2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 static DEFINE_MUTEX(regulator_list_mutex
);
53 static LIST_HEAD(regulator_list
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map
{
67 struct list_head list
;
68 const char *dev_name
; /* The dev_name() for the consumer */
70 struct regulator_dev
*regulator
;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio
{
79 struct list_head list
;
81 u32 enable_count
; /* a number of enabled shared GPIO */
82 u32 request_count
; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert
:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias
{
92 struct list_head list
;
93 struct device
*src_dev
;
94 const char *src_supply
;
95 struct device
*alias_dev
;
96 const char *alias_supply
;
99 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
100 static int _regulator_disable(struct regulator_dev
*rdev
);
101 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
102 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
103 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
104 static void _notifier_call_chain(struct regulator_dev
*rdev
,
105 unsigned long event
, void *data
);
106 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
107 int min_uV
, int max_uV
);
108 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
110 const char *supply_name
);
112 static const char *rdev_get_name(struct regulator_dev
*rdev
)
114 if (rdev
->constraints
&& rdev
->constraints
->name
)
115 return rdev
->constraints
->name
;
116 else if (rdev
->desc
->name
)
117 return rdev
->desc
->name
;
122 static bool have_full_constraints(void)
124 return has_full_constraints
|| of_have_populated_dt();
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
136 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
138 struct device_node
*regnode
= NULL
;
139 char prop_name
[32]; /* 32 is max size of property name */
141 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
143 snprintf(prop_name
, 32, "%s-supply", supply
);
144 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
147 dev_dbg(dev
, "Looking up %s property in node %s failed",
148 prop_name
, dev
->of_node
->full_name
);
154 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
156 if (!rdev
->constraints
)
159 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev
*rdev
,
167 int *min_uV
, int *max_uV
)
169 BUG_ON(*min_uV
> *max_uV
);
171 if (!rdev
->constraints
) {
172 rdev_err(rdev
, "no constraints\n");
175 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
176 rdev_err(rdev
, "operation not allowed\n");
180 if (*max_uV
> rdev
->constraints
->max_uV
)
181 *max_uV
= rdev
->constraints
->max_uV
;
182 if (*min_uV
< rdev
->constraints
->min_uV
)
183 *min_uV
= rdev
->constraints
->min_uV
;
185 if (*min_uV
> *max_uV
) {
186 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev
*rdev
,
198 int *min_uV
, int *max_uV
)
200 struct regulator
*regulator
;
202 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator
->min_uV
&& !regulator
->max_uV
)
210 if (*max_uV
> regulator
->max_uV
)
211 *max_uV
= regulator
->max_uV
;
212 if (*min_uV
< regulator
->min_uV
)
213 *min_uV
= regulator
->min_uV
;
216 if (*min_uV
> *max_uV
) {
217 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
227 int *min_uA
, int *max_uA
)
229 BUG_ON(*min_uA
> *max_uA
);
231 if (!rdev
->constraints
) {
232 rdev_err(rdev
, "no constraints\n");
235 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
236 rdev_err(rdev
, "operation not allowed\n");
240 if (*max_uA
> rdev
->constraints
->max_uA
)
241 *max_uA
= rdev
->constraints
->max_uA
;
242 if (*min_uA
< rdev
->constraints
->min_uA
)
243 *min_uA
= rdev
->constraints
->min_uA
;
245 if (*min_uA
> *max_uA
) {
246 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
258 case REGULATOR_MODE_FAST
:
259 case REGULATOR_MODE_NORMAL
:
260 case REGULATOR_MODE_IDLE
:
261 case REGULATOR_MODE_STANDBY
:
264 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
268 if (!rdev
->constraints
) {
269 rdev_err(rdev
, "no constraints\n");
272 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
273 rdev_err(rdev
, "operation not allowed\n");
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
281 if (rdev
->constraints
->valid_modes_mask
& *mode
)
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev
*rdev
)
292 if (!rdev
->constraints
) {
293 rdev_err(rdev
, "no constraints\n");
296 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
297 rdev_err(rdev
, "operation not allowed\n");
303 static ssize_t
regulator_uV_show(struct device
*dev
,
304 struct device_attribute
*attr
, char *buf
)
306 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
309 mutex_lock(&rdev
->mutex
);
310 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
311 mutex_unlock(&rdev
->mutex
);
315 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
317 static ssize_t
regulator_uA_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
322 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
324 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
326 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
329 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
331 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
333 static DEVICE_ATTR_RO(name
);
335 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
338 case REGULATOR_MODE_FAST
:
339 return sprintf(buf
, "fast\n");
340 case REGULATOR_MODE_NORMAL
:
341 return sprintf(buf
, "normal\n");
342 case REGULATOR_MODE_IDLE
:
343 return sprintf(buf
, "idle\n");
344 case REGULATOR_MODE_STANDBY
:
345 return sprintf(buf
, "standby\n");
347 return sprintf(buf
, "unknown\n");
350 static ssize_t
regulator_opmode_show(struct device
*dev
,
351 struct device_attribute
*attr
, char *buf
)
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
355 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
357 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
359 static ssize_t
regulator_print_state(char *buf
, int state
)
362 return sprintf(buf
, "enabled\n");
364 return sprintf(buf
, "disabled\n");
366 return sprintf(buf
, "unknown\n");
369 static ssize_t
regulator_state_show(struct device
*dev
,
370 struct device_attribute
*attr
, char *buf
)
372 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
375 mutex_lock(&rdev
->mutex
);
376 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
377 mutex_unlock(&rdev
->mutex
);
381 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
383 static ssize_t
regulator_status_show(struct device
*dev
,
384 struct device_attribute
*attr
, char *buf
)
386 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
390 status
= rdev
->desc
->ops
->get_status(rdev
);
395 case REGULATOR_STATUS_OFF
:
398 case REGULATOR_STATUS_ON
:
401 case REGULATOR_STATUS_ERROR
:
404 case REGULATOR_STATUS_FAST
:
407 case REGULATOR_STATUS_NORMAL
:
410 case REGULATOR_STATUS_IDLE
:
413 case REGULATOR_STATUS_STANDBY
:
416 case REGULATOR_STATUS_BYPASS
:
419 case REGULATOR_STATUS_UNDEFINED
:
426 return sprintf(buf
, "%s\n", label
);
428 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
430 static ssize_t
regulator_min_uA_show(struct device
*dev
,
431 struct device_attribute
*attr
, char *buf
)
433 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
435 if (!rdev
->constraints
)
436 return sprintf(buf
, "constraint not defined\n");
438 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
440 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
442 static ssize_t
regulator_max_uA_show(struct device
*dev
,
443 struct device_attribute
*attr
, char *buf
)
445 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
447 if (!rdev
->constraints
)
448 return sprintf(buf
, "constraint not defined\n");
450 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
452 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
454 static ssize_t
regulator_min_uV_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 if (!rdev
->constraints
)
460 return sprintf(buf
, "constraint not defined\n");
462 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
464 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
466 static ssize_t
regulator_max_uV_show(struct device
*dev
,
467 struct device_attribute
*attr
, char *buf
)
469 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
471 if (!rdev
->constraints
)
472 return sprintf(buf
, "constraint not defined\n");
474 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
476 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
478 static ssize_t
regulator_total_uA_show(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
481 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
482 struct regulator
*regulator
;
485 mutex_lock(&rdev
->mutex
);
486 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
487 uA
+= regulator
->uA_load
;
488 mutex_unlock(&rdev
->mutex
);
489 return sprintf(buf
, "%d\n", uA
);
491 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
493 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
496 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
497 return sprintf(buf
, "%d\n", rdev
->use_count
);
499 static DEVICE_ATTR_RO(num_users
);
501 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
504 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 switch (rdev
->desc
->type
) {
507 case REGULATOR_VOLTAGE
:
508 return sprintf(buf
, "voltage\n");
509 case REGULATOR_CURRENT
:
510 return sprintf(buf
, "current\n");
512 return sprintf(buf
, "unknown\n");
514 static DEVICE_ATTR_RO(type
);
516 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
517 struct device_attribute
*attr
, char *buf
)
519 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
521 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
523 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
524 regulator_suspend_mem_uV_show
, NULL
);
526 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
527 struct device_attribute
*attr
, char *buf
)
529 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
531 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
533 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
534 regulator_suspend_disk_uV_show
, NULL
);
536 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
539 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
543 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
544 regulator_suspend_standby_uV_show
, NULL
);
546 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
547 struct device_attribute
*attr
, char *buf
)
549 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
551 return regulator_print_opmode(buf
,
552 rdev
->constraints
->state_mem
.mode
);
554 static DEVICE_ATTR(suspend_mem_mode
, 0444,
555 regulator_suspend_mem_mode_show
, NULL
);
557 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
558 struct device_attribute
*attr
, char *buf
)
560 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
562 return regulator_print_opmode(buf
,
563 rdev
->constraints
->state_disk
.mode
);
565 static DEVICE_ATTR(suspend_disk_mode
, 0444,
566 regulator_suspend_disk_mode_show
, NULL
);
568 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
569 struct device_attribute
*attr
, char *buf
)
571 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 return regulator_print_opmode(buf
,
574 rdev
->constraints
->state_standby
.mode
);
576 static DEVICE_ATTR(suspend_standby_mode
, 0444,
577 regulator_suspend_standby_mode_show
, NULL
);
579 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
580 struct device_attribute
*attr
, char *buf
)
582 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
584 return regulator_print_state(buf
,
585 rdev
->constraints
->state_mem
.enabled
);
587 static DEVICE_ATTR(suspend_mem_state
, 0444,
588 regulator_suspend_mem_state_show
, NULL
);
590 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
591 struct device_attribute
*attr
, char *buf
)
593 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
595 return regulator_print_state(buf
,
596 rdev
->constraints
->state_disk
.enabled
);
598 static DEVICE_ATTR(suspend_disk_state
, 0444,
599 regulator_suspend_disk_state_show
, NULL
);
601 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
602 struct device_attribute
*attr
, char *buf
)
604 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
606 return regulator_print_state(buf
,
607 rdev
->constraints
->state_standby
.enabled
);
609 static DEVICE_ATTR(suspend_standby_state
, 0444,
610 regulator_suspend_standby_state_show
, NULL
);
612 static ssize_t
regulator_bypass_show(struct device
*dev
,
613 struct device_attribute
*attr
, char *buf
)
615 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
629 return sprintf(buf
, "%s\n", report
);
631 static DEVICE_ATTR(bypass
, 0444,
632 regulator_bypass_show
, NULL
);
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
638 static struct attribute
*regulator_dev_attrs
[] = {
640 &dev_attr_num_users
.attr
,
644 ATTRIBUTE_GROUPS(regulator_dev
);
646 static void regulator_dev_release(struct device
*dev
)
648 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
652 static struct class regulator_class
= {
654 .dev_release
= regulator_dev_release
,
655 .dev_groups
= regulator_dev_groups
,
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev
*rdev
)
662 struct regulator
*sibling
;
663 int current_uA
= 0, output_uV
, input_uV
, err
;
666 err
= regulator_check_drms(rdev
);
667 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
668 (!rdev
->desc
->ops
->get_voltage
&&
669 !rdev
->desc
->ops
->get_voltage_sel
) ||
670 !rdev
->desc
->ops
->set_mode
)
673 /* get output voltage */
674 output_uV
= _regulator_get_voltage(rdev
);
678 /* get input voltage */
681 input_uV
= regulator_get_voltage(rdev
->supply
);
683 input_uV
= rdev
->constraints
->input_uV
;
687 /* calc total requested load */
688 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
689 current_uA
+= sibling
->uA_load
;
691 /* now get the optimum mode for our new total regulator load */
692 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
693 output_uV
, current_uA
);
695 /* check the new mode is allowed */
696 err
= regulator_mode_constrain(rdev
, &mode
);
698 rdev
->desc
->ops
->set_mode(rdev
, mode
);
701 static int suspend_set_state(struct regulator_dev
*rdev
,
702 struct regulator_state
*rstate
)
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
710 if (!rstate
->enabled
&& !rstate
->disabled
) {
711 if (rdev
->desc
->ops
->set_suspend_voltage
||
712 rdev
->desc
->ops
->set_suspend_mode
)
713 rdev_warn(rdev
, "No configuration\n");
717 if (rstate
->enabled
&& rstate
->disabled
) {
718 rdev_err(rdev
, "invalid configuration\n");
722 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
723 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
724 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
725 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
730 rdev_err(rdev
, "failed to enabled/disable\n");
734 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
735 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
737 rdev_err(rdev
, "failed to set voltage\n");
742 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
743 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
745 rdev_err(rdev
, "failed to set mode\n");
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
755 if (!rdev
->constraints
)
759 case PM_SUSPEND_STANDBY
:
760 return suspend_set_state(rdev
,
761 &rdev
->constraints
->state_standby
);
763 return suspend_set_state(rdev
,
764 &rdev
->constraints
->state_mem
);
766 return suspend_set_state(rdev
,
767 &rdev
->constraints
->state_disk
);
773 static void print_constraints(struct regulator_dev
*rdev
)
775 struct regulation_constraints
*constraints
= rdev
->constraints
;
780 if (constraints
->min_uV
&& constraints
->max_uV
) {
781 if (constraints
->min_uV
== constraints
->max_uV
)
782 count
+= sprintf(buf
+ count
, "%d mV ",
783 constraints
->min_uV
/ 1000);
785 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
786 constraints
->min_uV
/ 1000,
787 constraints
->max_uV
/ 1000);
790 if (!constraints
->min_uV
||
791 constraints
->min_uV
!= constraints
->max_uV
) {
792 ret
= _regulator_get_voltage(rdev
);
794 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
797 if (constraints
->uV_offset
)
798 count
+= sprintf(buf
, "%dmV offset ",
799 constraints
->uV_offset
/ 1000);
801 if (constraints
->min_uA
&& constraints
->max_uA
) {
802 if (constraints
->min_uA
== constraints
->max_uA
)
803 count
+= sprintf(buf
+ count
, "%d mA ",
804 constraints
->min_uA
/ 1000);
806 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
807 constraints
->min_uA
/ 1000,
808 constraints
->max_uA
/ 1000);
811 if (!constraints
->min_uA
||
812 constraints
->min_uA
!= constraints
->max_uA
) {
813 ret
= _regulator_get_current_limit(rdev
);
815 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
818 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
819 count
+= sprintf(buf
+ count
, "fast ");
820 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
821 count
+= sprintf(buf
+ count
, "normal ");
822 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
823 count
+= sprintf(buf
+ count
, "idle ");
824 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
825 count
+= sprintf(buf
+ count
, "standby");
828 sprintf(buf
, "no parameters");
830 rdev_info(rdev
, "%s\n", buf
);
832 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
833 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
838 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
839 struct regulation_constraints
*constraints
)
841 struct regulator_ops
*ops
= rdev
->desc
->ops
;
844 /* do we need to apply the constraint voltage */
845 if (rdev
->constraints
->apply_uV
&&
846 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
847 int current_uV
= _regulator_get_voltage(rdev
);
848 if (current_uV
< 0) {
849 rdev_err(rdev
, "failed to get the current voltage\n");
852 if (current_uV
< rdev
->constraints
->min_uV
||
853 current_uV
> rdev
->constraints
->max_uV
) {
854 ret
= _regulator_do_set_voltage(
855 rdev
, rdev
->constraints
->min_uV
,
856 rdev
->constraints
->max_uV
);
859 "failed to apply %duV constraint\n",
860 rdev
->constraints
->min_uV
);
866 /* constrain machine-level voltage specs to fit
867 * the actual range supported by this regulator.
869 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
870 int count
= rdev
->desc
->n_voltages
;
872 int min_uV
= INT_MAX
;
873 int max_uV
= INT_MIN
;
874 int cmin
= constraints
->min_uV
;
875 int cmax
= constraints
->max_uV
;
877 /* it's safe to autoconfigure fixed-voltage supplies
878 and the constraints are used by list_voltage. */
879 if (count
== 1 && !cmin
) {
882 constraints
->min_uV
= cmin
;
883 constraints
->max_uV
= cmax
;
886 /* voltage constraints are optional */
887 if ((cmin
== 0) && (cmax
== 0))
890 /* else require explicit machine-level constraints */
891 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
892 rdev_err(rdev
, "invalid voltage constraints\n");
896 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
897 for (i
= 0; i
< count
; i
++) {
900 value
= ops
->list_voltage(rdev
, i
);
904 /* maybe adjust [min_uV..max_uV] */
905 if (value
>= cmin
&& value
< min_uV
)
907 if (value
<= cmax
&& value
> max_uV
)
911 /* final: [min_uV..max_uV] valid iff constraints valid */
912 if (max_uV
< min_uV
) {
914 "unsupportable voltage constraints %u-%uuV\n",
919 /* use regulator's subset of machine constraints */
920 if (constraints
->min_uV
< min_uV
) {
921 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
922 constraints
->min_uV
, min_uV
);
923 constraints
->min_uV
= min_uV
;
925 if (constraints
->max_uV
> max_uV
) {
926 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
927 constraints
->max_uV
, max_uV
);
928 constraints
->max_uV
= max_uV
;
935 static int machine_constraints_current(struct regulator_dev
*rdev
,
936 struct regulation_constraints
*constraints
)
938 struct regulator_ops
*ops
= rdev
->desc
->ops
;
941 if (!constraints
->min_uA
&& !constraints
->max_uA
)
944 if (constraints
->min_uA
> constraints
->max_uA
) {
945 rdev_err(rdev
, "Invalid current constraints\n");
949 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
950 rdev_warn(rdev
, "Operation of current configuration missing\n");
954 /* Set regulator current in constraints range */
955 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
956 constraints
->max_uA
);
958 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
965 static int _regulator_do_enable(struct regulator_dev
*rdev
);
968 * set_machine_constraints - sets regulator constraints
969 * @rdev: regulator source
970 * @constraints: constraints to apply
972 * Allows platform initialisation code to define and constrain
973 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
974 * Constraints *must* be set by platform code in order for some
975 * regulator operations to proceed i.e. set_voltage, set_current_limit,
978 static int set_machine_constraints(struct regulator_dev
*rdev
,
979 const struct regulation_constraints
*constraints
)
982 struct regulator_ops
*ops
= rdev
->desc
->ops
;
985 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
988 rdev
->constraints
= kzalloc(sizeof(*constraints
),
990 if (!rdev
->constraints
)
993 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
997 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1001 /* do we need to setup our suspend state */
1002 if (rdev
->constraints
->initial_state
) {
1003 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
1005 rdev_err(rdev
, "failed to set suspend state\n");
1010 if (rdev
->constraints
->initial_mode
) {
1011 if (!ops
->set_mode
) {
1012 rdev_err(rdev
, "no set_mode operation\n");
1017 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1019 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1024 /* If the constraints say the regulator should be on at this point
1025 * and we have control then make sure it is enabled.
1027 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1028 ret
= _regulator_do_enable(rdev
);
1029 if (ret
< 0 && ret
!= -EINVAL
) {
1030 rdev_err(rdev
, "failed to enable\n");
1035 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1036 && ops
->set_ramp_delay
) {
1037 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1039 rdev_err(rdev
, "failed to set ramp_delay\n");
1044 print_constraints(rdev
);
1047 kfree(rdev
->constraints
);
1048 rdev
->constraints
= NULL
;
1053 * set_supply - set regulator supply regulator
1054 * @rdev: regulator name
1055 * @supply_rdev: supply regulator name
1057 * Called by platform initialisation code to set the supply regulator for this
1058 * regulator. This ensures that a regulators supply will also be enabled by the
1059 * core if it's child is enabled.
1061 static int set_supply(struct regulator_dev
*rdev
,
1062 struct regulator_dev
*supply_rdev
)
1066 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1068 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1069 if (rdev
->supply
== NULL
) {
1073 supply_rdev
->open_count
++;
1079 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1080 * @rdev: regulator source
1081 * @consumer_dev_name: dev_name() string for device supply applies to
1082 * @supply: symbolic name for supply
1084 * Allows platform initialisation code to map physical regulator
1085 * sources to symbolic names for supplies for use by devices. Devices
1086 * should use these symbolic names to request regulators, avoiding the
1087 * need to provide board-specific regulator names as platform data.
1089 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1090 const char *consumer_dev_name
,
1093 struct regulator_map
*node
;
1099 if (consumer_dev_name
!= NULL
)
1104 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1105 if (node
->dev_name
&& consumer_dev_name
) {
1106 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1108 } else if (node
->dev_name
|| consumer_dev_name
) {
1112 if (strcmp(node
->supply
, supply
) != 0)
1115 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1117 dev_name(&node
->regulator
->dev
),
1118 node
->regulator
->desc
->name
,
1120 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1124 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1128 node
->regulator
= rdev
;
1129 node
->supply
= supply
;
1132 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1133 if (node
->dev_name
== NULL
) {
1139 list_add(&node
->list
, ®ulator_map_list
);
1143 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1145 struct regulator_map
*node
, *n
;
1147 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1148 if (rdev
== node
->regulator
) {
1149 list_del(&node
->list
);
1150 kfree(node
->dev_name
);
1156 #define REG_STR_SIZE 64
1158 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1160 const char *supply_name
)
1162 struct regulator
*regulator
;
1163 char buf
[REG_STR_SIZE
];
1166 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1167 if (regulator
== NULL
)
1170 mutex_lock(&rdev
->mutex
);
1171 regulator
->rdev
= rdev
;
1172 list_add(®ulator
->list
, &rdev
->consumer_list
);
1175 regulator
->dev
= dev
;
1177 /* Add a link to the device sysfs entry */
1178 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1179 dev
->kobj
.name
, supply_name
);
1180 if (size
>= REG_STR_SIZE
)
1183 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1184 if (regulator
->supply_name
== NULL
)
1187 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1190 rdev_warn(rdev
, "could not add device link %s err %d\n",
1191 dev
->kobj
.name
, err
);
1195 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1196 if (regulator
->supply_name
== NULL
)
1200 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1202 if (!regulator
->debugfs
) {
1203 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1205 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1206 ®ulator
->uA_load
);
1207 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1208 ®ulator
->min_uV
);
1209 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1210 ®ulator
->max_uV
);
1214 * Check now if the regulator is an always on regulator - if
1215 * it is then we don't need to do nearly so much work for
1216 * enable/disable calls.
1218 if (!_regulator_can_change_status(rdev
) &&
1219 _regulator_is_enabled(rdev
))
1220 regulator
->always_on
= true;
1222 mutex_unlock(&rdev
->mutex
);
1225 list_del(®ulator
->list
);
1227 mutex_unlock(&rdev
->mutex
);
1231 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1233 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1234 return rdev
->constraints
->enable_time
;
1235 if (!rdev
->desc
->ops
->enable_time
)
1236 return rdev
->desc
->enable_time
;
1237 return rdev
->desc
->ops
->enable_time(rdev
);
1240 static struct regulator_supply_alias
*regulator_find_supply_alias(
1241 struct device
*dev
, const char *supply
)
1243 struct regulator_supply_alias
*map
;
1245 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1246 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1252 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1254 struct regulator_supply_alias
*map
;
1256 map
= regulator_find_supply_alias(*dev
, *supply
);
1258 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1259 *supply
, map
->alias_supply
,
1260 dev_name(map
->alias_dev
));
1261 *dev
= map
->alias_dev
;
1262 *supply
= map
->alias_supply
;
1266 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1270 struct regulator_dev
*r
;
1271 struct device_node
*node
;
1272 struct regulator_map
*map
;
1273 const char *devname
= NULL
;
1275 regulator_supply_alias(&dev
, &supply
);
1277 /* first do a dt based lookup */
1278 if (dev
&& dev
->of_node
) {
1279 node
= of_get_regulator(dev
, supply
);
1281 list_for_each_entry(r
, ®ulator_list
, list
)
1282 if (r
->dev
.parent
&&
1283 node
== r
->dev
.of_node
)
1285 *ret
= -EPROBE_DEFER
;
1289 * If we couldn't even get the node then it's
1290 * not just that the device didn't register
1291 * yet, there's no node and we'll never
1298 /* if not found, try doing it non-dt way */
1300 devname
= dev_name(dev
);
1302 list_for_each_entry(r
, ®ulator_list
, list
)
1303 if (strcmp(rdev_get_name(r
), supply
) == 0)
1306 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1307 /* If the mapping has a device set up it must match */
1308 if (map
->dev_name
&&
1309 (!devname
|| strcmp(map
->dev_name
, devname
)))
1312 if (strcmp(map
->supply
, supply
) == 0)
1313 return map
->regulator
;
1320 /* Internal regulator request function */
1321 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1322 bool exclusive
, bool allow_dummy
)
1324 struct regulator_dev
*rdev
;
1325 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1326 const char *devname
= NULL
;
1330 pr_err("get() with no identifier\n");
1331 return ERR_PTR(-EINVAL
);
1335 devname
= dev_name(dev
);
1337 if (have_full_constraints())
1340 ret
= -EPROBE_DEFER
;
1342 mutex_lock(®ulator_list_mutex
);
1344 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1348 regulator
= ERR_PTR(ret
);
1351 * If we have return value from dev_lookup fail, we do not expect to
1352 * succeed, so, quit with appropriate error value
1354 if (ret
&& ret
!= -ENODEV
)
1358 devname
= "deviceless";
1361 * Assume that a regulator is physically present and enabled
1362 * even if it isn't hooked up and just provide a dummy.
1364 if (have_full_constraints() && allow_dummy
) {
1365 pr_warn("%s supply %s not found, using dummy regulator\n",
1368 rdev
= dummy_regulator_rdev
;
1370 /* Don't log an error when called from regulator_get_optional() */
1371 } else if (!have_full_constraints() || exclusive
) {
1372 dev_warn(dev
, "dummy supplies not allowed\n");
1375 mutex_unlock(®ulator_list_mutex
);
1379 if (rdev
->exclusive
) {
1380 regulator
= ERR_PTR(-EPERM
);
1384 if (exclusive
&& rdev
->open_count
) {
1385 regulator
= ERR_PTR(-EBUSY
);
1389 if (!try_module_get(rdev
->owner
))
1392 regulator
= create_regulator(rdev
, dev
, id
);
1393 if (regulator
== NULL
) {
1394 regulator
= ERR_PTR(-ENOMEM
);
1395 module_put(rdev
->owner
);
1401 rdev
->exclusive
= 1;
1403 ret
= _regulator_is_enabled(rdev
);
1405 rdev
->use_count
= 1;
1407 rdev
->use_count
= 0;
1411 mutex_unlock(®ulator_list_mutex
);
1417 * regulator_get - lookup and obtain a reference to a regulator.
1418 * @dev: device for regulator "consumer"
1419 * @id: Supply name or regulator ID.
1421 * Returns a struct regulator corresponding to the regulator producer,
1422 * or IS_ERR() condition containing errno.
1424 * Use of supply names configured via regulator_set_device_supply() is
1425 * strongly encouraged. It is recommended that the supply name used
1426 * should match the name used for the supply and/or the relevant
1427 * device pins in the datasheet.
1429 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1431 return _regulator_get(dev
, id
, false, true);
1433 EXPORT_SYMBOL_GPL(regulator_get
);
1436 * regulator_get_exclusive - obtain exclusive access to a regulator.
1437 * @dev: device for regulator "consumer"
1438 * @id: Supply name or regulator ID.
1440 * Returns a struct regulator corresponding to the regulator producer,
1441 * or IS_ERR() condition containing errno. Other consumers will be
1442 * unable to obtain this regulator while this reference is held and the
1443 * use count for the regulator will be initialised to reflect the current
1444 * state of the regulator.
1446 * This is intended for use by consumers which cannot tolerate shared
1447 * use of the regulator such as those which need to force the
1448 * regulator off for correct operation of the hardware they are
1451 * Use of supply names configured via regulator_set_device_supply() is
1452 * strongly encouraged. It is recommended that the supply name used
1453 * should match the name used for the supply and/or the relevant
1454 * device pins in the datasheet.
1456 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1458 return _regulator_get(dev
, id
, true, false);
1460 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1463 * regulator_get_optional - obtain optional access to a regulator.
1464 * @dev: device for regulator "consumer"
1465 * @id: Supply name or regulator ID.
1467 * Returns a struct regulator corresponding to the regulator producer,
1468 * or IS_ERR() condition containing errno.
1470 * This is intended for use by consumers for devices which can have
1471 * some supplies unconnected in normal use, such as some MMC devices.
1472 * It can allow the regulator core to provide stub supplies for other
1473 * supplies requested using normal regulator_get() calls without
1474 * disrupting the operation of drivers that can handle absent
1477 * Use of supply names configured via regulator_set_device_supply() is
1478 * strongly encouraged. It is recommended that the supply name used
1479 * should match the name used for the supply and/or the relevant
1480 * device pins in the datasheet.
1482 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1484 return _regulator_get(dev
, id
, false, false);
1486 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1488 /* regulator_list_mutex lock held by regulator_put() */
1489 static void _regulator_put(struct regulator
*regulator
)
1491 struct regulator_dev
*rdev
;
1493 if (regulator
== NULL
|| IS_ERR(regulator
))
1496 rdev
= regulator
->rdev
;
1498 debugfs_remove_recursive(regulator
->debugfs
);
1500 /* remove any sysfs entries */
1502 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1503 mutex_lock(&rdev
->mutex
);
1504 kfree(regulator
->supply_name
);
1505 list_del(®ulator
->list
);
1509 rdev
->exclusive
= 0;
1510 mutex_unlock(&rdev
->mutex
);
1512 module_put(rdev
->owner
);
1516 * regulator_put - "free" the regulator source
1517 * @regulator: regulator source
1519 * Note: drivers must ensure that all regulator_enable calls made on this
1520 * regulator source are balanced by regulator_disable calls prior to calling
1523 void regulator_put(struct regulator
*regulator
)
1525 mutex_lock(®ulator_list_mutex
);
1526 _regulator_put(regulator
);
1527 mutex_unlock(®ulator_list_mutex
);
1529 EXPORT_SYMBOL_GPL(regulator_put
);
1532 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 * @dev: device that will be given as the regulator "consumer"
1535 * @id: Supply name or regulator ID
1536 * @alias_dev: device that should be used to lookup the supply
1537 * @alias_id: Supply name or regulator ID that should be used to lookup the
1540 * All lookups for id on dev will instead be conducted for alias_id on
1543 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1544 struct device
*alias_dev
,
1545 const char *alias_id
)
1547 struct regulator_supply_alias
*map
;
1549 map
= regulator_find_supply_alias(dev
, id
);
1553 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1558 map
->src_supply
= id
;
1559 map
->alias_dev
= alias_dev
;
1560 map
->alias_supply
= alias_id
;
1562 list_add(&map
->list
, ®ulator_supply_alias_list
);
1564 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1565 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1569 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1572 * regulator_unregister_supply_alias - Remove device alias
1574 * @dev: device that will be given as the regulator "consumer"
1575 * @id: Supply name or regulator ID
1577 * Remove a lookup alias if one exists for id on dev.
1579 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1581 struct regulator_supply_alias
*map
;
1583 map
= regulator_find_supply_alias(dev
, id
);
1585 list_del(&map
->list
);
1589 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1592 * regulator_bulk_register_supply_alias - register multiple aliases
1594 * @dev: device that will be given as the regulator "consumer"
1595 * @id: List of supply names or regulator IDs
1596 * @alias_dev: device that should be used to lookup the supply
1597 * @alias_id: List of supply names or regulator IDs that should be used to
1599 * @num_id: Number of aliases to register
1601 * @return 0 on success, an errno on failure.
1603 * This helper function allows drivers to register several supply
1604 * aliases in one operation. If any of the aliases cannot be
1605 * registered any aliases that were registered will be removed
1606 * before returning to the caller.
1608 int regulator_bulk_register_supply_alias(struct device
*dev
,
1609 const char *const *id
,
1610 struct device
*alias_dev
,
1611 const char *const *alias_id
,
1617 for (i
= 0; i
< num_id
; ++i
) {
1618 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1628 "Failed to create supply alias %s,%s -> %s,%s\n",
1629 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1632 regulator_unregister_supply_alias(dev
, id
[i
]);
1636 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1639 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 * @dev: device that will be given as the regulator "consumer"
1642 * @id: List of supply names or regulator IDs
1643 * @num_id: Number of aliases to unregister
1645 * This helper function allows drivers to unregister several supply
1646 * aliases in one operation.
1648 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1649 const char *const *id
,
1654 for (i
= 0; i
< num_id
; ++i
)
1655 regulator_unregister_supply_alias(dev
, id
[i
]);
1657 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1660 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1661 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1662 const struct regulator_config
*config
)
1664 struct regulator_enable_gpio
*pin
;
1667 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1668 if (pin
->gpio
== config
->ena_gpio
) {
1669 rdev_dbg(rdev
, "GPIO %d is already used\n",
1671 goto update_ena_gpio_to_rdev
;
1675 ret
= gpio_request_one(config
->ena_gpio
,
1676 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1677 rdev_get_name(rdev
));
1681 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1683 gpio_free(config
->ena_gpio
);
1687 pin
->gpio
= config
->ena_gpio
;
1688 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1689 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1691 update_ena_gpio_to_rdev
:
1692 pin
->request_count
++;
1693 rdev
->ena_pin
= pin
;
1697 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1699 struct regulator_enable_gpio
*pin
, *n
;
1704 /* Free the GPIO only in case of no use */
1705 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1706 if (pin
->gpio
== rdev
->ena_pin
->gpio
) {
1707 if (pin
->request_count
<= 1) {
1708 pin
->request_count
= 0;
1709 gpio_free(pin
->gpio
);
1710 list_del(&pin
->list
);
1713 pin
->request_count
--;
1720 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1721 * @rdev: regulator_dev structure
1722 * @enable: enable GPIO at initial use?
1724 * GPIO is enabled in case of initial use. (enable_count is 0)
1725 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1727 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1729 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1735 /* Enable GPIO at initial use */
1736 if (pin
->enable_count
== 0)
1737 gpio_set_value_cansleep(pin
->gpio
,
1738 !pin
->ena_gpio_invert
);
1740 pin
->enable_count
++;
1742 if (pin
->enable_count
> 1) {
1743 pin
->enable_count
--;
1747 /* Disable GPIO if not used */
1748 if (pin
->enable_count
<= 1) {
1749 gpio_set_value_cansleep(pin
->gpio
,
1750 pin
->ena_gpio_invert
);
1751 pin
->enable_count
= 0;
1758 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1762 /* Query before enabling in case configuration dependent. */
1763 ret
= _regulator_get_enable_time(rdev
);
1767 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1771 trace_regulator_enable(rdev_get_name(rdev
));
1773 if (rdev
->ena_pin
) {
1774 if (!rdev
->ena_gpio_state
) {
1775 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1778 rdev
->ena_gpio_state
= 1;
1780 } else if (rdev
->desc
->ops
->enable
) {
1781 ret
= rdev
->desc
->ops
->enable(rdev
);
1788 /* Allow the regulator to ramp; it would be useful to extend
1789 * this for bulk operations so that the regulators can ramp
1791 trace_regulator_enable_delay(rdev_get_name(rdev
));
1794 * Delay for the requested amount of time as per the guidelines in:
1796 * Documentation/timers/timers-howto.txt
1798 * The assumption here is that regulators will never be enabled in
1799 * atomic context and therefore sleeping functions can be used.
1802 unsigned int ms
= delay
/ 1000;
1803 unsigned int us
= delay
% 1000;
1807 * For small enough values, handle super-millisecond
1808 * delays in the usleep_range() call below.
1817 * Give the scheduler some room to coalesce with any other
1818 * wakeup sources. For delays shorter than 10 us, don't even
1819 * bother setting up high-resolution timers and just busy-
1823 usleep_range(us
, us
+ 100);
1828 trace_regulator_enable_complete(rdev_get_name(rdev
));
1833 /* locks held by regulator_enable() */
1834 static int _regulator_enable(struct regulator_dev
*rdev
)
1838 /* check voltage and requested load before enabling */
1839 if (rdev
->constraints
&&
1840 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1841 drms_uA_update(rdev
);
1843 if (rdev
->use_count
== 0) {
1844 /* The regulator may on if it's not switchable or left on */
1845 ret
= _regulator_is_enabled(rdev
);
1846 if (ret
== -EINVAL
|| ret
== 0) {
1847 if (!_regulator_can_change_status(rdev
))
1850 ret
= _regulator_do_enable(rdev
);
1854 } else if (ret
< 0) {
1855 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1858 /* Fallthrough on positive return values - already enabled */
1867 * regulator_enable - enable regulator output
1868 * @regulator: regulator source
1870 * Request that the regulator be enabled with the regulator output at
1871 * the predefined voltage or current value. Calls to regulator_enable()
1872 * must be balanced with calls to regulator_disable().
1874 * NOTE: the output value can be set by other drivers, boot loader or may be
1875 * hardwired in the regulator.
1877 int regulator_enable(struct regulator
*regulator
)
1879 struct regulator_dev
*rdev
= regulator
->rdev
;
1882 if (regulator
->always_on
)
1886 ret
= regulator_enable(rdev
->supply
);
1891 mutex_lock(&rdev
->mutex
);
1892 ret
= _regulator_enable(rdev
);
1893 mutex_unlock(&rdev
->mutex
);
1895 if (ret
!= 0 && rdev
->supply
)
1896 regulator_disable(rdev
->supply
);
1900 EXPORT_SYMBOL_GPL(regulator_enable
);
1902 static int _regulator_do_disable(struct regulator_dev
*rdev
)
1906 trace_regulator_disable(rdev_get_name(rdev
));
1908 if (rdev
->ena_pin
) {
1909 if (rdev
->ena_gpio_state
) {
1910 ret
= regulator_ena_gpio_ctrl(rdev
, false);
1913 rdev
->ena_gpio_state
= 0;
1916 } else if (rdev
->desc
->ops
->disable
) {
1917 ret
= rdev
->desc
->ops
->disable(rdev
);
1922 trace_regulator_disable_complete(rdev_get_name(rdev
));
1927 /* locks held by regulator_disable() */
1928 static int _regulator_disable(struct regulator_dev
*rdev
)
1932 if (WARN(rdev
->use_count
<= 0,
1933 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1936 /* are we the last user and permitted to disable ? */
1937 if (rdev
->use_count
== 1 &&
1938 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1940 /* we are last user */
1941 if (_regulator_can_change_status(rdev
)) {
1942 ret
= _regulator_do_disable(rdev
);
1944 rdev_err(rdev
, "failed to disable\n");
1947 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1951 rdev
->use_count
= 0;
1952 } else if (rdev
->use_count
> 1) {
1954 if (rdev
->constraints
&&
1955 (rdev
->constraints
->valid_ops_mask
&
1956 REGULATOR_CHANGE_DRMS
))
1957 drms_uA_update(rdev
);
1966 * regulator_disable - disable regulator output
1967 * @regulator: regulator source
1969 * Disable the regulator output voltage or current. Calls to
1970 * regulator_enable() must be balanced with calls to
1971 * regulator_disable().
1973 * NOTE: this will only disable the regulator output if no other consumer
1974 * devices have it enabled, the regulator device supports disabling and
1975 * machine constraints permit this operation.
1977 int regulator_disable(struct regulator
*regulator
)
1979 struct regulator_dev
*rdev
= regulator
->rdev
;
1982 if (regulator
->always_on
)
1985 mutex_lock(&rdev
->mutex
);
1986 ret
= _regulator_disable(rdev
);
1987 mutex_unlock(&rdev
->mutex
);
1989 if (ret
== 0 && rdev
->supply
)
1990 regulator_disable(rdev
->supply
);
1994 EXPORT_SYMBOL_GPL(regulator_disable
);
1996 /* locks held by regulator_force_disable() */
1997 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2001 ret
= _regulator_do_disable(rdev
);
2003 rdev_err(rdev
, "failed to force disable\n");
2007 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2008 REGULATOR_EVENT_DISABLE
, NULL
);
2014 * regulator_force_disable - force disable regulator output
2015 * @regulator: regulator source
2017 * Forcibly disable the regulator output voltage or current.
2018 * NOTE: this *will* disable the regulator output even if other consumer
2019 * devices have it enabled. This should be used for situations when device
2020 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2022 int regulator_force_disable(struct regulator
*regulator
)
2024 struct regulator_dev
*rdev
= regulator
->rdev
;
2027 mutex_lock(&rdev
->mutex
);
2028 regulator
->uA_load
= 0;
2029 ret
= _regulator_force_disable(regulator
->rdev
);
2030 mutex_unlock(&rdev
->mutex
);
2033 while (rdev
->open_count
--)
2034 regulator_disable(rdev
->supply
);
2038 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2040 static void regulator_disable_work(struct work_struct
*work
)
2042 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2046 mutex_lock(&rdev
->mutex
);
2048 BUG_ON(!rdev
->deferred_disables
);
2050 count
= rdev
->deferred_disables
;
2051 rdev
->deferred_disables
= 0;
2053 for (i
= 0; i
< count
; i
++) {
2054 ret
= _regulator_disable(rdev
);
2056 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2059 mutex_unlock(&rdev
->mutex
);
2062 for (i
= 0; i
< count
; i
++) {
2063 ret
= regulator_disable(rdev
->supply
);
2066 "Supply disable failed: %d\n", ret
);
2073 * regulator_disable_deferred - disable regulator output with delay
2074 * @regulator: regulator source
2075 * @ms: miliseconds until the regulator is disabled
2077 * Execute regulator_disable() on the regulator after a delay. This
2078 * is intended for use with devices that require some time to quiesce.
2080 * NOTE: this will only disable the regulator output if no other consumer
2081 * devices have it enabled, the regulator device supports disabling and
2082 * machine constraints permit this operation.
2084 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2086 struct regulator_dev
*rdev
= regulator
->rdev
;
2089 if (regulator
->always_on
)
2093 return regulator_disable(regulator
);
2095 mutex_lock(&rdev
->mutex
);
2096 rdev
->deferred_disables
++;
2097 mutex_unlock(&rdev
->mutex
);
2099 ret
= queue_delayed_work(system_power_efficient_wq
,
2100 &rdev
->disable_work
,
2101 msecs_to_jiffies(ms
));
2107 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2109 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2111 /* A GPIO control always takes precedence */
2113 return rdev
->ena_gpio_state
;
2115 /* If we don't know then assume that the regulator is always on */
2116 if (!rdev
->desc
->ops
->is_enabled
)
2119 return rdev
->desc
->ops
->is_enabled(rdev
);
2123 * regulator_is_enabled - is the regulator output enabled
2124 * @regulator: regulator source
2126 * Returns positive if the regulator driver backing the source/client
2127 * has requested that the device be enabled, zero if it hasn't, else a
2128 * negative errno code.
2130 * Note that the device backing this regulator handle can have multiple
2131 * users, so it might be enabled even if regulator_enable() was never
2132 * called for this particular source.
2134 int regulator_is_enabled(struct regulator
*regulator
)
2138 if (regulator
->always_on
)
2141 mutex_lock(®ulator
->rdev
->mutex
);
2142 ret
= _regulator_is_enabled(regulator
->rdev
);
2143 mutex_unlock(®ulator
->rdev
->mutex
);
2147 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2150 * regulator_can_change_voltage - check if regulator can change voltage
2151 * @regulator: regulator source
2153 * Returns positive if the regulator driver backing the source/client
2154 * can change its voltage, false otherwise. Useful for detecting fixed
2155 * or dummy regulators and disabling voltage change logic in the client
2158 int regulator_can_change_voltage(struct regulator
*regulator
)
2160 struct regulator_dev
*rdev
= regulator
->rdev
;
2162 if (rdev
->constraints
&&
2163 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2164 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2167 if (rdev
->desc
->continuous_voltage_range
&&
2168 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2169 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2175 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2178 * regulator_count_voltages - count regulator_list_voltage() selectors
2179 * @regulator: regulator source
2181 * Returns number of selectors, or negative errno. Selectors are
2182 * numbered starting at zero, and typically correspond to bitfields
2183 * in hardware registers.
2185 int regulator_count_voltages(struct regulator
*regulator
)
2187 struct regulator_dev
*rdev
= regulator
->rdev
;
2189 return rdev
->desc
->n_voltages
? : -EINVAL
;
2191 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2194 * regulator_list_voltage - enumerate supported voltages
2195 * @regulator: regulator source
2196 * @selector: identify voltage to list
2197 * Context: can sleep
2199 * Returns a voltage that can be passed to @regulator_set_voltage(),
2200 * zero if this selector code can't be used on this system, or a
2203 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2205 struct regulator_dev
*rdev
= regulator
->rdev
;
2206 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2209 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2210 return rdev
->desc
->fixed_uV
;
2212 if (!ops
->list_voltage
|| selector
>= rdev
->desc
->n_voltages
)
2215 mutex_lock(&rdev
->mutex
);
2216 ret
= ops
->list_voltage(rdev
, selector
);
2217 mutex_unlock(&rdev
->mutex
);
2220 if (ret
< rdev
->constraints
->min_uV
)
2222 else if (ret
> rdev
->constraints
->max_uV
)
2228 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2231 * regulator_get_linear_step - return the voltage step size between VSEL values
2232 * @regulator: regulator source
2234 * Returns the voltage step size between VSEL values for linear
2235 * regulators, or return 0 if the regulator isn't a linear regulator.
2237 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2239 struct regulator_dev
*rdev
= regulator
->rdev
;
2241 return rdev
->desc
->uV_step
;
2243 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2246 * regulator_is_supported_voltage - check if a voltage range can be supported
2248 * @regulator: Regulator to check.
2249 * @min_uV: Minimum required voltage in uV.
2250 * @max_uV: Maximum required voltage in uV.
2252 * Returns a boolean or a negative error code.
2254 int regulator_is_supported_voltage(struct regulator
*regulator
,
2255 int min_uV
, int max_uV
)
2257 struct regulator_dev
*rdev
= regulator
->rdev
;
2258 int i
, voltages
, ret
;
2260 /* If we can't change voltage check the current voltage */
2261 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2262 ret
= regulator_get_voltage(regulator
);
2264 return min_uV
<= ret
&& ret
<= max_uV
;
2269 /* Any voltage within constrains range is fine? */
2270 if (rdev
->desc
->continuous_voltage_range
)
2271 return min_uV
>= rdev
->constraints
->min_uV
&&
2272 max_uV
<= rdev
->constraints
->max_uV
;
2274 ret
= regulator_count_voltages(regulator
);
2279 for (i
= 0; i
< voltages
; i
++) {
2280 ret
= regulator_list_voltage(regulator
, i
);
2282 if (ret
>= min_uV
&& ret
<= max_uV
)
2288 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2290 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2291 int min_uV
, int max_uV
)
2296 unsigned int selector
;
2297 int old_selector
= -1;
2299 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2301 min_uV
+= rdev
->constraints
->uV_offset
;
2302 max_uV
+= rdev
->constraints
->uV_offset
;
2305 * If we can't obtain the old selector there is not enough
2306 * info to call set_voltage_time_sel().
2308 if (_regulator_is_enabled(rdev
) &&
2309 rdev
->desc
->ops
->set_voltage_time_sel
&&
2310 rdev
->desc
->ops
->get_voltage_sel
) {
2311 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2312 if (old_selector
< 0)
2313 return old_selector
;
2316 if (rdev
->desc
->ops
->set_voltage
) {
2317 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
2321 if (rdev
->desc
->ops
->list_voltage
)
2322 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2325 best_val
= _regulator_get_voltage(rdev
);
2328 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2329 if (rdev
->desc
->ops
->map_voltage
) {
2330 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2333 if (rdev
->desc
->ops
->list_voltage
==
2334 regulator_list_voltage_linear
)
2335 ret
= regulator_map_voltage_linear(rdev
,
2337 else if (rdev
->desc
->ops
->list_voltage
==
2338 regulator_list_voltage_linear_range
)
2339 ret
= regulator_map_voltage_linear_range(rdev
,
2342 ret
= regulator_map_voltage_iterate(rdev
,
2347 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2348 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2350 if (old_selector
== selector
)
2353 ret
= rdev
->desc
->ops
->set_voltage_sel(
2363 /* Call set_voltage_time_sel if successfully obtained old_selector */
2364 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2365 && old_selector
!= selector
) {
2367 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2368 old_selector
, selector
);
2370 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2375 /* Insert any necessary delays */
2376 if (delay
>= 1000) {
2377 mdelay(delay
/ 1000);
2378 udelay(delay
% 1000);
2384 if (ret
== 0 && best_val
>= 0) {
2385 unsigned long data
= best_val
;
2387 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2391 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2397 * regulator_set_voltage - set regulator output voltage
2398 * @regulator: regulator source
2399 * @min_uV: Minimum required voltage in uV
2400 * @max_uV: Maximum acceptable voltage in uV
2402 * Sets a voltage regulator to the desired output voltage. This can be set
2403 * during any regulator state. IOW, regulator can be disabled or enabled.
2405 * If the regulator is enabled then the voltage will change to the new value
2406 * immediately otherwise if the regulator is disabled the regulator will
2407 * output at the new voltage when enabled.
2409 * NOTE: If the regulator is shared between several devices then the lowest
2410 * request voltage that meets the system constraints will be used.
2411 * Regulator system constraints must be set for this regulator before
2412 * calling this function otherwise this call will fail.
2414 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2416 struct regulator_dev
*rdev
= regulator
->rdev
;
2418 int old_min_uV
, old_max_uV
;
2421 mutex_lock(&rdev
->mutex
);
2423 /* If we're setting the same range as last time the change
2424 * should be a noop (some cpufreq implementations use the same
2425 * voltage for multiple frequencies, for example).
2427 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2430 /* If we're trying to set a range that overlaps the current voltage,
2431 * return succesfully even though the regulator does not support
2432 * changing the voltage.
2434 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2435 current_uV
= _regulator_get_voltage(rdev
);
2436 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2437 regulator
->min_uV
= min_uV
;
2438 regulator
->max_uV
= max_uV
;
2444 if (!rdev
->desc
->ops
->set_voltage
&&
2445 !rdev
->desc
->ops
->set_voltage_sel
) {
2450 /* constraints check */
2451 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2455 /* restore original values in case of error */
2456 old_min_uV
= regulator
->min_uV
;
2457 old_max_uV
= regulator
->max_uV
;
2458 regulator
->min_uV
= min_uV
;
2459 regulator
->max_uV
= max_uV
;
2461 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2465 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2470 mutex_unlock(&rdev
->mutex
);
2473 regulator
->min_uV
= old_min_uV
;
2474 regulator
->max_uV
= old_max_uV
;
2475 mutex_unlock(&rdev
->mutex
);
2478 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2481 * regulator_set_voltage_time - get raise/fall time
2482 * @regulator: regulator source
2483 * @old_uV: starting voltage in microvolts
2484 * @new_uV: target voltage in microvolts
2486 * Provided with the starting and ending voltage, this function attempts to
2487 * calculate the time in microseconds required to rise or fall to this new
2490 int regulator_set_voltage_time(struct regulator
*regulator
,
2491 int old_uV
, int new_uV
)
2493 struct regulator_dev
*rdev
= regulator
->rdev
;
2494 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2500 /* Currently requires operations to do this */
2501 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2502 || !rdev
->desc
->n_voltages
)
2505 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2506 /* We only look for exact voltage matches here */
2507 voltage
= regulator_list_voltage(regulator
, i
);
2512 if (voltage
== old_uV
)
2514 if (voltage
== new_uV
)
2518 if (old_sel
< 0 || new_sel
< 0)
2521 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2523 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2526 * regulator_set_voltage_time_sel - get raise/fall time
2527 * @rdev: regulator source device
2528 * @old_selector: selector for starting voltage
2529 * @new_selector: selector for target voltage
2531 * Provided with the starting and target voltage selectors, this function
2532 * returns time in microseconds required to rise or fall to this new voltage
2534 * Drivers providing ramp_delay in regulation_constraints can use this as their
2535 * set_voltage_time_sel() operation.
2537 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2538 unsigned int old_selector
,
2539 unsigned int new_selector
)
2541 unsigned int ramp_delay
= 0;
2542 int old_volt
, new_volt
;
2544 if (rdev
->constraints
->ramp_delay
)
2545 ramp_delay
= rdev
->constraints
->ramp_delay
;
2546 else if (rdev
->desc
->ramp_delay
)
2547 ramp_delay
= rdev
->desc
->ramp_delay
;
2549 if (ramp_delay
== 0) {
2550 rdev_warn(rdev
, "ramp_delay not set\n");
2555 if (!rdev
->desc
->ops
->list_voltage
)
2558 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2559 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2561 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2563 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2566 * regulator_sync_voltage - re-apply last regulator output voltage
2567 * @regulator: regulator source
2569 * Re-apply the last configured voltage. This is intended to be used
2570 * where some external control source the consumer is cooperating with
2571 * has caused the configured voltage to change.
2573 int regulator_sync_voltage(struct regulator
*regulator
)
2575 struct regulator_dev
*rdev
= regulator
->rdev
;
2576 int ret
, min_uV
, max_uV
;
2578 mutex_lock(&rdev
->mutex
);
2580 if (!rdev
->desc
->ops
->set_voltage
&&
2581 !rdev
->desc
->ops
->set_voltage_sel
) {
2586 /* This is only going to work if we've had a voltage configured. */
2587 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2592 min_uV
= regulator
->min_uV
;
2593 max_uV
= regulator
->max_uV
;
2595 /* This should be a paranoia check... */
2596 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2600 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2604 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2607 mutex_unlock(&rdev
->mutex
);
2610 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2612 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2616 if (rdev
->desc
->ops
->get_voltage_sel
) {
2617 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2620 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2621 } else if (rdev
->desc
->ops
->get_voltage
) {
2622 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2623 } else if (rdev
->desc
->ops
->list_voltage
) {
2624 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2625 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
2626 ret
= rdev
->desc
->fixed_uV
;
2633 return ret
- rdev
->constraints
->uV_offset
;
2637 * regulator_get_voltage - get regulator output voltage
2638 * @regulator: regulator source
2640 * This returns the current regulator voltage in uV.
2642 * NOTE: If the regulator is disabled it will return the voltage value. This
2643 * function should not be used to determine regulator state.
2645 int regulator_get_voltage(struct regulator
*regulator
)
2649 mutex_lock(®ulator
->rdev
->mutex
);
2651 ret
= _regulator_get_voltage(regulator
->rdev
);
2653 mutex_unlock(®ulator
->rdev
->mutex
);
2657 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2660 * regulator_set_current_limit - set regulator output current limit
2661 * @regulator: regulator source
2662 * @min_uA: Minimum supported current in uA
2663 * @max_uA: Maximum supported current in uA
2665 * Sets current sink to the desired output current. This can be set during
2666 * any regulator state. IOW, regulator can be disabled or enabled.
2668 * If the regulator is enabled then the current will change to the new value
2669 * immediately otherwise if the regulator is disabled the regulator will
2670 * output at the new current when enabled.
2672 * NOTE: Regulator system constraints must be set for this regulator before
2673 * calling this function otherwise this call will fail.
2675 int regulator_set_current_limit(struct regulator
*regulator
,
2676 int min_uA
, int max_uA
)
2678 struct regulator_dev
*rdev
= regulator
->rdev
;
2681 mutex_lock(&rdev
->mutex
);
2684 if (!rdev
->desc
->ops
->set_current_limit
) {
2689 /* constraints check */
2690 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2694 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2696 mutex_unlock(&rdev
->mutex
);
2699 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2701 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2705 mutex_lock(&rdev
->mutex
);
2708 if (!rdev
->desc
->ops
->get_current_limit
) {
2713 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2715 mutex_unlock(&rdev
->mutex
);
2720 * regulator_get_current_limit - get regulator output current
2721 * @regulator: regulator source
2723 * This returns the current supplied by the specified current sink in uA.
2725 * NOTE: If the regulator is disabled it will return the current value. This
2726 * function should not be used to determine regulator state.
2728 int regulator_get_current_limit(struct regulator
*regulator
)
2730 return _regulator_get_current_limit(regulator
->rdev
);
2732 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2735 * regulator_set_mode - set regulator operating mode
2736 * @regulator: regulator source
2737 * @mode: operating mode - one of the REGULATOR_MODE constants
2739 * Set regulator operating mode to increase regulator efficiency or improve
2740 * regulation performance.
2742 * NOTE: Regulator system constraints must be set for this regulator before
2743 * calling this function otherwise this call will fail.
2745 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2747 struct regulator_dev
*rdev
= regulator
->rdev
;
2749 int regulator_curr_mode
;
2751 mutex_lock(&rdev
->mutex
);
2754 if (!rdev
->desc
->ops
->set_mode
) {
2759 /* return if the same mode is requested */
2760 if (rdev
->desc
->ops
->get_mode
) {
2761 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2762 if (regulator_curr_mode
== mode
) {
2768 /* constraints check */
2769 ret
= regulator_mode_constrain(rdev
, &mode
);
2773 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2775 mutex_unlock(&rdev
->mutex
);
2778 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2780 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2784 mutex_lock(&rdev
->mutex
);
2787 if (!rdev
->desc
->ops
->get_mode
) {
2792 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2794 mutex_unlock(&rdev
->mutex
);
2799 * regulator_get_mode - get regulator operating mode
2800 * @regulator: regulator source
2802 * Get the current regulator operating mode.
2804 unsigned int regulator_get_mode(struct regulator
*regulator
)
2806 return _regulator_get_mode(regulator
->rdev
);
2808 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2811 * regulator_set_optimum_mode - set regulator optimum operating mode
2812 * @regulator: regulator source
2813 * @uA_load: load current
2815 * Notifies the regulator core of a new device load. This is then used by
2816 * DRMS (if enabled by constraints) to set the most efficient regulator
2817 * operating mode for the new regulator loading.
2819 * Consumer devices notify their supply regulator of the maximum power
2820 * they will require (can be taken from device datasheet in the power
2821 * consumption tables) when they change operational status and hence power
2822 * state. Examples of operational state changes that can affect power
2823 * consumption are :-
2825 * o Device is opened / closed.
2826 * o Device I/O is about to begin or has just finished.
2827 * o Device is idling in between work.
2829 * This information is also exported via sysfs to userspace.
2831 * DRMS will sum the total requested load on the regulator and change
2832 * to the most efficient operating mode if platform constraints allow.
2834 * Returns the new regulator mode or error.
2836 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2838 struct regulator_dev
*rdev
= regulator
->rdev
;
2839 struct regulator
*consumer
;
2840 int ret
, output_uV
, input_uV
= 0, total_uA_load
= 0;
2844 input_uV
= regulator_get_voltage(rdev
->supply
);
2846 mutex_lock(&rdev
->mutex
);
2849 * first check to see if we can set modes at all, otherwise just
2850 * tell the consumer everything is OK.
2852 regulator
->uA_load
= uA_load
;
2853 ret
= regulator_check_drms(rdev
);
2859 if (!rdev
->desc
->ops
->get_optimum_mode
)
2863 * we can actually do this so any errors are indicators of
2864 * potential real failure.
2868 if (!rdev
->desc
->ops
->set_mode
)
2871 /* get output voltage */
2872 output_uV
= _regulator_get_voltage(rdev
);
2873 if (output_uV
<= 0) {
2874 rdev_err(rdev
, "invalid output voltage found\n");
2878 /* No supply? Use constraint voltage */
2880 input_uV
= rdev
->constraints
->input_uV
;
2881 if (input_uV
<= 0) {
2882 rdev_err(rdev
, "invalid input voltage found\n");
2886 /* calc total requested load for this regulator */
2887 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2888 total_uA_load
+= consumer
->uA_load
;
2890 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2891 input_uV
, output_uV
,
2893 ret
= regulator_mode_constrain(rdev
, &mode
);
2895 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2896 total_uA_load
, input_uV
, output_uV
);
2900 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2902 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2907 mutex_unlock(&rdev
->mutex
);
2910 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2913 * regulator_allow_bypass - allow the regulator to go into bypass mode
2915 * @regulator: Regulator to configure
2916 * @enable: enable or disable bypass mode
2918 * Allow the regulator to go into bypass mode if all other consumers
2919 * for the regulator also enable bypass mode and the machine
2920 * constraints allow this. Bypass mode means that the regulator is
2921 * simply passing the input directly to the output with no regulation.
2923 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
2925 struct regulator_dev
*rdev
= regulator
->rdev
;
2928 if (!rdev
->desc
->ops
->set_bypass
)
2931 if (rdev
->constraints
&&
2932 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
2935 mutex_lock(&rdev
->mutex
);
2937 if (enable
&& !regulator
->bypass
) {
2938 rdev
->bypass_count
++;
2940 if (rdev
->bypass_count
== rdev
->open_count
) {
2941 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2943 rdev
->bypass_count
--;
2946 } else if (!enable
&& regulator
->bypass
) {
2947 rdev
->bypass_count
--;
2949 if (rdev
->bypass_count
!= rdev
->open_count
) {
2950 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
2952 rdev
->bypass_count
++;
2957 regulator
->bypass
= enable
;
2959 mutex_unlock(&rdev
->mutex
);
2963 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
2966 * regulator_register_notifier - register regulator event notifier
2967 * @regulator: regulator source
2968 * @nb: notifier block
2970 * Register notifier block to receive regulator events.
2972 int regulator_register_notifier(struct regulator
*regulator
,
2973 struct notifier_block
*nb
)
2975 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
2978 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
2981 * regulator_unregister_notifier - unregister regulator event notifier
2982 * @regulator: regulator source
2983 * @nb: notifier block
2985 * Unregister regulator event notifier block.
2987 int regulator_unregister_notifier(struct regulator
*regulator
,
2988 struct notifier_block
*nb
)
2990 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
2993 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
2995 /* notify regulator consumers and downstream regulator consumers.
2996 * Note mutex must be held by caller.
2998 static void _notifier_call_chain(struct regulator_dev
*rdev
,
2999 unsigned long event
, void *data
)
3001 /* call rdev chain first */
3002 blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3006 * regulator_bulk_get - get multiple regulator consumers
3008 * @dev: Device to supply
3009 * @num_consumers: Number of consumers to register
3010 * @consumers: Configuration of consumers; clients are stored here.
3012 * @return 0 on success, an errno on failure.
3014 * This helper function allows drivers to get several regulator
3015 * consumers in one operation. If any of the regulators cannot be
3016 * acquired then any regulators that were allocated will be freed
3017 * before returning to the caller.
3019 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3020 struct regulator_bulk_data
*consumers
)
3025 for (i
= 0; i
< num_consumers
; i
++)
3026 consumers
[i
].consumer
= NULL
;
3028 for (i
= 0; i
< num_consumers
; i
++) {
3029 consumers
[i
].consumer
= regulator_get(dev
,
3030 consumers
[i
].supply
);
3031 if (IS_ERR(consumers
[i
].consumer
)) {
3032 ret
= PTR_ERR(consumers
[i
].consumer
);
3033 dev_err(dev
, "Failed to get supply '%s': %d\n",
3034 consumers
[i
].supply
, ret
);
3035 consumers
[i
].consumer
= NULL
;
3044 regulator_put(consumers
[i
].consumer
);
3048 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3050 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3052 struct regulator_bulk_data
*bulk
= data
;
3054 bulk
->ret
= regulator_enable(bulk
->consumer
);
3058 * regulator_bulk_enable - enable multiple regulator consumers
3060 * @num_consumers: Number of consumers
3061 * @consumers: Consumer data; clients are stored here.
3062 * @return 0 on success, an errno on failure
3064 * This convenience API allows consumers to enable multiple regulator
3065 * clients in a single API call. If any consumers cannot be enabled
3066 * then any others that were enabled will be disabled again prior to
3069 int regulator_bulk_enable(int num_consumers
,
3070 struct regulator_bulk_data
*consumers
)
3072 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3076 for (i
= 0; i
< num_consumers
; i
++) {
3077 if (consumers
[i
].consumer
->always_on
)
3078 consumers
[i
].ret
= 0;
3080 async_schedule_domain(regulator_bulk_enable_async
,
3081 &consumers
[i
], &async_domain
);
3084 async_synchronize_full_domain(&async_domain
);
3086 /* If any consumer failed we need to unwind any that succeeded */
3087 for (i
= 0; i
< num_consumers
; i
++) {
3088 if (consumers
[i
].ret
!= 0) {
3089 ret
= consumers
[i
].ret
;
3097 for (i
= 0; i
< num_consumers
; i
++) {
3098 if (consumers
[i
].ret
< 0)
3099 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3102 regulator_disable(consumers
[i
].consumer
);
3107 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3110 * regulator_bulk_disable - disable multiple regulator consumers
3112 * @num_consumers: Number of consumers
3113 * @consumers: Consumer data; clients are stored here.
3114 * @return 0 on success, an errno on failure
3116 * This convenience API allows consumers to disable multiple regulator
3117 * clients in a single API call. If any consumers cannot be disabled
3118 * then any others that were disabled will be enabled again prior to
3121 int regulator_bulk_disable(int num_consumers
,
3122 struct regulator_bulk_data
*consumers
)
3127 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3128 ret
= regulator_disable(consumers
[i
].consumer
);
3136 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3137 for (++i
; i
< num_consumers
; ++i
) {
3138 r
= regulator_enable(consumers
[i
].consumer
);
3140 pr_err("Failed to reename %s: %d\n",
3141 consumers
[i
].supply
, r
);
3146 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3149 * regulator_bulk_force_disable - force disable multiple regulator consumers
3151 * @num_consumers: Number of consumers
3152 * @consumers: Consumer data; clients are stored here.
3153 * @return 0 on success, an errno on failure
3155 * This convenience API allows consumers to forcibly disable multiple regulator
3156 * clients in a single API call.
3157 * NOTE: This should be used for situations when device damage will
3158 * likely occur if the regulators are not disabled (e.g. over temp).
3159 * Although regulator_force_disable function call for some consumers can
3160 * return error numbers, the function is called for all consumers.
3162 int regulator_bulk_force_disable(int num_consumers
,
3163 struct regulator_bulk_data
*consumers
)
3168 for (i
= 0; i
< num_consumers
; i
++)
3170 regulator_force_disable(consumers
[i
].consumer
);
3172 for (i
= 0; i
< num_consumers
; i
++) {
3173 if (consumers
[i
].ret
!= 0) {
3174 ret
= consumers
[i
].ret
;
3183 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3186 * regulator_bulk_free - free multiple regulator consumers
3188 * @num_consumers: Number of consumers
3189 * @consumers: Consumer data; clients are stored here.
3191 * This convenience API allows consumers to free multiple regulator
3192 * clients in a single API call.
3194 void regulator_bulk_free(int num_consumers
,
3195 struct regulator_bulk_data
*consumers
)
3199 for (i
= 0; i
< num_consumers
; i
++) {
3200 regulator_put(consumers
[i
].consumer
);
3201 consumers
[i
].consumer
= NULL
;
3204 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3207 * regulator_notifier_call_chain - call regulator event notifier
3208 * @rdev: regulator source
3209 * @event: notifier block
3210 * @data: callback-specific data.
3212 * Called by regulator drivers to notify clients a regulator event has
3213 * occurred. We also notify regulator clients downstream.
3214 * Note lock must be held by caller.
3216 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3217 unsigned long event
, void *data
)
3219 _notifier_call_chain(rdev
, event
, data
);
3223 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3226 * regulator_mode_to_status - convert a regulator mode into a status
3228 * @mode: Mode to convert
3230 * Convert a regulator mode into a status.
3232 int regulator_mode_to_status(unsigned int mode
)
3235 case REGULATOR_MODE_FAST
:
3236 return REGULATOR_STATUS_FAST
;
3237 case REGULATOR_MODE_NORMAL
:
3238 return REGULATOR_STATUS_NORMAL
;
3239 case REGULATOR_MODE_IDLE
:
3240 return REGULATOR_STATUS_IDLE
;
3241 case REGULATOR_MODE_STANDBY
:
3242 return REGULATOR_STATUS_STANDBY
;
3244 return REGULATOR_STATUS_UNDEFINED
;
3247 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3250 * To avoid cluttering sysfs (and memory) with useless state, only
3251 * create attributes that can be meaningfully displayed.
3253 static int add_regulator_attributes(struct regulator_dev
*rdev
)
3255 struct device
*dev
= &rdev
->dev
;
3256 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3259 /* some attributes need specific methods to be displayed */
3260 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3261 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3262 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3263 (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1))) {
3264 status
= device_create_file(dev
, &dev_attr_microvolts
);
3268 if (ops
->get_current_limit
) {
3269 status
= device_create_file(dev
, &dev_attr_microamps
);
3273 if (ops
->get_mode
) {
3274 status
= device_create_file(dev
, &dev_attr_opmode
);
3278 if (rdev
->ena_pin
|| ops
->is_enabled
) {
3279 status
= device_create_file(dev
, &dev_attr_state
);
3283 if (ops
->get_status
) {
3284 status
= device_create_file(dev
, &dev_attr_status
);
3288 if (ops
->get_bypass
) {
3289 status
= device_create_file(dev
, &dev_attr_bypass
);
3294 /* some attributes are type-specific */
3295 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
3296 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
3301 /* all the other attributes exist to support constraints;
3302 * don't show them if there are no constraints, or if the
3303 * relevant supporting methods are missing.
3305 if (!rdev
->constraints
)
3308 /* constraints need specific supporting methods */
3309 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
3310 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
3313 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
3317 if (ops
->set_current_limit
) {
3318 status
= device_create_file(dev
, &dev_attr_min_microamps
);
3321 status
= device_create_file(dev
, &dev_attr_max_microamps
);
3326 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
3329 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
3332 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
3336 if (ops
->set_suspend_voltage
) {
3337 status
= device_create_file(dev
,
3338 &dev_attr_suspend_standby_microvolts
);
3341 status
= device_create_file(dev
,
3342 &dev_attr_suspend_mem_microvolts
);
3345 status
= device_create_file(dev
,
3346 &dev_attr_suspend_disk_microvolts
);
3351 if (ops
->set_suspend_mode
) {
3352 status
= device_create_file(dev
,
3353 &dev_attr_suspend_standby_mode
);
3356 status
= device_create_file(dev
,
3357 &dev_attr_suspend_mem_mode
);
3360 status
= device_create_file(dev
,
3361 &dev_attr_suspend_disk_mode
);
3369 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3371 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
3372 if (!rdev
->debugfs
) {
3373 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3377 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3379 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3381 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3382 &rdev
->bypass_count
);
3386 * regulator_register - register regulator
3387 * @regulator_desc: regulator to register
3388 * @config: runtime configuration for regulator
3390 * Called by regulator drivers to register a regulator.
3391 * Returns a valid pointer to struct regulator_dev on success
3392 * or an ERR_PTR() on error.
3394 struct regulator_dev
*
3395 regulator_register(const struct regulator_desc
*regulator_desc
,
3396 const struct regulator_config
*config
)
3398 const struct regulation_constraints
*constraints
= NULL
;
3399 const struct regulator_init_data
*init_data
;
3400 static atomic_t regulator_no
= ATOMIC_INIT(0);
3401 struct regulator_dev
*rdev
;
3404 const char *supply
= NULL
;
3406 if (regulator_desc
== NULL
|| config
== NULL
)
3407 return ERR_PTR(-EINVAL
);
3412 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3413 return ERR_PTR(-EINVAL
);
3415 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3416 regulator_desc
->type
!= REGULATOR_CURRENT
)
3417 return ERR_PTR(-EINVAL
);
3419 /* Only one of each should be implemented */
3420 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3421 regulator_desc
->ops
->get_voltage_sel
);
3422 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3423 regulator_desc
->ops
->set_voltage_sel
);
3425 /* If we're using selectors we must implement list_voltage. */
3426 if (regulator_desc
->ops
->get_voltage_sel
&&
3427 !regulator_desc
->ops
->list_voltage
) {
3428 return ERR_PTR(-EINVAL
);
3430 if (regulator_desc
->ops
->set_voltage_sel
&&
3431 !regulator_desc
->ops
->list_voltage
) {
3432 return ERR_PTR(-EINVAL
);
3435 init_data
= config
->init_data
;
3437 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3439 return ERR_PTR(-ENOMEM
);
3441 mutex_lock(®ulator_list_mutex
);
3443 mutex_init(&rdev
->mutex
);
3444 rdev
->reg_data
= config
->driver_data
;
3445 rdev
->owner
= regulator_desc
->owner
;
3446 rdev
->desc
= regulator_desc
;
3448 rdev
->regmap
= config
->regmap
;
3449 else if (dev_get_regmap(dev
, NULL
))
3450 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3451 else if (dev
->parent
)
3452 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3453 INIT_LIST_HEAD(&rdev
->consumer_list
);
3454 INIT_LIST_HEAD(&rdev
->list
);
3455 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3456 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3458 /* preform any regulator specific init */
3459 if (init_data
&& init_data
->regulator_init
) {
3460 ret
= init_data
->regulator_init(rdev
->reg_data
);
3465 /* register with sysfs */
3466 rdev
->dev
.class = ®ulator_class
;
3467 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
3468 rdev
->dev
.parent
= dev
;
3469 dev_set_name(&rdev
->dev
, "regulator.%d",
3470 atomic_inc_return(®ulator_no
) - 1);
3471 ret
= device_register(&rdev
->dev
);
3473 put_device(&rdev
->dev
);
3477 dev_set_drvdata(&rdev
->dev
, rdev
);
3479 if (config
->ena_gpio
&& gpio_is_valid(config
->ena_gpio
)) {
3480 ret
= regulator_ena_gpio_request(rdev
, config
);
3482 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3483 config
->ena_gpio
, ret
);
3488 /* set regulator constraints */
3490 constraints
= &init_data
->constraints
;
3492 ret
= set_machine_constraints(rdev
, constraints
);
3496 /* add attributes supported by this regulator */
3497 ret
= add_regulator_attributes(rdev
);
3501 if (init_data
&& init_data
->supply_regulator
)
3502 supply
= init_data
->supply_regulator
;
3503 else if (regulator_desc
->supply_name
)
3504 supply
= regulator_desc
->supply_name
;
3507 struct regulator_dev
*r
;
3509 r
= regulator_dev_lookup(dev
, supply
, &ret
);
3511 if (ret
== -ENODEV
) {
3513 * No supply was specified for this regulator and
3514 * there will never be one.
3519 dev_err(dev
, "Failed to find supply %s\n", supply
);
3520 ret
= -EPROBE_DEFER
;
3524 ret
= set_supply(rdev
, r
);
3528 /* Enable supply if rail is enabled */
3529 if (_regulator_is_enabled(rdev
)) {
3530 ret
= regulator_enable(rdev
->supply
);
3537 /* add consumers devices */
3539 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3540 ret
= set_consumer_device_supply(rdev
,
3541 init_data
->consumer_supplies
[i
].dev_name
,
3542 init_data
->consumer_supplies
[i
].supply
);
3544 dev_err(dev
, "Failed to set supply %s\n",
3545 init_data
->consumer_supplies
[i
].supply
);
3546 goto unset_supplies
;
3551 list_add(&rdev
->list
, ®ulator_list
);
3553 rdev_init_debugfs(rdev
);
3555 mutex_unlock(®ulator_list_mutex
);
3559 unset_regulator_supplies(rdev
);
3563 _regulator_put(rdev
->supply
);
3564 regulator_ena_gpio_free(rdev
);
3565 kfree(rdev
->constraints
);
3567 device_unregister(&rdev
->dev
);
3568 /* device core frees rdev */
3569 rdev
= ERR_PTR(ret
);
3574 rdev
= ERR_PTR(ret
);
3577 EXPORT_SYMBOL_GPL(regulator_register
);
3580 * regulator_unregister - unregister regulator
3581 * @rdev: regulator to unregister
3583 * Called by regulator drivers to unregister a regulator.
3585 void regulator_unregister(struct regulator_dev
*rdev
)
3591 while (rdev
->use_count
--)
3592 regulator_disable(rdev
->supply
);
3593 regulator_put(rdev
->supply
);
3595 mutex_lock(®ulator_list_mutex
);
3596 debugfs_remove_recursive(rdev
->debugfs
);
3597 flush_work(&rdev
->disable_work
.work
);
3598 WARN_ON(rdev
->open_count
);
3599 unset_regulator_supplies(rdev
);
3600 list_del(&rdev
->list
);
3601 kfree(rdev
->constraints
);
3602 regulator_ena_gpio_free(rdev
);
3603 of_node_put(rdev
->dev
.of_node
);
3604 device_unregister(&rdev
->dev
);
3605 mutex_unlock(®ulator_list_mutex
);
3607 EXPORT_SYMBOL_GPL(regulator_unregister
);
3610 * regulator_suspend_prepare - prepare regulators for system wide suspend
3611 * @state: system suspend state
3613 * Configure each regulator with it's suspend operating parameters for state.
3614 * This will usually be called by machine suspend code prior to supending.
3616 int regulator_suspend_prepare(suspend_state_t state
)
3618 struct regulator_dev
*rdev
;
3621 /* ON is handled by regulator active state */
3622 if (state
== PM_SUSPEND_ON
)
3625 mutex_lock(®ulator_list_mutex
);
3626 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3628 mutex_lock(&rdev
->mutex
);
3629 ret
= suspend_prepare(rdev
, state
);
3630 mutex_unlock(&rdev
->mutex
);
3633 rdev_err(rdev
, "failed to prepare\n");
3638 mutex_unlock(®ulator_list_mutex
);
3641 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3644 * regulator_suspend_finish - resume regulators from system wide suspend
3646 * Turn on regulators that might be turned off by regulator_suspend_prepare
3647 * and that should be turned on according to the regulators properties.
3649 int regulator_suspend_finish(void)
3651 struct regulator_dev
*rdev
;
3654 mutex_lock(®ulator_list_mutex
);
3655 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3656 mutex_lock(&rdev
->mutex
);
3657 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
3658 if (!_regulator_is_enabled(rdev
)) {
3659 error
= _regulator_do_enable(rdev
);
3664 if (!have_full_constraints())
3666 if (!_regulator_is_enabled(rdev
))
3669 error
= _regulator_do_disable(rdev
);
3674 mutex_unlock(&rdev
->mutex
);
3676 mutex_unlock(®ulator_list_mutex
);
3679 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3682 * regulator_has_full_constraints - the system has fully specified constraints
3684 * Calling this function will cause the regulator API to disable all
3685 * regulators which have a zero use count and don't have an always_on
3686 * constraint in a late_initcall.
3688 * The intention is that this will become the default behaviour in a
3689 * future kernel release so users are encouraged to use this facility
3692 void regulator_has_full_constraints(void)
3694 has_full_constraints
= 1;
3696 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3699 * rdev_get_drvdata - get rdev regulator driver data
3702 * Get rdev regulator driver private data. This call can be used in the
3703 * regulator driver context.
3705 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3707 return rdev
->reg_data
;
3709 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3712 * regulator_get_drvdata - get regulator driver data
3713 * @regulator: regulator
3715 * Get regulator driver private data. This call can be used in the consumer
3716 * driver context when non API regulator specific functions need to be called.
3718 void *regulator_get_drvdata(struct regulator
*regulator
)
3720 return regulator
->rdev
->reg_data
;
3722 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3725 * regulator_set_drvdata - set regulator driver data
3726 * @regulator: regulator
3729 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3731 regulator
->rdev
->reg_data
= data
;
3733 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3736 * regulator_get_id - get regulator ID
3739 int rdev_get_id(struct regulator_dev
*rdev
)
3741 return rdev
->desc
->id
;
3743 EXPORT_SYMBOL_GPL(rdev_get_id
);
3745 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3749 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3751 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3753 return reg_init_data
->driver_data
;
3755 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3757 #ifdef CONFIG_DEBUG_FS
3758 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3759 size_t count
, loff_t
*ppos
)
3761 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3762 ssize_t len
, ret
= 0;
3763 struct regulator_map
*map
;
3768 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3769 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3771 rdev_get_name(map
->regulator
), map
->dev_name
,
3775 if (ret
> PAGE_SIZE
) {
3781 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3789 static const struct file_operations supply_map_fops
= {
3790 #ifdef CONFIG_DEBUG_FS
3791 .read
= supply_map_read_file
,
3792 .llseek
= default_llseek
,
3796 static int __init
regulator_init(void)
3800 ret
= class_register(®ulator_class
);
3802 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3804 pr_warn("regulator: Failed to create debugfs directory\n");
3806 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3809 regulator_dummy_init();
3814 /* init early to allow our consumers to complete system booting */
3815 core_initcall(regulator_init
);
3817 static int __init
regulator_init_complete(void)
3819 struct regulator_dev
*rdev
;
3820 struct regulator_ops
*ops
;
3821 struct regulation_constraints
*c
;
3825 * Since DT doesn't provide an idiomatic mechanism for
3826 * enabling full constraints and since it's much more natural
3827 * with DT to provide them just assume that a DT enabled
3828 * system has full constraints.
3830 if (of_have_populated_dt())
3831 has_full_constraints
= true;
3833 mutex_lock(®ulator_list_mutex
);
3835 /* If we have a full configuration then disable any regulators
3836 * we have permission to change the status for and which are
3837 * not in use or always_on. This is effectively the default
3838 * for DT and ACPI as they have full constraints.
3840 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3841 ops
= rdev
->desc
->ops
;
3842 c
= rdev
->constraints
;
3844 if (c
&& c
->always_on
)
3847 if (c
&& !(c
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
))
3850 mutex_lock(&rdev
->mutex
);
3852 if (rdev
->use_count
)
3855 /* If we can't read the status assume it's on. */
3856 if (ops
->is_enabled
)
3857 enabled
= ops
->is_enabled(rdev
);
3864 if (have_full_constraints()) {
3865 /* We log since this may kill the system if it
3867 rdev_info(rdev
, "disabling\n");
3868 ret
= _regulator_do_disable(rdev
);
3870 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3872 /* The intention is that in future we will
3873 * assume that full constraints are provided
3874 * so warn even if we aren't going to do
3877 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3881 mutex_unlock(&rdev
->mutex
);
3884 mutex_unlock(®ulator_list_mutex
);
3888 late_initcall_sync(regulator_init_complete
);