count_voltages - count regulator_list_voltage() selectors
2179 * @regulator: regulator source
2181 * Returns number of selectors, or negative errno. Selectors are
2182 * numbered starting at zero, and typically correspond to bitfields
2183 * in hardware registers.
2185 int regulator_count_voltages(struct regulator *regulator)
2187 struct regulator_dev *rdev = regulator->rdev;
2189 return rdev->desc->n_voltages ? : -EINVAL;
2191 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2194 * regulator_list_voltage - enumerate supported voltages
2195 * @regulator: regulator source
2196 * @selector: identify voltage to list
2197 * Context: can sleep
2199 * Returns a voltage that can be passed to @regulator_set_voltage(),
2200 * zero if this selector code can't be used on this system, or a
2201 * negative errno.
2203 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2205 struct regulator_dev *rdev = regulator->rdev;
2206 struct regulator_ops *ops = rdev->desc->ops;
2207 int ret;
2209 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2210 return rdev->desc->fixed_uV;
2212 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2213 return -EINVAL;
2215 mutex_lock(&rdev->mutex);
2216 ret = ops->list_voltage(rdev, selector);
2217 mutex_unlock(&rdev->mutex);
2219 if (ret > 0) {
2220 if (ret < rdev->constraints->min_uV)
2221 ret = 0;
2222 else if (ret > rdev->constraints->max_uV)
2223 ret = 0;
2226 return ret;
2228 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2231 * regulator_get_linear_step - return the voltage step size between VSEL values
2232 * @regulator: regulator source
2234 * Returns the voltage step size between VSEL values for linear
2235 * regulators, or return 0 if the regulator isn't a linear regulator.
2237 unsigned int regulator_get_linear_step(struct regulator *regulator)
2239 struct regulator_dev *rdev = regulator->rdev;
2241 return rdev->desc->uV_step;
2243 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2246 * regulator_is_supported_voltage - check if a voltage range can be supported
2248 * @regulator: Regulator to check.
2249 * @min_uV: Minimum required voltage in uV.
2250 * @max_uV: Maximum required voltage in uV.
2252 * Returns a boolean or a negative error code.
2254 int regulator_is_supported_voltage(struct regulator *regulator,
2255 int min_uV, int max_uV)
2257 struct regulator_dev *rdev = regulator->rdev;
2258 int i, voltages, ret;
2260 /* If we can't change voltage check the current voltage */
2261 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2262 ret = regulator_get_voltage(regulator);
2263 if (ret >= 0)
2264 return min_uV <= ret && ret <= max_uV;
2265 else
2266 return ret;
2269 /* Any voltage within constrains range is fine? */
2270 if (rdev->desc->continuous_voltage_range)
2271 return min_uV >= rdev->constraints->min_uV &&
2272 max_uV <= rdev->constraints->max_uV;
2274 ret = regulator_count_voltages(regulator);
2275 if (ret < 0)
2276 return ret;
2277 voltages = ret;
2279 for (i = 0; i < voltages; i++) {
2280 ret = regulator_list_voltage(regulator, i);
2282 if (ret >= min_uV && ret <= max_uV)
2283 return 1;
2286 return 0;
2288 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2290 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2291 int min_uV, int max_uV)
2293 int ret;
2294 int delay = 0;
2295 int best_val = 0;
2296 unsigned int selector;
2297 int old_selector = -1;
2299 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2301 min_uV += rdev->constraints->uV_offset;
2302 max_uV += rdev->constraints->uV_offset;
2305 * If we can't obtain the old selector there is not enough
2306 * info to call set_voltage_time_sel().
2308 if (_regulator_is_enabled(rdev) &&
2309 rdev->desc->ops->set_voltage_time_sel &&
2310 rdev->desc->ops->get_voltage_sel) {
2311 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2312 if (old_selector < 0)
2313 return old_selector;
2316 if (rdev->desc->ops->set_voltage) {
2317 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2318 &selector);
2320 if (ret >= 0) {
2321 if (rdev->desc->ops->list_voltage)
2322 best_val = rdev->desc->ops->list_voltage(rdev,
2323 selector);
2324 else
2325 best_val = _regulator_get_voltage(rdev);
2328 } else if (rdev->desc->ops->set_voltage_sel) {
2329 if (rdev->desc->ops->map_voltage) {
2330 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2331 max_uV);
2332 } else {
2333 if (rdev->desc->ops->list_voltage ==
2334 regulator_list_voltage_linear)
2335 ret = regulator_map_voltage_linear(rdev,
2336 min_uV, max_uV);
2337 else if (rdev->desc->ops->list_voltage ==
2338 regulator_list_voltage_linear_range)
2339 ret = regulator_map_voltage_linear_range(rdev,
2340 min_uV, max_uV);
2341 else
2342 ret = regulator_map_voltage_iterate(rdev,
2343 min_uV, max_uV);
2346 if (ret >= 0) {
2347 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2348 if (min_uV <= best_val && max_uV >= best_val) {
2349 selector = ret;
2350 if (old_selector == selector)
2351 ret = 0;
2352 else
2353 ret = rdev->desc->ops->set_voltage_sel(
2354 rdev, ret);
2355 } else {
2356 ret = -EINVAL;
2359 } else {
2360 ret = -EINVAL;
2363 /* Call set_voltage_time_sel if successfully obtained old_selector */
2364 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2365 && old_selector != selector) {
2367 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2368 old_selector, selector);
2369 if (delay < 0) {
2370 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2371 delay);
2372 delay = 0;
2375 /* Insert any necessary delays */
2376 if (delay >= 1000) {
2377 mdelay(delay / 1000);
2378 udelay(delay % 1000);
2379 } else if (delay) {
2380 udelay(delay);
2384 if (ret == 0 && best_val >= 0) {
2385 unsigned long data = best_val;
2387 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2388 (void *)data);
2391 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2393 return ret;
2397 * regulator_set_voltage - set regulator output voltage
2398 * @regulator: regulator source
2399 * @min_uV: Minimum required voltage in uV
2400 * @max_uV: Maximum acceptable voltage in uV
2402 * Sets a voltage regulator to the desired output voltage. This can be set
2403 * during any regulator state. IOW, regulator can be disabled or enabled.
2405 * If the regulator is enabled then the voltage will change to the new value
2406 * immediately otherwise if the regulator is disabled the regulator will
2407 * output at the new voltage when enabled.
2409 * NOTE: If the regulator is shared between several devices then the lowest
2410 * request voltage that meets the system constraints will be used.
2411 * Regulator system constraints must be set for this regulator before
2412 * calling this function otherwise this call will fail.
2414 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2416 struct regulator_dev *rdev = regulator->rdev;
2417 int ret = 0;
2418 int old_min_uV, old_max_uV;
2419 int current_uV;
2421 mutex_lock(&rdev->mutex);
2423 /* If we're setting the same range as last time the change
2424 * should be a noop (some cpufreq implementations use the same
2425 * voltage for multiple frequencies, for example).
2427 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2428 goto out;
2430 /* If we're trying to set a range that overlaps the current voltage,
2431 * return succesfully even though the regulator does not support
2432 * changing the voltage.
2434 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2435 current_uV = _regulator_get_voltage(rdev);
2436 if (min_uV <= current_uV && current_uV <= max_uV) {
2437 regulator->min_uV = min_uV;
2438 regulator->max_uV = max_uV;
2439 goto out;
2443 /* sanity check */
2444 if (!rdev->desc->ops->set_voltage &&
2445 !rdev->desc->ops->set_voltage_sel) {
2446 ret = -EINVAL;
2447 goto out;
2450 /* constraints check */
2451 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2452 if (ret < 0)
2453 goto out;
2455 /* restore original values in case of error */
2456 old_min_uV = regulator->min_uV;
2457 old_max_uV = regulator->max_uV;
2458 regulator->min_uV = min_uV;
2459 regulator->max_uV = max_uV;
2461 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2462 if (ret < 0)
2463 goto out2;
2465 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2466 if (ret < 0)
2467 goto out2;
2469 out:
2470 mutex_unlock(&rdev->mutex);
2471 return ret;
2472 out2:
2473 regulator->min_uV = old_min_uV;
2474 regulator->max_uV = old_max_uV;
2475 mutex_unlock(&rdev->mutex);
2476 return ret;
2478 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2481 * regulator_set_voltage_time - get raise/fall time
2482 * @regulator: regulator source
2483 * @old_uV: starting voltage in microvolts
2484 * @new_uV: target voltage in microvolts
2486 * Provided with the starting and ending voltage, this function attempts to
2487 * calculate the time in microseconds required to rise or fall to this new
2488 * voltage.
2490 int regulator_set_voltage_time(struct regulator *regulator,
2491 int old_uV, int new_uV)
2493 struct regulator_dev *rdev = regulator->rdev;
2494 struct regulator_ops *ops = rdev->desc->ops;
2495 int old_sel = -1;
2496 int new_sel = -1;
2497 int voltage;
2498 int i;
2500 /* Currently requires operations to do this */
2501 if (!ops->list_voltage || !ops->set_voltage_time_sel
2502 || !rdev->desc->n_voltages)
2503 return -EINVAL;
2505 for (i = 0; i < rdev->desc->n_voltages; i++) {
2506 /* We only look for exact voltage matches here */
2507 voltage = regulator_list_voltage(regulator, i);
2508 if (voltage < 0)
2509 return -EINVAL;
2510 if (voltage == 0)
2511 continue;
2512 if (voltage == old_uV)
2513 old_sel = i;
2514 if (voltage == new_uV)
2515 new_sel = i;
2518 if (old_sel < 0 || new_sel < 0)
2519 return -EINVAL;
2521 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2523 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2526 * regulator_set_voltage_time_sel - get raise/fall time
2527 * @rdev: regulator source device
2528 * @old_selector: selector for starting voltage
2529 * @new_selector: selector for target voltage
2531 * Provided with the starting and target voltage selectors, this function
2532 * returns time in microseconds required to rise or fall to this new voltage
2534 * Drivers providing ramp_delay in regulation_constraints can use this as their
2535 * set_voltage_time_sel() operation.
2537 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2538 unsigned int old_selector,
2539 unsigned int new_selector)
2541 unsigned int ramp_delay = 0;
2542 int old_volt, new_volt;
2544 if (rdev->constraints->ramp_delay)
2545 ramp_delay = rdev->constraints->ramp_delay;
2546 else if (rdev->desc->ramp_delay)
2547 ramp_delay = rdev->desc->ramp_delay;
2549 if (ramp_delay == 0) {
2550 rdev_warn(rdev, "ramp_delay not set\n");
2551 return 0;
2554 /* sanity check */
2555 if (!rdev->desc->ops->list_voltage)
2556 return -EINVAL;
2558 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2559 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2561 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2563 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2566 * regulator_sync_voltage - re-apply last regulator output voltage
2567 * @regulator: regulator source
2569 * Re-apply the last configured voltage. This is intended to be used
2570 * where some external control source the consumer is cooperating with
2571 * has caused the configured voltage to change.
2573 int regulator_sync_voltage(struct regulator *regulator)
2575 struct regulator_dev *rdev = regulator->rdev;
2576 int ret, min_uV, max_uV;
2578 mutex_lock(&rdev->mutex);
2580 if (!rdev->desc->ops->set_voltage &&
2581 !rdev->desc->ops->set_voltage_sel) {
2582 ret = -EINVAL;
2583 goto out;
2586 /* This is only going to work if we've had a voltage configured. */
2587 if (!regulator->min_uV && !regulator->max_uV) {
2588 ret = -EINVAL;
2589 goto out;
2592 min_uV = regulator->min_uV;
2593 max_uV = regulator->max_uV;
2595 /* This should be a paranoia check... */
2596 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2597 if (ret < 0)
2598 goto out;
2600 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2601 if (ret < 0)
2602 goto out;
2604 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2606 out:
2607 mutex_unlock(&rdev->mutex);
2608 return ret;
2610 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2612 static int _regulator_get_voltage(struct regulator_dev *rdev)
2614 int sel, ret;
2616 if (rdev->desc->ops->get_voltage_sel) {
2617 sel = rdev->desc->ops->get_voltage_sel(rdev);
2618 if (sel < 0)
2619 return sel;
2620 ret = rdev->desc->ops->list_voltage(rdev, sel);
2621 } else if (rdev->desc->ops->get_voltage) {
2622 ret = rdev->desc->ops->get_voltage(rdev);
2623 } else if (rdev->desc->ops->list_voltage) {
2624 ret = rdev->desc->ops->list_voltage(rdev, 0);
2625 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2626 ret = rdev->desc->fixed_uV;
2627 } else {
2628 return -EINVAL;
2631 if (ret < 0)
2632 return ret;
2633 return ret - rdev->constraints->uV_offset;
2637 * regulator_get_voltage - get regulator output voltage
2638 * @regulator: regulator source
2640 * This returns the current regulator voltage in uV.
2642 * NOTE: If the regulator is disabled it will return the voltage value. This
2643 * function should not be used to determine regulator state.
2645 int regulator_get_voltage(struct regulator *regulator)
2647 int ret;
2649 mutex_lock(&regulator->rdev->mutex);
2651 ret = _regulator_get_voltage(regulator->rdev);
2653 mutex_unlock(&regulator->rdev->mutex);
2655 return ret;
2657 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2660 * regulator_set_current_limit - set regulator output current limit
2661 * @regulator: regulator source
2662 * @min_uA: Minimum supported current in uA
2663 * @max_uA: Maximum supported current in uA
2665 * Sets current sink to the desired output current. This can be set during
2666 * any regulator state. IOW, regulator can be disabled or enabled.
2668 * If the regulator is enabled then the current will change to the new value
2669 * immediately otherwise if the regulator is disabled the regulator will
2670 * output at the new current when enabled.
2672 * NOTE: Regulator system constraints must be set for this regulator before
2673 * calling this function otherwise this call will fail.
2675 int regulator_set_current_limit(struct regulator *regulator,
2676 int min_uA, int max_uA)
2678 struct regulator_dev *rdev = regulator->rdev;
2679 int ret;
2681 mutex_lock(&rdev->mutex);
2683 /* sanity check */
2684 if (!rdev->desc->ops->set_current_limit) {
2685 ret = -EINVAL;
2686 goto out;
2689 /* constraints check */
2690 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2691 if (ret < 0)
2692 goto out;
2694 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2695 out:
2696 mutex_unlock(&rdev->mutex);
2697 return ret;
2699 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2701 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2703 int ret;
2705 mutex_lock(&rdev->mutex);
2707 /* sanity check */
2708 if (!rdev->desc->ops->get_current_limit) {
2709 ret = -EINVAL;
2710 goto out;
2713 ret = rdev->desc->ops->get_current_limit(rdev);
2714 out:
2715 mutex_unlock(&rdev->mutex);
2716 return ret;
2720 * regulator_get_current_limit - get regulator output current
2721 * @regulator: regulator source
2723 * This returns the current supplied by the specified current sink in uA.
2725 * NOTE: If the regulator is disabled it will return the current value. This
2726 * function should not be used to determine regulator state.
2728 int regulator_get_current_limit(struct regulator *regulator)
2730 return _regulator_get_current_limit(regulator->rdev);
2732 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2735 * regulator_set_mode - set regulator operating mode
2736 * @regulator: regulator source
2737 * @mode: operating mode - one of the REGULATOR_MODE constants
2739 * Set regulator operating mode to increase regulator efficiency or improve
2740 * regulation performance.
2742 * NOTE: Regulator system constraints must be set for this regulator before
2743 * calling this function otherwise this call will fail.
2745 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2747 struct regulator_dev *rdev = regulator->rdev;
2748 int ret;
2749 int regulator_curr_mode;
2751 mutex_lock(&rdev->mutex);
2753 /* sanity check */
2754 if (!rdev->desc->ops->set_mode) {
2755 ret = -EINVAL;
2756 goto out;
2759 /* return if the same mode is requested */
2760 if (rdev->desc->ops->get_mode) {
2761 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2762 if (regulator_curr_mode == mode) {
2763 ret = 0;
2764 goto out;
2768 /* constraints check */
2769 ret = regulator_mode_constrain(rdev, &mode);
2770 if (ret < 0)
2771 goto out;
2773 ret = rdev->desc->ops->set_mode(rdev, mode);
2774 out:
2775 mutex_unlock(&rdev->mutex);
2776 return ret;
2778 EXPORT_SYMBOL_GPL(regulator_set_mode);
2780 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2782 int ret;
2784 mutex_lock(&rdev->mutex);
2786 /* sanity check */
2787 if (!rdev->desc->ops->get_mode) {
2788 ret = -EINVAL;
2789 goto out;
2792 ret = rdev->desc->ops->get_mode(rdev);
2793 out:
2794 mutex_unlock(&rdev->mutex);
2795 return ret;
2799 * regulator_get_mode - get regulator operating mode
2800 * @regulator: regulator source
2802 * Get the current regulator operating mode.
2804 unsigned int regulator_get_mode(struct regulator *regulator)
2806 return _regulator_get_mode(regulator->rdev);
2808 EXPORT_SYMBOL_GPL(regulator_get_mode);
2811 * regulator_set_optimum_mode - set regulator optimum operating mode
2812 * @regulator: regulator source
2813 * @uA_load: load current
2815 * Notifies the regulator core of a new device load. This is then used by
2816 * DRMS (if enabled by constraints) to set the most efficient regulator
2817 * operating mode for the new regulator loading.
2819 * Consumer devices notify their supply regulator of the maximum power
2820 * they will require (can be taken from device datasheet in the power
2821 * consumption tables) when they change operational status and hence power
2822 * state. Examples of operational state changes that can affect power
2823 * consumption are :-
2825 * o Device is opened / closed.
2826 * o Device I/O is about to begin or has just finished.
2827 * o Device is idling in between work.
2829 * This information is also exported via sysfs to userspace.
2831 * DRMS will sum the total requested load on the regulator and change
2832 * to the most efficient operating mode if platform constraints allow.
2834 * Returns the new regulator mode or error.
2836 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2838 struct regulator_dev *rdev = regulator->rdev;
2839 struct regulator *consumer;
2840 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2841 unsigned int mode;
2843 if (rdev->supply)
2844 input_uV = regulator_get_voltage(rdev->supply);
2846 mutex_lock(&rdev->mutex);
2849 * first check to see if we can set modes at all, otherwise just
2850 * tell the consumer everything is OK.
2852 regulator->uA_load = uA_load;
2853 ret = regulator_check_drms(rdev);
2854 if (ret < 0) {
2855 ret = 0;
2856 goto out;
2859 if (!rdev->desc->ops->get_optimum_mode)
2860 goto out;
2863 * we can actually do this so any errors are indicators of
2864 * potential real failure.
2866 ret = -EINVAL;
2868 if (!rdev->desc->ops->set_mode)
2869 goto out;
2871 /* get output voltage */
2872 output_uV = _regulator_get_voltage(rdev);
2873 if (output_uV <= 0) {
2874 rdev_err(rdev, "invalid output voltage found\n");
2875 goto out;
2878 /* No supply? Use constraint voltage */
2879 if (input_uV <= 0)
2880 input_uV = rdev->constraints->input_uV;
2881 if (input_uV <= 0) {
2882 rdev_err(rdev, "invalid input voltage found\n");
2883 goto out;
2886 /* calc total requested load for this regulator */
2887 list_for_each_entry(consumer, &rdev->consumer_list, list)
2888 total_uA_load += consumer->uA_load;
2890 mode = rdev->desc->ops->get_optimum_mode(rdev,
2891 input_uV, output_uV,
2892 total_uA_load);
2893 ret = regulator_mode_constrain(rdev, &mode);
2894 if (ret < 0) {
2895 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2896 total_uA_load, input_uV, output_uV);
2897 goto out;
2900 ret = rdev->desc->ops->set_mode(rdev, mode);
2901 if (ret < 0) {
2902 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2903 goto out;
2905 ret = mode;
2906 out:
2907 mutex_unlock(&rdev->mutex);
2908 return ret;
2910 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2913 * regulator_allow_bypass - allow the regulator to go into bypass mode
2915 * @regulator: Regulator to configure
2916 * @enable: enable or disable bypass mode
2918 * Allow the regulator to go into bypass mode if all other consumers
2919 * for the regulator also enable bypass mode and the machine
2920 * constraints allow this. Bypass mode means that the regulator is
2921 * simply passing the input directly to the output with no regulation.
2923 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2925 struct regulator_dev *rdev = regulator->rdev;
2926 int ret = 0;
2928 if (!rdev->desc->ops->set_bypass)
2929 return 0;
2931 if (rdev->constraints &&
2932 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2933 return 0;
2935 mutex_lock(&rdev->mutex);
2937 if (enable && !regulator->bypass) {
2938 rdev->bypass_count++;
2940 if (rdev->bypass_count == rdev->open_count) {
2941 ret = rdev->desc->ops->set_bypass(rdev, enable);
2942 if (ret != 0)
2943 rdev->bypass_count--;
2946 } else if (!enable && regulator->bypass) {
2947 rdev->bypass_count--;
2949 if (rdev->bypass_count != rdev->open_count) {
2950 ret = rdev->desc->ops->set_bypass(rdev, enable);
2951 if (ret != 0)
2952 rdev->bypass_count++;
2956 if (ret == 0)
2957 regulator->bypass = enable;
2959 mutex_unlock(&rdev->mutex);
2961 return ret;
2963 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2966 * regulator_register_notifier - register regulator event notifier
2967 * @regulator: regulator source
2968 * @nb: notifier block
2970 * Register notifier block to receive regulator events.
2972 int regulator_register_notifier(struct regulator *regulator,
2973 struct notifier_block *nb)
2975 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2976 nb);
2978 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2981 * regulator_unregister_notifier - unregister regulator event notifier
2982 * @regulator: regulator source
2983 * @nb: notifier block
2985 * Unregister regulator event notifier block.
2987 int regulator_unregister_notifier(struct regulator *regulator,
2988 struct notifier_block *nb)
2990 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2991 nb);
2993 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2995 /* notify regulator consumers and downstream regulator consumers.
2996 * Note mutex must be held by caller.
2998 static void _notifier_call_chain(struct regulator_dev *rdev,
2999 unsigned long event, void *data)
3001 /* call rdev chain first */
3002 blocking_notifier_call_chain(&rdev->notifier, event, data);
3006 * regulator_bulk_get - get multiple regulator consumers
3008 * @dev: Device to supply
3009 * @num_consumers: Number of consumers to register
3010 * @consumers: Configuration of consumers; clients are stored here.
3012 * @return 0 on success, an errno on failure.
3014 * This helper function allows drivers to get several regulator
3015 * consumers in one operation. If any of the regulators cannot be
3016 * acquired then any regulators that were allocated will be freed
3017 * before returning to the caller.
3019 int regulator_bulk_get(struct device *dev, int num_consumers,
3020 struct regulator_bulk_data *consumers)
3022 int i;
3023 int ret;
3025 for (i = 0; i < num_consumers; i++)
3026 consumers[i].consumer = NULL;
3028 for (i = 0; i < num_consumers; i++) {
3029 consumers[i].consumer = regulator_get(dev,
3030 consumers[i].supply);
3031 if (IS_ERR(consumers[i].consumer)) {
3032 ret = PTR_ERR(consumers[i].consumer);
3033 dev_err(dev, "Failed to get supply '%s': %d\n",
3034 consumers[i].supply, ret);
3035 consumers[i].consumer = NULL;
3036 goto err;
3040 return 0;
3042 err:
3043 while (--i >= 0)
3044 regulator_put(consumers[i].consumer);
3046 return ret;
3048 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3050 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3052 struct regulator_bulk_data *bulk = data;
3054 bulk->ret = regulator_enable(bulk->consumer);
3058 * regulator_bulk_enable - enable multiple regulator consumers
3060 * @num_consumers: Number of consumers
3061 * @consumers: Consumer data; clients are stored here.
3062 * @return 0 on success, an errno on failure
3064 * This convenience API allows consumers to enable multiple regulator
3065 * clients in a single API call. If any consumers cannot be enabled
3066 * then any others that were enabled will be disabled again prior to
3067 * return.
3069 int regulator_bulk_enable(int num_consumers,
3070 struct regulator_bulk_data *consumers)
3072 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3073 int i;
3074 int ret = 0;
3076 for (i = 0; i < num_consumers; i++) {
3077 if (consumers[i].consumer->always_on)
3078 consumers[i].ret = 0;
3079 else
3080 async_schedule_domain(regulator_bulk_enable_async,
3081 &consumers[i], &async_domain);
3084 async_synchronize_full_domain(&async_domain);
3086 /* If any consumer failed we need to unwind any that succeeded */
3087 for (i = 0; i < num_consumers; i++) {
3088 if (consumers[i].ret != 0) {
3089 ret = consumers[i].ret;
3090 goto err;
3094 return 0;
3096 err:
3097 for (i = 0; i < num_consumers; i++) {
3098 if (consumers[i].ret < 0)
3099 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3100 consumers[i].ret);
3101 else
3102 regulator_disable(consumers[i].consumer);
3105 return ret;
3107 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3110 * regulator_bulk_disable - disable multiple regulator consumers
3112 * @num_consumers: Number of consumers
3113 * @consumers: Consumer data; clients are stored here.
3114 * @return 0 on success, an errno on failure
3116 * This convenience API allows consumers to disable multiple regulator
3117 * clients in a single API call. If any consumers cannot be disabled
3118 * then any others that were disabled will be enabled again prior to
3119 * return.
3121 int regulator_bulk_disable(int num_consumers,
3122 struct regulator_bulk_data *consumers)
3124 int i;
3125 int ret, r;
3127 for (i = num_consumers - 1; i >= 0; --i) {
3128 ret = regulator_disable(consumers[i].consumer);
3129 if (ret != 0)
3130 goto err;
3133 return 0;
3135 err:
3136 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3137 for (++i; i < num_consumers; ++i) {
3138 r = regulator_enable(consumers[i].consumer);
3139 if (r != 0)
3140 pr_err("Failed to reename %s: %d\n",
3141 consumers[i].supply, r);
3144 return ret;
3146 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3149 * regulator_bulk_force_disable - force disable multiple regulator consumers
3151 * @num_consumers: Number of consumers
3152 * @consumers: Consumer data; clients are stored here.
3153 * @return 0 on success, an errno on failure
3155 * This convenience API allows consumers to forcibly disable multiple regulator
3156 * clients in a single API call.
3157 * NOTE: This should be used for situations when device damage will
3158 * likely occur if the regulators are not disabled (e.g. over temp).
3159 * Although regulator_force_disable function call for some consumers can
3160 * return error numbers, the function is called for all consumers.
3162 int regulator_bulk_force_disable(int num_consumers,
3163 struct regulator_bulk_data *consumers)
3165 int i;
3166 int ret;
3168 for (i = 0; i < num_consumers; i++)
3169 consumers[i].ret =
3170 regulator_force_disable(consumers[i].consumer);
3172 for (i = 0; i < num_consumers; i++) {
3173 if (consumers[i].ret != 0) {
3174 ret = consumers[i].ret;
3175 goto out;
3179 return 0;
3180 out:
3181 return ret;
3183 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3186 * regulator_bulk_free - free multiple regulator consumers
3188 * @num_consumers: Number of consumers
3189 * @consumers: Consumer data; clients are stored here.
3191 * This convenience API allows consumers to free multiple regulator
3192 * clients in a single API call.
3194 void regulator_bulk_free(int num_consumers,
3195 struct regulator_bulk_data *consumers)
3197 int i;
3199 for (i = 0; i < num_consumers; i++) {
3200 regulator_put(consumers[i].consumer);
3201 consumers[i].consumer = NULL;
3204 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3207 * regulator_notifier_call_chain - call regulator event notifier
3208 * @rdev: regulator source
3209 * @event: notifier block
3210 * @data: callback-specific data.
3212 * Called by regulator drivers to notify clients a regulator event has
3213 * occurred. We also notify regulator clients downstream.
3214 * Note lock must be held by caller.
3216 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3217 unsigned long event, void *data)
3219 _notifier_call_chain(rdev, event, data);
3220 return NOTIFY_DONE;
3223 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3226 * regulator_mode_to_status - convert a regulator mode into a status
3228 * @mode: Mode to convert
3230 * Convert a regulator mode into a status.
3232 int regulator_mode_to_status(unsigned int mode)
3234 switch (mode) {
3235 case REGULATOR_MODE_FAST:
3236 return REGULATOR_STATUS_FAST;
3237 case REGULATOR_MODE_NORMAL:
3238 return REGULATOR_STATUS_NORMAL;
3239 case REGULATOR_MODE_IDLE:
3240 return REGULATOR_STATUS_IDLE;
3241 case REGULATOR_MODE_STANDBY:
3242 return REGULATOR_STATUS_STANDBY;
3243 default:
3244 return REGULATOR_STATUS_UNDEFINED;
3247 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3250 * To avoid cluttering sysfs (and memory) with useless state, only
3251 * create attributes that can be meaningfully displayed.
3253 static int add_regulator_attributes(struct regulator_dev *rdev)
3255 struct device *dev = &rdev->dev;
3256 struct regulator_ops *ops = rdev->desc->ops;
3257 int status = 0;
3259 /* some attributes need specific methods to be displayed */
3260 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3261 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3262 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3263 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3264 status = device_create_file(dev, &dev_attr_microvolts);
3265 if (status < 0)
3266 return status;
3268 if (ops->get_current_limit) {
3269 status = device_create_file(dev, &dev_attr_microamps);
3270 if (status < 0)
3271 return status;
3273 if (ops->get_mode) {
3274 status = device_create_file(dev, &dev_attr_opmode);
3275 if (status < 0)
3276 return status;
3278 if (rdev->ena_pin || ops->is_enabled) {
3279 status = device_create_file(dev, &dev_attr_state);
3280 if (status < 0)
3281 return status;
3283 if (ops->get_status) {
3284 status = device_create_file(dev, &dev_attr_status);
3285 if (status < 0)
3286 return status;
3288 if (ops->get_bypass) {
3289 status = device_create_file(dev, &dev_attr_bypass);
3290 if (status < 0)
3291 return status;
3294 /* some attributes are type-specific */
3295 if (rdev->desc->type == REGULATOR_CURRENT) {
3296 status = device_create_file(dev, &dev_attr_requested_microamps);
3297 if (status < 0)
3298 return status;
3301 /* all the other attributes exist to support constraints;
3302 * don't show them if there are no constraints, or if the
3303 * relevant supporting methods are missing.
3305 if (!rdev->constraints)
3306 return status;
3308 /* constraints need specific supporting methods */
3309 if (ops->set_voltage || ops->set_voltage_sel) {
3310 status = device_create_file(dev, &dev_attr_min_microvolts);
3311 if (status < 0)
3312 return status;
3313 status = device_create_file(dev, &dev_attr_max_microvolts);
3314 if (status < 0)
3315 return status;
3317 if (ops->set_current_limit) {
3318 status = device_create_file(dev, &dev_attr_min_microamps);
3319 if (status < 0)
3320 return status;
3321 status = device_create_file(dev, &dev_attr_max_microamps);
3322 if (status < 0)
3323 return status;
3326 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3327 if (status < 0)
3328 return status;
3329 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3330 if (status < 0)
3331 return status;
3332 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3333 if (status < 0)
3334 return status;
3336 if (ops->set_suspend_voltage) {
3337 status = device_create_file(dev,
3338 &dev_attr_suspend_standby_microvolts);
3339 if (status < 0)
3340 return status;
3341 status = device_create_file(dev,
3342 &dev_attr_suspend_mem_microvolts);
3343 if (status < 0)
3344 return status;
3345 status = device_create_file(dev,
3346 &dev_attr_suspend_disk_microvolts);
3347 if (status < 0)
3348 return status;
3351 if (ops->set_suspend_mode) {
3352 status = device_create_file(dev,
3353 &dev_attr_suspend_standby_mode);
3354 if (status < 0)
3355 return status;
3356 status = device_create_file(dev,
3357 &dev_attr_suspend_mem_mode);
3358 if (status < 0)
3359 return status;
3360 status = device_create_file(dev,
3361 &dev_attr_suspend_disk_mode);
3362 if (status < 0)
3363 return status;
3366 return status;
3369 static void rdev_init_debugfs(struct regulator_dev *rdev)
3371 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3372 if (!rdev->debugfs) {
3373 rdev_warn(rdev, "Failed to create debugfs directory\n");
3374 return;
3377 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3378 &rdev->use_count);
3379 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3380 &rdev->open_count);
3381 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3382 &rdev->bypass_count);
3386 * regulator_register - register regulator
3387 * @regulator_desc: regulator to register
3388 * @config: runtime configuration for regulator
3390 * Called by regulator drivers to register a regulator.
3391 * Returns a valid pointer to struct regulator_dev on success
3392 * or an ERR_PTR() on error.
3394 struct regulator_dev *
3395 regulator_register(const struct regulator_desc *regulator_desc,
3396 const struct regulator_config *config)
3398 const struct regulation_constraints *constraints = NULL;
3399 const struct regulator_init_data *init_data;
3400 static atomic_t regulator_no = ATOMIC_INIT(0);
3401 struct regulator_dev *rdev;
3402 struct device *dev;
3403 int ret, i;
3404 const char *supply = NULL;
3406 if (regulator_desc == NULL || config == NULL)
3407 return ERR_PTR(-EINVAL);
3409 dev = config->dev;
3410 WARN_ON(!dev);
3412 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3413 return ERR_PTR(-EINVAL);
3415 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3416 regulator_desc->type != REGULATOR_CURRENT)
3417 return ERR_PTR(-EINVAL);
3419 /* Only one of each should be implemented */
3420 WARN_ON(regulator_desc->ops->get_voltage &&
3421 regulator_desc->ops->get_voltage_sel);
3422 WARN_ON(regulator_desc->ops->set_voltage &&
3423 regulator_desc->ops->set_voltage_sel);
3425 /* If we're using selectors we must implement list_voltage. */
3426 if (regulator_desc->ops->get_voltage_sel &&
3427 !regulator_desc->ops->list_voltage) {
3428 return ERR_PTR(-EINVAL);
3430 if (regulator_desc->ops->set_voltage_sel &&
3431 !regulator_desc->ops->list_voltage) {
3432 return ERR_PTR(-EINVAL);
3435 init_data = config->init_data;
3437 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3438 if (rdev == NULL)
3439 return ERR_PTR(-ENOMEM);
3441 mutex_lock(&regulator_list_mutex);
3443 mutex_init(&rdev->mutex);
3444 rdev->reg_data = config->driver_data;
3445 rdev->owner = regulator_desc->owner;
3446 rdev->desc = regulator_desc;
3447 if (config->regmap)
3448 rdev->regmap = config->regmap;
3449 else if (dev_get_regmap(dev, NULL))
3450 rdev->regmap = dev_get_regmap(dev, NULL);
3451 else if (dev->parent)
3452 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3453 INIT_LIST_HEAD(&rdev->consumer_list);
3454 INIT_LIST_HEAD(&rdev->list);
3455 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3456 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3458 /* preform any regulator specific init */
3459 if (init_data && init_data->regulator_init) {
3460 ret = init_data->regulator_init(rdev->reg_data);
3461 if (ret < 0)
3462 goto clean;
3465 /* register with sysfs */
3466 rdev->dev.class = &regulator_class;
3467 rdev->dev.of_node = of_node_get(config->of_node);
3468 rdev->dev.parent = dev;
3469 dev_set_name(&rdev->dev, "regulator.%d",
3470 atomic_inc_return(&regulator_no) - 1);
3471 ret = device_register(&rdev->dev);
3472 if (ret != 0) {
3473 put_device(&rdev->dev);
3474 goto clean;
3477 dev_set_drvdata(&rdev->dev, rdev);
3479 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3480 ret = regulator_ena_gpio_request(rdev, config);
3481 if (ret != 0) {
3482 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3483 config->ena_gpio, ret);
3484 goto wash;
3488 /* set regulator constraints */
3489 if (init_data)
3490 constraints = &init_data->constraints;
3492 ret = set_machine_constraints(rdev, constraints);
3493 if (ret < 0)
3494 goto scrub;
3496 /* add attributes supported by this regulator */
3497 ret = add_regulator_attributes(rdev);
3498 if (ret < 0)
3499 goto scrub;
3501 if (init_data && init_data->supply_regulator)
3502 supply = init_data->supply_regulator;
3503 else if (regulator_desc->supply_name)
3504 supply = regulator_desc->supply_name;
3506 if (supply) {
3507 struct regulator_dev *r;
3509 r = regulator_dev_lookup(dev, supply, &ret);
3511 if (ret == -ENODEV) {
3513 * No supply was specified for this regulator and
3514 * there will never be one.
3516 ret = 0;
3517 goto add_dev;
3518 } else if (!r) {
3519 dev_err(dev, "Failed to find supply %s\n", supply);
3520 ret = -EPROBE_DEFER;
3521 goto scrub;
3524 ret = set_supply(rdev, r);
3525 if (ret < 0)
3526 goto scrub;
3528 /* Enable supply if rail is enabled */
3529 if (_regulator_is_enabled(rdev)) {
3530 ret = regulator_enable(rdev->supply);
3531 if (ret < 0)
3532 goto scrub;
3536 add_dev:
3537 /* add consumers devices */
3538 if (init_data) {
3539 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3540 ret = set_consumer_device_supply(rdev,
3541 init_data->consumer_supplies[i].dev_name,
3542 init_data->consumer_supplies[i].supply);
3543 if (ret < 0) {
3544 dev_err(dev, "Failed to set supply %s\n",
3545 init_data->consumer_supplies[i].supply);
3546 goto unset_supplies;
3551 list_add(&rdev->list, &regulator_list);
3553 rdev_init_debugfs(rdev);
3554 out:
3555 mutex_unlock(&regulator_list_mutex);
3556 return rdev;
3558 unset_supplies:
3559 unset_regulator_supplies(rdev);
3561 scrub:
3562 if (rdev->supply)
3563 _regulator_put(rdev->supply);
3564 regulator_ena_gpio_free(rdev);
3565 kfree(rdev->constraints);
3566 wash:
3567 device_unregister(&rdev->dev);
3568 /* device core frees rdev */
3569 rdev = ERR_PTR(ret);
3570 goto out;
3572 clean:
3573 kfree(rdev);
3574 rdev = ERR_PTR(ret);
3575 goto out;
3577 EXPORT_SYMBOL_GPL(regulator_register);
3580 * regulator_unregister - unregister regulator
3581 * @rdev: regulator to unregister
3583 * Called by regulator drivers to unregister a regulator.
3585 void regulator_unregister(struct regulator_dev *rdev)
3587 if (rdev == NULL)
3588 return;
3590 if (rdev->supply) {
3591 while (rdev->use_count--)
3592 regulator_disable(rdev->supply);
3593 regulator_put(rdev->supply);
3595 mutex_lock(&regulator_list_mutex);
3596 debugfs_remove_recursive(rdev->debugfs);
3597 flush_work(&rdev->disable_work.work);
3598 WARN_ON(rdev->open_count);
3599 unset_regulator_supplies(rdev);
3600 list_del(&rdev->list);
3601 kfree(rdev->constraints);
3602 regulator_ena_gpio_free(rdev);
3603 of_node_put(rdev->dev.of_node);
3604 device_unregister(&rdev->dev);
3605 mutex_unlock(&regulator_list_mutex);
3607 EXPORT_SYMBOL_GPL(regulator_unregister);
3610 * regulator_suspend_prepare - prepare regulators for system wide suspend
3611 * @state: system suspend state
3613 * Configure each regulator with it's suspend operating parameters for state.
3614 * This will usually be called by machine suspend code prior to supending.
3616 int regulator_suspend_prepare(suspend_state_t state)
3618 struct regulator_dev *rdev;
3619 int ret = 0;
3621 /* ON is handled by regulator active state */
3622 if (state == PM_SUSPEND_ON)
3623 return -EINVAL;
3625 mutex_lock(&regulator_list_mutex);
3626 list_for_each_entry(rdev, &regulator_list, list) {
3628 mutex_lock(&rdev->mutex);
3629 ret = suspend_prepare(rdev, state);
3630 mutex_unlock(&rdev->mutex);
3632 if (ret < 0) {
3633 rdev_err(rdev, "failed to prepare\n");
3634 goto out;
3637 out:
3638 mutex_unlock(&regulator_list_mutex);
3639 return ret;
3641 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3644 * regulator_suspend_finish - resume regulators from system wide suspend
3646 * Turn on regulators that might be turned off by regulator_suspend_prepare
3647 * and that should be turned on according to the regulators properties.
3649 int regulator_suspend_finish(void)
3651 struct regulator_dev *rdev;
3652 int ret = 0, error;
3654 mutex_lock(&regulator_list_mutex);
3655 list_for_each_entry(rdev, &regulator_list, list) {
3656 mutex_lock(&rdev->mutex);
3657 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3658 if (!_regulator_is_enabled(rdev)) {
3659 error = _regulator_do_enable(rdev);
3660 if (error)
3661 ret = error;
3663 } else {
3664 if (!have_full_constraints())
3665 goto unlock;
3666 if (!_regulator_is_enabled(rdev))
3667 goto unlock;
3669 error = _regulator_do_disable(rdev);
3670 if (error)
3671 ret = error;
3673 unlock:
3674 mutex_unlock(&rdev->mutex);
3676 mutex_unlock(&regulator_list_mutex);
3677 return ret;
3679 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3682 * regulator_has_full_constraints - the system has fully specified constraints
3684 * Calling this function will cause the regulator API to disable all
3685 * regulators which have a zero use count and don't have an always_on
3686 * constraint in a late_initcall.
3688 * The intention is that this will become the default behaviour in a
3689 * future kernel release so users are encouraged to use this facility
3690 * now.
3692 void regulator_has_full_constraints(void)
3694 has_full_constraints = 1;
3696 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3699 * rdev_get_drvdata - get rdev regulator driver data
3700 * @rdev: regulator
3702 * Get rdev regulator driver private data. This call can be used in the
3703 * regulator driver context.
3705 void *rdev_get_drvdata(struct regulator_dev *rdev)
3707 return rdev->reg_data;
3709 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3712 * regulator_get_drvdata - get regulator driver data
3713 * @regulator: regulator
3715 * Get regulator driver private data. This call can be used in the consumer
3716 * driver context when non API regulator specific functions need to be called.
3718 void *regulator_get_drvdata(struct regulator *regulator)
3720 return regulator->rdev->reg_data;
3722 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3725 * regulator_set_drvdata - set regulator driver data
3726 * @regulator: regulator
3727 * @data: data
3729 void regulator_set_drvdata(struct regulator *regulator, void *data)
3731 regulator->rdev->reg_data = data;
3733 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3736 * regulator_get_id - get regulator ID
3737 * @rdev: regulator
3739 int rdev_get_id(struct regulator_dev *rdev)
3741 return rdev->desc->id;
3743 EXPORT_SYMBOL_GPL(rdev_get_id);
3745 struct device *rdev_get_dev(struct regulator_dev *rdev)
3747 return &rdev->dev;
3749 EXPORT_SYMBOL_GPL(rdev_get_dev);
3751 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3753 return reg_init_data->driver_data;
3755 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3757 #ifdef CONFIG_DEBUG_FS
3758 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3759 size_t count, loff_t *ppos)
3761 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3762 ssize_t len, ret = 0;
3763 struct regulator_map *map;
3765 if (!buf)
3766 return -ENOMEM;
3768 list_for_each_entry(map, &regulator_map_list, list) {
3769 len = snprintf(buf + ret, PAGE_SIZE - ret,
3770 "%s -> %s.%s\n",
3771 rdev_get_name(map->regulator), map->dev_name,
3772 map->supply);
3773 if (len >= 0)
3774 ret += len;
3775 if (ret > PAGE_SIZE) {
3776 ret = PAGE_SIZE;
3777 break;
3781 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3783 kfree(buf);
3785 return ret;
3787 #endif
3789 static const struct file_operations supply_map_fops = {
3790 #ifdef CONFIG_DEBUG_FS
3791 .read = supply_map_read_file,
3792 .llseek = default_llseek,
3793 #endif
3796 static int __init regulator_init(void)
3798 int ret;
3800 ret = class_register(&regulator_class);
3802 debugfs_root = debugfs_create_dir("regulator", NULL);
3803 if (!debugfs_root)
3804 pr_warn("regulator: Failed to create debugfs directory\n");
3806 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3807 &supply_map_fops);
3809 regulator_dummy_init();
3811 return ret;
3814 /* init early to allow our consumers to complete system booting */
3815 core_initcall(regulator_init);
3817 static int __init regulator_init_complete(void)
3819 struct regulator_dev *rdev;
3820 struct regulator_ops *ops;
3821 struct regulation_constraints *c;
3822 int enabled, ret;
3825 * Since DT doesn't provide an idiomatic mechanism for
3826 * enabling full constraints and since it's much more natural
3827 * with DT to provide them just assume that a DT enabled
3828 * system has full constraints.
3830 if (of_have_populated_dt())
3831 has_full_constraints = true;
3833 mutex_lock(&regulator_list_mutex);
3835 /* If we have a full configuration then disable any regulators
3836 * we have permission to change the status for and which are
3837 * not in use or always_on. This is effectively the default
3838 * for DT and ACPI as they have full constraints.
3840 list_for_each_entry(rdev, &regulator_list, list) {
3841 ops = rdev->desc->ops;
3842 c = rdev->constraints;
3844 if (c && c->always_on)
3845 continue;
3847 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3848 continue;
3850 mutex_lock(&rdev->mutex);
3852 if (rdev->use_count)
3853 goto unlock;
3855 /* If we can't read the status assume it's on. */
3856 if (ops->is_enabled)
3857 enabled = ops->is_enabled(rdev);
3858 else
3859 enabled = 1;
3861 if (!enabled)
3862 goto unlock;
3864 if (have_full_constraints()) {
3865 /* We log since this may kill the system if it
3866 * goes wrong. */
3867 rdev_info(rdev, "disabling\n");
3868 ret = _regulator_do_disable(rdev);
3869 if (ret != 0)
3870 rdev_err(rdev, "couldn't disable: %d\n", ret);
3871 } else {
3872 /* The intention is that in future we will
3873 * assume that full constraints are provided
3874 * so warn even if we aren't going to do
3875 * anything here.
3877 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3880 unlock:
3881 mutex_unlock(&rdev->mutex);
3884 mutex_unlock(&regulator_list_mutex);
3886 return 0;
3888 late_initcall_sync(regulator_init_complete);