1 // SPDX-License-Identifier: GPL-2.0
3 * Tag allocation using scalable bitmaps. Uses active queue tracking to support
4 * fairer distribution of tags between multiple submitters when a shared tag map
7 * Copyright (C) 2013-2014 Jens Axboe
9 #include <linux/kernel.h>
10 #include <linux/module.h>
12 #include <linux/blk-mq.h>
13 #include <linux/delay.h>
16 #include "blk-mq-tag.h"
19 * If a previously inactive queue goes active, bump the active user count.
20 * We need to do this before try to allocate driver tag, then even if fail
21 * to get tag when first time, the other shared-tag users could reserve
24 bool __blk_mq_tag_busy(struct blk_mq_hw_ctx
*hctx
)
26 if (!test_bit(BLK_MQ_S_TAG_ACTIVE
, &hctx
->state
) &&
27 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE
, &hctx
->state
))
28 atomic_inc(&hctx
->tags
->active_queues
);
34 * Wakeup all potentially sleeping on tags
36 void blk_mq_tag_wakeup_all(struct blk_mq_tags
*tags
, bool include_reserve
)
38 sbitmap_queue_wake_all(&tags
->bitmap_tags
);
40 sbitmap_queue_wake_all(&tags
->breserved_tags
);
44 * If a previously busy queue goes inactive, potential waiters could now
45 * be allowed to queue. Wake them up and check.
47 void __blk_mq_tag_idle(struct blk_mq_hw_ctx
*hctx
)
49 struct blk_mq_tags
*tags
= hctx
->tags
;
51 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE
, &hctx
->state
))
54 atomic_dec(&tags
->active_queues
);
56 blk_mq_tag_wakeup_all(tags
, false);
60 * For shared tag users, we track the number of currently active users
61 * and attempt to provide a fair share of the tag depth for each of them.
63 static inline bool hctx_may_queue(struct blk_mq_hw_ctx
*hctx
,
64 struct sbitmap_queue
*bt
)
66 unsigned int depth
, users
;
68 if (!hctx
|| !(hctx
->flags
& BLK_MQ_F_TAG_SHARED
))
70 if (!test_bit(BLK_MQ_S_TAG_ACTIVE
, &hctx
->state
))
74 * Don't try dividing an ant
76 if (bt
->sb
.depth
== 1)
79 users
= atomic_read(&hctx
->tags
->active_queues
);
84 * Allow at least some tags
86 depth
= max((bt
->sb
.depth
+ users
- 1) / users
, 4U);
87 return atomic_read(&hctx
->nr_active
) < depth
;
90 static int __blk_mq_get_tag(struct blk_mq_alloc_data
*data
,
91 struct sbitmap_queue
*bt
)
93 if (!(data
->flags
& BLK_MQ_REQ_INTERNAL
) &&
94 !hctx_may_queue(data
->hctx
, bt
))
96 if (data
->shallow_depth
)
97 return __sbitmap_queue_get_shallow(bt
, data
->shallow_depth
);
99 return __sbitmap_queue_get(bt
);
102 unsigned int blk_mq_get_tag(struct blk_mq_alloc_data
*data
)
104 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
105 struct sbitmap_queue
*bt
;
106 struct sbq_wait_state
*ws
;
107 DEFINE_SBQ_WAIT(wait
);
108 unsigned int tag_offset
;
111 if (data
->flags
& BLK_MQ_REQ_RESERVED
) {
112 if (unlikely(!tags
->nr_reserved_tags
)) {
114 return BLK_MQ_NO_TAG
;
116 bt
= &tags
->breserved_tags
;
119 bt
= &tags
->bitmap_tags
;
120 tag_offset
= tags
->nr_reserved_tags
;
123 tag
= __blk_mq_get_tag(data
, bt
);
124 if (tag
!= BLK_MQ_NO_TAG
)
127 if (data
->flags
& BLK_MQ_REQ_NOWAIT
)
128 return BLK_MQ_NO_TAG
;
130 ws
= bt_wait_ptr(bt
, data
->hctx
);
132 struct sbitmap_queue
*bt_prev
;
135 * We're out of tags on this hardware queue, kick any
136 * pending IO submits before going to sleep waiting for
139 blk_mq_run_hw_queue(data
->hctx
, false);
142 * Retry tag allocation after running the hardware queue,
143 * as running the queue may also have found completions.
145 tag
= __blk_mq_get_tag(data
, bt
);
146 if (tag
!= BLK_MQ_NO_TAG
)
149 sbitmap_prepare_to_wait(bt
, ws
, &wait
, TASK_UNINTERRUPTIBLE
);
151 tag
= __blk_mq_get_tag(data
, bt
);
152 if (tag
!= BLK_MQ_NO_TAG
)
158 sbitmap_finish_wait(bt
, ws
, &wait
);
160 data
->ctx
= blk_mq_get_ctx(data
->q
);
161 data
->hctx
= blk_mq_map_queue(data
->q
, data
->cmd_flags
,
163 tags
= blk_mq_tags_from_data(data
);
164 if (data
->flags
& BLK_MQ_REQ_RESERVED
)
165 bt
= &tags
->breserved_tags
;
167 bt
= &tags
->bitmap_tags
;
170 * If destination hw queue is changed, fake wake up on
171 * previous queue for compensating the wake up miss, so
172 * other allocations on previous queue won't be starved.
175 sbitmap_queue_wake_up(bt_prev
);
177 ws
= bt_wait_ptr(bt
, data
->hctx
);
180 sbitmap_finish_wait(bt
, ws
, &wait
);
184 * Give up this allocation if the hctx is inactive. The caller will
185 * retry on an active hctx.
187 if (unlikely(test_bit(BLK_MQ_S_INACTIVE
, &data
->hctx
->state
))) {
188 blk_mq_put_tag(tags
, data
->ctx
, tag
+ tag_offset
);
189 return BLK_MQ_NO_TAG
;
191 return tag
+ tag_offset
;
194 bool __blk_mq_get_driver_tag(struct request
*rq
)
196 struct sbitmap_queue
*bt
= &rq
->mq_hctx
->tags
->bitmap_tags
;
197 unsigned int tag_offset
= rq
->mq_hctx
->tags
->nr_reserved_tags
;
198 bool shared
= blk_mq_tag_busy(rq
->mq_hctx
);
201 if (blk_mq_tag_is_reserved(rq
->mq_hctx
->sched_tags
, rq
->internal_tag
)) {
202 bt
= &rq
->mq_hctx
->tags
->breserved_tags
;
206 if (!hctx_may_queue(rq
->mq_hctx
, bt
))
208 tag
= __sbitmap_queue_get(bt
);
209 if (tag
== BLK_MQ_NO_TAG
)
212 rq
->tag
= tag
+ tag_offset
;
214 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
215 atomic_inc(&rq
->mq_hctx
->nr_active
);
217 rq
->mq_hctx
->tags
->rqs
[rq
->tag
] = rq
;
221 void blk_mq_put_tag(struct blk_mq_tags
*tags
, struct blk_mq_ctx
*ctx
,
224 if (!blk_mq_tag_is_reserved(tags
, tag
)) {
225 const int real_tag
= tag
- tags
->nr_reserved_tags
;
227 BUG_ON(real_tag
>= tags
->nr_tags
);
228 sbitmap_queue_clear(&tags
->bitmap_tags
, real_tag
, ctx
->cpu
);
230 BUG_ON(tag
>= tags
->nr_reserved_tags
);
231 sbitmap_queue_clear(&tags
->breserved_tags
, tag
, ctx
->cpu
);
235 struct bt_iter_data
{
236 struct blk_mq_hw_ctx
*hctx
;
242 static bool bt_iter(struct sbitmap
*bitmap
, unsigned int bitnr
, void *data
)
244 struct bt_iter_data
*iter_data
= data
;
245 struct blk_mq_hw_ctx
*hctx
= iter_data
->hctx
;
246 struct blk_mq_tags
*tags
= hctx
->tags
;
247 bool reserved
= iter_data
->reserved
;
251 bitnr
+= tags
->nr_reserved_tags
;
252 rq
= tags
->rqs
[bitnr
];
255 * We can hit rq == NULL here, because the tagging functions
256 * test and set the bit before assigning ->rqs[].
258 if (rq
&& rq
->q
== hctx
->queue
)
259 return iter_data
->fn(hctx
, rq
, iter_data
->data
, reserved
);
264 * bt_for_each - iterate over the requests associated with a hardware queue
265 * @hctx: Hardware queue to examine.
266 * @bt: sbitmap to examine. This is either the breserved_tags member
267 * or the bitmap_tags member of struct blk_mq_tags.
268 * @fn: Pointer to the function that will be called for each request
269 * associated with @hctx that has been assigned a driver tag.
270 * @fn will be called as follows: @fn(@hctx, rq, @data, @reserved)
271 * where rq is a pointer to a request. Return true to continue
272 * iterating tags, false to stop.
273 * @data: Will be passed as third argument to @fn.
274 * @reserved: Indicates whether @bt is the breserved_tags member or the
275 * bitmap_tags member of struct blk_mq_tags.
277 static void bt_for_each(struct blk_mq_hw_ctx
*hctx
, struct sbitmap_queue
*bt
,
278 busy_iter_fn
*fn
, void *data
, bool reserved
)
280 struct bt_iter_data iter_data
= {
284 .reserved
= reserved
,
287 sbitmap_for_each_set(&bt
->sb
, bt_iter
, &iter_data
);
290 struct bt_tags_iter_data
{
291 struct blk_mq_tags
*tags
;
292 busy_tag_iter_fn
*fn
;
297 #define BT_TAG_ITER_RESERVED (1 << 0)
298 #define BT_TAG_ITER_STARTED (1 << 1)
299 #define BT_TAG_ITER_STATIC_RQS (1 << 2)
301 static bool bt_tags_iter(struct sbitmap
*bitmap
, unsigned int bitnr
, void *data
)
303 struct bt_tags_iter_data
*iter_data
= data
;
304 struct blk_mq_tags
*tags
= iter_data
->tags
;
305 bool reserved
= iter_data
->flags
& BT_TAG_ITER_RESERVED
;
309 bitnr
+= tags
->nr_reserved_tags
;
312 * We can hit rq == NULL here, because the tagging functions
313 * test and set the bit before assigning ->rqs[].
315 if (iter_data
->flags
& BT_TAG_ITER_STATIC_RQS
)
316 rq
= tags
->static_rqs
[bitnr
];
318 rq
= tags
->rqs
[bitnr
];
321 if ((iter_data
->flags
& BT_TAG_ITER_STARTED
) &&
322 !blk_mq_request_started(rq
))
324 return iter_data
->fn(rq
, iter_data
->data
, reserved
);
328 * bt_tags_for_each - iterate over the requests in a tag map
329 * @tags: Tag map to iterate over.
330 * @bt: sbitmap to examine. This is either the breserved_tags member
331 * or the bitmap_tags member of struct blk_mq_tags.
332 * @fn: Pointer to the function that will be called for each started
333 * request. @fn will be called as follows: @fn(rq, @data,
334 * @reserved) where rq is a pointer to a request. Return true
335 * to continue iterating tags, false to stop.
336 * @data: Will be passed as second argument to @fn.
337 * @flags: BT_TAG_ITER_*
339 static void bt_tags_for_each(struct blk_mq_tags
*tags
, struct sbitmap_queue
*bt
,
340 busy_tag_iter_fn
*fn
, void *data
, unsigned int flags
)
342 struct bt_tags_iter_data iter_data
= {
350 sbitmap_for_each_set(&bt
->sb
, bt_tags_iter
, &iter_data
);
353 static void __blk_mq_all_tag_iter(struct blk_mq_tags
*tags
,
354 busy_tag_iter_fn
*fn
, void *priv
, unsigned int flags
)
356 WARN_ON_ONCE(flags
& BT_TAG_ITER_RESERVED
);
358 if (tags
->nr_reserved_tags
)
359 bt_tags_for_each(tags
, &tags
->breserved_tags
, fn
, priv
,
360 flags
| BT_TAG_ITER_RESERVED
);
361 bt_tags_for_each(tags
, &tags
->bitmap_tags
, fn
, priv
, flags
);
365 * blk_mq_all_tag_iter - iterate over all requests in a tag map
366 * @tags: Tag map to iterate over.
367 * @fn: Pointer to the function that will be called for each
368 * request. @fn will be called as follows: @fn(rq, @priv,
369 * reserved) where rq is a pointer to a request. 'reserved'
370 * indicates whether or not @rq is a reserved request. Return
371 * true to continue iterating tags, false to stop.
372 * @priv: Will be passed as second argument to @fn.
374 * Caller has to pass the tag map from which requests are allocated.
376 void blk_mq_all_tag_iter(struct blk_mq_tags
*tags
, busy_tag_iter_fn
*fn
,
379 __blk_mq_all_tag_iter(tags
, fn
, priv
, BT_TAG_ITER_STATIC_RQS
);
383 * blk_mq_tagset_busy_iter - iterate over all started requests in a tag set
384 * @tagset: Tag set to iterate over.
385 * @fn: Pointer to the function that will be called for each started
386 * request. @fn will be called as follows: @fn(rq, @priv,
387 * reserved) where rq is a pointer to a request. 'reserved'
388 * indicates whether or not @rq is a reserved request. Return
389 * true to continue iterating tags, false to stop.
390 * @priv: Will be passed as second argument to @fn.
392 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set
*tagset
,
393 busy_tag_iter_fn
*fn
, void *priv
)
397 for (i
= 0; i
< tagset
->nr_hw_queues
; i
++) {
398 if (tagset
->tags
&& tagset
->tags
[i
])
399 __blk_mq_all_tag_iter(tagset
->tags
[i
], fn
, priv
,
400 BT_TAG_ITER_STARTED
);
403 EXPORT_SYMBOL(blk_mq_tagset_busy_iter
);
405 static bool blk_mq_tagset_count_completed_rqs(struct request
*rq
,
406 void *data
, bool reserved
)
408 unsigned *count
= data
;
410 if (blk_mq_request_completed(rq
))
416 * blk_mq_tagset_wait_completed_request - wait until all completed req's
417 * complete funtion is run
418 * @tagset: Tag set to drain completed request
420 * Note: This function has to be run after all IO queues are shutdown
422 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set
*tagset
)
427 blk_mq_tagset_busy_iter(tagset
,
428 blk_mq_tagset_count_completed_rqs
, &count
);
434 EXPORT_SYMBOL(blk_mq_tagset_wait_completed_request
);
437 * blk_mq_queue_tag_busy_iter - iterate over all requests with a driver tag
438 * @q: Request queue to examine.
439 * @fn: Pointer to the function that will be called for each request
440 * on @q. @fn will be called as follows: @fn(hctx, rq, @priv,
441 * reserved) where rq is a pointer to a request and hctx points
442 * to the hardware queue associated with the request. 'reserved'
443 * indicates whether or not @rq is a reserved request.
444 * @priv: Will be passed as third argument to @fn.
446 * Note: if @q->tag_set is shared with other request queues then @fn will be
447 * called for all requests on all queues that share that tag set and not only
448 * for requests associated with @q.
450 void blk_mq_queue_tag_busy_iter(struct request_queue
*q
, busy_iter_fn
*fn
,
453 struct blk_mq_hw_ctx
*hctx
;
457 * __blk_mq_update_nr_hw_queues() updates nr_hw_queues and queue_hw_ctx
458 * while the queue is frozen. So we can use q_usage_counter to avoid
459 * racing with it. __blk_mq_update_nr_hw_queues() uses
460 * synchronize_rcu() to ensure this function left the critical section
463 if (!percpu_ref_tryget(&q
->q_usage_counter
))
466 queue_for_each_hw_ctx(q
, hctx
, i
) {
467 struct blk_mq_tags
*tags
= hctx
->tags
;
470 * If no software queues are currently mapped to this
471 * hardware queue, there's nothing to check
473 if (!blk_mq_hw_queue_mapped(hctx
))
476 if (tags
->nr_reserved_tags
)
477 bt_for_each(hctx
, &tags
->breserved_tags
, fn
, priv
, true);
478 bt_for_each(hctx
, &tags
->bitmap_tags
, fn
, priv
, false);
483 static int bt_alloc(struct sbitmap_queue
*bt
, unsigned int depth
,
484 bool round_robin
, int node
)
486 return sbitmap_queue_init_node(bt
, depth
, -1, round_robin
, GFP_KERNEL
,
490 static struct blk_mq_tags
*blk_mq_init_bitmap_tags(struct blk_mq_tags
*tags
,
491 int node
, int alloc_policy
)
493 unsigned int depth
= tags
->nr_tags
- tags
->nr_reserved_tags
;
494 bool round_robin
= alloc_policy
== BLK_TAG_ALLOC_RR
;
496 if (bt_alloc(&tags
->bitmap_tags
, depth
, round_robin
, node
))
498 if (bt_alloc(&tags
->breserved_tags
, tags
->nr_reserved_tags
, round_robin
,
500 goto free_bitmap_tags
;
504 sbitmap_queue_free(&tags
->bitmap_tags
);
510 struct blk_mq_tags
*blk_mq_init_tags(unsigned int total_tags
,
511 unsigned int reserved_tags
,
512 int node
, int alloc_policy
)
514 struct blk_mq_tags
*tags
;
516 if (total_tags
> BLK_MQ_TAG_MAX
) {
517 pr_err("blk-mq: tag depth too large\n");
521 tags
= kzalloc_node(sizeof(*tags
), GFP_KERNEL
, node
);
525 tags
->nr_tags
= total_tags
;
526 tags
->nr_reserved_tags
= reserved_tags
;
528 return blk_mq_init_bitmap_tags(tags
, node
, alloc_policy
);
531 void blk_mq_free_tags(struct blk_mq_tags
*tags
)
533 sbitmap_queue_free(&tags
->bitmap_tags
);
534 sbitmap_queue_free(&tags
->breserved_tags
);
538 int blk_mq_tag_update_depth(struct blk_mq_hw_ctx
*hctx
,
539 struct blk_mq_tags
**tagsptr
, unsigned int tdepth
,
542 struct blk_mq_tags
*tags
= *tagsptr
;
544 if (tdepth
<= tags
->nr_reserved_tags
)
548 * If we are allowed to grow beyond the original size, allocate
549 * a new set of tags before freeing the old one.
551 if (tdepth
> tags
->nr_tags
) {
552 struct blk_mq_tag_set
*set
= hctx
->queue
->tag_set
;
553 struct blk_mq_tags
*new;
560 * We need some sort of upper limit, set it high enough that
561 * no valid use cases should require more.
563 if (tdepth
> 16 * BLKDEV_MAX_RQ
)
566 new = blk_mq_alloc_rq_map(set
, hctx
->queue_num
, tdepth
,
567 tags
->nr_reserved_tags
);
570 ret
= blk_mq_alloc_rqs(set
, new, hctx
->queue_num
, tdepth
);
572 blk_mq_free_rq_map(new);
576 blk_mq_free_rqs(set
, *tagsptr
, hctx
->queue_num
);
577 blk_mq_free_rq_map(*tagsptr
);
581 * Don't need (or can't) update reserved tags here, they
582 * remain static and should never need resizing.
584 sbitmap_queue_resize(&tags
->bitmap_tags
,
585 tdepth
- tags
->nr_reserved_tags
);
592 * blk_mq_unique_tag() - return a tag that is unique queue-wide
593 * @rq: request for which to compute a unique tag
595 * The tag field in struct request is unique per hardware queue but not over
596 * all hardware queues. Hence this function that returns a tag with the
597 * hardware context index in the upper bits and the per hardware queue tag in
600 * Note: When called for a request that is queued on a non-multiqueue request
601 * queue, the hardware context index is set to zero.
603 u32
blk_mq_unique_tag(struct request
*rq
)
605 return (rq
->mq_hctx
->queue_num
<< BLK_MQ_UNIQUE_TAG_BITS
) |
606 (rq
->tag
& BLK_MQ_UNIQUE_TAG_MASK
);
608 EXPORT_SYMBOL(blk_mq_unique_tag
);