serial: tegra: drop bogus NULL tty-port checks
[linux/fpc-iii.git] / drivers / tty / rocket.c
blob2540b2e4c8e819551b4512f456e0d8f6ba4a34a9
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * RocketPort device driver for Linux
5 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
6 *
7 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
8 */
11 * Kernel Synchronization:
13 * This driver has 2 kernel control paths - exception handlers (calls into the driver
14 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
15 * are not used.
17 * Critical data:
18 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
19 * serial port state information and the xmit_buf circular buffer. Protected by
20 * a per port spinlock.
21 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
22 * is data to be transmitted. Protected by atomic bit operations.
23 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
25 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
26 * simultaneous access to the same port by more than one process.
29 /****** Defines ******/
30 #define ROCKET_PARANOIA_CHECK
31 #define ROCKET_DISABLE_SIMUSAGE
33 #undef ROCKET_SOFT_FLOW
34 #undef ROCKET_DEBUG_OPEN
35 #undef ROCKET_DEBUG_INTR
36 #undef ROCKET_DEBUG_WRITE
37 #undef ROCKET_DEBUG_FLOW
38 #undef ROCKET_DEBUG_THROTTLE
39 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
40 #undef ROCKET_DEBUG_RECEIVE
41 #undef ROCKET_DEBUG_HANGUP
42 #undef REV_PCI_ORDER
43 #undef ROCKET_DEBUG_IO
45 #define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
47 /****** Kernel includes ******/
49 #include <linux/module.h>
50 #include <linux/errno.h>
51 #include <linux/major.h>
52 #include <linux/kernel.h>
53 #include <linux/signal.h>
54 #include <linux/slab.h>
55 #include <linux/mm.h>
56 #include <linux/sched.h>
57 #include <linux/timer.h>
58 #include <linux/interrupt.h>
59 #include <linux/tty.h>
60 #include <linux/tty_driver.h>
61 #include <linux/tty_flip.h>
62 #include <linux/serial.h>
63 #include <linux/string.h>
64 #include <linux/fcntl.h>
65 #include <linux/ptrace.h>
66 #include <linux/mutex.h>
67 #include <linux/ioport.h>
68 #include <linux/delay.h>
69 #include <linux/completion.h>
70 #include <linux/wait.h>
71 #include <linux/pci.h>
72 #include <linux/uaccess.h>
73 #include <linux/atomic.h>
74 #include <asm/unaligned.h>
75 #include <linux/bitops.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
79 /****** RocketPort includes ******/
81 #include "rocket_int.h"
82 #include "rocket.h"
84 #define ROCKET_VERSION "2.09"
85 #define ROCKET_DATE "12-June-2003"
87 /****** RocketPort Local Variables ******/
89 static void rp_do_poll(struct timer_list *unused);
91 static struct tty_driver *rocket_driver;
93 static struct rocket_version driver_version = {
94 ROCKET_VERSION, ROCKET_DATE
97 static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
98 static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
99 /* eg. Bit 0 indicates port 0 has xmit data, ... */
100 static atomic_t rp_num_ports_open; /* Number of serial ports open */
101 static DEFINE_TIMER(rocket_timer, rp_do_poll);
103 static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
104 static unsigned long board2;
105 static unsigned long board3;
106 static unsigned long board4;
107 static unsigned long controller;
108 static bool support_low_speed;
109 static unsigned long modem1;
110 static unsigned long modem2;
111 static unsigned long modem3;
112 static unsigned long modem4;
113 static unsigned long pc104_1[8];
114 static unsigned long pc104_2[8];
115 static unsigned long pc104_3[8];
116 static unsigned long pc104_4[8];
117 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
119 static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
120 static unsigned long rcktpt_io_addr[NUM_BOARDS];
121 static int rcktpt_type[NUM_BOARDS];
122 static int is_PCI[NUM_BOARDS];
123 static rocketModel_t rocketModel[NUM_BOARDS];
124 static int max_board;
125 static const struct tty_port_operations rocket_port_ops;
128 * The following arrays define the interrupt bits corresponding to each AIOP.
129 * These bits are different between the ISA and regular PCI boards and the
130 * Universal PCI boards.
133 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
134 AIOP_INTR_BIT_0,
135 AIOP_INTR_BIT_1,
136 AIOP_INTR_BIT_2,
137 AIOP_INTR_BIT_3
140 #ifdef CONFIG_PCI
141 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
142 UPCI_AIOP_INTR_BIT_0,
143 UPCI_AIOP_INTR_BIT_1,
144 UPCI_AIOP_INTR_BIT_2,
145 UPCI_AIOP_INTR_BIT_3
147 #endif
149 static Byte_t RData[RDATASIZE] = {
150 0x00, 0x09, 0xf6, 0x82,
151 0x02, 0x09, 0x86, 0xfb,
152 0x04, 0x09, 0x00, 0x0a,
153 0x06, 0x09, 0x01, 0x0a,
154 0x08, 0x09, 0x8a, 0x13,
155 0x0a, 0x09, 0xc5, 0x11,
156 0x0c, 0x09, 0x86, 0x85,
157 0x0e, 0x09, 0x20, 0x0a,
158 0x10, 0x09, 0x21, 0x0a,
159 0x12, 0x09, 0x41, 0xff,
160 0x14, 0x09, 0x82, 0x00,
161 0x16, 0x09, 0x82, 0x7b,
162 0x18, 0x09, 0x8a, 0x7d,
163 0x1a, 0x09, 0x88, 0x81,
164 0x1c, 0x09, 0x86, 0x7a,
165 0x1e, 0x09, 0x84, 0x81,
166 0x20, 0x09, 0x82, 0x7c,
167 0x22, 0x09, 0x0a, 0x0a
170 static Byte_t RRegData[RREGDATASIZE] = {
171 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
172 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
173 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
174 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
175 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
176 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
177 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
178 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
179 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
180 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
181 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
182 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
183 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
186 static CONTROLLER_T sController[CTL_SIZE] = {
187 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
188 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
189 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
190 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
191 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
192 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
193 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
194 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
197 static Byte_t sBitMapClrTbl[8] = {
198 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
201 static Byte_t sBitMapSetTbl[8] = {
202 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
205 static int sClockPrescale = 0x14;
208 * Line number is the ttySIx number (x), the Minor number. We
209 * assign them sequentially, starting at zero. The following
210 * array keeps track of the line number assigned to a given board/aiop/channel.
212 static unsigned char lineNumbers[MAX_RP_PORTS];
213 static unsigned long nextLineNumber;
215 /***** RocketPort Static Prototypes *********/
216 static int __init init_ISA(int i);
217 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
218 static void rp_flush_buffer(struct tty_struct *tty);
219 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
220 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
221 static void rp_start(struct tty_struct *tty);
222 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
223 int ChanNum);
224 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
225 static void sFlushRxFIFO(CHANNEL_T * ChP);
226 static void sFlushTxFIFO(CHANNEL_T * ChP);
227 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
228 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
229 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
230 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
231 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
232 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
233 ByteIO_t * AiopIOList, int AiopIOListSize,
234 int IRQNum, Byte_t Frequency, int PeriodicOnly);
235 static int sReadAiopID(ByteIO_t io);
236 static int sReadAiopNumChan(WordIO_t io);
238 MODULE_AUTHOR("Theodore Ts'o");
239 MODULE_DESCRIPTION("Comtrol RocketPort driver");
240 module_param_hw(board1, ulong, ioport, 0);
241 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
242 module_param_hw(board2, ulong, ioport, 0);
243 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
244 module_param_hw(board3, ulong, ioport, 0);
245 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
246 module_param_hw(board4, ulong, ioport, 0);
247 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
248 module_param_hw(controller, ulong, ioport, 0);
249 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
250 module_param(support_low_speed, bool, 0);
251 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
252 module_param(modem1, ulong, 0);
253 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
254 module_param(modem2, ulong, 0);
255 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
256 module_param(modem3, ulong, 0);
257 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
258 module_param(modem4, ulong, 0);
259 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
260 module_param_array(pc104_1, ulong, NULL, 0);
261 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
262 module_param_array(pc104_2, ulong, NULL, 0);
263 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
264 module_param_array(pc104_3, ulong, NULL, 0);
265 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
266 module_param_array(pc104_4, ulong, NULL, 0);
267 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
269 static int __init rp_init(void);
270 static void rp_cleanup_module(void);
272 module_init(rp_init);
273 module_exit(rp_cleanup_module);
276 MODULE_LICENSE("Dual BSD/GPL");
278 /*************************************************************************/
279 /* Module code starts here */
281 static inline int rocket_paranoia_check(struct r_port *info,
282 const char *routine)
284 #ifdef ROCKET_PARANOIA_CHECK
285 if (!info)
286 return 1;
287 if (info->magic != RPORT_MAGIC) {
288 printk(KERN_WARNING "Warning: bad magic number for rocketport "
289 "struct in %s\n", routine);
290 return 1;
292 #endif
293 return 0;
297 /* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
298 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
299 * tty layer.
301 static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
302 unsigned int ChanStatus)
304 unsigned int CharNStat;
305 int ToRecv, wRecv, space;
306 unsigned char *cbuf;
308 ToRecv = sGetRxCnt(cp);
309 #ifdef ROCKET_DEBUG_INTR
310 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
311 #endif
312 if (ToRecv == 0)
313 return;
316 * if status indicates there are errored characters in the
317 * FIFO, then enter status mode (a word in FIFO holds
318 * character and status).
320 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
321 if (!(ChanStatus & STATMODE)) {
322 #ifdef ROCKET_DEBUG_RECEIVE
323 printk(KERN_INFO "Entering STATMODE...\n");
324 #endif
325 ChanStatus |= STATMODE;
326 sEnRxStatusMode(cp);
331 * if we previously entered status mode, then read down the
332 * FIFO one word at a time, pulling apart the character and
333 * the status. Update error counters depending on status
335 if (ChanStatus & STATMODE) {
336 #ifdef ROCKET_DEBUG_RECEIVE
337 printk(KERN_INFO "Ignore %x, read %x...\n",
338 info->ignore_status_mask, info->read_status_mask);
339 #endif
340 while (ToRecv) {
341 char flag;
343 CharNStat = sInW(sGetTxRxDataIO(cp));
344 #ifdef ROCKET_DEBUG_RECEIVE
345 printk(KERN_INFO "%x...\n", CharNStat);
346 #endif
347 if (CharNStat & STMBREAKH)
348 CharNStat &= ~(STMFRAMEH | STMPARITYH);
349 if (CharNStat & info->ignore_status_mask) {
350 ToRecv--;
351 continue;
353 CharNStat &= info->read_status_mask;
354 if (CharNStat & STMBREAKH)
355 flag = TTY_BREAK;
356 else if (CharNStat & STMPARITYH)
357 flag = TTY_PARITY;
358 else if (CharNStat & STMFRAMEH)
359 flag = TTY_FRAME;
360 else if (CharNStat & STMRCVROVRH)
361 flag = TTY_OVERRUN;
362 else
363 flag = TTY_NORMAL;
364 tty_insert_flip_char(&info->port, CharNStat & 0xff,
365 flag);
366 ToRecv--;
370 * after we've emptied the FIFO in status mode, turn
371 * status mode back off
373 if (sGetRxCnt(cp) == 0) {
374 #ifdef ROCKET_DEBUG_RECEIVE
375 printk(KERN_INFO "Status mode off.\n");
376 #endif
377 sDisRxStatusMode(cp);
379 } else {
381 * we aren't in status mode, so read down the FIFO two
382 * characters at time by doing repeated word IO
383 * transfer.
385 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
386 if (space < ToRecv) {
387 #ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
389 #endif
390 if (space <= 0)
391 return;
392 ToRecv = space;
394 wRecv = ToRecv >> 1;
395 if (wRecv)
396 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
397 if (ToRecv & 1)
398 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
400 /* Push the data up to the tty layer */
401 tty_flip_buffer_push(&info->port);
405 * Serial port transmit data function. Called from the timer polling loop as a
406 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
407 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
408 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
410 static void rp_do_transmit(struct r_port *info)
412 int c;
413 CHANNEL_t *cp = &info->channel;
414 struct tty_struct *tty;
415 unsigned long flags;
417 #ifdef ROCKET_DEBUG_INTR
418 printk(KERN_DEBUG "%s\n", __func__);
419 #endif
420 if (!info)
421 return;
422 tty = tty_port_tty_get(&info->port);
424 if (tty == NULL) {
425 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
426 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
427 return;
430 spin_lock_irqsave(&info->slock, flags);
431 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
433 /* Loop sending data to FIFO until done or FIFO full */
434 while (1) {
435 if (tty->stopped)
436 break;
437 c = min(info->xmit_fifo_room, info->xmit_cnt);
438 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
439 if (c <= 0 || info->xmit_fifo_room <= 0)
440 break;
441 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
442 if (c & 1)
443 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
444 info->xmit_tail += c;
445 info->xmit_tail &= XMIT_BUF_SIZE - 1;
446 info->xmit_cnt -= c;
447 info->xmit_fifo_room -= c;
448 #ifdef ROCKET_DEBUG_INTR
449 printk(KERN_INFO "tx %d chars...\n", c);
450 #endif
453 if (info->xmit_cnt == 0)
454 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
456 if (info->xmit_cnt < WAKEUP_CHARS) {
457 tty_wakeup(tty);
458 #ifdef ROCKETPORT_HAVE_POLL_WAIT
459 wake_up_interruptible(&tty->poll_wait);
460 #endif
463 spin_unlock_irqrestore(&info->slock, flags);
464 tty_kref_put(tty);
466 #ifdef ROCKET_DEBUG_INTR
467 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
468 info->xmit_tail, info->xmit_fifo_room);
469 #endif
473 * Called when a serial port signals it has read data in it's RX FIFO.
474 * It checks what interrupts are pending and services them, including
475 * receiving serial data.
477 static void rp_handle_port(struct r_port *info)
479 CHANNEL_t *cp;
480 unsigned int IntMask, ChanStatus;
482 if (!info)
483 return;
485 if (!tty_port_initialized(&info->port)) {
486 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
487 "info->flags & NOT_INIT\n");
488 return;
491 cp = &info->channel;
493 IntMask = sGetChanIntID(cp) & info->intmask;
494 #ifdef ROCKET_DEBUG_INTR
495 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
496 #endif
497 ChanStatus = sGetChanStatus(cp);
498 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
499 rp_do_receive(info, cp, ChanStatus);
501 if (IntMask & DELTA_CD) { /* CD change */
502 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
503 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
504 (ChanStatus & CD_ACT) ? "on" : "off");
505 #endif
506 if (!(ChanStatus & CD_ACT) && info->cd_status) {
507 #ifdef ROCKET_DEBUG_HANGUP
508 printk(KERN_INFO "CD drop, calling hangup.\n");
509 #endif
510 tty_port_tty_hangup(&info->port, false);
512 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
513 wake_up_interruptible(&info->port.open_wait);
515 #ifdef ROCKET_DEBUG_INTR
516 if (IntMask & DELTA_CTS) { /* CTS change */
517 printk(KERN_INFO "CTS change...\n");
519 if (IntMask & DELTA_DSR) { /* DSR change */
520 printk(KERN_INFO "DSR change...\n");
522 #endif
526 * The top level polling routine. Repeats every 1/100 HZ (10ms).
528 static void rp_do_poll(struct timer_list *unused)
530 CONTROLLER_t *ctlp;
531 int ctrl, aiop, ch, line;
532 unsigned int xmitmask, i;
533 unsigned int CtlMask;
534 unsigned char AiopMask;
535 Word_t bit;
537 /* Walk through all the boards (ctrl's) */
538 for (ctrl = 0; ctrl < max_board; ctrl++) {
539 if (rcktpt_io_addr[ctrl] <= 0)
540 continue;
542 /* Get a ptr to the board's control struct */
543 ctlp = sCtlNumToCtlPtr(ctrl);
545 /* Get the interrupt status from the board */
546 #ifdef CONFIG_PCI
547 if (ctlp->BusType == isPCI)
548 CtlMask = sPCIGetControllerIntStatus(ctlp);
549 else
550 #endif
551 CtlMask = sGetControllerIntStatus(ctlp);
553 /* Check if any AIOP read bits are set */
554 for (aiop = 0; CtlMask; aiop++) {
555 bit = ctlp->AiopIntrBits[aiop];
556 if (CtlMask & bit) {
557 CtlMask &= ~bit;
558 AiopMask = sGetAiopIntStatus(ctlp, aiop);
560 /* Check if any port read bits are set */
561 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
562 if (AiopMask & 1) {
564 /* Get the line number (/dev/ttyRx number). */
565 /* Read the data from the port. */
566 line = GetLineNumber(ctrl, aiop, ch);
567 rp_handle_port(rp_table[line]);
573 xmitmask = xmit_flags[ctrl];
576 * xmit_flags contains bit-significant flags, indicating there is data
577 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
578 * 1, ... (32 total possible). The variable i has the aiop and ch
579 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
581 if (xmitmask) {
582 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
583 if (xmitmask & (1 << i)) {
584 aiop = (i & 0x18) >> 3;
585 ch = i & 0x07;
586 line = GetLineNumber(ctrl, aiop, ch);
587 rp_do_transmit(rp_table[line]);
594 * Reset the timer so we get called at the next clock tick (10ms).
596 if (atomic_read(&rp_num_ports_open))
597 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
601 * Initializes the r_port structure for a port, as well as enabling the port on
602 * the board.
603 * Inputs: board, aiop, chan numbers
605 static void __init
606 init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
608 unsigned rocketMode;
609 struct r_port *info;
610 int line;
611 CONTROLLER_T *ctlp;
613 /* Get the next available line number */
614 line = SetLineNumber(board, aiop, chan);
616 ctlp = sCtlNumToCtlPtr(board);
618 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
619 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
620 if (!info) {
621 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
622 line);
623 return;
626 info->magic = RPORT_MAGIC;
627 info->line = line;
628 info->ctlp = ctlp;
629 info->board = board;
630 info->aiop = aiop;
631 info->chan = chan;
632 tty_port_init(&info->port);
633 info->port.ops = &rocket_port_ops;
634 info->flags &= ~ROCKET_MODE_MASK;
635 if (board < ARRAY_SIZE(pc104) && line < ARRAY_SIZE(pc104_1))
636 switch (pc104[board][line]) {
637 case 422:
638 info->flags |= ROCKET_MODE_RS422;
639 break;
640 case 485:
641 info->flags |= ROCKET_MODE_RS485;
642 break;
643 case 232:
644 default:
645 info->flags |= ROCKET_MODE_RS232;
646 break;
648 else
649 info->flags |= ROCKET_MODE_RS232;
651 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
652 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
653 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
654 board, aiop, chan);
655 tty_port_destroy(&info->port);
656 kfree(info);
657 return;
660 rocketMode = info->flags & ROCKET_MODE_MASK;
662 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
663 sEnRTSToggle(&info->channel);
664 else
665 sDisRTSToggle(&info->channel);
667 if (ctlp->boardType == ROCKET_TYPE_PC104) {
668 switch (rocketMode) {
669 case ROCKET_MODE_RS485:
670 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
671 break;
672 case ROCKET_MODE_RS422:
673 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
674 break;
675 case ROCKET_MODE_RS232:
676 default:
677 if (info->flags & ROCKET_RTS_TOGGLE)
678 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
679 else
680 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
681 break;
684 spin_lock_init(&info->slock);
685 mutex_init(&info->write_mtx);
686 rp_table[line] = info;
687 tty_port_register_device(&info->port, rocket_driver, line,
688 pci_dev ? &pci_dev->dev : NULL);
692 * Configures a rocketport port according to its termio settings. Called from
693 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
695 static void configure_r_port(struct tty_struct *tty, struct r_port *info,
696 struct ktermios *old_termios)
698 unsigned cflag;
699 unsigned long flags;
700 unsigned rocketMode;
701 int bits, baud, divisor;
702 CHANNEL_t *cp;
703 struct ktermios *t = &tty->termios;
705 cp = &info->channel;
706 cflag = t->c_cflag;
708 /* Byte size and parity */
709 if ((cflag & CSIZE) == CS8) {
710 sSetData8(cp);
711 bits = 10;
712 } else {
713 sSetData7(cp);
714 bits = 9;
716 if (cflag & CSTOPB) {
717 sSetStop2(cp);
718 bits++;
719 } else {
720 sSetStop1(cp);
723 if (cflag & PARENB) {
724 sEnParity(cp);
725 bits++;
726 if (cflag & PARODD) {
727 sSetOddParity(cp);
728 } else {
729 sSetEvenParity(cp);
731 } else {
732 sDisParity(cp);
735 /* baud rate */
736 baud = tty_get_baud_rate(tty);
737 if (!baud)
738 baud = 9600;
739 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
740 if ((divisor >= 8192 || divisor < 0) && old_termios) {
741 baud = tty_termios_baud_rate(old_termios);
742 if (!baud)
743 baud = 9600;
744 divisor = (rp_baud_base[info->board] / baud) - 1;
746 if (divisor >= 8192 || divisor < 0) {
747 baud = 9600;
748 divisor = (rp_baud_base[info->board] / baud) - 1;
750 info->cps = baud / bits;
751 sSetBaud(cp, divisor);
753 /* FIXME: Should really back compute a baud rate from the divisor */
754 tty_encode_baud_rate(tty, baud, baud);
756 if (cflag & CRTSCTS) {
757 info->intmask |= DELTA_CTS;
758 sEnCTSFlowCtl(cp);
759 } else {
760 info->intmask &= ~DELTA_CTS;
761 sDisCTSFlowCtl(cp);
763 if (cflag & CLOCAL) {
764 info->intmask &= ~DELTA_CD;
765 } else {
766 spin_lock_irqsave(&info->slock, flags);
767 if (sGetChanStatus(cp) & CD_ACT)
768 info->cd_status = 1;
769 else
770 info->cd_status = 0;
771 info->intmask |= DELTA_CD;
772 spin_unlock_irqrestore(&info->slock, flags);
776 * Handle software flow control in the board
778 #ifdef ROCKET_SOFT_FLOW
779 if (I_IXON(tty)) {
780 sEnTxSoftFlowCtl(cp);
781 if (I_IXANY(tty)) {
782 sEnIXANY(cp);
783 } else {
784 sDisIXANY(cp);
786 sSetTxXONChar(cp, START_CHAR(tty));
787 sSetTxXOFFChar(cp, STOP_CHAR(tty));
788 } else {
789 sDisTxSoftFlowCtl(cp);
790 sDisIXANY(cp);
791 sClrTxXOFF(cp);
793 #endif
796 * Set up ignore/read mask words
798 info->read_status_mask = STMRCVROVRH | 0xFF;
799 if (I_INPCK(tty))
800 info->read_status_mask |= STMFRAMEH | STMPARITYH;
801 if (I_BRKINT(tty) || I_PARMRK(tty))
802 info->read_status_mask |= STMBREAKH;
805 * Characters to ignore
807 info->ignore_status_mask = 0;
808 if (I_IGNPAR(tty))
809 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
810 if (I_IGNBRK(tty)) {
811 info->ignore_status_mask |= STMBREAKH;
813 * If we're ignoring parity and break indicators,
814 * ignore overruns too. (For real raw support).
816 if (I_IGNPAR(tty))
817 info->ignore_status_mask |= STMRCVROVRH;
820 rocketMode = info->flags & ROCKET_MODE_MASK;
822 if ((info->flags & ROCKET_RTS_TOGGLE)
823 || (rocketMode == ROCKET_MODE_RS485))
824 sEnRTSToggle(cp);
825 else
826 sDisRTSToggle(cp);
828 sSetRTS(&info->channel);
830 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
831 switch (rocketMode) {
832 case ROCKET_MODE_RS485:
833 sSetInterfaceMode(cp, InterfaceModeRS485);
834 break;
835 case ROCKET_MODE_RS422:
836 sSetInterfaceMode(cp, InterfaceModeRS422);
837 break;
838 case ROCKET_MODE_RS232:
839 default:
840 if (info->flags & ROCKET_RTS_TOGGLE)
841 sSetInterfaceMode(cp, InterfaceModeRS232T);
842 else
843 sSetInterfaceMode(cp, InterfaceModeRS232);
844 break;
849 static int carrier_raised(struct tty_port *port)
851 struct r_port *info = container_of(port, struct r_port, port);
852 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
855 static void dtr_rts(struct tty_port *port, int on)
857 struct r_port *info = container_of(port, struct r_port, port);
858 if (on) {
859 sSetDTR(&info->channel);
860 sSetRTS(&info->channel);
861 } else {
862 sClrDTR(&info->channel);
863 sClrRTS(&info->channel);
868 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
869 * port's r_port struct. Initializes the port hardware.
871 static int rp_open(struct tty_struct *tty, struct file *filp)
873 struct r_port *info;
874 struct tty_port *port;
875 int retval;
876 CHANNEL_t *cp;
877 unsigned long page;
879 info = rp_table[tty->index];
880 if (info == NULL)
881 return -ENXIO;
882 port = &info->port;
884 page = __get_free_page(GFP_KERNEL);
885 if (!page)
886 return -ENOMEM;
889 * We must not sleep from here until the port is marked fully in use.
891 if (info->xmit_buf)
892 free_page(page);
893 else
894 info->xmit_buf = (unsigned char *) page;
896 tty->driver_data = info;
897 tty_port_tty_set(port, tty);
899 if (port->count++ == 0) {
900 atomic_inc(&rp_num_ports_open);
902 #ifdef ROCKET_DEBUG_OPEN
903 printk(KERN_INFO "rocket mod++ = %d...\n",
904 atomic_read(&rp_num_ports_open));
905 #endif
907 #ifdef ROCKET_DEBUG_OPEN
908 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
909 #endif
912 * Info->count is now 1; so it's safe to sleep now.
914 if (!tty_port_initialized(port)) {
915 cp = &info->channel;
916 sSetRxTrigger(cp, TRIG_1);
917 if (sGetChanStatus(cp) & CD_ACT)
918 info->cd_status = 1;
919 else
920 info->cd_status = 0;
921 sDisRxStatusMode(cp);
922 sFlushRxFIFO(cp);
923 sFlushTxFIFO(cp);
925 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
926 sSetRxTrigger(cp, TRIG_1);
928 sGetChanStatus(cp);
929 sDisRxStatusMode(cp);
930 sClrTxXOFF(cp);
932 sDisCTSFlowCtl(cp);
933 sDisTxSoftFlowCtl(cp);
935 sEnRxFIFO(cp);
936 sEnTransmit(cp);
938 tty_port_set_initialized(&info->port, 1);
940 configure_r_port(tty, info, NULL);
941 if (C_BAUD(tty)) {
942 sSetDTR(cp);
943 sSetRTS(cp);
946 /* Starts (or resets) the maint polling loop */
947 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
949 retval = tty_port_block_til_ready(port, tty, filp);
950 if (retval) {
951 #ifdef ROCKET_DEBUG_OPEN
952 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
953 #endif
954 return retval;
956 return 0;
960 * Exception handler that closes a serial port. info->port.count is considered critical.
962 static void rp_close(struct tty_struct *tty, struct file *filp)
964 struct r_port *info = tty->driver_data;
965 struct tty_port *port = &info->port;
966 int timeout;
967 CHANNEL_t *cp;
969 if (rocket_paranoia_check(info, "rp_close"))
970 return;
972 #ifdef ROCKET_DEBUG_OPEN
973 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
974 #endif
976 if (tty_port_close_start(port, tty, filp) == 0)
977 return;
979 mutex_lock(&port->mutex);
980 cp = &info->channel;
982 * Before we drop DTR, make sure the UART transmitter
983 * has completely drained; this is especially
984 * important if there is a transmit FIFO!
986 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
987 if (timeout == 0)
988 timeout = 1;
989 rp_wait_until_sent(tty, timeout);
990 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
992 sDisTransmit(cp);
993 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
994 sDisCTSFlowCtl(cp);
995 sDisTxSoftFlowCtl(cp);
996 sClrTxXOFF(cp);
997 sFlushRxFIFO(cp);
998 sFlushTxFIFO(cp);
999 sClrRTS(cp);
1000 if (C_HUPCL(tty))
1001 sClrDTR(cp);
1003 rp_flush_buffer(tty);
1005 tty_ldisc_flush(tty);
1007 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1009 /* We can't yet use tty_port_close_end as the buffer handling in this
1010 driver is a bit different to the usual */
1012 if (port->blocked_open) {
1013 if (port->close_delay) {
1014 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1016 wake_up_interruptible(&port->open_wait);
1017 } else {
1018 if (info->xmit_buf) {
1019 free_page((unsigned long) info->xmit_buf);
1020 info->xmit_buf = NULL;
1023 spin_lock_irq(&port->lock);
1024 tty->closing = 0;
1025 spin_unlock_irq(&port->lock);
1026 tty_port_set_initialized(port, 0);
1027 tty_port_set_active(port, 0);
1028 mutex_unlock(&port->mutex);
1029 tty_port_tty_set(port, NULL);
1031 atomic_dec(&rp_num_ports_open);
1033 #ifdef ROCKET_DEBUG_OPEN
1034 printk(KERN_INFO "rocket mod-- = %d...\n",
1035 atomic_read(&rp_num_ports_open));
1036 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1037 #endif
1041 static void rp_set_termios(struct tty_struct *tty,
1042 struct ktermios *old_termios)
1044 struct r_port *info = tty->driver_data;
1045 CHANNEL_t *cp;
1046 unsigned cflag;
1048 if (rocket_paranoia_check(info, "rp_set_termios"))
1049 return;
1051 cflag = tty->termios.c_cflag;
1054 * This driver doesn't support CS5 or CS6
1056 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1057 tty->termios.c_cflag =
1058 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1059 /* Or CMSPAR */
1060 tty->termios.c_cflag &= ~CMSPAR;
1062 configure_r_port(tty, info, old_termios);
1064 cp = &info->channel;
1066 /* Handle transition to B0 status */
1067 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1068 sClrDTR(cp);
1069 sClrRTS(cp);
1072 /* Handle transition away from B0 status */
1073 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1074 sSetRTS(cp);
1075 sSetDTR(cp);
1078 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1079 rp_start(tty);
1082 static int rp_break(struct tty_struct *tty, int break_state)
1084 struct r_port *info = tty->driver_data;
1085 unsigned long flags;
1087 if (rocket_paranoia_check(info, "rp_break"))
1088 return -EINVAL;
1090 spin_lock_irqsave(&info->slock, flags);
1091 if (break_state == -1)
1092 sSendBreak(&info->channel);
1093 else
1094 sClrBreak(&info->channel);
1095 spin_unlock_irqrestore(&info->slock, flags);
1096 return 0;
1100 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1101 * the UPCI boards was added, it was decided to make this a function because
1102 * the macro was getting too complicated. All cases except the first one
1103 * (UPCIRingInd) are taken directly from the original macro.
1105 static int sGetChanRI(CHANNEL_T * ChP)
1107 CONTROLLER_t *CtlP = ChP->CtlP;
1108 int ChanNum = ChP->ChanNum;
1109 int RingInd = 0;
1111 if (CtlP->UPCIRingInd)
1112 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1113 else if (CtlP->AltChanRingIndicator)
1114 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1115 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1116 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1118 return RingInd;
1121 /********************************************************************************************/
1122 /* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1125 * Returns the state of the serial modem control lines. These next 2 functions
1126 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1128 static int rp_tiocmget(struct tty_struct *tty)
1130 struct r_port *info = tty->driver_data;
1131 unsigned int control, result, ChanStatus;
1133 ChanStatus = sGetChanStatusLo(&info->channel);
1134 control = info->channel.TxControl[3];
1135 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1136 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1137 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1138 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1139 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1140 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1142 return result;
1146 * Sets the modem control lines
1148 static int rp_tiocmset(struct tty_struct *tty,
1149 unsigned int set, unsigned int clear)
1151 struct r_port *info = tty->driver_data;
1153 if (set & TIOCM_RTS)
1154 info->channel.TxControl[3] |= SET_RTS;
1155 if (set & TIOCM_DTR)
1156 info->channel.TxControl[3] |= SET_DTR;
1157 if (clear & TIOCM_RTS)
1158 info->channel.TxControl[3] &= ~SET_RTS;
1159 if (clear & TIOCM_DTR)
1160 info->channel.TxControl[3] &= ~SET_DTR;
1162 out32(info->channel.IndexAddr, info->channel.TxControl);
1163 return 0;
1166 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1168 struct rocket_config tmp;
1170 memset(&tmp, 0, sizeof (tmp));
1171 mutex_lock(&info->port.mutex);
1172 tmp.line = info->line;
1173 tmp.flags = info->flags;
1174 tmp.close_delay = info->port.close_delay;
1175 tmp.closing_wait = info->port.closing_wait;
1176 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1177 mutex_unlock(&info->port.mutex);
1179 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1180 return -EFAULT;
1181 return 0;
1184 static int set_config(struct tty_struct *tty, struct r_port *info,
1185 struct rocket_config __user *new_info)
1187 struct rocket_config new_serial;
1189 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1190 return -EFAULT;
1192 mutex_lock(&info->port.mutex);
1193 if (!capable(CAP_SYS_ADMIN))
1195 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1196 mutex_unlock(&info->port.mutex);
1197 return -EPERM;
1199 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1200 mutex_unlock(&info->port.mutex);
1201 return 0;
1204 if ((new_serial.flags ^ info->flags) & ROCKET_SPD_MASK) {
1205 /* warn about deprecation, unless clearing */
1206 if (new_serial.flags & ROCKET_SPD_MASK)
1207 dev_warn_ratelimited(tty->dev, "use of SPD flags is deprecated\n");
1210 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1211 info->port.close_delay = new_serial.close_delay;
1212 info->port.closing_wait = new_serial.closing_wait;
1214 mutex_unlock(&info->port.mutex);
1216 configure_r_port(tty, info, NULL);
1217 return 0;
1221 * This function fills in a rocket_ports struct with information
1222 * about what boards/ports are in the system. This info is passed
1223 * to user space. See setrocket.c where the info is used to create
1224 * the /dev/ttyRx ports.
1226 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1228 struct rocket_ports *tmp;
1229 int board, ret = 0;
1231 tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
1232 if (!tmp)
1233 return -ENOMEM;
1235 tmp->tty_major = rocket_driver->major;
1237 for (board = 0; board < 4; board++) {
1238 tmp->rocketModel[board].model = rocketModel[board].model;
1239 strcpy(tmp->rocketModel[board].modelString,
1240 rocketModel[board].modelString);
1241 tmp->rocketModel[board].numPorts = rocketModel[board].numPorts;
1242 tmp->rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1243 tmp->rocketModel[board].startingPortNumber =
1244 rocketModel[board].startingPortNumber;
1246 if (copy_to_user(retports, tmp, sizeof(*retports)))
1247 ret = -EFAULT;
1248 kfree(tmp);
1249 return ret;
1252 static int reset_rm2(struct r_port *info, void __user *arg)
1254 int reset;
1256 if (!capable(CAP_SYS_ADMIN))
1257 return -EPERM;
1259 if (copy_from_user(&reset, arg, sizeof (int)))
1260 return -EFAULT;
1261 if (reset)
1262 reset = 1;
1264 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1265 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1266 return -EINVAL;
1268 if (info->ctlp->BusType == isISA)
1269 sModemReset(info->ctlp, info->chan, reset);
1270 else
1271 sPCIModemReset(info->ctlp, info->chan, reset);
1273 return 0;
1276 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1278 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1279 return -EFAULT;
1280 return 0;
1283 /* IOCTL call handler into the driver */
1284 static int rp_ioctl(struct tty_struct *tty,
1285 unsigned int cmd, unsigned long arg)
1287 struct r_port *info = tty->driver_data;
1288 void __user *argp = (void __user *)arg;
1289 int ret = 0;
1291 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1292 return -ENXIO;
1294 switch (cmd) {
1295 case RCKP_GET_CONFIG:
1296 dev_warn_ratelimited(tty->dev,
1297 "RCKP_GET_CONFIG option is deprecated\n");
1298 ret = get_config(info, argp);
1299 break;
1300 case RCKP_SET_CONFIG:
1301 dev_warn_ratelimited(tty->dev,
1302 "RCKP_SET_CONFIG option is deprecated\n");
1303 ret = set_config(tty, info, argp);
1304 break;
1305 case RCKP_GET_PORTS:
1306 dev_warn_ratelimited(tty->dev,
1307 "RCKP_GET_PORTS option is deprecated\n");
1308 ret = get_ports(info, argp);
1309 break;
1310 case RCKP_RESET_RM2:
1311 dev_warn_ratelimited(tty->dev,
1312 "RCKP_RESET_RM2 option is deprecated\n");
1313 ret = reset_rm2(info, argp);
1314 break;
1315 case RCKP_GET_VERSION:
1316 dev_warn_ratelimited(tty->dev,
1317 "RCKP_GET_VERSION option is deprecated\n");
1318 ret = get_version(info, argp);
1319 break;
1320 default:
1321 ret = -ENOIOCTLCMD;
1323 return ret;
1326 static void rp_send_xchar(struct tty_struct *tty, char ch)
1328 struct r_port *info = tty->driver_data;
1329 CHANNEL_t *cp;
1331 if (rocket_paranoia_check(info, "rp_send_xchar"))
1332 return;
1334 cp = &info->channel;
1335 if (sGetTxCnt(cp))
1336 sWriteTxPrioByte(cp, ch);
1337 else
1338 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1341 static void rp_throttle(struct tty_struct *tty)
1343 struct r_port *info = tty->driver_data;
1345 #ifdef ROCKET_DEBUG_THROTTLE
1346 printk(KERN_INFO "throttle %s ....\n", tty->name);
1347 #endif
1349 if (rocket_paranoia_check(info, "rp_throttle"))
1350 return;
1352 if (I_IXOFF(tty))
1353 rp_send_xchar(tty, STOP_CHAR(tty));
1355 sClrRTS(&info->channel);
1358 static void rp_unthrottle(struct tty_struct *tty)
1360 struct r_port *info = tty->driver_data;
1361 #ifdef ROCKET_DEBUG_THROTTLE
1362 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1363 #endif
1365 if (rocket_paranoia_check(info, "rp_unthrottle"))
1366 return;
1368 if (I_IXOFF(tty))
1369 rp_send_xchar(tty, START_CHAR(tty));
1371 sSetRTS(&info->channel);
1375 * ------------------------------------------------------------
1376 * rp_stop() and rp_start()
1378 * This routines are called before setting or resetting tty->stopped.
1379 * They enable or disable transmitter interrupts, as necessary.
1380 * ------------------------------------------------------------
1382 static void rp_stop(struct tty_struct *tty)
1384 struct r_port *info = tty->driver_data;
1386 #ifdef ROCKET_DEBUG_FLOW
1387 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1388 info->xmit_cnt, info->xmit_fifo_room);
1389 #endif
1391 if (rocket_paranoia_check(info, "rp_stop"))
1392 return;
1394 if (sGetTxCnt(&info->channel))
1395 sDisTransmit(&info->channel);
1398 static void rp_start(struct tty_struct *tty)
1400 struct r_port *info = tty->driver_data;
1402 #ifdef ROCKET_DEBUG_FLOW
1403 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1404 info->xmit_cnt, info->xmit_fifo_room);
1405 #endif
1407 if (rocket_paranoia_check(info, "rp_stop"))
1408 return;
1410 sEnTransmit(&info->channel);
1411 set_bit((info->aiop * 8) + info->chan,
1412 (void *) &xmit_flags[info->board]);
1416 * rp_wait_until_sent() --- wait until the transmitter is empty
1418 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1420 struct r_port *info = tty->driver_data;
1421 CHANNEL_t *cp;
1422 unsigned long orig_jiffies;
1423 int check_time, exit_time;
1424 int txcnt;
1426 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1427 return;
1429 cp = &info->channel;
1431 orig_jiffies = jiffies;
1432 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1433 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1434 jiffies);
1435 printk(KERN_INFO "cps=%d...\n", info->cps);
1436 #endif
1437 while (1) {
1438 txcnt = sGetTxCnt(cp);
1439 if (!txcnt) {
1440 if (sGetChanStatusLo(cp) & TXSHRMT)
1441 break;
1442 check_time = (HZ / info->cps) / 5;
1443 } else {
1444 check_time = HZ * txcnt / info->cps;
1446 if (timeout) {
1447 exit_time = orig_jiffies + timeout - jiffies;
1448 if (exit_time <= 0)
1449 break;
1450 if (exit_time < check_time)
1451 check_time = exit_time;
1453 if (check_time == 0)
1454 check_time = 1;
1455 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1456 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1457 jiffies, check_time);
1458 #endif
1459 msleep_interruptible(jiffies_to_msecs(check_time));
1460 if (signal_pending(current))
1461 break;
1463 __set_current_state(TASK_RUNNING);
1464 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1465 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1466 #endif
1470 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1472 static void rp_hangup(struct tty_struct *tty)
1474 CHANNEL_t *cp;
1475 struct r_port *info = tty->driver_data;
1476 unsigned long flags;
1478 if (rocket_paranoia_check(info, "rp_hangup"))
1479 return;
1481 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1482 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1483 #endif
1484 rp_flush_buffer(tty);
1485 spin_lock_irqsave(&info->port.lock, flags);
1486 if (info->port.count)
1487 atomic_dec(&rp_num_ports_open);
1488 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1489 spin_unlock_irqrestore(&info->port.lock, flags);
1491 tty_port_hangup(&info->port);
1493 cp = &info->channel;
1494 sDisRxFIFO(cp);
1495 sDisTransmit(cp);
1496 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1497 sDisCTSFlowCtl(cp);
1498 sDisTxSoftFlowCtl(cp);
1499 sClrTxXOFF(cp);
1500 tty_port_set_initialized(&info->port, 0);
1502 wake_up_interruptible(&info->port.open_wait);
1506 * Exception handler - write char routine. The RocketPort driver uses a
1507 * double-buffering strategy, with the twist that if the in-memory CPU
1508 * buffer is empty, and there's space in the transmit FIFO, the
1509 * writing routines will write directly to transmit FIFO.
1510 * Write buffer and counters protected by spinlocks
1512 static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1514 struct r_port *info = tty->driver_data;
1515 CHANNEL_t *cp;
1516 unsigned long flags;
1518 if (rocket_paranoia_check(info, "rp_put_char"))
1519 return 0;
1522 * Grab the port write mutex, locking out other processes that try to
1523 * write to this port
1525 mutex_lock(&info->write_mtx);
1527 #ifdef ROCKET_DEBUG_WRITE
1528 printk(KERN_INFO "rp_put_char %c...\n", ch);
1529 #endif
1531 spin_lock_irqsave(&info->slock, flags);
1532 cp = &info->channel;
1534 if (!tty->stopped && info->xmit_fifo_room == 0)
1535 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1537 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1538 info->xmit_buf[info->xmit_head++] = ch;
1539 info->xmit_head &= XMIT_BUF_SIZE - 1;
1540 info->xmit_cnt++;
1541 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1542 } else {
1543 sOutB(sGetTxRxDataIO(cp), ch);
1544 info->xmit_fifo_room--;
1546 spin_unlock_irqrestore(&info->slock, flags);
1547 mutex_unlock(&info->write_mtx);
1548 return 1;
1552 * Exception handler - write routine, called when user app writes to the device.
1553 * A per port write mutex is used to protect from another process writing to
1554 * this port at the same time. This other process could be running on the other CPU
1555 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1556 * Spinlocks protect the info xmit members.
1558 static int rp_write(struct tty_struct *tty,
1559 const unsigned char *buf, int count)
1561 struct r_port *info = tty->driver_data;
1562 CHANNEL_t *cp;
1563 const unsigned char *b;
1564 int c, retval = 0;
1565 unsigned long flags;
1567 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1568 return 0;
1570 if (mutex_lock_interruptible(&info->write_mtx))
1571 return -ERESTARTSYS;
1573 #ifdef ROCKET_DEBUG_WRITE
1574 printk(KERN_INFO "rp_write %d chars...\n", count);
1575 #endif
1576 cp = &info->channel;
1578 if (!tty->stopped && info->xmit_fifo_room < count)
1579 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1582 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1583 * into FIFO. Use the write queue for temp storage.
1585 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1586 c = min(count, info->xmit_fifo_room);
1587 b = buf;
1589 /* Push data into FIFO, 2 bytes at a time */
1590 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1592 /* If there is a byte remaining, write it */
1593 if (c & 1)
1594 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1596 retval += c;
1597 buf += c;
1598 count -= c;
1600 spin_lock_irqsave(&info->slock, flags);
1601 info->xmit_fifo_room -= c;
1602 spin_unlock_irqrestore(&info->slock, flags);
1605 /* If count is zero, we wrote it all and are done */
1606 if (!count)
1607 goto end;
1609 /* Write remaining data into the port's xmit_buf */
1610 while (1) {
1611 /* Hung up ? */
1612 if (!tty_port_active(&info->port))
1613 goto end;
1614 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1615 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1616 if (c <= 0)
1617 break;
1619 b = buf;
1620 memcpy(info->xmit_buf + info->xmit_head, b, c);
1622 spin_lock_irqsave(&info->slock, flags);
1623 info->xmit_head =
1624 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1625 info->xmit_cnt += c;
1626 spin_unlock_irqrestore(&info->slock, flags);
1628 buf += c;
1629 count -= c;
1630 retval += c;
1633 if ((retval > 0) && !tty->stopped)
1634 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1636 end:
1637 if (info->xmit_cnt < WAKEUP_CHARS) {
1638 tty_wakeup(tty);
1639 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1640 wake_up_interruptible(&tty->poll_wait);
1641 #endif
1643 mutex_unlock(&info->write_mtx);
1644 return retval;
1648 * Return the number of characters that can be sent. We estimate
1649 * only using the in-memory transmit buffer only, and ignore the
1650 * potential space in the transmit FIFO.
1652 static int rp_write_room(struct tty_struct *tty)
1654 struct r_port *info = tty->driver_data;
1655 int ret;
1657 if (rocket_paranoia_check(info, "rp_write_room"))
1658 return 0;
1660 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1661 if (ret < 0)
1662 ret = 0;
1663 #ifdef ROCKET_DEBUG_WRITE
1664 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1665 #endif
1666 return ret;
1670 * Return the number of characters in the buffer. Again, this only
1671 * counts those characters in the in-memory transmit buffer.
1673 static int rp_chars_in_buffer(struct tty_struct *tty)
1675 struct r_port *info = tty->driver_data;
1677 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1678 return 0;
1680 #ifdef ROCKET_DEBUG_WRITE
1681 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1682 #endif
1683 return info->xmit_cnt;
1687 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1688 * r_port struct for the port. Note that spinlock are used to protect info members,
1689 * do not call this function if the spinlock is already held.
1691 static void rp_flush_buffer(struct tty_struct *tty)
1693 struct r_port *info = tty->driver_data;
1694 CHANNEL_t *cp;
1695 unsigned long flags;
1697 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1698 return;
1700 spin_lock_irqsave(&info->slock, flags);
1701 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1702 spin_unlock_irqrestore(&info->slock, flags);
1704 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1705 wake_up_interruptible(&tty->poll_wait);
1706 #endif
1707 tty_wakeup(tty);
1709 cp = &info->channel;
1710 sFlushTxFIFO(cp);
1713 #ifdef CONFIG_PCI
1715 static const struct pci_device_id rocket_pci_ids[] = {
1716 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1717 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1718 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1719 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1720 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1721 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1722 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1723 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1724 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1725 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1726 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1727 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1728 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1740 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1742 /* Resets the speaker controller on RocketModem II and III devices */
1743 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1745 ByteIO_t addr;
1747 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1748 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1749 addr = CtlP->AiopIO[0] + 0x4F;
1750 sOutB(addr, 0);
1753 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1754 if ((model == MODEL_UPCI_RM3_8PORT)
1755 || (model == MODEL_UPCI_RM3_4PORT)) {
1756 addr = CtlP->AiopIO[0] + 0x88;
1757 sOutB(addr, 0);
1761 /***************************************************************************
1762 Function: sPCIInitController
1763 Purpose: Initialization of controller global registers and controller
1764 structure.
1765 Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1766 IRQNum,Frequency,PeriodicOnly)
1767 CONTROLLER_T *CtlP; Ptr to controller structure
1768 int CtlNum; Controller number
1769 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1770 This list must be in the order the AIOPs will be found on the
1771 controller. Once an AIOP in the list is not found, it is
1772 assumed that there are no more AIOPs on the controller.
1773 int AiopIOListSize; Number of addresses in AiopIOList
1774 int IRQNum; Interrupt Request number. Can be any of the following:
1775 0: Disable global interrupts
1776 3: IRQ 3
1777 4: IRQ 4
1778 5: IRQ 5
1779 9: IRQ 9
1780 10: IRQ 10
1781 11: IRQ 11
1782 12: IRQ 12
1783 15: IRQ 15
1784 Byte_t Frequency: A flag identifying the frequency
1785 of the periodic interrupt, can be any one of the following:
1786 FREQ_DIS - periodic interrupt disabled
1787 FREQ_137HZ - 137 Hertz
1788 FREQ_69HZ - 69 Hertz
1789 FREQ_34HZ - 34 Hertz
1790 FREQ_17HZ - 17 Hertz
1791 FREQ_9HZ - 9 Hertz
1792 FREQ_4HZ - 4 Hertz
1793 If IRQNum is set to 0 the Frequency parameter is
1794 overidden, it is forced to a value of FREQ_DIS.
1795 int PeriodicOnly: 1 if all interrupts except the periodic
1796 interrupt are to be blocked.
1797 0 is both the periodic interrupt and
1798 other channel interrupts are allowed.
1799 If IRQNum is set to 0 the PeriodicOnly parameter is
1800 overidden, it is forced to a value of 0.
1801 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1802 initialization failed.
1804 Comments:
1805 If periodic interrupts are to be disabled but AIOP interrupts
1806 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1808 If interrupts are to be completely disabled set IRQNum to 0.
1810 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1811 invalid combination.
1813 This function performs initialization of global interrupt modes,
1814 but it does not actually enable global interrupts. To enable
1815 and disable global interrupts use functions sEnGlobalInt() and
1816 sDisGlobalInt(). Enabling of global interrupts is normally not
1817 done until all other initializations are complete.
1819 Even if interrupts are globally enabled, they must also be
1820 individually enabled for each channel that is to generate
1821 interrupts.
1823 Warnings: No range checking on any of the parameters is done.
1825 No context switches are allowed while executing this function.
1827 After this function all AIOPs on the controller are disabled,
1828 they can be enabled with sEnAiop().
1830 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1831 ByteIO_t * AiopIOList, int AiopIOListSize,
1832 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1833 int PeriodicOnly, int altChanRingIndicator,
1834 int UPCIRingInd)
1836 int i;
1837 ByteIO_t io;
1839 CtlP->AltChanRingIndicator = altChanRingIndicator;
1840 CtlP->UPCIRingInd = UPCIRingInd;
1841 CtlP->CtlNum = CtlNum;
1842 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1843 CtlP->BusType = isPCI; /* controller release 1 */
1845 if (ConfigIO) {
1846 CtlP->isUPCI = 1;
1847 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1848 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1849 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1850 } else {
1851 CtlP->isUPCI = 0;
1852 CtlP->PCIIO =
1853 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1854 CtlP->AiopIntrBits = aiop_intr_bits;
1857 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1858 /* Init AIOPs */
1859 CtlP->NumAiop = 0;
1860 for (i = 0; i < AiopIOListSize; i++) {
1861 io = AiopIOList[i];
1862 CtlP->AiopIO[i] = (WordIO_t) io;
1863 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1865 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1866 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1867 break; /* done looking for AIOPs */
1869 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1870 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1871 sOutB(io + _INDX_DATA, sClockPrescale);
1872 CtlP->NumAiop++; /* bump count of AIOPs */
1875 if (CtlP->NumAiop == 0)
1876 return (-1);
1877 else
1878 return (CtlP->NumAiop);
1882 * Called when a PCI card is found. Retrieves and stores model information,
1883 * init's aiopic and serial port hardware.
1884 * Inputs: i is the board number (0-n)
1886 static __init int register_PCI(int i, struct pci_dev *dev)
1888 int num_aiops, aiop, max_num_aiops, chan;
1889 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1890 CONTROLLER_t *ctlp;
1892 int fast_clock = 0;
1893 int altChanRingIndicator = 0;
1894 int ports_per_aiop = 8;
1895 WordIO_t ConfigIO = 0;
1896 ByteIO_t UPCIRingInd = 0;
1898 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1899 pci_enable_device(dev) || i >= NUM_BOARDS)
1900 return 0;
1902 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1904 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1905 rocketModel[i].loadrm2 = 0;
1906 rocketModel[i].startingPortNumber = nextLineNumber;
1908 /* Depending on the model, set up some config variables */
1909 switch (dev->device) {
1910 case PCI_DEVICE_ID_RP4QUAD:
1911 max_num_aiops = 1;
1912 ports_per_aiop = 4;
1913 rocketModel[i].model = MODEL_RP4QUAD;
1914 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1915 rocketModel[i].numPorts = 4;
1916 break;
1917 case PCI_DEVICE_ID_RP8OCTA:
1918 max_num_aiops = 1;
1919 rocketModel[i].model = MODEL_RP8OCTA;
1920 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1921 rocketModel[i].numPorts = 8;
1922 break;
1923 case PCI_DEVICE_ID_URP8OCTA:
1924 max_num_aiops = 1;
1925 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1926 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1927 rocketModel[i].numPorts = 8;
1928 break;
1929 case PCI_DEVICE_ID_RP8INTF:
1930 max_num_aiops = 1;
1931 rocketModel[i].model = MODEL_RP8INTF;
1932 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1933 rocketModel[i].numPorts = 8;
1934 break;
1935 case PCI_DEVICE_ID_URP8INTF:
1936 max_num_aiops = 1;
1937 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1938 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1939 rocketModel[i].numPorts = 8;
1940 break;
1941 case PCI_DEVICE_ID_RP8J:
1942 max_num_aiops = 1;
1943 rocketModel[i].model = MODEL_RP8J;
1944 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1945 rocketModel[i].numPorts = 8;
1946 break;
1947 case PCI_DEVICE_ID_RP4J:
1948 max_num_aiops = 1;
1949 ports_per_aiop = 4;
1950 rocketModel[i].model = MODEL_RP4J;
1951 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1952 rocketModel[i].numPorts = 4;
1953 break;
1954 case PCI_DEVICE_ID_RP8SNI:
1955 max_num_aiops = 1;
1956 rocketModel[i].model = MODEL_RP8SNI;
1957 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1958 rocketModel[i].numPorts = 8;
1959 break;
1960 case PCI_DEVICE_ID_RP16SNI:
1961 max_num_aiops = 2;
1962 rocketModel[i].model = MODEL_RP16SNI;
1963 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1964 rocketModel[i].numPorts = 16;
1965 break;
1966 case PCI_DEVICE_ID_RP16INTF:
1967 max_num_aiops = 2;
1968 rocketModel[i].model = MODEL_RP16INTF;
1969 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1970 rocketModel[i].numPorts = 16;
1971 break;
1972 case PCI_DEVICE_ID_URP16INTF:
1973 max_num_aiops = 2;
1974 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1975 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1976 rocketModel[i].numPorts = 16;
1977 break;
1978 case PCI_DEVICE_ID_CRP16INTF:
1979 max_num_aiops = 2;
1980 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1981 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1982 rocketModel[i].numPorts = 16;
1983 break;
1984 case PCI_DEVICE_ID_RP32INTF:
1985 max_num_aiops = 4;
1986 rocketModel[i].model = MODEL_RP32INTF;
1987 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1988 rocketModel[i].numPorts = 32;
1989 break;
1990 case PCI_DEVICE_ID_URP32INTF:
1991 max_num_aiops = 4;
1992 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1993 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1994 rocketModel[i].numPorts = 32;
1995 break;
1996 case PCI_DEVICE_ID_RPP4:
1997 max_num_aiops = 1;
1998 ports_per_aiop = 4;
1999 altChanRingIndicator++;
2000 fast_clock++;
2001 rocketModel[i].model = MODEL_RPP4;
2002 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2003 rocketModel[i].numPorts = 4;
2004 break;
2005 case PCI_DEVICE_ID_RPP8:
2006 max_num_aiops = 2;
2007 ports_per_aiop = 4;
2008 altChanRingIndicator++;
2009 fast_clock++;
2010 rocketModel[i].model = MODEL_RPP8;
2011 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2012 rocketModel[i].numPorts = 8;
2013 break;
2014 case PCI_DEVICE_ID_RP2_232:
2015 max_num_aiops = 1;
2016 ports_per_aiop = 2;
2017 altChanRingIndicator++;
2018 fast_clock++;
2019 rocketModel[i].model = MODEL_RP2_232;
2020 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2021 rocketModel[i].numPorts = 2;
2022 break;
2023 case PCI_DEVICE_ID_RP2_422:
2024 max_num_aiops = 1;
2025 ports_per_aiop = 2;
2026 altChanRingIndicator++;
2027 fast_clock++;
2028 rocketModel[i].model = MODEL_RP2_422;
2029 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2030 rocketModel[i].numPorts = 2;
2031 break;
2032 case PCI_DEVICE_ID_RP6M:
2034 max_num_aiops = 1;
2035 ports_per_aiop = 6;
2037 /* If revision is 1, the rocketmodem flash must be loaded.
2038 * If it is 2 it is a "socketed" version. */
2039 if (dev->revision == 1) {
2040 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2041 rocketModel[i].loadrm2 = 1;
2042 } else {
2043 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2046 rocketModel[i].model = MODEL_RP6M;
2047 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2048 rocketModel[i].numPorts = 6;
2049 break;
2050 case PCI_DEVICE_ID_RP4M:
2051 max_num_aiops = 1;
2052 ports_per_aiop = 4;
2053 if (dev->revision == 1) {
2054 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2055 rocketModel[i].loadrm2 = 1;
2056 } else {
2057 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2060 rocketModel[i].model = MODEL_RP4M;
2061 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2062 rocketModel[i].numPorts = 4;
2063 break;
2064 default:
2065 max_num_aiops = 0;
2066 break;
2070 * Check for UPCI boards.
2073 switch (dev->device) {
2074 case PCI_DEVICE_ID_URP32INTF:
2075 case PCI_DEVICE_ID_URP8INTF:
2076 case PCI_DEVICE_ID_URP16INTF:
2077 case PCI_DEVICE_ID_CRP16INTF:
2078 case PCI_DEVICE_ID_URP8OCTA:
2079 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2080 ConfigIO = pci_resource_start(dev, 1);
2081 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2082 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2085 * Check for octa or quad cable.
2087 if (!
2088 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2089 PCI_GPIO_CTRL_8PORT)) {
2090 ports_per_aiop = 4;
2091 rocketModel[i].numPorts = 4;
2094 break;
2095 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2096 max_num_aiops = 1;
2097 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2098 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2099 rocketModel[i].numPorts = 8;
2100 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2101 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2102 ConfigIO = pci_resource_start(dev, 1);
2103 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2104 break;
2105 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2106 max_num_aiops = 1;
2107 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2108 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2109 rocketModel[i].numPorts = 4;
2110 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2111 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2112 ConfigIO = pci_resource_start(dev, 1);
2113 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2114 break;
2115 default:
2116 break;
2119 if (fast_clock) {
2120 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2121 rp_baud_base[i] = 921600;
2122 } else {
2124 * If support_low_speed is set, use the slow clock
2125 * prescale, which supports 50 bps
2127 if (support_low_speed) {
2128 /* mod 9 (divide by 10) prescale */
2129 sClockPrescale = 0x19;
2130 rp_baud_base[i] = 230400;
2131 } else {
2132 /* mod 4 (divide by 5) prescale */
2133 sClockPrescale = 0x14;
2134 rp_baud_base[i] = 460800;
2138 for (aiop = 0; aiop < max_num_aiops; aiop++)
2139 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2140 ctlp = sCtlNumToCtlPtr(i);
2141 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2142 for (aiop = 0; aiop < max_num_aiops; aiop++)
2143 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2145 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2146 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2147 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2148 rocketModel[i].startingPortNumber,
2149 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2151 if (num_aiops <= 0) {
2152 rcktpt_io_addr[i] = 0;
2153 return (0);
2155 is_PCI[i] = 1;
2157 /* Reset the AIOPIC, init the serial ports */
2158 for (aiop = 0; aiop < num_aiops; aiop++) {
2159 sResetAiopByNum(ctlp, aiop);
2160 for (chan = 0; chan < ports_per_aiop; chan++)
2161 init_r_port(i, aiop, chan, dev);
2164 /* Rocket modems must be reset */
2165 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2166 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2167 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2168 for (chan = 0; chan < ports_per_aiop; chan++)
2169 sPCIModemReset(ctlp, chan, 1);
2170 msleep(500);
2171 for (chan = 0; chan < ports_per_aiop; chan++)
2172 sPCIModemReset(ctlp, chan, 0);
2173 msleep(500);
2174 rmSpeakerReset(ctlp, rocketModel[i].model);
2176 return (1);
2180 * Probes for PCI cards, inits them if found
2181 * Input: board_found = number of ISA boards already found, or the
2182 * starting board number
2183 * Returns: Number of PCI boards found
2185 static int __init init_PCI(int boards_found)
2187 struct pci_dev *dev = NULL;
2188 int count = 0;
2190 /* Work through the PCI device list, pulling out ours */
2191 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2192 if (register_PCI(count + boards_found, dev))
2193 count++;
2195 return (count);
2198 #endif /* CONFIG_PCI */
2201 * Probes for ISA cards
2202 * Input: i = the board number to look for
2203 * Returns: 1 if board found, 0 else
2205 static int __init init_ISA(int i)
2207 int num_aiops, num_chan = 0, total_num_chan = 0;
2208 int aiop, chan;
2209 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2210 CONTROLLER_t *ctlp;
2211 char *type_string;
2213 /* If io_addr is zero, no board configured */
2214 if (rcktpt_io_addr[i] == 0)
2215 return (0);
2217 /* Reserve the IO region */
2218 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2219 printk(KERN_ERR "Unable to reserve IO region for configured "
2220 "ISA RocketPort at address 0x%lx, board not "
2221 "installed...\n", rcktpt_io_addr[i]);
2222 rcktpt_io_addr[i] = 0;
2223 return (0);
2226 ctlp = sCtlNumToCtlPtr(i);
2228 ctlp->boardType = rcktpt_type[i];
2230 switch (rcktpt_type[i]) {
2231 case ROCKET_TYPE_PC104:
2232 type_string = "(PC104)";
2233 break;
2234 case ROCKET_TYPE_MODEM:
2235 type_string = "(RocketModem)";
2236 break;
2237 case ROCKET_TYPE_MODEMII:
2238 type_string = "(RocketModem II)";
2239 break;
2240 default:
2241 type_string = "";
2242 break;
2246 * If support_low_speed is set, use the slow clock prescale,
2247 * which supports 50 bps
2249 if (support_low_speed) {
2250 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2251 rp_baud_base[i] = 230400;
2252 } else {
2253 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2254 rp_baud_base[i] = 460800;
2257 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2258 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2260 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2262 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2263 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2264 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2267 /* If something went wrong initing the AIOP's release the ISA IO memory */
2268 if (num_aiops <= 0) {
2269 release_region(rcktpt_io_addr[i], 64);
2270 rcktpt_io_addr[i] = 0;
2271 return (0);
2274 rocketModel[i].startingPortNumber = nextLineNumber;
2276 for (aiop = 0; aiop < num_aiops; aiop++) {
2277 sResetAiopByNum(ctlp, aiop);
2278 sEnAiop(ctlp, aiop);
2279 num_chan = sGetAiopNumChan(ctlp, aiop);
2280 total_num_chan += num_chan;
2281 for (chan = 0; chan < num_chan; chan++)
2282 init_r_port(i, aiop, chan, NULL);
2284 is_PCI[i] = 0;
2285 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2286 num_chan = sGetAiopNumChan(ctlp, 0);
2287 total_num_chan = num_chan;
2288 for (chan = 0; chan < num_chan; chan++)
2289 sModemReset(ctlp, chan, 1);
2290 msleep(500);
2291 for (chan = 0; chan < num_chan; chan++)
2292 sModemReset(ctlp, chan, 0);
2293 msleep(500);
2294 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2295 } else {
2296 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2298 rocketModel[i].numPorts = total_num_chan;
2299 rocketModel[i].model = MODEL_ISA;
2301 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2302 i, rcktpt_io_addr[i], num_aiops, type_string);
2304 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2305 rocketModel[i].modelString,
2306 rocketModel[i].startingPortNumber,
2307 rocketModel[i].startingPortNumber +
2308 rocketModel[i].numPorts - 1);
2310 return (1);
2313 static const struct tty_operations rocket_ops = {
2314 .open = rp_open,
2315 .close = rp_close,
2316 .write = rp_write,
2317 .put_char = rp_put_char,
2318 .write_room = rp_write_room,
2319 .chars_in_buffer = rp_chars_in_buffer,
2320 .flush_buffer = rp_flush_buffer,
2321 .ioctl = rp_ioctl,
2322 .throttle = rp_throttle,
2323 .unthrottle = rp_unthrottle,
2324 .set_termios = rp_set_termios,
2325 .stop = rp_stop,
2326 .start = rp_start,
2327 .hangup = rp_hangup,
2328 .break_ctl = rp_break,
2329 .send_xchar = rp_send_xchar,
2330 .wait_until_sent = rp_wait_until_sent,
2331 .tiocmget = rp_tiocmget,
2332 .tiocmset = rp_tiocmset,
2335 static const struct tty_port_operations rocket_port_ops = {
2336 .carrier_raised = carrier_raised,
2337 .dtr_rts = dtr_rts,
2341 * The module "startup" routine; it's run when the module is loaded.
2343 static int __init rp_init(void)
2345 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2347 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2348 ROCKET_VERSION, ROCKET_DATE);
2350 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2351 if (!rocket_driver)
2352 goto err;
2355 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2356 * zero, use the default controller IO address of board1 + 0x40.
2358 if (board1) {
2359 if (controller == 0)
2360 controller = board1 + 0x40;
2361 } else {
2362 controller = 0; /* Used as a flag, meaning no ISA boards */
2365 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2366 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2367 printk(KERN_ERR "Unable to reserve IO region for first "
2368 "configured ISA RocketPort controller 0x%lx. "
2369 "Driver exiting\n", controller);
2370 ret = -EBUSY;
2371 goto err_tty;
2374 /* Store ISA variable retrieved from command line or .conf file. */
2375 rcktpt_io_addr[0] = board1;
2376 rcktpt_io_addr[1] = board2;
2377 rcktpt_io_addr[2] = board3;
2378 rcktpt_io_addr[3] = board4;
2380 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2381 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2382 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2383 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2384 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2385 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2386 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2387 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2390 * Set up the tty driver structure and then register this
2391 * driver with the tty layer.
2394 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2395 rocket_driver->name = "ttyR";
2396 rocket_driver->driver_name = "Comtrol RocketPort";
2397 rocket_driver->major = TTY_ROCKET_MAJOR;
2398 rocket_driver->minor_start = 0;
2399 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2400 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2401 rocket_driver->init_termios = tty_std_termios;
2402 rocket_driver->init_termios.c_cflag =
2403 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2404 rocket_driver->init_termios.c_ispeed = 9600;
2405 rocket_driver->init_termios.c_ospeed = 9600;
2406 #ifdef ROCKET_SOFT_FLOW
2407 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2408 #endif
2409 tty_set_operations(rocket_driver, &rocket_ops);
2411 ret = tty_register_driver(rocket_driver);
2412 if (ret < 0) {
2413 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2414 goto err_controller;
2417 #ifdef ROCKET_DEBUG_OPEN
2418 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2419 #endif
2422 * OK, let's probe each of the controllers looking for boards. Any boards found
2423 * will be initialized here.
2425 isa_boards_found = 0;
2426 pci_boards_found = 0;
2428 for (i = 0; i < NUM_BOARDS; i++) {
2429 if (init_ISA(i))
2430 isa_boards_found++;
2433 #ifdef CONFIG_PCI
2434 if (isa_boards_found < NUM_BOARDS)
2435 pci_boards_found = init_PCI(isa_boards_found);
2436 #endif
2438 max_board = pci_boards_found + isa_boards_found;
2440 if (max_board == 0) {
2441 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2442 ret = -ENXIO;
2443 goto err_ttyu;
2446 return 0;
2447 err_ttyu:
2448 tty_unregister_driver(rocket_driver);
2449 err_controller:
2450 if (controller)
2451 release_region(controller, 4);
2452 err_tty:
2453 put_tty_driver(rocket_driver);
2454 err:
2455 return ret;
2459 static void rp_cleanup_module(void)
2461 int retval;
2462 int i;
2464 del_timer_sync(&rocket_timer);
2466 retval = tty_unregister_driver(rocket_driver);
2467 if (retval)
2468 printk(KERN_ERR "Error %d while trying to unregister "
2469 "rocketport driver\n", -retval);
2471 for (i = 0; i < MAX_RP_PORTS; i++)
2472 if (rp_table[i]) {
2473 tty_unregister_device(rocket_driver, i);
2474 tty_port_destroy(&rp_table[i]->port);
2475 kfree(rp_table[i]);
2478 put_tty_driver(rocket_driver);
2480 for (i = 0; i < NUM_BOARDS; i++) {
2481 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2482 continue;
2483 release_region(rcktpt_io_addr[i], 64);
2485 if (controller)
2486 release_region(controller, 4);
2489 /***************************************************************************
2490 Function: sInitController
2491 Purpose: Initialization of controller global registers and controller
2492 structure.
2493 Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2494 IRQNum,Frequency,PeriodicOnly)
2495 CONTROLLER_T *CtlP; Ptr to controller structure
2496 int CtlNum; Controller number
2497 ByteIO_t MudbacIO; Mudbac base I/O address.
2498 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2499 This list must be in the order the AIOPs will be found on the
2500 controller. Once an AIOP in the list is not found, it is
2501 assumed that there are no more AIOPs on the controller.
2502 int AiopIOListSize; Number of addresses in AiopIOList
2503 int IRQNum; Interrupt Request number. Can be any of the following:
2504 0: Disable global interrupts
2505 3: IRQ 3
2506 4: IRQ 4
2507 5: IRQ 5
2508 9: IRQ 9
2509 10: IRQ 10
2510 11: IRQ 11
2511 12: IRQ 12
2512 15: IRQ 15
2513 Byte_t Frequency: A flag identifying the frequency
2514 of the periodic interrupt, can be any one of the following:
2515 FREQ_DIS - periodic interrupt disabled
2516 FREQ_137HZ - 137 Hertz
2517 FREQ_69HZ - 69 Hertz
2518 FREQ_34HZ - 34 Hertz
2519 FREQ_17HZ - 17 Hertz
2520 FREQ_9HZ - 9 Hertz
2521 FREQ_4HZ - 4 Hertz
2522 If IRQNum is set to 0 the Frequency parameter is
2523 overidden, it is forced to a value of FREQ_DIS.
2524 int PeriodicOnly: 1 if all interrupts except the periodic
2525 interrupt are to be blocked.
2526 0 is both the periodic interrupt and
2527 other channel interrupts are allowed.
2528 If IRQNum is set to 0 the PeriodicOnly parameter is
2529 overidden, it is forced to a value of 0.
2530 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2531 initialization failed.
2533 Comments:
2534 If periodic interrupts are to be disabled but AIOP interrupts
2535 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2537 If interrupts are to be completely disabled set IRQNum to 0.
2539 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2540 invalid combination.
2542 This function performs initialization of global interrupt modes,
2543 but it does not actually enable global interrupts. To enable
2544 and disable global interrupts use functions sEnGlobalInt() and
2545 sDisGlobalInt(). Enabling of global interrupts is normally not
2546 done until all other initializations are complete.
2548 Even if interrupts are globally enabled, they must also be
2549 individually enabled for each channel that is to generate
2550 interrupts.
2552 Warnings: No range checking on any of the parameters is done.
2554 No context switches are allowed while executing this function.
2556 After this function all AIOPs on the controller are disabled,
2557 they can be enabled with sEnAiop().
2559 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2560 ByteIO_t * AiopIOList, int AiopIOListSize,
2561 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2563 int i;
2564 ByteIO_t io;
2565 int done;
2567 CtlP->AiopIntrBits = aiop_intr_bits;
2568 CtlP->AltChanRingIndicator = 0;
2569 CtlP->CtlNum = CtlNum;
2570 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2571 CtlP->BusType = isISA;
2572 CtlP->MBaseIO = MudbacIO;
2573 CtlP->MReg1IO = MudbacIO + 1;
2574 CtlP->MReg2IO = MudbacIO + 2;
2575 CtlP->MReg3IO = MudbacIO + 3;
2576 #if 1
2577 CtlP->MReg2 = 0; /* interrupt disable */
2578 CtlP->MReg3 = 0; /* no periodic interrupts */
2579 #else
2580 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2581 CtlP->MReg2 = 0; /* interrupt disable */
2582 CtlP->MReg3 = 0; /* no periodic interrupts */
2583 } else {
2584 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2585 CtlP->MReg3 = Frequency; /* set frequency */
2586 if (PeriodicOnly) { /* periodic interrupt only */
2587 CtlP->MReg3 |= PERIODIC_ONLY;
2590 #endif
2591 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2592 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2593 sControllerEOI(CtlP); /* clear EOI if warm init */
2594 /* Init AIOPs */
2595 CtlP->NumAiop = 0;
2596 for (i = done = 0; i < AiopIOListSize; i++) {
2597 io = AiopIOList[i];
2598 CtlP->AiopIO[i] = (WordIO_t) io;
2599 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2600 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2601 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2602 if (done)
2603 continue;
2604 sEnAiop(CtlP, i); /* enable the AIOP */
2605 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2606 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2607 done = 1; /* done looking for AIOPs */
2608 else {
2609 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2610 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2611 sOutB(io + _INDX_DATA, sClockPrescale);
2612 CtlP->NumAiop++; /* bump count of AIOPs */
2614 sDisAiop(CtlP, i); /* disable AIOP */
2617 if (CtlP->NumAiop == 0)
2618 return (-1);
2619 else
2620 return (CtlP->NumAiop);
2623 /***************************************************************************
2624 Function: sReadAiopID
2625 Purpose: Read the AIOP idenfication number directly from an AIOP.
2626 Call: sReadAiopID(io)
2627 ByteIO_t io: AIOP base I/O address
2628 Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2629 is replace by an identifying number.
2630 Flag AIOPID_NULL if no valid AIOP is found
2631 Warnings: No context switches are allowed while executing this function.
2634 static int sReadAiopID(ByteIO_t io)
2636 Byte_t AiopID; /* ID byte from AIOP */
2638 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2639 sOutB(io + _CMD_REG, 0x0);
2640 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2641 if (AiopID == 0x06)
2642 return (1);
2643 else /* AIOP does not exist */
2644 return (-1);
2647 /***************************************************************************
2648 Function: sReadAiopNumChan
2649 Purpose: Read the number of channels available in an AIOP directly from
2650 an AIOP.
2651 Call: sReadAiopNumChan(io)
2652 WordIO_t io: AIOP base I/O address
2653 Return: int: The number of channels available
2654 Comments: The number of channels is determined by write/reads from identical
2655 offsets within the SRAM address spaces for channels 0 and 4.
2656 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2657 AIOP, otherwise it is an 8 channel.
2658 Warnings: No context switches are allowed while executing this function.
2660 static int sReadAiopNumChan(WordIO_t io)
2662 Word_t x;
2663 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2665 /* write to chan 0 SRAM */
2666 out32((DWordIO_t) io + _INDX_ADDR, R);
2667 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2668 x = sInW(io + _INDX_DATA);
2669 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2670 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2671 return (8);
2672 else
2673 return (4);
2676 /***************************************************************************
2677 Function: sInitChan
2678 Purpose: Initialization of a channel and channel structure
2679 Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2680 CONTROLLER_T *CtlP; Ptr to controller structure
2681 CHANNEL_T *ChP; Ptr to channel structure
2682 int AiopNum; AIOP number within controller
2683 int ChanNum; Channel number within AIOP
2684 Return: int: 1 if initialization succeeded, 0 if it fails because channel
2685 number exceeds number of channels available in AIOP.
2686 Comments: This function must be called before a channel can be used.
2687 Warnings: No range checking on any of the parameters is done.
2689 No context switches are allowed while executing this function.
2691 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2692 int ChanNum)
2694 int i;
2695 WordIO_t AiopIO;
2696 WordIO_t ChIOOff;
2697 Byte_t *ChR;
2698 Word_t ChOff;
2699 static Byte_t R[4];
2700 int brd9600;
2702 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2703 return 0; /* exceeds num chans in AIOP */
2705 /* Channel, AIOP, and controller identifiers */
2706 ChP->CtlP = CtlP;
2707 ChP->ChanID = CtlP->AiopID[AiopNum];
2708 ChP->AiopNum = AiopNum;
2709 ChP->ChanNum = ChanNum;
2711 /* Global direct addresses */
2712 AiopIO = CtlP->AiopIO[AiopNum];
2713 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2714 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2715 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2716 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2717 ChP->IndexData = AiopIO + _INDX_DATA;
2719 /* Channel direct addresses */
2720 ChIOOff = AiopIO + ChP->ChanNum * 2;
2721 ChP->TxRxData = ChIOOff + _TD0;
2722 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2723 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2724 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2726 /* Initialize the channel from the RData array */
2727 for (i = 0; i < RDATASIZE; i += 4) {
2728 R[0] = RData[i];
2729 R[1] = RData[i + 1] + 0x10 * ChanNum;
2730 R[2] = RData[i + 2];
2731 R[3] = RData[i + 3];
2732 out32(ChP->IndexAddr, R);
2735 ChR = ChP->R;
2736 for (i = 0; i < RREGDATASIZE; i += 4) {
2737 ChR[i] = RRegData[i];
2738 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2739 ChR[i + 2] = RRegData[i + 2];
2740 ChR[i + 3] = RRegData[i + 3];
2743 /* Indexed registers */
2744 ChOff = (Word_t) ChanNum *0x1000;
2746 if (sClockPrescale == 0x14)
2747 brd9600 = 47;
2748 else
2749 brd9600 = 23;
2751 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2752 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2753 ChP->BaudDiv[2] = (Byte_t) brd9600;
2754 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2755 out32(ChP->IndexAddr, ChP->BaudDiv);
2757 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2758 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2759 ChP->TxControl[2] = 0;
2760 ChP->TxControl[3] = 0;
2761 out32(ChP->IndexAddr, ChP->TxControl);
2763 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2764 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2765 ChP->RxControl[2] = 0;
2766 ChP->RxControl[3] = 0;
2767 out32(ChP->IndexAddr, ChP->RxControl);
2769 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2770 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2771 ChP->TxEnables[2] = 0;
2772 ChP->TxEnables[3] = 0;
2773 out32(ChP->IndexAddr, ChP->TxEnables);
2775 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2776 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2777 ChP->TxCompare[2] = 0;
2778 ChP->TxCompare[3] = 0;
2779 out32(ChP->IndexAddr, ChP->TxCompare);
2781 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2782 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2783 ChP->TxReplace1[2] = 0;
2784 ChP->TxReplace1[3] = 0;
2785 out32(ChP->IndexAddr, ChP->TxReplace1);
2787 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2788 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2789 ChP->TxReplace2[2] = 0;
2790 ChP->TxReplace2[3] = 0;
2791 out32(ChP->IndexAddr, ChP->TxReplace2);
2793 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2794 ChP->TxFIFO = ChOff + _TX_FIFO;
2796 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2797 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2798 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2799 sOutW(ChP->IndexData, 0);
2800 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2801 ChP->RxFIFO = ChOff + _RX_FIFO;
2803 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2804 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2805 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2806 sOutW(ChP->IndexData, 0);
2807 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2808 sOutW(ChP->IndexData, 0);
2809 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2810 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2811 sOutB(ChP->IndexData, 0);
2812 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2814 sOutB(ChP->IndexData, 0);
2815 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2816 sEnRxProcessor(ChP); /* start the Rx processor */
2818 return 1;
2821 /***************************************************************************
2822 Function: sStopRxProcessor
2823 Purpose: Stop the receive processor from processing a channel.
2824 Call: sStopRxProcessor(ChP)
2825 CHANNEL_T *ChP; Ptr to channel structure
2827 Comments: The receive processor can be started again with sStartRxProcessor().
2828 This function causes the receive processor to skip over the
2829 stopped channel. It does not stop it from processing other channels.
2831 Warnings: No context switches are allowed while executing this function.
2833 Do not leave the receive processor stopped for more than one
2834 character time.
2836 After calling this function a delay of 4 uS is required to ensure
2837 that the receive processor is no longer processing this channel.
2839 static void sStopRxProcessor(CHANNEL_T * ChP)
2841 Byte_t R[4];
2843 R[0] = ChP->R[0];
2844 R[1] = ChP->R[1];
2845 R[2] = 0x0a;
2846 R[3] = ChP->R[3];
2847 out32(ChP->IndexAddr, R);
2850 /***************************************************************************
2851 Function: sFlushRxFIFO
2852 Purpose: Flush the Rx FIFO
2853 Call: sFlushRxFIFO(ChP)
2854 CHANNEL_T *ChP; Ptr to channel structure
2855 Return: void
2856 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2857 while it is being flushed the receive processor is stopped
2858 and the transmitter is disabled. After these operations a
2859 4 uS delay is done before clearing the pointers to allow
2860 the receive processor to stop. These items are handled inside
2861 this function.
2862 Warnings: No context switches are allowed while executing this function.
2864 static void sFlushRxFIFO(CHANNEL_T * ChP)
2866 int i;
2867 Byte_t Ch; /* channel number within AIOP */
2868 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2870 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2871 return; /* don't need to flush */
2873 RxFIFOEnabled = 0;
2874 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2875 RxFIFOEnabled = 1;
2876 sDisRxFIFO(ChP); /* disable it */
2877 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2878 sInB(ChP->IntChan); /* depends on bus i/o timing */
2880 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2881 Ch = (Byte_t) sGetChanNum(ChP);
2882 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2883 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2884 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2885 sOutW(ChP->IndexData, 0);
2886 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2887 sOutW(ChP->IndexData, 0);
2888 if (RxFIFOEnabled)
2889 sEnRxFIFO(ChP); /* enable Rx FIFO */
2892 /***************************************************************************
2893 Function: sFlushTxFIFO
2894 Purpose: Flush the Tx FIFO
2895 Call: sFlushTxFIFO(ChP)
2896 CHANNEL_T *ChP; Ptr to channel structure
2897 Return: void
2898 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2899 while it is being flushed the receive processor is stopped
2900 and the transmitter is disabled. After these operations a
2901 4 uS delay is done before clearing the pointers to allow
2902 the receive processor to stop. These items are handled inside
2903 this function.
2904 Warnings: No context switches are allowed while executing this function.
2906 static void sFlushTxFIFO(CHANNEL_T * ChP)
2908 int i;
2909 Byte_t Ch; /* channel number within AIOP */
2910 int TxEnabled; /* 1 if transmitter enabled */
2912 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2913 return; /* don't need to flush */
2915 TxEnabled = 0;
2916 if (ChP->TxControl[3] & TX_ENABLE) {
2917 TxEnabled = 1;
2918 sDisTransmit(ChP); /* disable transmitter */
2920 sStopRxProcessor(ChP); /* stop Rx processor */
2921 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2922 sInB(ChP->IntChan); /* depends on bus i/o timing */
2923 Ch = (Byte_t) sGetChanNum(ChP);
2924 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2925 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2926 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2927 sOutW(ChP->IndexData, 0);
2928 if (TxEnabled)
2929 sEnTransmit(ChP); /* enable transmitter */
2930 sStartRxProcessor(ChP); /* restart Rx processor */
2933 /***************************************************************************
2934 Function: sWriteTxPrioByte
2935 Purpose: Write a byte of priority transmit data to a channel
2936 Call: sWriteTxPrioByte(ChP,Data)
2937 CHANNEL_T *ChP; Ptr to channel structure
2938 Byte_t Data; The transmit data byte
2940 Return: int: 1 if the bytes is successfully written, otherwise 0.
2942 Comments: The priority byte is transmitted before any data in the Tx FIFO.
2944 Warnings: No context switches are allowed while executing this function.
2946 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2948 Byte_t DWBuf[4]; /* buffer for double word writes */
2949 Word_t *WordPtr; /* must be far because Win SS != DS */
2950 register DWordIO_t IndexAddr;
2952 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2953 IndexAddr = ChP->IndexAddr;
2954 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2955 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2956 return (0); /* nothing sent */
2958 WordPtr = (Word_t *) (&DWBuf[0]);
2959 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2961 DWBuf[2] = Data; /* data byte value */
2962 out32(IndexAddr, DWBuf); /* write it out */
2964 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2966 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2967 DWBuf[3] = 0; /* priority buffer pointer */
2968 out32(IndexAddr, DWBuf); /* write it out */
2969 } else { /* write it to Tx FIFO */
2971 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2973 return (1); /* 1 byte sent */
2976 /***************************************************************************
2977 Function: sEnInterrupts
2978 Purpose: Enable one or more interrupts for a channel
2979 Call: sEnInterrupts(ChP,Flags)
2980 CHANNEL_T *ChP; Ptr to channel structure
2981 Word_t Flags: Interrupt enable flags, can be any combination
2982 of the following flags:
2983 TXINT_EN: Interrupt on Tx FIFO empty
2984 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
2985 sSetRxTrigger())
2986 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
2987 MCINT_EN: Interrupt on modem input change
2988 CHANINT_EN: Allow channel interrupt signal to the AIOP's
2989 Interrupt Channel Register.
2990 Return: void
2991 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2992 enabled. If an interrupt enable flag is not set in Flags, that
2993 interrupt will not be changed. Interrupts can be disabled with
2994 function sDisInterrupts().
2996 This function sets the appropriate bit for the channel in the AIOP's
2997 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
2998 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3000 Interrupts must also be globally enabled before channel interrupts
3001 will be passed on to the host. This is done with function
3002 sEnGlobalInt().
3004 In some cases it may be desirable to disable interrupts globally but
3005 enable channel interrupts. This would allow the global interrupt
3006 status register to be used to determine which AIOPs need service.
3008 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3010 Byte_t Mask; /* Interrupt Mask Register */
3012 ChP->RxControl[2] |=
3013 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3015 out32(ChP->IndexAddr, ChP->RxControl);
3017 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3019 out32(ChP->IndexAddr, ChP->TxControl);
3021 if (Flags & CHANINT_EN) {
3022 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3023 sOutB(ChP->IntMask, Mask);
3027 /***************************************************************************
3028 Function: sDisInterrupts
3029 Purpose: Disable one or more interrupts for a channel
3030 Call: sDisInterrupts(ChP,Flags)
3031 CHANNEL_T *ChP; Ptr to channel structure
3032 Word_t Flags: Interrupt flags, can be any combination
3033 of the following flags:
3034 TXINT_EN: Interrupt on Tx FIFO empty
3035 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3036 sSetRxTrigger())
3037 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3038 MCINT_EN: Interrupt on modem input change
3039 CHANINT_EN: Disable channel interrupt signal to the
3040 AIOP's Interrupt Channel Register.
3041 Return: void
3042 Comments: If an interrupt flag is set in Flags, that interrupt will be
3043 disabled. If an interrupt flag is not set in Flags, that
3044 interrupt will not be changed. Interrupts can be enabled with
3045 function sEnInterrupts().
3047 This function clears the appropriate bit for the channel in the AIOP's
3048 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3049 this channel's bit from being set in the AIOP's Interrupt Channel
3050 Register.
3052 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3054 Byte_t Mask; /* Interrupt Mask Register */
3056 ChP->RxControl[2] &=
3057 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3058 out32(ChP->IndexAddr, ChP->RxControl);
3059 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3060 out32(ChP->IndexAddr, ChP->TxControl);
3062 if (Flags & CHANINT_EN) {
3063 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3064 sOutB(ChP->IntMask, Mask);
3068 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3070 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3074 * Not an official SSCI function, but how to reset RocketModems.
3075 * ISA bus version
3077 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3079 ByteIO_t addr;
3080 Byte_t val;
3082 addr = CtlP->AiopIO[0] + 0x400;
3083 val = sInB(CtlP->MReg3IO);
3084 /* if AIOP[1] is not enabled, enable it */
3085 if ((val & 2) == 0) {
3086 val = sInB(CtlP->MReg2IO);
3087 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3088 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3091 sEnAiop(CtlP, 1);
3092 if (!on)
3093 addr += 8;
3094 sOutB(addr + chan, 0); /* apply or remove reset */
3095 sDisAiop(CtlP, 1);
3099 * Not an official SSCI function, but how to reset RocketModems.
3100 * PCI bus version
3102 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3104 ByteIO_t addr;
3106 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3107 if (!on)
3108 addr += 8;
3109 sOutB(addr + chan, 0); /* apply or remove reset */
3112 /* Returns the line number given the controller (board), aiop and channel number */
3113 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3115 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3119 * Stores the line number associated with a given controller (board), aiop
3120 * and channel number.
3121 * Returns: The line number assigned
3123 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3125 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3126 return (nextLineNumber - 1);