net: phy: broadcom: move shadow 0x1C register accessors to brcmphy.h
[linux/fpc-iii.git] / kernel / exit.c
blob32c58f7433a3672c636687cf81c108eb0f20761e
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct *tsk);
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct *tsk)
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
110 * If there is any task waiting for the group exit
111 * then notify it:
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
119 * Accumulate here the counters for all threads but the
120 * group leader as they die, so they can be added into
121 * the process-wide totals when those are taken.
122 * The group leader stays around as a zombie as long
123 * as there are other threads. When it gets reaped,
124 * the exit.c code will add its counts into these totals.
125 * We won't ever get here for the group leader, since it
126 * will have been the last reference on the signal_struct.
128 task_cputime(tsk, &utime, &stime);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
142 sig->nr_threads--;
143 __unhash_process(tsk, group_dead);
146 * Do this under ->siglock, we can race with another thread
147 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
149 flush_sigqueue(&tsk->pending);
150 tsk->sighand = NULL;
151 spin_unlock(&sighand->siglock);
153 __cleanup_sighand(sighand);
154 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
155 if (group_dead) {
156 flush_sigqueue(&sig->shared_pending);
157 tty_kref_put(tty);
161 static void delayed_put_task_struct(struct rcu_head *rhp)
163 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
165 perf_event_delayed_put(tsk);
166 trace_sched_process_free(tsk);
167 put_task_struct(tsk);
171 void release_task(struct task_struct *p)
173 struct task_struct *leader;
174 int zap_leader;
175 repeat:
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 rcu_read_lock();
179 atomic_dec(&__task_cred(p)->user->processes);
180 rcu_read_unlock();
182 proc_flush_task(p);
184 write_lock_irq(&tasklist_lock);
185 ptrace_release_task(p);
186 __exit_signal(p);
189 * If we are the last non-leader member of the thread
190 * group, and the leader is zombie, then notify the
191 * group leader's parent process. (if it wants notification.)
193 zap_leader = 0;
194 leader = p->group_leader;
195 if (leader != p && thread_group_empty(leader)
196 && leader->exit_state == EXIT_ZOMBIE) {
198 * If we were the last child thread and the leader has
199 * exited already, and the leader's parent ignores SIGCHLD,
200 * then we are the one who should release the leader.
202 zap_leader = do_notify_parent(leader, leader->exit_signal);
203 if (zap_leader)
204 leader->exit_state = EXIT_DEAD;
207 write_unlock_irq(&tasklist_lock);
208 release_thread(p);
209 call_rcu(&p->rcu, delayed_put_task_struct);
211 p = leader;
212 if (unlikely(zap_leader))
213 goto repeat;
217 * This checks not only the pgrp, but falls back on the pid if no
218 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
219 * without this...
221 * The caller must hold rcu lock or the tasklist lock.
223 struct pid *session_of_pgrp(struct pid *pgrp)
225 struct task_struct *p;
226 struct pid *sid = NULL;
228 p = pid_task(pgrp, PIDTYPE_PGID);
229 if (p == NULL)
230 p = pid_task(pgrp, PIDTYPE_PID);
231 if (p != NULL)
232 sid = task_session(p);
234 return sid;
238 * Determine if a process group is "orphaned", according to the POSIX
239 * definition in 2.2.2.52. Orphaned process groups are not to be affected
240 * by terminal-generated stop signals. Newly orphaned process groups are
241 * to receive a SIGHUP and a SIGCONT.
243 * "I ask you, have you ever known what it is to be an orphan?"
245 static int will_become_orphaned_pgrp(struct pid *pgrp,
246 struct task_struct *ignored_task)
248 struct task_struct *p;
250 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
251 if ((p == ignored_task) ||
252 (p->exit_state && thread_group_empty(p)) ||
253 is_global_init(p->real_parent))
254 continue;
256 if (task_pgrp(p->real_parent) != pgrp &&
257 task_session(p->real_parent) == task_session(p))
258 return 0;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 return 1;
264 int is_current_pgrp_orphaned(void)
266 int retval;
268 read_lock(&tasklist_lock);
269 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
270 read_unlock(&tasklist_lock);
272 return retval;
275 static bool has_stopped_jobs(struct pid *pgrp)
277 struct task_struct *p;
279 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
280 if (p->signal->flags & SIGNAL_STOP_STOPPED)
281 return true;
282 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 return false;
288 * Check to see if any process groups have become orphaned as
289 * a result of our exiting, and if they have any stopped jobs,
290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
292 static void
293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
295 struct pid *pgrp = task_pgrp(tsk);
296 struct task_struct *ignored_task = tsk;
298 if (!parent)
299 /* exit: our father is in a different pgrp than
300 * we are and we were the only connection outside.
302 parent = tsk->real_parent;
303 else
304 /* reparent: our child is in a different pgrp than
305 * we are, and it was the only connection outside.
307 ignored_task = NULL;
309 if (task_pgrp(parent) != pgrp &&
310 task_session(parent) == task_session(tsk) &&
311 will_become_orphaned_pgrp(pgrp, ignored_task) &&
312 has_stopped_jobs(pgrp)) {
313 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
314 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
318 #ifdef CONFIG_MEMCG
320 * A task is exiting. If it owned this mm, find a new owner for the mm.
322 void mm_update_next_owner(struct mm_struct *mm)
324 struct task_struct *c, *g, *p = current;
326 retry:
328 * If the exiting or execing task is not the owner, it's
329 * someone else's problem.
331 if (mm->owner != p)
332 return;
334 * The current owner is exiting/execing and there are no other
335 * candidates. Do not leave the mm pointing to a possibly
336 * freed task structure.
338 if (atomic_read(&mm->mm_users) <= 1) {
339 mm->owner = NULL;
340 return;
343 read_lock(&tasklist_lock);
345 * Search in the children
347 list_for_each_entry(c, &p->children, sibling) {
348 if (c->mm == mm)
349 goto assign_new_owner;
353 * Search in the siblings
355 list_for_each_entry(c, &p->real_parent->children, sibling) {
356 if (c->mm == mm)
357 goto assign_new_owner;
361 * Search through everything else, we should not get here often.
363 for_each_process(g) {
364 if (g->flags & PF_KTHREAD)
365 continue;
366 for_each_thread(g, c) {
367 if (c->mm == mm)
368 goto assign_new_owner;
369 if (c->mm)
370 break;
373 read_unlock(&tasklist_lock);
375 * We found no owner yet mm_users > 1: this implies that we are
376 * most likely racing with swapoff (try_to_unuse()) or /proc or
377 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
379 mm->owner = NULL;
380 return;
382 assign_new_owner:
383 BUG_ON(c == p);
384 get_task_struct(c);
386 * The task_lock protects c->mm from changing.
387 * We always want mm->owner->mm == mm
389 task_lock(c);
391 * Delay read_unlock() till we have the task_lock()
392 * to ensure that c does not slip away underneath us
394 read_unlock(&tasklist_lock);
395 if (c->mm != mm) {
396 task_unlock(c);
397 put_task_struct(c);
398 goto retry;
400 mm->owner = c;
401 task_unlock(c);
402 put_task_struct(c);
404 #endif /* CONFIG_MEMCG */
407 * Turn us into a lazy TLB process if we
408 * aren't already..
410 static void exit_mm(struct task_struct *tsk)
412 struct mm_struct *mm = tsk->mm;
413 struct core_state *core_state;
415 mm_release(tsk, mm);
416 if (!mm)
417 return;
418 sync_mm_rss(mm);
420 * Serialize with any possible pending coredump.
421 * We must hold mmap_sem around checking core_state
422 * and clearing tsk->mm. The core-inducing thread
423 * will increment ->nr_threads for each thread in the
424 * group with ->mm != NULL.
426 down_read(&mm->mmap_sem);
427 core_state = mm->core_state;
428 if (core_state) {
429 struct core_thread self;
431 up_read(&mm->mmap_sem);
433 self.task = tsk;
434 self.next = xchg(&core_state->dumper.next, &self);
436 * Implies mb(), the result of xchg() must be visible
437 * to core_state->dumper.
439 if (atomic_dec_and_test(&core_state->nr_threads))
440 complete(&core_state->startup);
442 for (;;) {
443 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
444 if (!self.task) /* see coredump_finish() */
445 break;
446 freezable_schedule();
448 __set_task_state(tsk, TASK_RUNNING);
449 down_read(&mm->mmap_sem);
451 atomic_inc(&mm->mm_count);
452 BUG_ON(mm != tsk->active_mm);
453 /* more a memory barrier than a real lock */
454 task_lock(tsk);
455 tsk->mm = NULL;
456 up_read(&mm->mmap_sem);
457 enter_lazy_tlb(mm, current);
458 task_unlock(tsk);
459 mm_update_next_owner(mm);
460 mmput(mm);
461 clear_thread_flag(TIF_MEMDIE);
465 * When we die, we re-parent all our children, and try to:
466 * 1. give them to another thread in our thread group, if such a member exists
467 * 2. give it to the first ancestor process which prctl'd itself as a
468 * child_subreaper for its children (like a service manager)
469 * 3. give it to the init process (PID 1) in our pid namespace
471 static struct task_struct *find_new_reaper(struct task_struct *father)
472 __releases(&tasklist_lock)
473 __acquires(&tasklist_lock)
475 struct pid_namespace *pid_ns = task_active_pid_ns(father);
476 struct task_struct *thread;
478 thread = father;
479 while_each_thread(father, thread) {
480 if (thread->flags & PF_EXITING)
481 continue;
482 if (unlikely(pid_ns->child_reaper == father))
483 pid_ns->child_reaper = thread;
484 return thread;
487 if (unlikely(pid_ns->child_reaper == father)) {
488 write_unlock_irq(&tasklist_lock);
489 if (unlikely(pid_ns == &init_pid_ns)) {
490 panic("Attempted to kill init! exitcode=0x%08x\n",
491 father->signal->group_exit_code ?:
492 father->exit_code);
495 zap_pid_ns_processes(pid_ns);
496 write_lock_irq(&tasklist_lock);
497 } else if (father->signal->has_child_subreaper) {
498 struct task_struct *reaper;
501 * Find the first ancestor marked as child_subreaper.
502 * Note that the code below checks same_thread_group(reaper,
503 * pid_ns->child_reaper). This is what we need to DTRT in a
504 * PID namespace. However we still need the check above, see
505 * http://marc.info/?l=linux-kernel&m=131385460420380
507 for (reaper = father->real_parent;
508 reaper != &init_task;
509 reaper = reaper->real_parent) {
510 if (same_thread_group(reaper, pid_ns->child_reaper))
511 break;
512 if (!reaper->signal->is_child_subreaper)
513 continue;
514 thread = reaper;
515 do {
516 if (!(thread->flags & PF_EXITING))
517 return reaper;
518 } while_each_thread(reaper, thread);
522 return pid_ns->child_reaper;
526 * Any that need to be release_task'd are put on the @dead list.
528 static void reparent_leader(struct task_struct *father, struct task_struct *p,
529 struct list_head *dead)
531 list_move_tail(&p->sibling, &p->real_parent->children);
533 if (p->exit_state == EXIT_DEAD)
534 return;
536 * If this is a threaded reparent there is no need to
537 * notify anyone anything has happened.
539 if (same_thread_group(p->real_parent, father))
540 return;
542 /* We don't want people slaying init. */
543 p->exit_signal = SIGCHLD;
545 /* If it has exited notify the new parent about this child's death. */
546 if (!p->ptrace &&
547 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
548 if (do_notify_parent(p, p->exit_signal)) {
549 p->exit_state = EXIT_DEAD;
550 list_move_tail(&p->sibling, dead);
554 kill_orphaned_pgrp(p, father);
557 static void forget_original_parent(struct task_struct *father)
559 struct task_struct *p, *n, *reaper;
560 LIST_HEAD(dead_children);
562 write_lock_irq(&tasklist_lock);
564 * Note that exit_ptrace() and find_new_reaper() might
565 * drop tasklist_lock and reacquire it.
567 exit_ptrace(father);
568 reaper = find_new_reaper(father);
570 list_for_each_entry_safe(p, n, &father->children, sibling) {
571 struct task_struct *t = p;
573 do {
574 t->real_parent = reaper;
575 if (t->parent == father) {
576 BUG_ON(t->ptrace);
577 t->parent = t->real_parent;
579 if (t->pdeath_signal)
580 group_send_sig_info(t->pdeath_signal,
581 SEND_SIG_NOINFO, t);
582 } while_each_thread(p, t);
583 reparent_leader(father, p, &dead_children);
585 write_unlock_irq(&tasklist_lock);
587 BUG_ON(!list_empty(&father->children));
589 list_for_each_entry_safe(p, n, &dead_children, sibling) {
590 list_del_init(&p->sibling);
591 release_task(p);
596 * Send signals to all our closest relatives so that they know
597 * to properly mourn us..
599 static void exit_notify(struct task_struct *tsk, int group_dead)
601 bool autoreap;
604 * This does two things:
606 * A. Make init inherit all the child processes
607 * B. Check to see if any process groups have become orphaned
608 * as a result of our exiting, and if they have any stopped
609 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
611 forget_original_parent(tsk);
613 write_lock_irq(&tasklist_lock);
614 if (group_dead)
615 kill_orphaned_pgrp(tsk->group_leader, NULL);
617 if (unlikely(tsk->ptrace)) {
618 int sig = thread_group_leader(tsk) &&
619 thread_group_empty(tsk) &&
620 !ptrace_reparented(tsk) ?
621 tsk->exit_signal : SIGCHLD;
622 autoreap = do_notify_parent(tsk, sig);
623 } else if (thread_group_leader(tsk)) {
624 autoreap = thread_group_empty(tsk) &&
625 do_notify_parent(tsk, tsk->exit_signal);
626 } else {
627 autoreap = true;
630 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
632 /* mt-exec, de_thread() is waiting for group leader */
633 if (unlikely(tsk->signal->notify_count < 0))
634 wake_up_process(tsk->signal->group_exit_task);
635 write_unlock_irq(&tasklist_lock);
637 /* If the process is dead, release it - nobody will wait for it */
638 if (autoreap)
639 release_task(tsk);
642 #ifdef CONFIG_DEBUG_STACK_USAGE
643 static void check_stack_usage(void)
645 static DEFINE_SPINLOCK(low_water_lock);
646 static int lowest_to_date = THREAD_SIZE;
647 unsigned long free;
649 free = stack_not_used(current);
651 if (free >= lowest_to_date)
652 return;
654 spin_lock(&low_water_lock);
655 if (free < lowest_to_date) {
656 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
657 current->comm, task_pid_nr(current), free);
658 lowest_to_date = free;
660 spin_unlock(&low_water_lock);
662 #else
663 static inline void check_stack_usage(void) {}
664 #endif
666 void do_exit(long code)
668 struct task_struct *tsk = current;
669 int group_dead;
671 profile_task_exit(tsk);
673 WARN_ON(blk_needs_flush_plug(tsk));
675 if (unlikely(in_interrupt()))
676 panic("Aiee, killing interrupt handler!");
677 if (unlikely(!tsk->pid))
678 panic("Attempted to kill the idle task!");
681 * If do_exit is called because this processes oopsed, it's possible
682 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
683 * continuing. Amongst other possible reasons, this is to prevent
684 * mm_release()->clear_child_tid() from writing to a user-controlled
685 * kernel address.
687 set_fs(USER_DS);
689 ptrace_event(PTRACE_EVENT_EXIT, code);
691 validate_creds_for_do_exit(tsk);
694 * We're taking recursive faults here in do_exit. Safest is to just
695 * leave this task alone and wait for reboot.
697 if (unlikely(tsk->flags & PF_EXITING)) {
698 pr_alert("Fixing recursive fault but reboot is needed!\n");
700 * We can do this unlocked here. The futex code uses
701 * this flag just to verify whether the pi state
702 * cleanup has been done or not. In the worst case it
703 * loops once more. We pretend that the cleanup was
704 * done as there is no way to return. Either the
705 * OWNER_DIED bit is set by now or we push the blocked
706 * task into the wait for ever nirwana as well.
708 tsk->flags |= PF_EXITPIDONE;
709 set_current_state(TASK_UNINTERRUPTIBLE);
710 schedule();
713 exit_signals(tsk); /* sets PF_EXITING */
715 * tsk->flags are checked in the futex code to protect against
716 * an exiting task cleaning up the robust pi futexes.
718 smp_mb();
719 raw_spin_unlock_wait(&tsk->pi_lock);
721 if (unlikely(in_atomic()))
722 pr_info("note: %s[%d] exited with preempt_count %d\n",
723 current->comm, task_pid_nr(current),
724 preempt_count());
726 acct_update_integrals(tsk);
727 /* sync mm's RSS info before statistics gathering */
728 if (tsk->mm)
729 sync_mm_rss(tsk->mm);
730 group_dead = atomic_dec_and_test(&tsk->signal->live);
731 if (group_dead) {
732 hrtimer_cancel(&tsk->signal->real_timer);
733 exit_itimers(tsk->signal);
734 if (tsk->mm)
735 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
737 acct_collect(code, group_dead);
738 if (group_dead)
739 tty_audit_exit();
740 audit_free(tsk);
742 tsk->exit_code = code;
743 taskstats_exit(tsk, group_dead);
745 exit_mm(tsk);
747 if (group_dead)
748 acct_process();
749 trace_sched_process_exit(tsk);
751 exit_sem(tsk);
752 exit_shm(tsk);
753 exit_files(tsk);
754 exit_fs(tsk);
755 if (group_dead)
756 disassociate_ctty(1);
757 exit_task_namespaces(tsk);
758 exit_task_work(tsk);
759 exit_thread();
762 * Flush inherited counters to the parent - before the parent
763 * gets woken up by child-exit notifications.
765 * because of cgroup mode, must be called before cgroup_exit()
767 perf_event_exit_task(tsk);
769 cgroup_exit(tsk);
771 module_put(task_thread_info(tsk)->exec_domain->module);
774 * FIXME: do that only when needed, using sched_exit tracepoint
776 flush_ptrace_hw_breakpoint(tsk);
778 exit_notify(tsk, group_dead);
779 proc_exit_connector(tsk);
780 #ifdef CONFIG_NUMA
781 task_lock(tsk);
782 mpol_put(tsk->mempolicy);
783 tsk->mempolicy = NULL;
784 task_unlock(tsk);
785 #endif
786 #ifdef CONFIG_FUTEX
787 if (unlikely(current->pi_state_cache))
788 kfree(current->pi_state_cache);
789 #endif
791 * Make sure we are holding no locks:
793 debug_check_no_locks_held();
795 * We can do this unlocked here. The futex code uses this flag
796 * just to verify whether the pi state cleanup has been done
797 * or not. In the worst case it loops once more.
799 tsk->flags |= PF_EXITPIDONE;
801 if (tsk->io_context)
802 exit_io_context(tsk);
804 if (tsk->splice_pipe)
805 free_pipe_info(tsk->splice_pipe);
807 if (tsk->task_frag.page)
808 put_page(tsk->task_frag.page);
810 validate_creds_for_do_exit(tsk);
812 check_stack_usage();
813 preempt_disable();
814 if (tsk->nr_dirtied)
815 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
816 exit_rcu();
819 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
820 * when the following two conditions become true.
821 * - There is race condition of mmap_sem (It is acquired by
822 * exit_mm()), and
823 * - SMI occurs before setting TASK_RUNINNG.
824 * (or hypervisor of virtual machine switches to other guest)
825 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
827 * To avoid it, we have to wait for releasing tsk->pi_lock which
828 * is held by try_to_wake_up()
830 smp_mb();
831 raw_spin_unlock_wait(&tsk->pi_lock);
833 /* causes final put_task_struct in finish_task_switch(). */
834 tsk->state = TASK_DEAD;
835 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
836 schedule();
837 BUG();
838 /* Avoid "noreturn function does return". */
839 for (;;)
840 cpu_relax(); /* For when BUG is null */
842 EXPORT_SYMBOL_GPL(do_exit);
844 void complete_and_exit(struct completion *comp, long code)
846 if (comp)
847 complete(comp);
849 do_exit(code);
851 EXPORT_SYMBOL(complete_and_exit);
853 SYSCALL_DEFINE1(exit, int, error_code)
855 do_exit((error_code&0xff)<<8);
859 * Take down every thread in the group. This is called by fatal signals
860 * as well as by sys_exit_group (below).
862 void
863 do_group_exit(int exit_code)
865 struct signal_struct *sig = current->signal;
867 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
869 if (signal_group_exit(sig))
870 exit_code = sig->group_exit_code;
871 else if (!thread_group_empty(current)) {
872 struct sighand_struct *const sighand = current->sighand;
874 spin_lock_irq(&sighand->siglock);
875 if (signal_group_exit(sig))
876 /* Another thread got here before we took the lock. */
877 exit_code = sig->group_exit_code;
878 else {
879 sig->group_exit_code = exit_code;
880 sig->flags = SIGNAL_GROUP_EXIT;
881 zap_other_threads(current);
883 spin_unlock_irq(&sighand->siglock);
886 do_exit(exit_code);
887 /* NOTREACHED */
891 * this kills every thread in the thread group. Note that any externally
892 * wait4()-ing process will get the correct exit code - even if this
893 * thread is not the thread group leader.
895 SYSCALL_DEFINE1(exit_group, int, error_code)
897 do_group_exit((error_code & 0xff) << 8);
898 /* NOTREACHED */
899 return 0;
902 struct wait_opts {
903 enum pid_type wo_type;
904 int wo_flags;
905 struct pid *wo_pid;
907 struct siginfo __user *wo_info;
908 int __user *wo_stat;
909 struct rusage __user *wo_rusage;
911 wait_queue_t child_wait;
912 int notask_error;
915 static inline
916 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
918 if (type != PIDTYPE_PID)
919 task = task->group_leader;
920 return task->pids[type].pid;
923 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
925 return wo->wo_type == PIDTYPE_MAX ||
926 task_pid_type(p, wo->wo_type) == wo->wo_pid;
929 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
931 if (!eligible_pid(wo, p))
932 return 0;
933 /* Wait for all children (clone and not) if __WALL is set;
934 * otherwise, wait for clone children *only* if __WCLONE is
935 * set; otherwise, wait for non-clone children *only*. (Note:
936 * A "clone" child here is one that reports to its parent
937 * using a signal other than SIGCHLD.) */
938 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
939 && !(wo->wo_flags & __WALL))
940 return 0;
942 return 1;
945 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
946 pid_t pid, uid_t uid, int why, int status)
948 struct siginfo __user *infop;
949 int retval = wo->wo_rusage
950 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
952 put_task_struct(p);
953 infop = wo->wo_info;
954 if (infop) {
955 if (!retval)
956 retval = put_user(SIGCHLD, &infop->si_signo);
957 if (!retval)
958 retval = put_user(0, &infop->si_errno);
959 if (!retval)
960 retval = put_user((short)why, &infop->si_code);
961 if (!retval)
962 retval = put_user(pid, &infop->si_pid);
963 if (!retval)
964 retval = put_user(uid, &infop->si_uid);
965 if (!retval)
966 retval = put_user(status, &infop->si_status);
968 if (!retval)
969 retval = pid;
970 return retval;
974 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
975 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
976 * the lock and this task is uninteresting. If we return nonzero, we have
977 * released the lock and the system call should return.
979 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
981 unsigned long state;
982 int retval, status, traced;
983 pid_t pid = task_pid_vnr(p);
984 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
985 struct siginfo __user *infop;
987 if (!likely(wo->wo_flags & WEXITED))
988 return 0;
990 if (unlikely(wo->wo_flags & WNOWAIT)) {
991 int exit_code = p->exit_code;
992 int why;
994 get_task_struct(p);
995 read_unlock(&tasklist_lock);
996 if ((exit_code & 0x7f) == 0) {
997 why = CLD_EXITED;
998 status = exit_code >> 8;
999 } else {
1000 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1001 status = exit_code & 0x7f;
1003 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1006 traced = ptrace_reparented(p);
1008 * Move the task's state to DEAD/TRACE, only one thread can do this.
1010 state = traced && thread_group_leader(p) ? EXIT_TRACE : EXIT_DEAD;
1011 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1012 return 0;
1014 * It can be ptraced but not reparented, check
1015 * thread_group_leader() to filter out sub-threads.
1017 if (likely(!traced) && thread_group_leader(p)) {
1018 struct signal_struct *psig;
1019 struct signal_struct *sig;
1020 unsigned long maxrss;
1021 cputime_t tgutime, tgstime;
1024 * The resource counters for the group leader are in its
1025 * own task_struct. Those for dead threads in the group
1026 * are in its signal_struct, as are those for the child
1027 * processes it has previously reaped. All these
1028 * accumulate in the parent's signal_struct c* fields.
1030 * We don't bother to take a lock here to protect these
1031 * p->signal fields, because they are only touched by
1032 * __exit_signal, which runs with tasklist_lock
1033 * write-locked anyway, and so is excluded here. We do
1034 * need to protect the access to parent->signal fields,
1035 * as other threads in the parent group can be right
1036 * here reaping other children at the same time.
1038 * We use thread_group_cputime_adjusted() to get times for
1039 * the thread group, which consolidates times for all threads
1040 * in the group including the group leader.
1042 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1043 spin_lock_irq(&p->real_parent->sighand->siglock);
1044 psig = p->real_parent->signal;
1045 sig = p->signal;
1046 psig->cutime += tgutime + sig->cutime;
1047 psig->cstime += tgstime + sig->cstime;
1048 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1049 psig->cmin_flt +=
1050 p->min_flt + sig->min_flt + sig->cmin_flt;
1051 psig->cmaj_flt +=
1052 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1053 psig->cnvcsw +=
1054 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1055 psig->cnivcsw +=
1056 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1057 psig->cinblock +=
1058 task_io_get_inblock(p) +
1059 sig->inblock + sig->cinblock;
1060 psig->coublock +=
1061 task_io_get_oublock(p) +
1062 sig->oublock + sig->coublock;
1063 maxrss = max(sig->maxrss, sig->cmaxrss);
1064 if (psig->cmaxrss < maxrss)
1065 psig->cmaxrss = maxrss;
1066 task_io_accounting_add(&psig->ioac, &p->ioac);
1067 task_io_accounting_add(&psig->ioac, &sig->ioac);
1068 spin_unlock_irq(&p->real_parent->sighand->siglock);
1072 * Now we are sure this task is interesting, and no other
1073 * thread can reap it because we its state == DEAD/TRACE.
1075 read_unlock(&tasklist_lock);
1077 retval = wo->wo_rusage
1078 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1079 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1080 ? p->signal->group_exit_code : p->exit_code;
1081 if (!retval && wo->wo_stat)
1082 retval = put_user(status, wo->wo_stat);
1084 infop = wo->wo_info;
1085 if (!retval && infop)
1086 retval = put_user(SIGCHLD, &infop->si_signo);
1087 if (!retval && infop)
1088 retval = put_user(0, &infop->si_errno);
1089 if (!retval && infop) {
1090 int why;
1092 if ((status & 0x7f) == 0) {
1093 why = CLD_EXITED;
1094 status >>= 8;
1095 } else {
1096 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1097 status &= 0x7f;
1099 retval = put_user((short)why, &infop->si_code);
1100 if (!retval)
1101 retval = put_user(status, &infop->si_status);
1103 if (!retval && infop)
1104 retval = put_user(pid, &infop->si_pid);
1105 if (!retval && infop)
1106 retval = put_user(uid, &infop->si_uid);
1107 if (!retval)
1108 retval = pid;
1110 if (state == EXIT_TRACE) {
1111 write_lock_irq(&tasklist_lock);
1112 /* We dropped tasklist, ptracer could die and untrace */
1113 ptrace_unlink(p);
1115 /* If parent wants a zombie, don't release it now */
1116 state = EXIT_ZOMBIE;
1117 if (do_notify_parent(p, p->exit_signal))
1118 state = EXIT_DEAD;
1119 p->exit_state = state;
1120 write_unlock_irq(&tasklist_lock);
1122 if (state == EXIT_DEAD)
1123 release_task(p);
1125 return retval;
1128 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1130 if (ptrace) {
1131 if (task_is_stopped_or_traced(p) &&
1132 !(p->jobctl & JOBCTL_LISTENING))
1133 return &p->exit_code;
1134 } else {
1135 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1136 return &p->signal->group_exit_code;
1138 return NULL;
1142 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1143 * @wo: wait options
1144 * @ptrace: is the wait for ptrace
1145 * @p: task to wait for
1147 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1149 * CONTEXT:
1150 * read_lock(&tasklist_lock), which is released if return value is
1151 * non-zero. Also, grabs and releases @p->sighand->siglock.
1153 * RETURNS:
1154 * 0 if wait condition didn't exist and search for other wait conditions
1155 * should continue. Non-zero return, -errno on failure and @p's pid on
1156 * success, implies that tasklist_lock is released and wait condition
1157 * search should terminate.
1159 static int wait_task_stopped(struct wait_opts *wo,
1160 int ptrace, struct task_struct *p)
1162 struct siginfo __user *infop;
1163 int retval, exit_code, *p_code, why;
1164 uid_t uid = 0; /* unneeded, required by compiler */
1165 pid_t pid;
1168 * Traditionally we see ptrace'd stopped tasks regardless of options.
1170 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1171 return 0;
1173 if (!task_stopped_code(p, ptrace))
1174 return 0;
1176 exit_code = 0;
1177 spin_lock_irq(&p->sighand->siglock);
1179 p_code = task_stopped_code(p, ptrace);
1180 if (unlikely(!p_code))
1181 goto unlock_sig;
1183 exit_code = *p_code;
1184 if (!exit_code)
1185 goto unlock_sig;
1187 if (!unlikely(wo->wo_flags & WNOWAIT))
1188 *p_code = 0;
1190 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1191 unlock_sig:
1192 spin_unlock_irq(&p->sighand->siglock);
1193 if (!exit_code)
1194 return 0;
1197 * Now we are pretty sure this task is interesting.
1198 * Make sure it doesn't get reaped out from under us while we
1199 * give up the lock and then examine it below. We don't want to
1200 * keep holding onto the tasklist_lock while we call getrusage and
1201 * possibly take page faults for user memory.
1203 get_task_struct(p);
1204 pid = task_pid_vnr(p);
1205 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1206 read_unlock(&tasklist_lock);
1208 if (unlikely(wo->wo_flags & WNOWAIT))
1209 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1211 retval = wo->wo_rusage
1212 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1213 if (!retval && wo->wo_stat)
1214 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1216 infop = wo->wo_info;
1217 if (!retval && infop)
1218 retval = put_user(SIGCHLD, &infop->si_signo);
1219 if (!retval && infop)
1220 retval = put_user(0, &infop->si_errno);
1221 if (!retval && infop)
1222 retval = put_user((short)why, &infop->si_code);
1223 if (!retval && infop)
1224 retval = put_user(exit_code, &infop->si_status);
1225 if (!retval && infop)
1226 retval = put_user(pid, &infop->si_pid);
1227 if (!retval && infop)
1228 retval = put_user(uid, &infop->si_uid);
1229 if (!retval)
1230 retval = pid;
1231 put_task_struct(p);
1233 BUG_ON(!retval);
1234 return retval;
1238 * Handle do_wait work for one task in a live, non-stopped state.
1239 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1240 * the lock and this task is uninteresting. If we return nonzero, we have
1241 * released the lock and the system call should return.
1243 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1245 int retval;
1246 pid_t pid;
1247 uid_t uid;
1249 if (!unlikely(wo->wo_flags & WCONTINUED))
1250 return 0;
1252 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1253 return 0;
1255 spin_lock_irq(&p->sighand->siglock);
1256 /* Re-check with the lock held. */
1257 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1258 spin_unlock_irq(&p->sighand->siglock);
1259 return 0;
1261 if (!unlikely(wo->wo_flags & WNOWAIT))
1262 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1263 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1264 spin_unlock_irq(&p->sighand->siglock);
1266 pid = task_pid_vnr(p);
1267 get_task_struct(p);
1268 read_unlock(&tasklist_lock);
1270 if (!wo->wo_info) {
1271 retval = wo->wo_rusage
1272 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1273 put_task_struct(p);
1274 if (!retval && wo->wo_stat)
1275 retval = put_user(0xffff, wo->wo_stat);
1276 if (!retval)
1277 retval = pid;
1278 } else {
1279 retval = wait_noreap_copyout(wo, p, pid, uid,
1280 CLD_CONTINUED, SIGCONT);
1281 BUG_ON(retval == 0);
1284 return retval;
1288 * Consider @p for a wait by @parent.
1290 * -ECHILD should be in ->notask_error before the first call.
1291 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1292 * Returns zero if the search for a child should continue;
1293 * then ->notask_error is 0 if @p is an eligible child,
1294 * or another error from security_task_wait(), or still -ECHILD.
1296 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1297 struct task_struct *p)
1299 int ret;
1301 if (unlikely(p->exit_state == EXIT_DEAD))
1302 return 0;
1304 ret = eligible_child(wo, p);
1305 if (!ret)
1306 return ret;
1308 ret = security_task_wait(p);
1309 if (unlikely(ret < 0)) {
1311 * If we have not yet seen any eligible child,
1312 * then let this error code replace -ECHILD.
1313 * A permission error will give the user a clue
1314 * to look for security policy problems, rather
1315 * than for mysterious wait bugs.
1317 if (wo->notask_error)
1318 wo->notask_error = ret;
1319 return 0;
1322 if (unlikely(p->exit_state == EXIT_TRACE)) {
1324 * ptrace == 0 means we are the natural parent. In this case
1325 * we should clear notask_error, debugger will notify us.
1327 if (likely(!ptrace))
1328 wo->notask_error = 0;
1329 return 0;
1332 if (likely(!ptrace) && unlikely(p->ptrace)) {
1334 * If it is traced by its real parent's group, just pretend
1335 * the caller is ptrace_do_wait() and reap this child if it
1336 * is zombie.
1338 * This also hides group stop state from real parent; otherwise
1339 * a single stop can be reported twice as group and ptrace stop.
1340 * If a ptracer wants to distinguish these two events for its
1341 * own children it should create a separate process which takes
1342 * the role of real parent.
1344 if (!ptrace_reparented(p))
1345 ptrace = 1;
1348 /* slay zombie? */
1349 if (p->exit_state == EXIT_ZOMBIE) {
1350 /* we don't reap group leaders with subthreads */
1351 if (!delay_group_leader(p)) {
1353 * A zombie ptracee is only visible to its ptracer.
1354 * Notification and reaping will be cascaded to the
1355 * real parent when the ptracer detaches.
1357 if (unlikely(ptrace) || likely(!p->ptrace))
1358 return wait_task_zombie(wo, p);
1362 * Allow access to stopped/continued state via zombie by
1363 * falling through. Clearing of notask_error is complex.
1365 * When !@ptrace:
1367 * If WEXITED is set, notask_error should naturally be
1368 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1369 * so, if there are live subthreads, there are events to
1370 * wait for. If all subthreads are dead, it's still safe
1371 * to clear - this function will be called again in finite
1372 * amount time once all the subthreads are released and
1373 * will then return without clearing.
1375 * When @ptrace:
1377 * Stopped state is per-task and thus can't change once the
1378 * target task dies. Only continued and exited can happen.
1379 * Clear notask_error if WCONTINUED | WEXITED.
1381 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1382 wo->notask_error = 0;
1383 } else {
1385 * @p is alive and it's gonna stop, continue or exit, so
1386 * there always is something to wait for.
1388 wo->notask_error = 0;
1392 * Wait for stopped. Depending on @ptrace, different stopped state
1393 * is used and the two don't interact with each other.
1395 ret = wait_task_stopped(wo, ptrace, p);
1396 if (ret)
1397 return ret;
1400 * Wait for continued. There's only one continued state and the
1401 * ptracer can consume it which can confuse the real parent. Don't
1402 * use WCONTINUED from ptracer. You don't need or want it.
1404 return wait_task_continued(wo, p);
1408 * Do the work of do_wait() for one thread in the group, @tsk.
1410 * -ECHILD should be in ->notask_error before the first call.
1411 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1412 * Returns zero if the search for a child should continue; then
1413 * ->notask_error is 0 if there were any eligible children,
1414 * or another error from security_task_wait(), or still -ECHILD.
1416 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1418 struct task_struct *p;
1420 list_for_each_entry(p, &tsk->children, sibling) {
1421 int ret = wait_consider_task(wo, 0, p);
1423 if (ret)
1424 return ret;
1427 return 0;
1430 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1432 struct task_struct *p;
1434 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1435 int ret = wait_consider_task(wo, 1, p);
1437 if (ret)
1438 return ret;
1441 return 0;
1444 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1445 int sync, void *key)
1447 struct wait_opts *wo = container_of(wait, struct wait_opts,
1448 child_wait);
1449 struct task_struct *p = key;
1451 if (!eligible_pid(wo, p))
1452 return 0;
1454 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1455 return 0;
1457 return default_wake_function(wait, mode, sync, key);
1460 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1462 __wake_up_sync_key(&parent->signal->wait_chldexit,
1463 TASK_INTERRUPTIBLE, 1, p);
1466 static long do_wait(struct wait_opts *wo)
1468 struct task_struct *tsk;
1469 int retval;
1471 trace_sched_process_wait(wo->wo_pid);
1473 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1474 wo->child_wait.private = current;
1475 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1476 repeat:
1478 * If there is nothing that can match our critiera just get out.
1479 * We will clear ->notask_error to zero if we see any child that
1480 * might later match our criteria, even if we are not able to reap
1481 * it yet.
1483 wo->notask_error = -ECHILD;
1484 if ((wo->wo_type < PIDTYPE_MAX) &&
1485 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1486 goto notask;
1488 set_current_state(TASK_INTERRUPTIBLE);
1489 read_lock(&tasklist_lock);
1490 tsk = current;
1491 do {
1492 retval = do_wait_thread(wo, tsk);
1493 if (retval)
1494 goto end;
1496 retval = ptrace_do_wait(wo, tsk);
1497 if (retval)
1498 goto end;
1500 if (wo->wo_flags & __WNOTHREAD)
1501 break;
1502 } while_each_thread(current, tsk);
1503 read_unlock(&tasklist_lock);
1505 notask:
1506 retval = wo->notask_error;
1507 if (!retval && !(wo->wo_flags & WNOHANG)) {
1508 retval = -ERESTARTSYS;
1509 if (!signal_pending(current)) {
1510 schedule();
1511 goto repeat;
1514 end:
1515 __set_current_state(TASK_RUNNING);
1516 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1517 return retval;
1520 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1521 infop, int, options, struct rusage __user *, ru)
1523 struct wait_opts wo;
1524 struct pid *pid = NULL;
1525 enum pid_type type;
1526 long ret;
1528 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1529 return -EINVAL;
1530 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1531 return -EINVAL;
1533 switch (which) {
1534 case P_ALL:
1535 type = PIDTYPE_MAX;
1536 break;
1537 case P_PID:
1538 type = PIDTYPE_PID;
1539 if (upid <= 0)
1540 return -EINVAL;
1541 break;
1542 case P_PGID:
1543 type = PIDTYPE_PGID;
1544 if (upid <= 0)
1545 return -EINVAL;
1546 break;
1547 default:
1548 return -EINVAL;
1551 if (type < PIDTYPE_MAX)
1552 pid = find_get_pid(upid);
1554 wo.wo_type = type;
1555 wo.wo_pid = pid;
1556 wo.wo_flags = options;
1557 wo.wo_info = infop;
1558 wo.wo_stat = NULL;
1559 wo.wo_rusage = ru;
1560 ret = do_wait(&wo);
1562 if (ret > 0) {
1563 ret = 0;
1564 } else if (infop) {
1566 * For a WNOHANG return, clear out all the fields
1567 * we would set so the user can easily tell the
1568 * difference.
1570 if (!ret)
1571 ret = put_user(0, &infop->si_signo);
1572 if (!ret)
1573 ret = put_user(0, &infop->si_errno);
1574 if (!ret)
1575 ret = put_user(0, &infop->si_code);
1576 if (!ret)
1577 ret = put_user(0, &infop->si_pid);
1578 if (!ret)
1579 ret = put_user(0, &infop->si_uid);
1580 if (!ret)
1581 ret = put_user(0, &infop->si_status);
1584 put_pid(pid);
1585 return ret;
1588 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1589 int, options, struct rusage __user *, ru)
1591 struct wait_opts wo;
1592 struct pid *pid = NULL;
1593 enum pid_type type;
1594 long ret;
1596 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1597 __WNOTHREAD|__WCLONE|__WALL))
1598 return -EINVAL;
1600 if (upid == -1)
1601 type = PIDTYPE_MAX;
1602 else if (upid < 0) {
1603 type = PIDTYPE_PGID;
1604 pid = find_get_pid(-upid);
1605 } else if (upid == 0) {
1606 type = PIDTYPE_PGID;
1607 pid = get_task_pid(current, PIDTYPE_PGID);
1608 } else /* upid > 0 */ {
1609 type = PIDTYPE_PID;
1610 pid = find_get_pid(upid);
1613 wo.wo_type = type;
1614 wo.wo_pid = pid;
1615 wo.wo_flags = options | WEXITED;
1616 wo.wo_info = NULL;
1617 wo.wo_stat = stat_addr;
1618 wo.wo_rusage = ru;
1619 ret = do_wait(&wo);
1620 put_pid(pid);
1622 return ret;
1625 #ifdef __ARCH_WANT_SYS_WAITPID
1628 * sys_waitpid() remains for compatibility. waitpid() should be
1629 * implemented by calling sys_wait4() from libc.a.
1631 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1633 return sys_wait4(pid, stat_addr, options, NULL);
1636 #endif