usb: dwc3: keystone: drop dma_mask configuration
[linux/fpc-iii.git] / drivers / w1 / masters / ds2490.c
blob7404ad3062b7680e91a6b23f51fab7fcdbdf881d
1 /*
2 * ds2490.c USB to one wire bridge
4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
28 #include "../w1_int.h"
29 #include "../w1.h"
31 /* USB Standard */
32 /* USB Control request vendor type */
33 #define VENDOR 0x40
35 /* COMMAND TYPE CODES */
36 #define CONTROL_CMD 0x00
37 #define COMM_CMD 0x01
38 #define MODE_CMD 0x02
40 /* CONTROL COMMAND CODES */
41 #define CTL_RESET_DEVICE 0x0000
42 #define CTL_START_EXE 0x0001
43 #define CTL_RESUME_EXE 0x0002
44 #define CTL_HALT_EXE_IDLE 0x0003
45 #define CTL_HALT_EXE_DONE 0x0004
46 #define CTL_FLUSH_COMM_CMDS 0x0007
47 #define CTL_FLUSH_RCV_BUFFER 0x0008
48 #define CTL_FLUSH_XMT_BUFFER 0x0009
49 #define CTL_GET_COMM_CMDS 0x000A
51 /* MODE COMMAND CODES */
52 #define MOD_PULSE_EN 0x0000
53 #define MOD_SPEED_CHANGE_EN 0x0001
54 #define MOD_1WIRE_SPEED 0x0002
55 #define MOD_STRONG_PU_DURATION 0x0003
56 #define MOD_PULLDOWN_SLEWRATE 0x0004
57 #define MOD_PROG_PULSE_DURATION 0x0005
58 #define MOD_WRITE1_LOWTIME 0x0006
59 #define MOD_DSOW0_TREC 0x0007
61 /* COMMUNICATION COMMAND CODES */
62 #define COMM_ERROR_ESCAPE 0x0601
63 #define COMM_SET_DURATION 0x0012
64 #define COMM_BIT_IO 0x0020
65 #define COMM_PULSE 0x0030
66 #define COMM_1_WIRE_RESET 0x0042
67 #define COMM_BYTE_IO 0x0052
68 #define COMM_MATCH_ACCESS 0x0064
69 #define COMM_BLOCK_IO 0x0074
70 #define COMM_READ_STRAIGHT 0x0080
71 #define COMM_DO_RELEASE 0x6092
72 #define COMM_SET_PATH 0x00A2
73 #define COMM_WRITE_SRAM_PAGE 0x00B2
74 #define COMM_WRITE_EPROM 0x00C4
75 #define COMM_READ_CRC_PROT_PAGE 0x00D4
76 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
77 #define COMM_SEARCH_ACCESS 0x00F4
79 /* Communication command bits */
80 #define COMM_TYPE 0x0008
81 #define COMM_SE 0x0008
82 #define COMM_D 0x0008
83 #define COMM_Z 0x0008
84 #define COMM_CH 0x0008
85 #define COMM_SM 0x0008
86 #define COMM_R 0x0008
87 #define COMM_IM 0x0001
89 #define COMM_PS 0x4000
90 #define COMM_PST 0x4000
91 #define COMM_CIB 0x4000
92 #define COMM_RTS 0x4000
93 #define COMM_DT 0x2000
94 #define COMM_SPU 0x1000
95 #define COMM_F 0x0800
96 #define COMM_NTF 0x0400
97 #define COMM_ICP 0x0200
98 #define COMM_RST 0x0100
100 #define PULSE_PROG 0x01
101 #define PULSE_SPUE 0x02
103 #define BRANCH_MAIN 0xCC
104 #define BRANCH_AUX 0x33
106 /* Status flags */
107 #define ST_SPUA 0x01 /* Strong Pull-up is active */
108 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
109 #define ST_12VP 0x04 /* external 12V programming voltage is present */
110 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
111 #define ST_HALT 0x10 /* DS2490 is currently halted */
112 #define ST_IDLE 0x20 /* DS2490 is currently idle */
113 #define ST_EPOF 0x80
114 /* Status transfer size, 16 bytes status, 16 byte result flags */
115 #define ST_SIZE 0x20
117 /* Result Register flags */
118 #define RR_DETECT 0xA5 /* New device detected */
119 #define RR_NRS 0x01 /* Reset no presence or ... */
120 #define RR_SH 0x02 /* short on reset or set path */
121 #define RR_APP 0x04 /* alarming presence on reset */
122 #define RR_VPP 0x08 /* 12V expected not seen */
123 #define RR_CMP 0x10 /* compare error */
124 #define RR_CRC 0x20 /* CRC error detected */
125 #define RR_RDP 0x40 /* redirected page */
126 #define RR_EOS 0x80 /* end of search error */
128 #define SPEED_NORMAL 0x00
129 #define SPEED_FLEXIBLE 0x01
130 #define SPEED_OVERDRIVE 0x02
132 #define NUM_EP 4
133 #define EP_CONTROL 0
134 #define EP_STATUS 1
135 #define EP_DATA_OUT 2
136 #define EP_DATA_IN 3
138 struct ds_device
140 struct list_head ds_entry;
142 struct usb_device *udev;
143 struct usb_interface *intf;
145 int ep[NUM_EP];
147 /* Strong PullUp
148 * 0: pullup not active, else duration in milliseconds
150 int spu_sleep;
151 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
152 * should be active or not for writes.
154 u16 spu_bit;
156 struct w1_bus_master master;
159 struct ds_status
161 u8 enable;
162 u8 speed;
163 u8 pullup_dur;
164 u8 ppuls_dur;
165 u8 pulldown_slew;
166 u8 write1_time;
167 u8 write0_time;
168 u8 reserved0;
169 u8 status;
170 u8 command0;
171 u8 command1;
172 u8 command_buffer_status;
173 u8 data_out_buffer_status;
174 u8 data_in_buffer_status;
175 u8 reserved1;
176 u8 reserved2;
180 static struct usb_device_id ds_id_table [] = {
181 { USB_DEVICE(0x04fa, 0x2490) },
182 { },
184 MODULE_DEVICE_TABLE(usb, ds_id_table);
186 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
187 static void ds_disconnect(struct usb_interface *);
189 static int ds_send_control(struct ds_device *, u16, u16);
190 static int ds_send_control_cmd(struct ds_device *, u16, u16);
192 static LIST_HEAD(ds_devices);
193 static DEFINE_MUTEX(ds_mutex);
195 static struct usb_driver ds_driver = {
196 .name = "DS9490R",
197 .probe = ds_probe,
198 .disconnect = ds_disconnect,
199 .id_table = ds_id_table,
202 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
204 int err;
206 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
207 CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
208 if (err < 0) {
209 printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
210 value, index, err);
211 return err;
214 return err;
217 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
219 int err;
221 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
222 MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
223 if (err < 0) {
224 printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
225 value, index, err);
226 return err;
229 return err;
232 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
234 int err;
236 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
237 COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
238 if (err < 0) {
239 printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
240 value, index, err);
241 return err;
244 return err;
247 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
248 unsigned char *buf, int size)
250 int count, err;
252 memset(st, 0, sizeof(*st));
254 count = 0;
255 err = usb_interrupt_msg(dev->udev, usb_rcvintpipe(dev->udev,
256 dev->ep[EP_STATUS]), buf, size, &count, 100);
257 if (err < 0) {
258 printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
259 return err;
262 if (count >= sizeof(*st))
263 memcpy(st, buf, sizeof(*st));
265 return count;
268 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
270 printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
273 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
275 int i;
277 printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
278 for (i=0; i<count; ++i)
279 printk("%02x ", buf[i]);
280 printk(KERN_INFO "\n");
282 if (count >= 16) {
283 ds_print_msg(buf, "enable flag", 0);
284 ds_print_msg(buf, "1-wire speed", 1);
285 ds_print_msg(buf, "strong pullup duration", 2);
286 ds_print_msg(buf, "programming pulse duration", 3);
287 ds_print_msg(buf, "pulldown slew rate control", 4);
288 ds_print_msg(buf, "write-1 low time", 5);
289 ds_print_msg(buf, "data sample offset/write-0 recovery time",
291 ds_print_msg(buf, "reserved (test register)", 7);
292 ds_print_msg(buf, "device status flags", 8);
293 ds_print_msg(buf, "communication command byte 1", 9);
294 ds_print_msg(buf, "communication command byte 2", 10);
295 ds_print_msg(buf, "communication command buffer status", 11);
296 ds_print_msg(buf, "1-wire data output buffer status", 12);
297 ds_print_msg(buf, "1-wire data input buffer status", 13);
298 ds_print_msg(buf, "reserved", 14);
299 ds_print_msg(buf, "reserved", 15);
301 for (i = 16; i < count; ++i) {
302 if (buf[i] == RR_DETECT) {
303 ds_print_msg(buf, "new device detect", i);
304 continue;
306 ds_print_msg(buf, "Result Register Value: ", i);
307 if (buf[i] & RR_NRS)
308 printk(KERN_INFO "NRS: Reset no presence or ...\n");
309 if (buf[i] & RR_SH)
310 printk(KERN_INFO "SH: short on reset or set path\n");
311 if (buf[i] & RR_APP)
312 printk(KERN_INFO "APP: alarming presence on reset\n");
313 if (buf[i] & RR_VPP)
314 printk(KERN_INFO "VPP: 12V expected not seen\n");
315 if (buf[i] & RR_CMP)
316 printk(KERN_INFO "CMP: compare error\n");
317 if (buf[i] & RR_CRC)
318 printk(KERN_INFO "CRC: CRC error detected\n");
319 if (buf[i] & RR_RDP)
320 printk(KERN_INFO "RDP: redirected page\n");
321 if (buf[i] & RR_EOS)
322 printk(KERN_INFO "EOS: end of search error\n");
326 static void ds_reset_device(struct ds_device *dev)
328 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
329 /* Always allow strong pullup which allow individual writes to use
330 * the strong pullup.
332 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
333 printk(KERN_ERR "ds_reset_device: "
334 "Error allowing strong pullup\n");
335 /* Chip strong pullup time was cleared. */
336 if (dev->spu_sleep) {
337 /* lower 4 bits are 0, see ds_set_pullup */
338 u8 del = dev->spu_sleep>>4;
339 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
340 printk(KERN_ERR "ds_reset_device: "
341 "Error setting duration\n");
345 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
347 int count, err;
348 struct ds_status st;
350 /* Careful on size. If size is less than what is available in
351 * the input buffer, the device fails the bulk transfer and
352 * clears the input buffer. It could read the maximum size of
353 * the data buffer, but then do you return the first, last, or
354 * some set of the middle size bytes? As long as the rest of
355 * the code is correct there will be size bytes waiting. A
356 * call to ds_wait_status will wait until the device is idle
357 * and any data to be received would have been available.
359 count = 0;
360 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
361 buf, size, &count, 1000);
362 if (err < 0) {
363 u8 buf[ST_SIZE];
364 int count;
366 printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
367 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
369 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
370 ds_dump_status(dev, buf, count);
371 return err;
374 #if 0
376 int i;
378 printk("%s: count=%d: ", __func__, count);
379 for (i=0; i<count; ++i)
380 printk("%02x ", buf[i]);
381 printk("\n");
383 #endif
384 return count;
387 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
389 int count, err;
391 count = 0;
392 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
393 if (err < 0) {
394 printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
395 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
396 return err;
399 return err;
402 #if 0
404 int ds_stop_pulse(struct ds_device *dev, int limit)
406 struct ds_status st;
407 int count = 0, err = 0;
408 u8 buf[ST_SIZE];
410 do {
411 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
412 if (err)
413 break;
414 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
415 if (err)
416 break;
417 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
418 if (err)
419 break;
421 if ((st.status & ST_SPUA) == 0) {
422 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
423 if (err)
424 break;
426 } while(++count < limit);
428 return err;
431 int ds_detect(struct ds_device *dev, struct ds_status *st)
433 int err;
435 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
436 if (err)
437 return err;
439 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
440 if (err)
441 return err;
443 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
444 if (err)
445 return err;
447 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
448 if (err)
449 return err;
451 err = ds_dump_status(dev, st);
453 return err;
456 #endif /* 0 */
458 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
460 u8 buf[ST_SIZE];
461 int err, count = 0;
463 do {
464 st->status = 0;
465 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
466 #if 0
467 if (err >= 0) {
468 int i;
469 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
470 for (i=0; i<err; ++i)
471 printk("%02x ", buf[i]);
472 printk("\n");
474 #endif
475 } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
477 if (err >= 16 && st->status & ST_EPOF) {
478 printk(KERN_INFO "Resetting device after ST_EPOF.\n");
479 ds_reset_device(dev);
480 /* Always dump the device status. */
481 count = 101;
484 /* Dump the status for errors or if there is extended return data.
485 * The extended status includes new device detection (maybe someone
486 * can do something with it).
488 if (err > 16 || count >= 100 || err < 0)
489 ds_dump_status(dev, buf, err);
491 /* Extended data isn't an error. Well, a short is, but the dump
492 * would have already told the user that and we can't do anything
493 * about it in software anyway.
495 if (count >= 100 || err < 0)
496 return -1;
497 else
498 return 0;
501 static int ds_reset(struct ds_device *dev)
503 int err;
505 /* Other potentionally interesting flags for reset.
507 * COMM_NTF: Return result register feedback. This could be used to
508 * detect some conditions such as short, alarming presence, or
509 * detect if a new device was detected.
511 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
512 * Select the data transfer rate.
514 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
515 if (err)
516 return err;
518 return 0;
521 #if 0
522 static int ds_set_speed(struct ds_device *dev, int speed)
524 int err;
526 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
527 return -EINVAL;
529 if (speed != SPEED_OVERDRIVE)
530 speed = SPEED_FLEXIBLE;
532 speed &= 0xff;
534 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
535 if (err)
536 return err;
538 return err;
540 #endif /* 0 */
542 static int ds_set_pullup(struct ds_device *dev, int delay)
544 int err = 0;
545 u8 del = 1 + (u8)(delay >> 4);
546 /* Just storing delay would not get the trunication and roundup. */
547 int ms = del<<4;
549 /* Enable spu_bit if a delay is set. */
550 dev->spu_bit = delay ? COMM_SPU : 0;
551 /* If delay is zero, it has already been disabled, if the time is
552 * the same as the hardware was last programmed to, there is also
553 * nothing more to do. Compare with the recalculated value ms
554 * rather than del or delay which can have a different value.
556 if (delay == 0 || ms == dev->spu_sleep)
557 return err;
559 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
560 if (err)
561 return err;
563 dev->spu_sleep = ms;
565 return err;
568 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
570 int err;
571 struct ds_status st;
573 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
575 if (err)
576 return err;
578 ds_wait_status(dev, &st);
580 err = ds_recv_data(dev, tbit, sizeof(*tbit));
581 if (err < 0)
582 return err;
584 return 0;
587 #if 0
588 static int ds_write_bit(struct ds_device *dev, u8 bit)
590 int err;
591 struct ds_status st;
593 /* Set COMM_ICP to write without a readback. Note, this will
594 * produce one time slot, a down followed by an up with COMM_D
595 * only determing the timing.
597 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
598 (bit ? COMM_D : 0), 0);
599 if (err)
600 return err;
602 ds_wait_status(dev, &st);
604 return 0;
606 #endif
608 static int ds_write_byte(struct ds_device *dev, u8 byte)
610 int err;
611 struct ds_status st;
612 u8 rbyte;
614 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
615 if (err)
616 return err;
618 if (dev->spu_bit)
619 msleep(dev->spu_sleep);
621 err = ds_wait_status(dev, &st);
622 if (err)
623 return err;
625 err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
626 if (err < 0)
627 return err;
629 return !(byte == rbyte);
632 static int ds_read_byte(struct ds_device *dev, u8 *byte)
634 int err;
635 struct ds_status st;
637 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
638 if (err)
639 return err;
641 ds_wait_status(dev, &st);
643 err = ds_recv_data(dev, byte, sizeof(*byte));
644 if (err < 0)
645 return err;
647 return 0;
650 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
652 struct ds_status st;
653 int err;
655 if (len > 64*1024)
656 return -E2BIG;
658 memset(buf, 0xFF, len);
660 err = ds_send_data(dev, buf, len);
661 if (err < 0)
662 return err;
664 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
665 if (err)
666 return err;
668 ds_wait_status(dev, &st);
670 memset(buf, 0x00, len);
671 err = ds_recv_data(dev, buf, len);
673 return err;
676 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
678 int err;
679 struct ds_status st;
681 err = ds_send_data(dev, buf, len);
682 if (err < 0)
683 return err;
685 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
686 if (err)
687 return err;
689 if (dev->spu_bit)
690 msleep(dev->spu_sleep);
692 ds_wait_status(dev, &st);
694 err = ds_recv_data(dev, buf, len);
695 if (err < 0)
696 return err;
698 return !(err == len);
701 static void ds9490r_search(void *data, struct w1_master *master,
702 u8 search_type, w1_slave_found_callback callback)
704 /* When starting with an existing id, the first id returned will
705 * be that device (if it is still on the bus most likely).
707 * If the number of devices found is less than or equal to the
708 * search_limit, that number of IDs will be returned. If there are
709 * more, search_limit IDs will be returned followed by a non-zero
710 * discrepency value.
712 struct ds_device *dev = data;
713 int err;
714 u16 value, index;
715 struct ds_status st;
716 u8 st_buf[ST_SIZE];
717 int search_limit;
718 int found = 0;
719 int i;
721 /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
722 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
724 const unsigned long jtime = msecs_to_jiffies(1000*8/75);
725 /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
726 * packet size.
728 u64 buf[2*64/8];
730 mutex_lock(&master->bus_mutex);
732 /* address to start searching at */
733 if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
734 goto search_out;
735 master->search_id = 0;
737 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
738 COMM_RTS;
739 search_limit = master->max_slave_count;
740 if (search_limit > 255)
741 search_limit = 0;
742 index = search_type | (search_limit << 8);
743 if (ds_send_control(dev, value, index) < 0)
744 goto search_out;
746 do {
747 schedule_timeout(jtime);
749 if (ds_recv_status_nodump(dev, &st, st_buf, sizeof(st_buf)) <
750 sizeof(st)) {
751 break;
754 if (st.data_in_buffer_status) {
755 /* Bulk in can receive partial ids, but when it does
756 * they fail crc and will be discarded anyway.
757 * That has only been seen when status in buffer
758 * is 0 and bulk is read anyway, so don't read
759 * bulk without first checking if status says there
760 * is data to read.
762 err = ds_recv_data(dev, (u8 *)buf, sizeof(buf));
763 if (err < 0)
764 break;
765 for (i = 0; i < err/8; ++i) {
766 ++found;
767 if (found <= search_limit)
768 callback(master, buf[i]);
769 /* can't know if there will be a discrepancy
770 * value after until the next id */
771 if (found == search_limit)
772 master->search_id = buf[i];
776 if (test_bit(W1_ABORT_SEARCH, &master->flags))
777 break;
778 } while (!(st.status & (ST_IDLE | ST_HALT)));
780 /* only continue the search if some weren't found */
781 if (found <= search_limit) {
782 master->search_id = 0;
783 } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
784 /* Only max_slave_count will be scanned in a search,
785 * but it will start where it left off next search
786 * until all ids are identified and then it will start
787 * over. A continued search will report the previous
788 * last id as the first id (provided it is still on the
789 * bus).
791 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
792 "will continue next search.\n", __func__,
793 master->max_slave_count);
794 set_bit(W1_WARN_MAX_COUNT, &master->flags);
796 search_out:
797 mutex_unlock(&master->bus_mutex);
800 #if 0
801 static int ds_match_access(struct ds_device *dev, u64 init)
803 int err;
804 struct ds_status st;
806 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
807 if (err)
808 return err;
810 ds_wait_status(dev, &st);
812 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
813 if (err)
814 return err;
816 ds_wait_status(dev, &st);
818 return 0;
821 static int ds_set_path(struct ds_device *dev, u64 init)
823 int err;
824 struct ds_status st;
825 u8 buf[9];
827 memcpy(buf, &init, 8);
828 buf[8] = BRANCH_MAIN;
830 err = ds_send_data(dev, buf, sizeof(buf));
831 if (err)
832 return err;
834 ds_wait_status(dev, &st);
836 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
837 if (err)
838 return err;
840 ds_wait_status(dev, &st);
842 return 0;
845 #endif /* 0 */
847 static u8 ds9490r_touch_bit(void *data, u8 bit)
849 u8 ret;
850 struct ds_device *dev = data;
852 if (ds_touch_bit(dev, bit, &ret))
853 return 0;
855 return ret;
858 #if 0
859 static void ds9490r_write_bit(void *data, u8 bit)
861 struct ds_device *dev = data;
863 ds_write_bit(dev, bit);
866 static u8 ds9490r_read_bit(void *data)
868 struct ds_device *dev = data;
869 int err;
870 u8 bit = 0;
872 err = ds_touch_bit(dev, 1, &bit);
873 if (err)
874 return 0;
876 return bit & 1;
878 #endif
880 static void ds9490r_write_byte(void *data, u8 byte)
882 struct ds_device *dev = data;
884 ds_write_byte(dev, byte);
887 static u8 ds9490r_read_byte(void *data)
889 struct ds_device *dev = data;
890 int err;
891 u8 byte = 0;
893 err = ds_read_byte(dev, &byte);
894 if (err)
895 return 0;
897 return byte;
900 static void ds9490r_write_block(void *data, const u8 *buf, int len)
902 struct ds_device *dev = data;
904 ds_write_block(dev, (u8 *)buf, len);
907 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
909 struct ds_device *dev = data;
910 int err;
912 err = ds_read_block(dev, buf, len);
913 if (err < 0)
914 return 0;
916 return len;
919 static u8 ds9490r_reset(void *data)
921 struct ds_device *dev = data;
922 int err;
924 err = ds_reset(dev);
925 if (err)
926 return 1;
928 return 0;
931 static u8 ds9490r_set_pullup(void *data, int delay)
933 struct ds_device *dev = data;
935 if (ds_set_pullup(dev, delay))
936 return 1;
938 return 0;
941 static int ds_w1_init(struct ds_device *dev)
943 memset(&dev->master, 0, sizeof(struct w1_bus_master));
945 /* Reset the device as it can be in a bad state.
946 * This is necessary because a block write will wait for data
947 * to be placed in the output buffer and block any later
948 * commands which will keep accumulating and the device will
949 * not be idle. Another case is removing the ds2490 module
950 * while a bus search is in progress, somehow a few commands
951 * get through, but the input transfers fail leaving data in
952 * the input buffer. This will cause the next read to fail
953 * see the note in ds_recv_data.
955 ds_reset_device(dev);
957 dev->master.data = dev;
958 dev->master.touch_bit = &ds9490r_touch_bit;
959 /* read_bit and write_bit in w1_bus_master are expected to set and
960 * sample the line level. For write_bit that means it is expected to
961 * set it to that value and leave it there. ds2490 only supports an
962 * individual time slot at the lowest level. The requirement from
963 * pulling the bus state down to reading the state is 15us, something
964 * that isn't realistic on the USB bus anyway.
965 dev->master.read_bit = &ds9490r_read_bit;
966 dev->master.write_bit = &ds9490r_write_bit;
968 dev->master.read_byte = &ds9490r_read_byte;
969 dev->master.write_byte = &ds9490r_write_byte;
970 dev->master.read_block = &ds9490r_read_block;
971 dev->master.write_block = &ds9490r_write_block;
972 dev->master.reset_bus = &ds9490r_reset;
973 dev->master.set_pullup = &ds9490r_set_pullup;
974 dev->master.search = &ds9490r_search;
976 return w1_add_master_device(&dev->master);
979 static void ds_w1_fini(struct ds_device *dev)
981 w1_remove_master_device(&dev->master);
984 static int ds_probe(struct usb_interface *intf,
985 const struct usb_device_id *udev_id)
987 struct usb_device *udev = interface_to_usbdev(intf);
988 struct usb_endpoint_descriptor *endpoint;
989 struct usb_host_interface *iface_desc;
990 struct ds_device *dev;
991 int i, err, alt;
993 dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
994 if (!dev) {
995 printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
996 return -ENOMEM;
998 dev->udev = usb_get_dev(udev);
999 if (!dev->udev) {
1000 err = -ENOMEM;
1001 goto err_out_free;
1003 memset(dev->ep, 0, sizeof(dev->ep));
1005 usb_set_intfdata(intf, dev);
1007 err = usb_reset_configuration(dev->udev);
1008 if (err) {
1009 dev_err(&dev->udev->dev,
1010 "Failed to reset configuration: err=%d.\n", err);
1011 goto err_out_clear;
1014 /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1015 alt = 3;
1016 err = usb_set_interface(dev->udev,
1017 intf->altsetting[alt].desc.bInterfaceNumber, alt);
1018 if (err) {
1019 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1020 "for %d interface: err=%d.\n", alt,
1021 intf->altsetting[alt].desc.bInterfaceNumber, err);
1022 goto err_out_clear;
1025 iface_desc = &intf->altsetting[alt];
1026 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1027 printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
1028 err = -EINVAL;
1029 goto err_out_clear;
1033 * This loop doesn'd show control 0 endpoint,
1034 * so we will fill only 1-3 endpoints entry.
1036 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1037 endpoint = &iface_desc->endpoint[i].desc;
1039 dev->ep[i+1] = endpoint->bEndpointAddress;
1040 #if 0
1041 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1042 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1043 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1044 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1045 #endif
1048 err = ds_w1_init(dev);
1049 if (err)
1050 goto err_out_clear;
1052 mutex_lock(&ds_mutex);
1053 list_add_tail(&dev->ds_entry, &ds_devices);
1054 mutex_unlock(&ds_mutex);
1056 return 0;
1058 err_out_clear:
1059 usb_set_intfdata(intf, NULL);
1060 usb_put_dev(dev->udev);
1061 err_out_free:
1062 kfree(dev);
1063 return err;
1066 static void ds_disconnect(struct usb_interface *intf)
1068 struct ds_device *dev;
1070 dev = usb_get_intfdata(intf);
1071 if (!dev)
1072 return;
1074 mutex_lock(&ds_mutex);
1075 list_del(&dev->ds_entry);
1076 mutex_unlock(&ds_mutex);
1078 ds_w1_fini(dev);
1080 usb_set_intfdata(intf, NULL);
1082 usb_put_dev(dev->udev);
1083 kfree(dev);
1086 module_usb_driver(ds_driver);
1088 MODULE_LICENSE("GPL");
1089 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1090 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");