2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
26 /* Simple Token Bucket Filter.
27 =======================================
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
45 s_i+....+s_k <= B + R*(t_k - t_i)
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
52 N(t+delta) = min{B/R, N(t) + delta}
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
58 N(t_* + 0) = N(t_* - 0) - S/R.
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
70 When TBF works in reshaping mode, latency is estimated as:
72 lat = max ((L-B)/R, (L-M)/P)
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
86 This means, that with depth B, the maximal rate is
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
101 struct tbf_sched_data
{
103 u32 limit
; /* Maximal length of backlog: bytes */
105 s64 buffer
; /* Token bucket depth/rate: MUST BE >= MTU/B */
107 struct psched_ratecfg rate
;
108 struct psched_ratecfg peak
;
111 s64 tokens
; /* Current number of B tokens */
112 s64 ptokens
; /* Current number of P tokens */
113 s64 t_c
; /* Time check-point */
114 struct Qdisc
*qdisc
; /* Inner qdisc, default - bfifo queue */
115 struct qdisc_watchdog watchdog
; /* Watchdog timer */
119 /* Time to Length, convert time in ns to length in bytes
120 * to determinate how many bytes can be sent in given time.
122 static u64
psched_ns_t2l(const struct psched_ratecfg
*r
,
126 * len = (time_in_ns * r->rate_bytes_ps) / NSEC_PER_SEC
128 u64 len
= time_in_ns
* r
->rate_bytes_ps
;
130 do_div(len
, NSEC_PER_SEC
);
132 if (unlikely(r
->linklayer
== TC_LINKLAYER_ATM
)) {
137 if (len
> r
->overhead
)
146 * Return length of individual segments of a gso packet,
147 * including all headers (MAC, IP, TCP/UDP)
149 static unsigned int skb_gso_mac_seglen(const struct sk_buff
*skb
)
151 unsigned int hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
152 return hdr_len
+ skb_gso_transport_seglen(skb
);
155 /* GSO packet is too big, segment it so that tbf can transmit
156 * each segment in time
158 static int tbf_segment(struct sk_buff
*skb
, struct Qdisc
*sch
)
160 struct tbf_sched_data
*q
= qdisc_priv(sch
);
161 struct sk_buff
*segs
, *nskb
;
162 netdev_features_t features
= netif_skb_features(skb
);
165 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
167 if (IS_ERR_OR_NULL(segs
))
168 return qdisc_reshape_fail(skb
, sch
);
174 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
175 ret
= qdisc_enqueue(segs
, q
->qdisc
);
176 if (ret
!= NET_XMIT_SUCCESS
) {
177 if (net_xmit_drop_count(ret
))
178 qdisc_qstats_drop(sch
);
186 qdisc_tree_decrease_qlen(sch
, 1 - nb
);
188 return nb
> 0 ? NET_XMIT_SUCCESS
: NET_XMIT_DROP
;
191 static int tbf_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
193 struct tbf_sched_data
*q
= qdisc_priv(sch
);
196 if (qdisc_pkt_len(skb
) > q
->max_size
) {
197 if (skb_is_gso(skb
) && skb_gso_mac_seglen(skb
) <= q
->max_size
)
198 return tbf_segment(skb
, sch
);
199 return qdisc_reshape_fail(skb
, sch
);
201 ret
= qdisc_enqueue(skb
, q
->qdisc
);
202 if (ret
!= NET_XMIT_SUCCESS
) {
203 if (net_xmit_drop_count(ret
))
204 qdisc_qstats_drop(sch
);
209 return NET_XMIT_SUCCESS
;
212 static unsigned int tbf_drop(struct Qdisc
*sch
)
214 struct tbf_sched_data
*q
= qdisc_priv(sch
);
215 unsigned int len
= 0;
217 if (q
->qdisc
->ops
->drop
&& (len
= q
->qdisc
->ops
->drop(q
->qdisc
)) != 0) {
219 qdisc_qstats_drop(sch
);
224 static bool tbf_peak_present(const struct tbf_sched_data
*q
)
226 return q
->peak
.rate_bytes_ps
;
229 static struct sk_buff
*tbf_dequeue(struct Qdisc
*sch
)
231 struct tbf_sched_data
*q
= qdisc_priv(sch
);
234 skb
= q
->qdisc
->ops
->peek(q
->qdisc
);
240 unsigned int len
= qdisc_pkt_len(skb
);
242 now
= ktime_get_ns();
243 toks
= min_t(s64
, now
- q
->t_c
, q
->buffer
);
245 if (tbf_peak_present(q
)) {
246 ptoks
= toks
+ q
->ptokens
;
249 ptoks
-= (s64
) psched_l2t_ns(&q
->peak
, len
);
252 if (toks
> q
->buffer
)
254 toks
-= (s64
) psched_l2t_ns(&q
->rate
, len
);
256 if ((toks
|ptoks
) >= 0) {
257 skb
= qdisc_dequeue_peeked(q
->qdisc
);
265 qdisc_unthrottled(sch
);
266 qdisc_bstats_update(sch
, skb
);
270 qdisc_watchdog_schedule_ns(&q
->watchdog
,
271 now
+ max_t(long, -toks
, -ptoks
),
274 /* Maybe we have a shorter packet in the queue,
275 which can be sent now. It sounds cool,
276 but, however, this is wrong in principle.
277 We MUST NOT reorder packets under these circumstances.
279 Really, if we split the flow into independent
280 subflows, it would be a very good solution.
281 This is the main idea of all FQ algorithms
282 (cf. CSZ, HPFQ, HFSC)
285 qdisc_qstats_overlimit(sch
);
290 static void tbf_reset(struct Qdisc
*sch
)
292 struct tbf_sched_data
*q
= qdisc_priv(sch
);
294 qdisc_reset(q
->qdisc
);
296 q
->t_c
= ktime_get_ns();
297 q
->tokens
= q
->buffer
;
299 qdisc_watchdog_cancel(&q
->watchdog
);
302 static const struct nla_policy tbf_policy
[TCA_TBF_MAX
+ 1] = {
303 [TCA_TBF_PARMS
] = { .len
= sizeof(struct tc_tbf_qopt
) },
304 [TCA_TBF_RTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
305 [TCA_TBF_PTAB
] = { .type
= NLA_BINARY
, .len
= TC_RTAB_SIZE
},
306 [TCA_TBF_RATE64
] = { .type
= NLA_U64
},
307 [TCA_TBF_PRATE64
] = { .type
= NLA_U64
},
308 [TCA_TBF_BURST
] = { .type
= NLA_U32
},
309 [TCA_TBF_PBURST
] = { .type
= NLA_U32
},
312 static int tbf_change(struct Qdisc
*sch
, struct nlattr
*opt
)
315 struct tbf_sched_data
*q
= qdisc_priv(sch
);
316 struct nlattr
*tb
[TCA_TBF_MAX
+ 1];
317 struct tc_tbf_qopt
*qopt
;
318 struct Qdisc
*child
= NULL
;
319 struct psched_ratecfg rate
;
320 struct psched_ratecfg peak
;
323 u64 rate64
= 0, prate64
= 0;
325 err
= nla_parse_nested(tb
, TCA_TBF_MAX
, opt
, tbf_policy
);
330 if (tb
[TCA_TBF_PARMS
] == NULL
)
333 qopt
= nla_data(tb
[TCA_TBF_PARMS
]);
334 if (qopt
->rate
.linklayer
== TC_LINKLAYER_UNAWARE
)
335 qdisc_put_rtab(qdisc_get_rtab(&qopt
->rate
,
338 if (qopt
->peakrate
.linklayer
== TC_LINKLAYER_UNAWARE
)
339 qdisc_put_rtab(qdisc_get_rtab(&qopt
->peakrate
,
342 buffer
= min_t(u64
, PSCHED_TICKS2NS(qopt
->buffer
), ~0U);
343 mtu
= min_t(u64
, PSCHED_TICKS2NS(qopt
->mtu
), ~0U);
345 if (tb
[TCA_TBF_RATE64
])
346 rate64
= nla_get_u64(tb
[TCA_TBF_RATE64
]);
347 psched_ratecfg_precompute(&rate
, &qopt
->rate
, rate64
);
349 if (tb
[TCA_TBF_BURST
]) {
350 max_size
= nla_get_u32(tb
[TCA_TBF_BURST
]);
351 buffer
= psched_l2t_ns(&rate
, max_size
);
353 max_size
= min_t(u64
, psched_ns_t2l(&rate
, buffer
), ~0U);
356 if (qopt
->peakrate
.rate
) {
357 if (tb
[TCA_TBF_PRATE64
])
358 prate64
= nla_get_u64(tb
[TCA_TBF_PRATE64
]);
359 psched_ratecfg_precompute(&peak
, &qopt
->peakrate
, prate64
);
360 if (peak
.rate_bytes_ps
<= rate
.rate_bytes_ps
) {
361 pr_warn_ratelimited("sch_tbf: peakrate %llu is lower than or equals to rate %llu !\n",
362 peak
.rate_bytes_ps
, rate
.rate_bytes_ps
);
367 if (tb
[TCA_TBF_PBURST
]) {
368 u32 pburst
= nla_get_u32(tb
[TCA_TBF_PBURST
]);
369 max_size
= min_t(u32
, max_size
, pburst
);
370 mtu
= psched_l2t_ns(&peak
, pburst
);
372 max_size
= min_t(u64
, max_size
, psched_ns_t2l(&peak
, mtu
));
375 memset(&peak
, 0, sizeof(peak
));
378 if (max_size
< psched_mtu(qdisc_dev(sch
)))
379 pr_warn_ratelimited("sch_tbf: burst %llu is lower than device %s mtu (%u) !\n",
380 max_size
, qdisc_dev(sch
)->name
,
381 psched_mtu(qdisc_dev(sch
)));
388 if (q
->qdisc
!= &noop_qdisc
) {
389 err
= fifo_set_limit(q
->qdisc
, qopt
->limit
);
392 } else if (qopt
->limit
> 0) {
393 child
= fifo_create_dflt(sch
, &bfifo_qdisc_ops
, qopt
->limit
);
395 err
= PTR_ERR(child
);
402 qdisc_tree_decrease_qlen(q
->qdisc
, q
->qdisc
->q
.qlen
);
403 qdisc_destroy(q
->qdisc
);
406 q
->limit
= qopt
->limit
;
407 if (tb
[TCA_TBF_PBURST
])
410 q
->mtu
= PSCHED_TICKS2NS(qopt
->mtu
);
411 q
->max_size
= max_size
;
412 if (tb
[TCA_TBF_BURST
])
415 q
->buffer
= PSCHED_TICKS2NS(qopt
->buffer
);
416 q
->tokens
= q
->buffer
;
419 memcpy(&q
->rate
, &rate
, sizeof(struct psched_ratecfg
));
420 memcpy(&q
->peak
, &peak
, sizeof(struct psched_ratecfg
));
422 sch_tree_unlock(sch
);
428 static int tbf_init(struct Qdisc
*sch
, struct nlattr
*opt
)
430 struct tbf_sched_data
*q
= qdisc_priv(sch
);
435 q
->t_c
= ktime_get_ns();
436 qdisc_watchdog_init(&q
->watchdog
, sch
);
437 q
->qdisc
= &noop_qdisc
;
439 return tbf_change(sch
, opt
);
442 static void tbf_destroy(struct Qdisc
*sch
)
444 struct tbf_sched_data
*q
= qdisc_priv(sch
);
446 qdisc_watchdog_cancel(&q
->watchdog
);
447 qdisc_destroy(q
->qdisc
);
450 static int tbf_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
452 struct tbf_sched_data
*q
= qdisc_priv(sch
);
454 struct tc_tbf_qopt opt
;
456 sch
->qstats
.backlog
= q
->qdisc
->qstats
.backlog
;
457 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
459 goto nla_put_failure
;
461 opt
.limit
= q
->limit
;
462 psched_ratecfg_getrate(&opt
.rate
, &q
->rate
);
463 if (tbf_peak_present(q
))
464 psched_ratecfg_getrate(&opt
.peakrate
, &q
->peak
);
466 memset(&opt
.peakrate
, 0, sizeof(opt
.peakrate
));
467 opt
.mtu
= PSCHED_NS2TICKS(q
->mtu
);
468 opt
.buffer
= PSCHED_NS2TICKS(q
->buffer
);
469 if (nla_put(skb
, TCA_TBF_PARMS
, sizeof(opt
), &opt
))
470 goto nla_put_failure
;
471 if (q
->rate
.rate_bytes_ps
>= (1ULL << 32) &&
472 nla_put_u64(skb
, TCA_TBF_RATE64
, q
->rate
.rate_bytes_ps
))
473 goto nla_put_failure
;
474 if (tbf_peak_present(q
) &&
475 q
->peak
.rate_bytes_ps
>= (1ULL << 32) &&
476 nla_put_u64(skb
, TCA_TBF_PRATE64
, q
->peak
.rate_bytes_ps
))
477 goto nla_put_failure
;
479 return nla_nest_end(skb
, nest
);
482 nla_nest_cancel(skb
, nest
);
486 static int tbf_dump_class(struct Qdisc
*sch
, unsigned long cl
,
487 struct sk_buff
*skb
, struct tcmsg
*tcm
)
489 struct tbf_sched_data
*q
= qdisc_priv(sch
);
491 tcm
->tcm_handle
|= TC_H_MIN(1);
492 tcm
->tcm_info
= q
->qdisc
->handle
;
497 static int tbf_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
500 struct tbf_sched_data
*q
= qdisc_priv(sch
);
508 qdisc_tree_decrease_qlen(*old
, (*old
)->q
.qlen
);
510 sch_tree_unlock(sch
);
515 static struct Qdisc
*tbf_leaf(struct Qdisc
*sch
, unsigned long arg
)
517 struct tbf_sched_data
*q
= qdisc_priv(sch
);
521 static unsigned long tbf_get(struct Qdisc
*sch
, u32 classid
)
526 static void tbf_put(struct Qdisc
*sch
, unsigned long arg
)
530 static void tbf_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
533 if (walker
->count
>= walker
->skip
)
534 if (walker
->fn(sch
, 1, walker
) < 0) {
542 static const struct Qdisc_class_ops tbf_class_ops
= {
548 .dump
= tbf_dump_class
,
551 static struct Qdisc_ops tbf_qdisc_ops __read_mostly
= {
553 .cl_ops
= &tbf_class_ops
,
555 .priv_size
= sizeof(struct tbf_sched_data
),
556 .enqueue
= tbf_enqueue
,
557 .dequeue
= tbf_dequeue
,
558 .peek
= qdisc_peek_dequeued
,
562 .destroy
= tbf_destroy
,
563 .change
= tbf_change
,
565 .owner
= THIS_MODULE
,
568 static int __init
tbf_module_init(void)
570 return register_qdisc(&tbf_qdisc_ops
);
573 static void __exit
tbf_module_exit(void)
575 unregister_qdisc(&tbf_qdisc_ops
);
577 module_init(tbf_module_init
)
578 module_exit(tbf_module_exit
)
579 MODULE_LICENSE("GPL");