1 // SPDX-License-Identifier: GPL-2.0
3 * Functions related to segment and merge handling
5 #include <linux/kernel.h>
6 #include <linux/module.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
11 #include <trace/events/block.h>
15 static inline bool bio_will_gap(struct request_queue
*q
,
16 struct request
*prev_rq
, struct bio
*prev
, struct bio
*next
)
18 struct bio_vec pb
, nb
;
20 if (!bio_has_data(prev
) || !queue_virt_boundary(q
))
24 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
25 * is quite difficult to respect the sg gap limit. We work hard to
26 * merge a huge number of small single bios in case of mkfs.
29 bio_get_first_bvec(prev_rq
->bio
, &pb
);
31 bio_get_first_bvec(prev
, &pb
);
32 if (pb
.bv_offset
& queue_virt_boundary(q
))
36 * We don't need to worry about the situation that the merged segment
37 * ends in unaligned virt boundary:
39 * - if 'pb' ends aligned, the merged segment ends aligned
40 * - if 'pb' ends unaligned, the next bio must include
41 * one single bvec of 'nb', otherwise the 'nb' can't
44 bio_get_last_bvec(prev
, &pb
);
45 bio_get_first_bvec(next
, &nb
);
46 if (biovec_phys_mergeable(q
, &pb
, &nb
))
48 return __bvec_gap_to_prev(q
, &pb
, nb
.bv_offset
);
51 static inline bool req_gap_back_merge(struct request
*req
, struct bio
*bio
)
53 return bio_will_gap(req
->q
, req
, req
->biotail
, bio
);
56 static inline bool req_gap_front_merge(struct request
*req
, struct bio
*bio
)
58 return bio_will_gap(req
->q
, NULL
, bio
, req
->bio
);
61 static struct bio
*blk_bio_discard_split(struct request_queue
*q
,
66 unsigned int max_discard_sectors
, granularity
;
69 unsigned split_sectors
;
73 /* Zero-sector (unknown) and one-sector granularities are the same. */
74 granularity
= max(q
->limits
.discard_granularity
>> 9, 1U);
76 max_discard_sectors
= min(q
->limits
.max_discard_sectors
,
77 bio_allowed_max_sectors(q
));
78 max_discard_sectors
-= max_discard_sectors
% granularity
;
80 if (unlikely(!max_discard_sectors
)) {
85 if (bio_sectors(bio
) <= max_discard_sectors
)
88 split_sectors
= max_discard_sectors
;
91 * If the next starting sector would be misaligned, stop the discard at
92 * the previous aligned sector.
94 alignment
= (q
->limits
.discard_alignment
>> 9) % granularity
;
96 tmp
= bio
->bi_iter
.bi_sector
+ split_sectors
- alignment
;
97 tmp
= sector_div(tmp
, granularity
);
99 if (split_sectors
> tmp
)
100 split_sectors
-= tmp
;
102 return bio_split(bio
, split_sectors
, GFP_NOIO
, bs
);
105 static struct bio
*blk_bio_write_zeroes_split(struct request_queue
*q
,
106 struct bio
*bio
, struct bio_set
*bs
, unsigned *nsegs
)
110 if (!q
->limits
.max_write_zeroes_sectors
)
113 if (bio_sectors(bio
) <= q
->limits
.max_write_zeroes_sectors
)
116 return bio_split(bio
, q
->limits
.max_write_zeroes_sectors
, GFP_NOIO
, bs
);
119 static struct bio
*blk_bio_write_same_split(struct request_queue
*q
,
126 if (!q
->limits
.max_write_same_sectors
)
129 if (bio_sectors(bio
) <= q
->limits
.max_write_same_sectors
)
132 return bio_split(bio
, q
->limits
.max_write_same_sectors
, GFP_NOIO
, bs
);
136 * Return the maximum number of sectors from the start of a bio that may be
137 * submitted as a single request to a block device. If enough sectors remain,
138 * align the end to the physical block size. Otherwise align the end to the
139 * logical block size. This approach minimizes the number of non-aligned
140 * requests that are submitted to a block device if the start of a bio is not
141 * aligned to a physical block boundary.
143 static inline unsigned get_max_io_size(struct request_queue
*q
,
146 unsigned sectors
= blk_max_size_offset(q
, bio
->bi_iter
.bi_sector
);
147 unsigned max_sectors
= sectors
;
148 unsigned pbs
= queue_physical_block_size(q
) >> SECTOR_SHIFT
;
149 unsigned lbs
= queue_logical_block_size(q
) >> SECTOR_SHIFT
;
150 unsigned start_offset
= bio
->bi_iter
.bi_sector
& (pbs
- 1);
152 max_sectors
+= start_offset
;
153 max_sectors
&= ~(pbs
- 1);
154 if (max_sectors
> start_offset
)
155 return max_sectors
- start_offset
;
157 return sectors
& (lbs
- 1);
160 static inline unsigned get_max_segment_size(const struct request_queue
*q
,
161 struct page
*start_page
,
162 unsigned long offset
)
164 unsigned long mask
= queue_segment_boundary(q
);
166 offset
= mask
& (page_to_phys(start_page
) + offset
);
169 * overflow may be triggered in case of zero page physical address
170 * on 32bit arch, use queue's max segment size when that happens.
172 return min_not_zero(mask
- offset
+ 1,
173 (unsigned long)queue_max_segment_size(q
));
177 * bvec_split_segs - verify whether or not a bvec should be split in the middle
178 * @q: [in] request queue associated with the bio associated with @bv
179 * @bv: [in] bvec to examine
180 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
181 * by the number of segments from @bv that may be appended to that
182 * bio without exceeding @max_segs
183 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
184 * by the number of sectors from @bv that may be appended to that
185 * bio without exceeding @max_sectors
186 * @max_segs: [in] upper bound for *@nsegs
187 * @max_sectors: [in] upper bound for *@sectors
189 * When splitting a bio, it can happen that a bvec is encountered that is too
190 * big to fit in a single segment and hence that it has to be split in the
191 * middle. This function verifies whether or not that should happen. The value
192 * %true is returned if and only if appending the entire @bv to a bio with
193 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
196 static bool bvec_split_segs(const struct request_queue
*q
,
197 const struct bio_vec
*bv
, unsigned *nsegs
,
198 unsigned *sectors
, unsigned max_segs
,
199 unsigned max_sectors
)
201 unsigned max_len
= (min(max_sectors
, UINT_MAX
>> 9) - *sectors
) << 9;
202 unsigned len
= min(bv
->bv_len
, max_len
);
203 unsigned total_len
= 0;
204 unsigned seg_size
= 0;
206 while (len
&& *nsegs
< max_segs
) {
207 seg_size
= get_max_segment_size(q
, bv
->bv_page
,
208 bv
->bv_offset
+ total_len
);
209 seg_size
= min(seg_size
, len
);
212 total_len
+= seg_size
;
215 if ((bv
->bv_offset
+ total_len
) & queue_virt_boundary(q
))
219 *sectors
+= total_len
>> 9;
221 /* tell the caller to split the bvec if it is too big to fit */
222 return len
> 0 || bv
->bv_len
> max_len
;
226 * blk_bio_segment_split - split a bio in two bios
227 * @q: [in] request queue pointer
228 * @bio: [in] bio to be split
229 * @bs: [in] bio set to allocate the clone from
230 * @segs: [out] number of segments in the bio with the first half of the sectors
232 * Clone @bio, update the bi_iter of the clone to represent the first sectors
233 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
234 * following is guaranteed for the cloned bio:
235 * - That it has at most get_max_io_size(@q, @bio) sectors.
236 * - That it has at most queue_max_segments(@q) segments.
238 * Except for discard requests the cloned bio will point at the bi_io_vec of
239 * the original bio. It is the responsibility of the caller to ensure that the
240 * original bio is not freed before the cloned bio. The caller is also
241 * responsible for ensuring that @bs is only destroyed after processing of the
242 * split bio has finished.
244 static struct bio
*blk_bio_segment_split(struct request_queue
*q
,
249 struct bio_vec bv
, bvprv
, *bvprvp
= NULL
;
250 struct bvec_iter iter
;
251 unsigned nsegs
= 0, sectors
= 0;
252 const unsigned max_sectors
= get_max_io_size(q
, bio
);
253 const unsigned max_segs
= queue_max_segments(q
);
255 bio_for_each_bvec(bv
, bio
, iter
) {
257 * If the queue doesn't support SG gaps and adding this
258 * offset would create a gap, disallow it.
260 if (bvprvp
&& bvec_gap_to_prev(q
, bvprvp
, bv
.bv_offset
))
263 if (nsegs
< max_segs
&&
264 sectors
+ (bv
.bv_len
>> 9) <= max_sectors
&&
265 bv
.bv_offset
+ bv
.bv_len
<= PAGE_SIZE
) {
267 sectors
+= bv
.bv_len
>> 9;
268 } else if (bvec_split_segs(q
, &bv
, &nsegs
, §ors
, max_segs
,
281 return bio_split(bio
, sectors
, GFP_NOIO
, bs
);
285 * __blk_queue_split - split a bio and submit the second half
286 * @q: [in] request queue pointer
287 * @bio: [in, out] bio to be split
288 * @nr_segs: [out] number of segments in the first bio
290 * Split a bio into two bios, chain the two bios, submit the second half and
291 * store a pointer to the first half in *@bio. If the second bio is still too
292 * big it will be split by a recursive call to this function. Since this
293 * function may allocate a new bio from @q->bio_split, it is the responsibility
294 * of the caller to ensure that @q is only released after processing of the
295 * split bio has finished.
297 void __blk_queue_split(struct request_queue
*q
, struct bio
**bio
,
298 unsigned int *nr_segs
)
300 struct bio
*split
= NULL
;
302 switch (bio_op(*bio
)) {
304 case REQ_OP_SECURE_ERASE
:
305 split
= blk_bio_discard_split(q
, *bio
, &q
->bio_split
, nr_segs
);
307 case REQ_OP_WRITE_ZEROES
:
308 split
= blk_bio_write_zeroes_split(q
, *bio
, &q
->bio_split
,
311 case REQ_OP_WRITE_SAME
:
312 split
= blk_bio_write_same_split(q
, *bio
, &q
->bio_split
,
317 * All drivers must accept single-segments bios that are <=
318 * PAGE_SIZE. This is a quick and dirty check that relies on
319 * the fact that bi_io_vec[0] is always valid if a bio has data.
320 * The check might lead to occasional false negatives when bios
321 * are cloned, but compared to the performance impact of cloned
322 * bios themselves the loop below doesn't matter anyway.
324 if (!q
->limits
.chunk_sectors
&&
325 (*bio
)->bi_vcnt
== 1 &&
326 ((*bio
)->bi_io_vec
[0].bv_len
+
327 (*bio
)->bi_io_vec
[0].bv_offset
) <= PAGE_SIZE
) {
331 split
= blk_bio_segment_split(q
, *bio
, &q
->bio_split
, nr_segs
);
336 /* there isn't chance to merge the splitted bio */
337 split
->bi_opf
|= REQ_NOMERGE
;
339 bio_chain(split
, *bio
);
340 trace_block_split(q
, split
, (*bio
)->bi_iter
.bi_sector
);
341 generic_make_request(*bio
);
347 * blk_queue_split - split a bio and submit the second half
348 * @q: [in] request queue pointer
349 * @bio: [in, out] bio to be split
351 * Split a bio into two bios, chains the two bios, submit the second half and
352 * store a pointer to the first half in *@bio. Since this function may allocate
353 * a new bio from @q->bio_split, it is the responsibility of the caller to
354 * ensure that @q is only released after processing of the split bio has
357 void blk_queue_split(struct request_queue
*q
, struct bio
**bio
)
359 unsigned int nr_segs
;
361 __blk_queue_split(q
, bio
, &nr_segs
);
363 EXPORT_SYMBOL(blk_queue_split
);
365 unsigned int blk_recalc_rq_segments(struct request
*rq
)
367 unsigned int nr_phys_segs
= 0;
368 unsigned int nr_sectors
= 0;
369 struct req_iterator iter
;
375 switch (bio_op(rq
->bio
)) {
377 case REQ_OP_SECURE_ERASE
:
378 case REQ_OP_WRITE_ZEROES
:
380 case REQ_OP_WRITE_SAME
:
384 rq_for_each_bvec(bv
, rq
, iter
)
385 bvec_split_segs(rq
->q
, &bv
, &nr_phys_segs
, &nr_sectors
,
390 static inline struct scatterlist
*blk_next_sg(struct scatterlist
**sg
,
391 struct scatterlist
*sglist
)
397 * If the driver previously mapped a shorter list, we could see a
398 * termination bit prematurely unless it fully inits the sg table
399 * on each mapping. We KNOW that there must be more entries here
400 * or the driver would be buggy, so force clear the termination bit
401 * to avoid doing a full sg_init_table() in drivers for each command.
407 static unsigned blk_bvec_map_sg(struct request_queue
*q
,
408 struct bio_vec
*bvec
, struct scatterlist
*sglist
,
409 struct scatterlist
**sg
)
411 unsigned nbytes
= bvec
->bv_len
;
412 unsigned nsegs
= 0, total
= 0;
415 unsigned offset
= bvec
->bv_offset
+ total
;
416 unsigned len
= min(get_max_segment_size(q
, bvec
->bv_page
,
418 struct page
*page
= bvec
->bv_page
;
421 * Unfortunately a fair number of drivers barf on scatterlists
422 * that have an offset larger than PAGE_SIZE, despite other
423 * subsystems dealing with that invariant just fine. For now
424 * stick to the legacy format where we never present those from
425 * the block layer, but the code below should be removed once
426 * these offenders (mostly MMC/SD drivers) are fixed.
428 page
+= (offset
>> PAGE_SHIFT
);
429 offset
&= ~PAGE_MASK
;
431 *sg
= blk_next_sg(sg
, sglist
);
432 sg_set_page(*sg
, page
, len
, offset
);
442 static inline int __blk_bvec_map_sg(struct bio_vec bv
,
443 struct scatterlist
*sglist
, struct scatterlist
**sg
)
445 *sg
= blk_next_sg(sg
, sglist
);
446 sg_set_page(*sg
, bv
.bv_page
, bv
.bv_len
, bv
.bv_offset
);
450 /* only try to merge bvecs into one sg if they are from two bios */
452 __blk_segment_map_sg_merge(struct request_queue
*q
, struct bio_vec
*bvec
,
453 struct bio_vec
*bvprv
, struct scatterlist
**sg
)
456 int nbytes
= bvec
->bv_len
;
461 if ((*sg
)->length
+ nbytes
> queue_max_segment_size(q
))
464 if (!biovec_phys_mergeable(q
, bvprv
, bvec
))
467 (*sg
)->length
+= nbytes
;
472 static int __blk_bios_map_sg(struct request_queue
*q
, struct bio
*bio
,
473 struct scatterlist
*sglist
,
474 struct scatterlist
**sg
)
476 struct bio_vec
uninitialized_var(bvec
), bvprv
= { NULL
};
477 struct bvec_iter iter
;
479 bool new_bio
= false;
482 bio_for_each_bvec(bvec
, bio
, iter
) {
484 * Only try to merge bvecs from two bios given we
485 * have done bio internal merge when adding pages
489 __blk_segment_map_sg_merge(q
, &bvec
, &bvprv
, sg
))
492 if (bvec
.bv_offset
+ bvec
.bv_len
<= PAGE_SIZE
)
493 nsegs
+= __blk_bvec_map_sg(bvec
, sglist
, sg
);
495 nsegs
+= blk_bvec_map_sg(q
, &bvec
, sglist
, sg
);
499 if (likely(bio
->bi_iter
.bi_size
)) {
509 * map a request to scatterlist, return number of sg entries setup. Caller
510 * must make sure sg can hold rq->nr_phys_segments entries
512 int __blk_rq_map_sg(struct request_queue
*q
, struct request
*rq
,
513 struct scatterlist
*sglist
, struct scatterlist
**last_sg
)
517 if (rq
->rq_flags
& RQF_SPECIAL_PAYLOAD
)
518 nsegs
= __blk_bvec_map_sg(rq
->special_vec
, sglist
, last_sg
);
519 else if (rq
->bio
&& bio_op(rq
->bio
) == REQ_OP_WRITE_SAME
)
520 nsegs
= __blk_bvec_map_sg(bio_iovec(rq
->bio
), sglist
, last_sg
);
522 nsegs
= __blk_bios_map_sg(q
, rq
->bio
, sglist
, last_sg
);
525 sg_mark_end(*last_sg
);
528 * Something must have been wrong if the figured number of
529 * segment is bigger than number of req's physical segments
531 WARN_ON(nsegs
> blk_rq_nr_phys_segments(rq
));
535 EXPORT_SYMBOL(__blk_rq_map_sg
);
537 static inline int ll_new_hw_segment(struct request
*req
, struct bio
*bio
,
538 unsigned int nr_phys_segs
)
540 if (req
->nr_phys_segments
+ nr_phys_segs
> queue_max_segments(req
->q
))
543 if (blk_integrity_merge_bio(req
->q
, req
, bio
) == false)
547 * This will form the start of a new hw segment. Bump both
550 req
->nr_phys_segments
+= nr_phys_segs
;
554 req_set_nomerge(req
->q
, req
);
558 int ll_back_merge_fn(struct request
*req
, struct bio
*bio
, unsigned int nr_segs
)
560 if (req_gap_back_merge(req
, bio
))
562 if (blk_integrity_rq(req
) &&
563 integrity_req_gap_back_merge(req
, bio
))
565 if (!bio_crypt_ctx_back_mergeable(req
, bio
))
567 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
568 blk_rq_get_max_sectors(req
, blk_rq_pos(req
))) {
569 req_set_nomerge(req
->q
, req
);
573 return ll_new_hw_segment(req
, bio
, nr_segs
);
576 int ll_front_merge_fn(struct request
*req
, struct bio
*bio
, unsigned int nr_segs
)
578 if (req_gap_front_merge(req
, bio
))
580 if (blk_integrity_rq(req
) &&
581 integrity_req_gap_front_merge(req
, bio
))
583 if (!bio_crypt_ctx_front_mergeable(req
, bio
))
585 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
586 blk_rq_get_max_sectors(req
, bio
->bi_iter
.bi_sector
)) {
587 req_set_nomerge(req
->q
, req
);
591 return ll_new_hw_segment(req
, bio
, nr_segs
);
594 static bool req_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
595 struct request
*next
)
597 unsigned short segments
= blk_rq_nr_discard_segments(req
);
599 if (segments
>= queue_max_discard_segments(q
))
601 if (blk_rq_sectors(req
) + bio_sectors(next
->bio
) >
602 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
605 req
->nr_phys_segments
= segments
+ blk_rq_nr_discard_segments(next
);
608 req_set_nomerge(q
, req
);
612 static int ll_merge_requests_fn(struct request_queue
*q
, struct request
*req
,
613 struct request
*next
)
615 int total_phys_segments
;
617 if (req_gap_back_merge(req
, next
->bio
))
621 * Will it become too large?
623 if ((blk_rq_sectors(req
) + blk_rq_sectors(next
)) >
624 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
627 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
628 if (total_phys_segments
> queue_max_segments(q
))
631 if (blk_integrity_merge_rq(q
, req
, next
) == false)
634 if (!bio_crypt_ctx_merge_rq(req
, next
))
638 req
->nr_phys_segments
= total_phys_segments
;
643 * blk_rq_set_mixed_merge - mark a request as mixed merge
644 * @rq: request to mark as mixed merge
647 * @rq is about to be mixed merged. Make sure the attributes
648 * which can be mixed are set in each bio and mark @rq as mixed
651 void blk_rq_set_mixed_merge(struct request
*rq
)
653 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
656 if (rq
->rq_flags
& RQF_MIXED_MERGE
)
660 * @rq will no longer represent mixable attributes for all the
661 * contained bios. It will just track those of the first one.
662 * Distributes the attributs to each bio.
664 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
665 WARN_ON_ONCE((bio
->bi_opf
& REQ_FAILFAST_MASK
) &&
666 (bio
->bi_opf
& REQ_FAILFAST_MASK
) != ff
);
669 rq
->rq_flags
|= RQF_MIXED_MERGE
;
672 static void blk_account_io_merge_request(struct request
*req
)
674 if (blk_do_io_stat(req
)) {
676 part_stat_inc(req
->part
, merges
[op_stat_group(req_op(req
))]);
679 hd_struct_put(req
->part
);
684 * Two cases of handling DISCARD merge:
685 * If max_discard_segments > 1, the driver takes every bio
686 * as a range and send them to controller together. The ranges
687 * needn't to be contiguous.
688 * Otherwise, the bios/requests will be handled as same as
689 * others which should be contiguous.
691 static inline bool blk_discard_mergable(struct request
*req
)
693 if (req_op(req
) == REQ_OP_DISCARD
&&
694 queue_max_discard_segments(req
->q
) > 1)
699 static enum elv_merge
blk_try_req_merge(struct request
*req
,
700 struct request
*next
)
702 if (blk_discard_mergable(req
))
703 return ELEVATOR_DISCARD_MERGE
;
704 else if (blk_rq_pos(req
) + blk_rq_sectors(req
) == blk_rq_pos(next
))
705 return ELEVATOR_BACK_MERGE
;
707 return ELEVATOR_NO_MERGE
;
711 * For non-mq, this has to be called with the request spinlock acquired.
712 * For mq with scheduling, the appropriate queue wide lock should be held.
714 static struct request
*attempt_merge(struct request_queue
*q
,
715 struct request
*req
, struct request
*next
)
717 if (!rq_mergeable(req
) || !rq_mergeable(next
))
720 if (req_op(req
) != req_op(next
))
723 if (rq_data_dir(req
) != rq_data_dir(next
)
724 || req
->rq_disk
!= next
->rq_disk
)
727 if (req_op(req
) == REQ_OP_WRITE_SAME
&&
728 !blk_write_same_mergeable(req
->bio
, next
->bio
))
732 * Don't allow merge of different write hints, or for a hint with
735 if (req
->write_hint
!= next
->write_hint
)
738 if (req
->ioprio
!= next
->ioprio
)
742 * If we are allowed to merge, then append bio list
743 * from next to rq and release next. merge_requests_fn
744 * will have updated segment counts, update sector
745 * counts here. Handle DISCARDs separately, as they
746 * have separate settings.
749 switch (blk_try_req_merge(req
, next
)) {
750 case ELEVATOR_DISCARD_MERGE
:
751 if (!req_attempt_discard_merge(q
, req
, next
))
754 case ELEVATOR_BACK_MERGE
:
755 if (!ll_merge_requests_fn(q
, req
, next
))
763 * If failfast settings disagree or any of the two is already
764 * a mixed merge, mark both as mixed before proceeding. This
765 * makes sure that all involved bios have mixable attributes
768 if (((req
->rq_flags
| next
->rq_flags
) & RQF_MIXED_MERGE
) ||
769 (req
->cmd_flags
& REQ_FAILFAST_MASK
) !=
770 (next
->cmd_flags
& REQ_FAILFAST_MASK
)) {
771 blk_rq_set_mixed_merge(req
);
772 blk_rq_set_mixed_merge(next
);
776 * At this point we have either done a back merge or front merge. We
777 * need the smaller start_time_ns of the merged requests to be the
778 * current request for accounting purposes.
780 if (next
->start_time_ns
< req
->start_time_ns
)
781 req
->start_time_ns
= next
->start_time_ns
;
783 req
->biotail
->bi_next
= next
->bio
;
784 req
->biotail
= next
->biotail
;
786 req
->__data_len
+= blk_rq_bytes(next
);
788 if (!blk_discard_mergable(req
))
789 elv_merge_requests(q
, req
, next
);
792 * 'next' is going away, so update stats accordingly
794 blk_account_io_merge_request(next
);
797 * ownership of bio passed from next to req, return 'next' for
804 struct request
*attempt_back_merge(struct request_queue
*q
, struct request
*rq
)
806 struct request
*next
= elv_latter_request(q
, rq
);
809 return attempt_merge(q
, rq
, next
);
814 struct request
*attempt_front_merge(struct request_queue
*q
, struct request
*rq
)
816 struct request
*prev
= elv_former_request(q
, rq
);
819 return attempt_merge(q
, prev
, rq
);
824 int blk_attempt_req_merge(struct request_queue
*q
, struct request
*rq
,
825 struct request
*next
)
827 struct request
*free
;
829 free
= attempt_merge(q
, rq
, next
);
831 blk_put_request(free
);
838 bool blk_rq_merge_ok(struct request
*rq
, struct bio
*bio
)
840 if (!rq_mergeable(rq
) || !bio_mergeable(bio
))
843 if (req_op(rq
) != bio_op(bio
))
846 /* different data direction or already started, don't merge */
847 if (bio_data_dir(bio
) != rq_data_dir(rq
))
850 /* must be same device */
851 if (rq
->rq_disk
!= bio
->bi_disk
)
854 /* only merge integrity protected bio into ditto rq */
855 if (blk_integrity_merge_bio(rq
->q
, rq
, bio
) == false)
858 /* Only merge if the crypt contexts are compatible */
859 if (!bio_crypt_rq_ctx_compatible(rq
, bio
))
862 /* must be using the same buffer */
863 if (req_op(rq
) == REQ_OP_WRITE_SAME
&&
864 !blk_write_same_mergeable(rq
->bio
, bio
))
868 * Don't allow merge of different write hints, or for a hint with
871 if (rq
->write_hint
!= bio
->bi_write_hint
)
874 if (rq
->ioprio
!= bio_prio(bio
))
880 enum elv_merge
blk_try_merge(struct request
*rq
, struct bio
*bio
)
882 if (blk_discard_mergable(rq
))
883 return ELEVATOR_DISCARD_MERGE
;
884 else if (blk_rq_pos(rq
) + blk_rq_sectors(rq
) == bio
->bi_iter
.bi_sector
)
885 return ELEVATOR_BACK_MERGE
;
886 else if (blk_rq_pos(rq
) - bio_sectors(bio
) == bio
->bi_iter
.bi_sector
)
887 return ELEVATOR_FRONT_MERGE
;
888 return ELEVATOR_NO_MERGE
;