1 // SPDX-License-Identifier: GPL-2.0-only
3 * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
5 * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
19 #include <drm/drm_edid.h>
23 static void cec_fill_msg_report_features(struct cec_adapter
*adap
,
28 * 400 ms is the time it takes for one 16 byte message to be
29 * transferred and 5 is the maximum number of retries. Add
30 * another 100 ms as a margin. So if the transmit doesn't
31 * finish before that time something is really wrong and we
34 * This is a sign that something it really wrong and a warning
37 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
39 #define call_op(adap, op, arg...) \
40 (adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
42 #define call_void_op(adap, op, arg...) \
45 adap->ops->op(adap, ## arg); \
48 static int cec_log_addr2idx(const struct cec_adapter
*adap
, u8 log_addr
)
52 for (i
= 0; i
< adap
->log_addrs
.num_log_addrs
; i
++)
53 if (adap
->log_addrs
.log_addr
[i
] == log_addr
)
58 static unsigned int cec_log_addr2dev(const struct cec_adapter
*adap
, u8 log_addr
)
60 int i
= cec_log_addr2idx(adap
, log_addr
);
62 return adap
->log_addrs
.primary_device_type
[i
< 0 ? 0 : i
];
65 u16
cec_get_edid_phys_addr(const u8
*edid
, unsigned int size
,
68 unsigned int loc
= cec_get_edid_spa_location(edid
, size
);
73 return CEC_PHYS_ADDR_INVALID
;
74 return (edid
[loc
] << 8) | edid
[loc
+ 1];
76 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr
);
79 * Queue a new event for this filehandle. If ts == 0, then set it
80 * to the current time.
82 * We keep a queue of at most max_event events where max_event differs
83 * per event. If the queue becomes full, then drop the oldest event and
84 * keep track of how many events we've dropped.
86 void cec_queue_event_fh(struct cec_fh
*fh
,
87 const struct cec_event
*new_ev
, u64 ts
)
89 static const u16 max_events
[CEC_NUM_EVENTS
] = {
90 1, 1, 800, 800, 8, 8, 8, 8
92 struct cec_event_entry
*entry
;
93 unsigned int ev_idx
= new_ev
->event
- 1;
95 if (WARN_ON(ev_idx
>= ARRAY_SIZE(fh
->events
)))
101 mutex_lock(&fh
->lock
);
102 if (ev_idx
< CEC_NUM_CORE_EVENTS
)
103 entry
= &fh
->core_events
[ev_idx
];
105 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
107 if (new_ev
->event
== CEC_EVENT_LOST_MSGS
&&
108 fh
->queued_events
[ev_idx
]) {
109 entry
->ev
.lost_msgs
.lost_msgs
+=
110 new_ev
->lost_msgs
.lost_msgs
;
116 if (fh
->queued_events
[ev_idx
] < max_events
[ev_idx
]) {
117 /* Add new msg at the end of the queue */
118 list_add_tail(&entry
->list
, &fh
->events
[ev_idx
]);
119 fh
->queued_events
[ev_idx
]++;
120 fh
->total_queued_events
++;
124 if (ev_idx
>= CEC_NUM_CORE_EVENTS
) {
125 list_add_tail(&entry
->list
, &fh
->events
[ev_idx
]);
126 /* drop the oldest event */
127 entry
= list_first_entry(&fh
->events
[ev_idx
],
128 struct cec_event_entry
, list
);
129 list_del(&entry
->list
);
133 /* Mark that events were lost */
134 entry
= list_first_entry_or_null(&fh
->events
[ev_idx
],
135 struct cec_event_entry
, list
);
137 entry
->ev
.flags
|= CEC_EVENT_FL_DROPPED_EVENTS
;
140 mutex_unlock(&fh
->lock
);
141 wake_up_interruptible(&fh
->wait
);
144 /* Queue a new event for all open filehandles. */
145 static void cec_queue_event(struct cec_adapter
*adap
,
146 const struct cec_event
*ev
)
148 u64 ts
= ktime_get_ns();
151 mutex_lock(&adap
->devnode
.lock
);
152 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
)
153 cec_queue_event_fh(fh
, ev
, ts
);
154 mutex_unlock(&adap
->devnode
.lock
);
157 /* Notify userspace that the CEC pin changed state at the given time. */
158 void cec_queue_pin_cec_event(struct cec_adapter
*adap
, bool is_high
,
159 bool dropped_events
, ktime_t ts
)
161 struct cec_event ev
= {
162 .event
= is_high
? CEC_EVENT_PIN_CEC_HIGH
:
163 CEC_EVENT_PIN_CEC_LOW
,
164 .flags
= dropped_events
? CEC_EVENT_FL_DROPPED_EVENTS
: 0,
168 mutex_lock(&adap
->devnode
.lock
);
169 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
)
170 if (fh
->mode_follower
== CEC_MODE_MONITOR_PIN
)
171 cec_queue_event_fh(fh
, &ev
, ktime_to_ns(ts
));
172 mutex_unlock(&adap
->devnode
.lock
);
174 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event
);
176 /* Notify userspace that the HPD pin changed state at the given time. */
177 void cec_queue_pin_hpd_event(struct cec_adapter
*adap
, bool is_high
, ktime_t ts
)
179 struct cec_event ev
= {
180 .event
= is_high
? CEC_EVENT_PIN_HPD_HIGH
:
181 CEC_EVENT_PIN_HPD_LOW
,
185 mutex_lock(&adap
->devnode
.lock
);
186 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
)
187 cec_queue_event_fh(fh
, &ev
, ktime_to_ns(ts
));
188 mutex_unlock(&adap
->devnode
.lock
);
190 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event
);
192 /* Notify userspace that the 5V pin changed state at the given time. */
193 void cec_queue_pin_5v_event(struct cec_adapter
*adap
, bool is_high
, ktime_t ts
)
195 struct cec_event ev
= {
196 .event
= is_high
? CEC_EVENT_PIN_5V_HIGH
:
197 CEC_EVENT_PIN_5V_LOW
,
201 mutex_lock(&adap
->devnode
.lock
);
202 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
)
203 cec_queue_event_fh(fh
, &ev
, ktime_to_ns(ts
));
204 mutex_unlock(&adap
->devnode
.lock
);
206 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event
);
209 * Queue a new message for this filehandle.
211 * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
212 * queue becomes full, then drop the oldest message and keep track
213 * of how many messages we've dropped.
215 static void cec_queue_msg_fh(struct cec_fh
*fh
, const struct cec_msg
*msg
)
217 static const struct cec_event ev_lost_msgs
= {
218 .event
= CEC_EVENT_LOST_MSGS
,
224 struct cec_msg_entry
*entry
;
226 mutex_lock(&fh
->lock
);
227 entry
= kmalloc(sizeof(*entry
), GFP_KERNEL
);
230 /* Add new msg at the end of the queue */
231 list_add_tail(&entry
->list
, &fh
->msgs
);
233 if (fh
->queued_msgs
< CEC_MAX_MSG_RX_QUEUE_SZ
) {
234 /* All is fine if there is enough room */
236 mutex_unlock(&fh
->lock
);
237 wake_up_interruptible(&fh
->wait
);
242 * if the message queue is full, then drop the oldest one and
243 * send a lost message event.
245 entry
= list_first_entry(&fh
->msgs
, struct cec_msg_entry
, list
);
246 list_del(&entry
->list
);
249 mutex_unlock(&fh
->lock
);
252 * We lost a message, either because kmalloc failed or the queue
255 cec_queue_event_fh(fh
, &ev_lost_msgs
, ktime_get_ns());
259 * Queue the message for those filehandles that are in monitor mode.
260 * If valid_la is true (this message is for us or was sent by us),
261 * then pass it on to any monitoring filehandle. If this message
262 * isn't for us or from us, then only give it to filehandles that
263 * are in MONITOR_ALL mode.
265 * This can only happen if the CEC_CAP_MONITOR_ALL capability is
266 * set and the CEC adapter was placed in 'monitor all' mode.
268 static void cec_queue_msg_monitor(struct cec_adapter
*adap
,
269 const struct cec_msg
*msg
,
273 u32 monitor_mode
= valid_la
? CEC_MODE_MONITOR
:
274 CEC_MODE_MONITOR_ALL
;
276 mutex_lock(&adap
->devnode
.lock
);
277 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
) {
278 if (fh
->mode_follower
>= monitor_mode
)
279 cec_queue_msg_fh(fh
, msg
);
281 mutex_unlock(&adap
->devnode
.lock
);
285 * Queue the message for follower filehandles.
287 static void cec_queue_msg_followers(struct cec_adapter
*adap
,
288 const struct cec_msg
*msg
)
292 mutex_lock(&adap
->devnode
.lock
);
293 list_for_each_entry(fh
, &adap
->devnode
.fhs
, list
) {
294 if (fh
->mode_follower
== CEC_MODE_FOLLOWER
)
295 cec_queue_msg_fh(fh
, msg
);
297 mutex_unlock(&adap
->devnode
.lock
);
300 /* Notify userspace of an adapter state change. */
301 static void cec_post_state_event(struct cec_adapter
*adap
)
303 struct cec_event ev
= {
304 .event
= CEC_EVENT_STATE_CHANGE
,
307 ev
.state_change
.phys_addr
= adap
->phys_addr
;
308 ev
.state_change
.log_addr_mask
= adap
->log_addrs
.log_addr_mask
;
309 cec_queue_event(adap
, &ev
);
313 * A CEC transmit (and a possible wait for reply) completed.
314 * If this was in blocking mode, then complete it, otherwise
315 * queue the message for userspace to dequeue later.
317 * This function is called with adap->lock held.
319 static void cec_data_completed(struct cec_data
*data
)
322 * Delete this transmit from the filehandle's xfer_list since
323 * we're done with it.
325 * Note that if the filehandle is closed before this transmit
326 * finished, then the release() function will set data->fh to NULL.
327 * Without that we would be referring to a closed filehandle.
330 list_del(&data
->xfer_list
);
332 if (data
->blocking
) {
334 * Someone is blocking so mark the message as completed
337 data
->completed
= true;
341 * No blocking, so just queue the message if needed and
345 cec_queue_msg_fh(data
->fh
, &data
->msg
);
351 * A pending CEC transmit needs to be cancelled, either because the CEC
352 * adapter is disabled or the transmit takes an impossibly long time to
355 * This function is called with adap->lock held.
357 static void cec_data_cancel(struct cec_data
*data
, u8 tx_status
)
360 * It's either the current transmit, or it is a pending
361 * transmit. Take the appropriate action to clear it.
363 if (data
->adap
->transmitting
== data
) {
364 data
->adap
->transmitting
= NULL
;
366 list_del_init(&data
->list
);
367 if (!(data
->msg
.tx_status
& CEC_TX_STATUS_OK
))
368 data
->adap
->transmit_queue_sz
--;
371 if (data
->msg
.tx_status
& CEC_TX_STATUS_OK
) {
372 data
->msg
.rx_ts
= ktime_get_ns();
373 data
->msg
.rx_status
= CEC_RX_STATUS_ABORTED
;
375 data
->msg
.tx_ts
= ktime_get_ns();
376 data
->msg
.tx_status
|= tx_status
|
377 CEC_TX_STATUS_MAX_RETRIES
;
378 data
->msg
.tx_error_cnt
++;
382 /* Queue transmitted message for monitoring purposes */
383 cec_queue_msg_monitor(data
->adap
, &data
->msg
, 1);
385 cec_data_completed(data
);
389 * Flush all pending transmits and cancel any pending timeout work.
391 * This function is called with adap->lock held.
393 static void cec_flush(struct cec_adapter
*adap
)
395 struct cec_data
*data
, *n
;
398 * If the adapter is disabled, or we're asked to stop,
399 * then cancel any pending transmits.
401 while (!list_empty(&adap
->transmit_queue
)) {
402 data
= list_first_entry(&adap
->transmit_queue
,
403 struct cec_data
, list
);
404 cec_data_cancel(data
, CEC_TX_STATUS_ABORTED
);
406 if (adap
->transmitting
)
407 cec_data_cancel(adap
->transmitting
, CEC_TX_STATUS_ABORTED
);
409 /* Cancel the pending timeout work. */
410 list_for_each_entry_safe(data
, n
, &adap
->wait_queue
, list
) {
411 if (cancel_delayed_work(&data
->work
))
412 cec_data_cancel(data
, CEC_TX_STATUS_OK
);
414 * If cancel_delayed_work returned false, then
415 * the cec_wait_timeout function is running,
416 * which will call cec_data_completed. So no
417 * need to do anything special in that case.
423 * Main CEC state machine
425 * Wait until the thread should be stopped, or we are not transmitting and
426 * a new transmit message is queued up, in which case we start transmitting
427 * that message. When the adapter finished transmitting the message it will
428 * call cec_transmit_done().
430 * If the adapter is disabled, then remove all queued messages instead.
432 * If the current transmit times out, then cancel that transmit.
434 int cec_thread_func(void *_adap
)
436 struct cec_adapter
*adap
= _adap
;
439 unsigned int signal_free_time
;
440 struct cec_data
*data
;
441 bool timeout
= false;
444 if (adap
->transmitting
) {
448 * We are transmitting a message, so add a timeout
449 * to prevent the state machine to get stuck waiting
450 * for this message to finalize and add a check to
451 * see if the adapter is disabled in which case the
452 * transmit should be canceled.
454 err
= wait_event_interruptible_timeout(adap
->kthread_waitq
,
456 (!adap
->is_configured
&& !adap
->is_configuring
)) ||
457 kthread_should_stop() ||
458 (!adap
->transmit_in_progress
&&
459 !list_empty(&adap
->transmit_queue
)),
460 msecs_to_jiffies(CEC_XFER_TIMEOUT_MS
));
463 /* Otherwise we just wait for something to happen. */
464 wait_event_interruptible(adap
->kthread_waitq
,
465 kthread_should_stop() ||
466 (!adap
->transmit_in_progress
&&
467 !list_empty(&adap
->transmit_queue
)));
470 mutex_lock(&adap
->lock
);
472 if ((adap
->needs_hpd
&&
473 (!adap
->is_configured
&& !adap
->is_configuring
)) ||
474 kthread_should_stop()) {
479 if (adap
->transmitting
&& timeout
) {
481 * If we timeout, then log that. Normally this does
482 * not happen and it is an indication of a faulty CEC
483 * adapter driver, or the CEC bus is in some weird
484 * state. On rare occasions it can happen if there is
485 * so much traffic on the bus that the adapter was
486 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
488 pr_warn("cec-%s: message %*ph timed out\n", adap
->name
,
489 adap
->transmitting
->msg
.len
,
490 adap
->transmitting
->msg
.msg
);
491 adap
->transmit_in_progress
= false;
493 /* Just give up on this. */
494 cec_data_cancel(adap
->transmitting
,
495 CEC_TX_STATUS_TIMEOUT
);
500 * If we are still transmitting, or there is nothing new to
501 * transmit, then just continue waiting.
503 if (adap
->transmit_in_progress
|| list_empty(&adap
->transmit_queue
))
506 /* Get a new message to transmit */
507 data
= list_first_entry(&adap
->transmit_queue
,
508 struct cec_data
, list
);
509 list_del_init(&data
->list
);
510 adap
->transmit_queue_sz
--;
512 /* Make this the current transmitting message */
513 adap
->transmitting
= data
;
516 * Suggested number of attempts as per the CEC 2.0 spec:
517 * 4 attempts is the default, except for 'secondary poll
518 * messages', i.e. poll messages not sent during the adapter
519 * configuration phase when it allocates logical addresses.
521 if (data
->msg
.len
== 1 && adap
->is_configured
)
526 /* Set the suggested signal free time */
527 if (data
->attempts
) {
528 /* should be >= 3 data bit periods for a retry */
529 signal_free_time
= CEC_SIGNAL_FREE_TIME_RETRY
;
530 } else if (adap
->last_initiator
!=
531 cec_msg_initiator(&data
->msg
)) {
532 /* should be >= 5 data bit periods for new initiator */
533 signal_free_time
= CEC_SIGNAL_FREE_TIME_NEW_INITIATOR
;
534 adap
->last_initiator
= cec_msg_initiator(&data
->msg
);
537 * should be >= 7 data bit periods for sending another
538 * frame immediately after another.
540 signal_free_time
= CEC_SIGNAL_FREE_TIME_NEXT_XFER
;
542 if (data
->attempts
== 0)
543 data
->attempts
= attempts
;
545 /* Tell the adapter to transmit, cancel on error */
546 if (adap
->ops
->adap_transmit(adap
, data
->attempts
,
547 signal_free_time
, &data
->msg
))
548 cec_data_cancel(data
, CEC_TX_STATUS_ABORTED
);
550 adap
->transmit_in_progress
= true;
553 mutex_unlock(&adap
->lock
);
555 if (kthread_should_stop())
562 * Called by the CEC adapter if a transmit finished.
564 void cec_transmit_done_ts(struct cec_adapter
*adap
, u8 status
,
565 u8 arb_lost_cnt
, u8 nack_cnt
, u8 low_drive_cnt
,
566 u8 error_cnt
, ktime_t ts
)
568 struct cec_data
*data
;
570 unsigned int attempts_made
= arb_lost_cnt
+ nack_cnt
+
571 low_drive_cnt
+ error_cnt
;
573 dprintk(2, "%s: status 0x%02x\n", __func__
, status
);
574 if (attempts_made
< 1)
577 mutex_lock(&adap
->lock
);
578 data
= adap
->transmitting
;
581 * This might happen if a transmit was issued and the cable is
582 * unplugged while the transmit is ongoing. Ignore this
583 * transmit in that case.
585 if (!adap
->transmit_in_progress
)
586 dprintk(1, "%s was called without an ongoing transmit!\n",
588 adap
->transmit_in_progress
= false;
591 adap
->transmit_in_progress
= false;
595 /* Drivers must fill in the status! */
596 WARN_ON(status
== 0);
597 msg
->tx_ts
= ktime_to_ns(ts
);
598 msg
->tx_status
|= status
;
599 msg
->tx_arb_lost_cnt
+= arb_lost_cnt
;
600 msg
->tx_nack_cnt
+= nack_cnt
;
601 msg
->tx_low_drive_cnt
+= low_drive_cnt
;
602 msg
->tx_error_cnt
+= error_cnt
;
604 /* Mark that we're done with this transmit */
605 adap
->transmitting
= NULL
;
608 * If there are still retry attempts left and there was an error and
609 * the hardware didn't signal that it retried itself (by setting
610 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
612 if (data
->attempts
> attempts_made
&&
613 !(status
& (CEC_TX_STATUS_MAX_RETRIES
| CEC_TX_STATUS_OK
))) {
614 /* Retry this message */
615 data
->attempts
-= attempts_made
;
617 dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
618 msg
->len
, msg
->msg
, data
->attempts
, msg
->reply
);
620 dprintk(2, "retransmit: %*ph (attempts: %d)\n",
621 msg
->len
, msg
->msg
, data
->attempts
);
622 /* Add the message in front of the transmit queue */
623 list_add(&data
->list
, &adap
->transmit_queue
);
624 adap
->transmit_queue_sz
++;
630 /* Always set CEC_TX_STATUS_MAX_RETRIES on error */
631 if (!(status
& CEC_TX_STATUS_OK
))
632 msg
->tx_status
|= CEC_TX_STATUS_MAX_RETRIES
;
634 /* Queue transmitted message for monitoring purposes */
635 cec_queue_msg_monitor(adap
, msg
, 1);
637 if ((status
& CEC_TX_STATUS_OK
) && adap
->is_configured
&&
640 * Queue the message into the wait queue if we want to wait
643 list_add_tail(&data
->list
, &adap
->wait_queue
);
644 schedule_delayed_work(&data
->work
,
645 msecs_to_jiffies(msg
->timeout
));
647 /* Otherwise we're done */
648 cec_data_completed(data
);
653 * Wake up the main thread to see if another message is ready
654 * for transmitting or to retry the current message.
656 wake_up_interruptible(&adap
->kthread_waitq
);
657 mutex_unlock(&adap
->lock
);
659 EXPORT_SYMBOL_GPL(cec_transmit_done_ts
);
661 void cec_transmit_attempt_done_ts(struct cec_adapter
*adap
,
662 u8 status
, ktime_t ts
)
664 switch (status
& ~CEC_TX_STATUS_MAX_RETRIES
) {
665 case CEC_TX_STATUS_OK
:
666 cec_transmit_done_ts(adap
, status
, 0, 0, 0, 0, ts
);
668 case CEC_TX_STATUS_ARB_LOST
:
669 cec_transmit_done_ts(adap
, status
, 1, 0, 0, 0, ts
);
671 case CEC_TX_STATUS_NACK
:
672 cec_transmit_done_ts(adap
, status
, 0, 1, 0, 0, ts
);
674 case CEC_TX_STATUS_LOW_DRIVE
:
675 cec_transmit_done_ts(adap
, status
, 0, 0, 1, 0, ts
);
677 case CEC_TX_STATUS_ERROR
:
678 cec_transmit_done_ts(adap
, status
, 0, 0, 0, 1, ts
);
681 /* Should never happen */
682 WARN(1, "cec-%s: invalid status 0x%02x\n", adap
->name
, status
);
686 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts
);
689 * Called when waiting for a reply times out.
691 static void cec_wait_timeout(struct work_struct
*work
)
693 struct cec_data
*data
= container_of(work
, struct cec_data
, work
.work
);
694 struct cec_adapter
*adap
= data
->adap
;
696 mutex_lock(&adap
->lock
);
698 * Sanity check in case the timeout and the arrival of the message
699 * happened at the same time.
701 if (list_empty(&data
->list
))
704 /* Mark the message as timed out */
705 list_del_init(&data
->list
);
706 data
->msg
.rx_ts
= ktime_get_ns();
707 data
->msg
.rx_status
= CEC_RX_STATUS_TIMEOUT
;
708 cec_data_completed(data
);
710 mutex_unlock(&adap
->lock
);
714 * Transmit a message. The fh argument may be NULL if the transmit is not
715 * associated with a specific filehandle.
717 * This function is called with adap->lock held.
719 int cec_transmit_msg_fh(struct cec_adapter
*adap
, struct cec_msg
*msg
,
720 struct cec_fh
*fh
, bool block
)
722 struct cec_data
*data
;
728 msg
->tx_arb_lost_cnt
= 0;
729 msg
->tx_nack_cnt
= 0;
730 msg
->tx_low_drive_cnt
= 0;
731 msg
->tx_error_cnt
= 0;
734 if (msg
->reply
&& msg
->timeout
== 0) {
735 /* Make sure the timeout isn't 0. */
739 msg
->flags
&= CEC_MSG_FL_REPLY_TO_FOLLOWERS
;
743 if (msg
->len
> 1 && msg
->msg
[1] == CEC_MSG_CDC_MESSAGE
) {
744 msg
->msg
[2] = adap
->phys_addr
>> 8;
745 msg
->msg
[3] = adap
->phys_addr
& 0xff;
749 if (msg
->len
== 0 || msg
->len
> CEC_MAX_MSG_SIZE
) {
750 dprintk(1, "%s: invalid length %d\n", __func__
, msg
->len
);
754 memset(msg
->msg
+ msg
->len
, 0, sizeof(msg
->msg
) - msg
->len
);
757 dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
758 __func__
, msg
->len
, msg
->msg
, msg
->reply
,
759 !block
? ", nb" : "");
761 dprintk(2, "%s: %*ph%s\n",
762 __func__
, msg
->len
, msg
->msg
, !block
? " (nb)" : "");
764 if (msg
->timeout
&& msg
->len
== 1) {
765 dprintk(1, "%s: can't reply to poll msg\n", __func__
);
769 if (cec_msg_destination(msg
) == 0xf) {
770 dprintk(1, "%s: invalid poll message\n", __func__
);
773 if (cec_has_log_addr(adap
, cec_msg_destination(msg
))) {
775 * If the destination is a logical address our adapter
776 * has already claimed, then just NACK this.
777 * It depends on the hardware what it will do with a
778 * POLL to itself (some OK this), so it is just as
779 * easy to handle it here so the behavior will be
782 msg
->tx_ts
= ktime_get_ns();
783 msg
->tx_status
= CEC_TX_STATUS_NACK
|
784 CEC_TX_STATUS_MAX_RETRIES
;
785 msg
->tx_nack_cnt
= 1;
786 msg
->sequence
= ++adap
->sequence
;
788 msg
->sequence
= ++adap
->sequence
;
792 if (msg
->len
> 1 && !cec_msg_is_broadcast(msg
) &&
793 cec_has_log_addr(adap
, cec_msg_destination(msg
))) {
794 dprintk(1, "%s: destination is the adapter itself\n", __func__
);
797 if (msg
->len
> 1 && adap
->is_configured
&&
798 !cec_has_log_addr(adap
, cec_msg_initiator(msg
))) {
799 dprintk(1, "%s: initiator has unknown logical address %d\n",
800 __func__
, cec_msg_initiator(msg
));
803 if (!adap
->is_configured
&& !adap
->is_configuring
) {
804 if (adap
->needs_hpd
|| msg
->msg
[0] != 0xf0) {
805 dprintk(1, "%s: adapter is unconfigured\n", __func__
);
809 dprintk(1, "%s: invalid msg->reply\n", __func__
);
814 if (adap
->transmit_queue_sz
>= CEC_MAX_MSG_TX_QUEUE_SZ
) {
815 dprintk(2, "%s: transmit queue full\n", __func__
);
819 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
823 msg
->sequence
= ++adap
->sequence
;
825 msg
->sequence
= ++adap
->sequence
;
830 data
->blocking
= block
;
832 init_completion(&data
->c
);
833 INIT_DELAYED_WORK(&data
->work
, cec_wait_timeout
);
836 list_add_tail(&data
->xfer_list
, &fh
->xfer_list
);
838 list_add_tail(&data
->list
, &adap
->transmit_queue
);
839 adap
->transmit_queue_sz
++;
840 if (!adap
->transmitting
)
841 wake_up_interruptible(&adap
->kthread_waitq
);
843 /* All done if we don't need to block waiting for completion */
848 * Release the lock and wait, retake the lock afterwards.
850 mutex_unlock(&adap
->lock
);
851 wait_for_completion_killable(&data
->c
);
852 if (!data
->completed
)
853 cancel_delayed_work_sync(&data
->work
);
854 mutex_lock(&adap
->lock
);
856 /* Cancel the transmit if it was interrupted */
857 if (!data
->completed
)
858 cec_data_cancel(data
, CEC_TX_STATUS_ABORTED
);
860 /* The transmit completed (possibly with an error) */
866 /* Helper function to be used by drivers and this framework. */
867 int cec_transmit_msg(struct cec_adapter
*adap
, struct cec_msg
*msg
,
872 mutex_lock(&adap
->lock
);
873 ret
= cec_transmit_msg_fh(adap
, msg
, NULL
, block
);
874 mutex_unlock(&adap
->lock
);
877 EXPORT_SYMBOL_GPL(cec_transmit_msg
);
880 * I don't like forward references but without this the low-level
881 * cec_received_msg() function would come after a bunch of high-level
882 * CEC protocol handling functions. That was very confusing.
884 static int cec_receive_notify(struct cec_adapter
*adap
, struct cec_msg
*msg
,
887 #define DIRECTED 0x80
888 #define BCAST1_4 0x40
889 #define BCAST2_0 0x20 /* broadcast only allowed for >= 2.0 */
890 #define BCAST (BCAST1_4 | BCAST2_0)
891 #define BOTH (BCAST | DIRECTED)
894 * Specify minimum length and whether the message is directed, broadcast
895 * or both. Messages that do not match the criteria are ignored as per
896 * the CEC specification.
898 static const u8 cec_msg_size
[256] = {
899 [CEC_MSG_ACTIVE_SOURCE
] = 4 | BCAST
,
900 [CEC_MSG_IMAGE_VIEW_ON
] = 2 | DIRECTED
,
901 [CEC_MSG_TEXT_VIEW_ON
] = 2 | DIRECTED
,
902 [CEC_MSG_INACTIVE_SOURCE
] = 4 | DIRECTED
,
903 [CEC_MSG_REQUEST_ACTIVE_SOURCE
] = 2 | BCAST
,
904 [CEC_MSG_ROUTING_CHANGE
] = 6 | BCAST
,
905 [CEC_MSG_ROUTING_INFORMATION
] = 4 | BCAST
,
906 [CEC_MSG_SET_STREAM_PATH
] = 4 | BCAST
,
907 [CEC_MSG_STANDBY
] = 2 | BOTH
,
908 [CEC_MSG_RECORD_OFF
] = 2 | DIRECTED
,
909 [CEC_MSG_RECORD_ON
] = 3 | DIRECTED
,
910 [CEC_MSG_RECORD_STATUS
] = 3 | DIRECTED
,
911 [CEC_MSG_RECORD_TV_SCREEN
] = 2 | DIRECTED
,
912 [CEC_MSG_CLEAR_ANALOGUE_TIMER
] = 13 | DIRECTED
,
913 [CEC_MSG_CLEAR_DIGITAL_TIMER
] = 16 | DIRECTED
,
914 [CEC_MSG_CLEAR_EXT_TIMER
] = 13 | DIRECTED
,
915 [CEC_MSG_SET_ANALOGUE_TIMER
] = 13 | DIRECTED
,
916 [CEC_MSG_SET_DIGITAL_TIMER
] = 16 | DIRECTED
,
917 [CEC_MSG_SET_EXT_TIMER
] = 13 | DIRECTED
,
918 [CEC_MSG_SET_TIMER_PROGRAM_TITLE
] = 2 | DIRECTED
,
919 [CEC_MSG_TIMER_CLEARED_STATUS
] = 3 | DIRECTED
,
920 [CEC_MSG_TIMER_STATUS
] = 3 | DIRECTED
,
921 [CEC_MSG_CEC_VERSION
] = 3 | DIRECTED
,
922 [CEC_MSG_GET_CEC_VERSION
] = 2 | DIRECTED
,
923 [CEC_MSG_GIVE_PHYSICAL_ADDR
] = 2 | DIRECTED
,
924 [CEC_MSG_GET_MENU_LANGUAGE
] = 2 | DIRECTED
,
925 [CEC_MSG_REPORT_PHYSICAL_ADDR
] = 5 | BCAST
,
926 [CEC_MSG_SET_MENU_LANGUAGE
] = 5 | BCAST
,
927 [CEC_MSG_REPORT_FEATURES
] = 6 | BCAST
,
928 [CEC_MSG_GIVE_FEATURES
] = 2 | DIRECTED
,
929 [CEC_MSG_DECK_CONTROL
] = 3 | DIRECTED
,
930 [CEC_MSG_DECK_STATUS
] = 3 | DIRECTED
,
931 [CEC_MSG_GIVE_DECK_STATUS
] = 3 | DIRECTED
,
932 [CEC_MSG_PLAY
] = 3 | DIRECTED
,
933 [CEC_MSG_GIVE_TUNER_DEVICE_STATUS
] = 3 | DIRECTED
,
934 [CEC_MSG_SELECT_ANALOGUE_SERVICE
] = 6 | DIRECTED
,
935 [CEC_MSG_SELECT_DIGITAL_SERVICE
] = 9 | DIRECTED
,
936 [CEC_MSG_TUNER_DEVICE_STATUS
] = 7 | DIRECTED
,
937 [CEC_MSG_TUNER_STEP_DECREMENT
] = 2 | DIRECTED
,
938 [CEC_MSG_TUNER_STEP_INCREMENT
] = 2 | DIRECTED
,
939 [CEC_MSG_DEVICE_VENDOR_ID
] = 5 | BCAST
,
940 [CEC_MSG_GIVE_DEVICE_VENDOR_ID
] = 2 | DIRECTED
,
941 [CEC_MSG_VENDOR_COMMAND
] = 2 | DIRECTED
,
942 [CEC_MSG_VENDOR_COMMAND_WITH_ID
] = 5 | BOTH
,
943 [CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN
] = 2 | BOTH
,
944 [CEC_MSG_VENDOR_REMOTE_BUTTON_UP
] = 2 | BOTH
,
945 [CEC_MSG_SET_OSD_STRING
] = 3 | DIRECTED
,
946 [CEC_MSG_GIVE_OSD_NAME
] = 2 | DIRECTED
,
947 [CEC_MSG_SET_OSD_NAME
] = 2 | DIRECTED
,
948 [CEC_MSG_MENU_REQUEST
] = 3 | DIRECTED
,
949 [CEC_MSG_MENU_STATUS
] = 3 | DIRECTED
,
950 [CEC_MSG_USER_CONTROL_PRESSED
] = 3 | DIRECTED
,
951 [CEC_MSG_USER_CONTROL_RELEASED
] = 2 | DIRECTED
,
952 [CEC_MSG_GIVE_DEVICE_POWER_STATUS
] = 2 | DIRECTED
,
953 [CEC_MSG_REPORT_POWER_STATUS
] = 3 | DIRECTED
| BCAST2_0
,
954 [CEC_MSG_FEATURE_ABORT
] = 4 | DIRECTED
,
955 [CEC_MSG_ABORT
] = 2 | DIRECTED
,
956 [CEC_MSG_GIVE_AUDIO_STATUS
] = 2 | DIRECTED
,
957 [CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS
] = 2 | DIRECTED
,
958 [CEC_MSG_REPORT_AUDIO_STATUS
] = 3 | DIRECTED
,
959 [CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR
] = 2 | DIRECTED
,
960 [CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR
] = 2 | DIRECTED
,
961 [CEC_MSG_SET_SYSTEM_AUDIO_MODE
] = 3 | BOTH
,
962 [CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST
] = 2 | DIRECTED
,
963 [CEC_MSG_SYSTEM_AUDIO_MODE_STATUS
] = 3 | DIRECTED
,
964 [CEC_MSG_SET_AUDIO_RATE
] = 3 | DIRECTED
,
965 [CEC_MSG_INITIATE_ARC
] = 2 | DIRECTED
,
966 [CEC_MSG_REPORT_ARC_INITIATED
] = 2 | DIRECTED
,
967 [CEC_MSG_REPORT_ARC_TERMINATED
] = 2 | DIRECTED
,
968 [CEC_MSG_REQUEST_ARC_INITIATION
] = 2 | DIRECTED
,
969 [CEC_MSG_REQUEST_ARC_TERMINATION
] = 2 | DIRECTED
,
970 [CEC_MSG_TERMINATE_ARC
] = 2 | DIRECTED
,
971 [CEC_MSG_REQUEST_CURRENT_LATENCY
] = 4 | BCAST
,
972 [CEC_MSG_REPORT_CURRENT_LATENCY
] = 6 | BCAST
,
973 [CEC_MSG_CDC_MESSAGE
] = 2 | BCAST
,
976 /* Called by the CEC adapter if a message is received */
977 void cec_received_msg_ts(struct cec_adapter
*adap
,
978 struct cec_msg
*msg
, ktime_t ts
)
980 struct cec_data
*data
;
981 u8 msg_init
= cec_msg_initiator(msg
);
982 u8 msg_dest
= cec_msg_destination(msg
);
983 u8 cmd
= msg
->msg
[1];
984 bool is_reply
= false;
985 bool valid_la
= true;
988 if (WARN_ON(!msg
->len
|| msg
->len
> CEC_MAX_MSG_SIZE
))
992 * Some CEC adapters will receive the messages that they transmitted.
993 * This test filters out those messages by checking if we are the
994 * initiator, and just returning in that case.
996 * Note that this won't work if this is an Unregistered device.
998 * It is bad practice if the hardware receives the message that it
999 * transmitted and luckily most CEC adapters behave correctly in this
1002 if (msg_init
!= CEC_LOG_ADDR_UNREGISTERED
&&
1003 cec_has_log_addr(adap
, msg_init
))
1006 msg
->rx_ts
= ktime_to_ns(ts
);
1007 msg
->rx_status
= CEC_RX_STATUS_OK
;
1008 msg
->sequence
= msg
->reply
= msg
->timeout
= 0;
1011 msg
->tx_arb_lost_cnt
= 0;
1012 msg
->tx_nack_cnt
= 0;
1013 msg
->tx_low_drive_cnt
= 0;
1014 msg
->tx_error_cnt
= 0;
1016 memset(msg
->msg
+ msg
->len
, 0, sizeof(msg
->msg
) - msg
->len
);
1018 mutex_lock(&adap
->lock
);
1019 dprintk(2, "%s: %*ph\n", __func__
, msg
->len
, msg
->msg
);
1021 adap
->last_initiator
= 0xff;
1023 /* Check if this message was for us (directed or broadcast). */
1024 if (!cec_msg_is_broadcast(msg
))
1025 valid_la
= cec_has_log_addr(adap
, msg_dest
);
1028 * Check if the length is not too short or if the message is a
1029 * broadcast message where a directed message was expected or
1030 * vice versa. If so, then the message has to be ignored (according
1031 * to section CEC 7.3 and CEC 12.2).
1033 if (valid_la
&& msg
->len
> 1 && cec_msg_size
[cmd
]) {
1034 u8 dir_fl
= cec_msg_size
[cmd
] & BOTH
;
1036 min_len
= cec_msg_size
[cmd
] & 0x1f;
1037 if (msg
->len
< min_len
)
1039 else if (!cec_msg_is_broadcast(msg
) && !(dir_fl
& DIRECTED
))
1041 else if (cec_msg_is_broadcast(msg
) && !(dir_fl
& BCAST1_4
))
1043 else if (cec_msg_is_broadcast(msg
) &&
1044 adap
->log_addrs
.cec_version
>= CEC_OP_CEC_VERSION_2_0
&&
1045 !(dir_fl
& BCAST2_0
))
1048 if (valid_la
&& min_len
) {
1049 /* These messages have special length requirements */
1051 case CEC_MSG_TIMER_STATUS
:
1052 if (msg
->msg
[2] & 0x10) {
1053 switch (msg
->msg
[2] & 0xf) {
1054 case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE
:
1055 case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE
:
1060 } else if ((msg
->msg
[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE
) {
1065 case CEC_MSG_RECORD_ON
:
1066 switch (msg
->msg
[2]) {
1067 case CEC_OP_RECORD_SRC_OWN
:
1069 case CEC_OP_RECORD_SRC_DIGITAL
:
1073 case CEC_OP_RECORD_SRC_ANALOG
:
1077 case CEC_OP_RECORD_SRC_EXT_PLUG
:
1081 case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR
:
1090 /* It's a valid message and not a poll or CDC message */
1091 if (valid_la
&& msg
->len
> 1 && cmd
!= CEC_MSG_CDC_MESSAGE
) {
1092 bool abort
= cmd
== CEC_MSG_FEATURE_ABORT
;
1094 /* The aborted command is in msg[2] */
1099 * Walk over all transmitted messages that are waiting for a
1102 list_for_each_entry(data
, &adap
->wait_queue
, list
) {
1103 struct cec_msg
*dst
= &data
->msg
;
1106 * The *only* CEC message that has two possible replies
1107 * is CEC_MSG_INITIATE_ARC.
1108 * In this case allow either of the two replies.
1110 if (!abort
&& dst
->msg
[1] == CEC_MSG_INITIATE_ARC
&&
1111 (cmd
== CEC_MSG_REPORT_ARC_INITIATED
||
1112 cmd
== CEC_MSG_REPORT_ARC_TERMINATED
) &&
1113 (dst
->reply
== CEC_MSG_REPORT_ARC_INITIATED
||
1114 dst
->reply
== CEC_MSG_REPORT_ARC_TERMINATED
))
1117 /* Does the command match? */
1118 if ((abort
&& cmd
!= dst
->msg
[1]) ||
1119 (!abort
&& cmd
!= dst
->reply
))
1122 /* Does the addressing match? */
1123 if (msg_init
!= cec_msg_destination(dst
) &&
1124 !cec_msg_is_broadcast(dst
))
1127 /* We got a reply */
1128 memcpy(dst
->msg
, msg
->msg
, msg
->len
);
1129 dst
->len
= msg
->len
;
1130 dst
->rx_ts
= msg
->rx_ts
;
1131 dst
->rx_status
= msg
->rx_status
;
1133 dst
->rx_status
|= CEC_RX_STATUS_FEATURE_ABORT
;
1134 msg
->flags
= dst
->flags
;
1135 /* Remove it from the wait_queue */
1136 list_del_init(&data
->list
);
1138 /* Cancel the pending timeout work */
1139 if (!cancel_delayed_work(&data
->work
)) {
1140 mutex_unlock(&adap
->lock
);
1141 flush_scheduled_work();
1142 mutex_lock(&adap
->lock
);
1145 * Mark this as a reply, provided someone is still
1146 * waiting for the answer.
1150 cec_data_completed(data
);
1154 mutex_unlock(&adap
->lock
);
1156 /* Pass the message on to any monitoring filehandles */
1157 cec_queue_msg_monitor(adap
, msg
, valid_la
);
1159 /* We're done if it is not for us or a poll message */
1160 if (!valid_la
|| msg
->len
<= 1)
1163 if (adap
->log_addrs
.log_addr_mask
== 0)
1167 * Process the message on the protocol level. If is_reply is true,
1168 * then cec_receive_notify() won't pass on the reply to the listener(s)
1169 * since that was already done by cec_data_completed() above.
1171 cec_receive_notify(adap
, msg
, is_reply
);
1173 EXPORT_SYMBOL_GPL(cec_received_msg_ts
);
1175 /* Logical Address Handling */
1178 * Attempt to claim a specific logical address.
1180 * This function is called with adap->lock held.
1182 static int cec_config_log_addr(struct cec_adapter
*adap
,
1184 unsigned int log_addr
)
1186 struct cec_log_addrs
*las
= &adap
->log_addrs
;
1187 struct cec_msg msg
= { };
1188 const unsigned int max_retries
= 2;
1192 if (cec_has_log_addr(adap
, log_addr
))
1195 /* Send poll message */
1197 msg
.msg
[0] = (log_addr
<< 4) | log_addr
;
1199 for (i
= 0; i
< max_retries
; i
++) {
1200 err
= cec_transmit_msg_fh(adap
, &msg
, NULL
, true);
1203 * While trying to poll the physical address was reset
1204 * and the adapter was unconfigured, so bail out.
1206 if (!adap
->is_configuring
)
1213 * The message was aborted due to a disconnect or
1214 * unconfigure, just bail out.
1216 if (msg
.tx_status
& CEC_TX_STATUS_ABORTED
)
1218 if (msg
.tx_status
& CEC_TX_STATUS_OK
)
1220 if (msg
.tx_status
& CEC_TX_STATUS_NACK
)
1223 * Retry up to max_retries times if the message was neither
1224 * OKed or NACKed. This can happen due to e.g. a Lost
1225 * Arbitration condition.
1230 * If we are unable to get an OK or a NACK after max_retries attempts
1231 * (and note that each attempt already consists of four polls), then
1232 * then we assume that something is really weird and that it is not a
1233 * good idea to try and claim this logical address.
1235 if (i
== max_retries
)
1239 * Message not acknowledged, so this logical
1240 * address is free to use.
1242 err
= adap
->ops
->adap_log_addr(adap
, log_addr
);
1246 las
->log_addr
[idx
] = log_addr
;
1247 las
->log_addr_mask
|= 1 << log_addr
;
1248 adap
->phys_addrs
[log_addr
] = adap
->phys_addr
;
1253 * Unconfigure the adapter: clear all logical addresses and send
1254 * the state changed event.
1256 * This function is called with adap->lock held.
1258 static void cec_adap_unconfigure(struct cec_adapter
*adap
)
1260 if (!adap
->needs_hpd
||
1261 adap
->phys_addr
!= CEC_PHYS_ADDR_INVALID
)
1262 WARN_ON(adap
->ops
->adap_log_addr(adap
, CEC_LOG_ADDR_INVALID
));
1263 adap
->log_addrs
.log_addr_mask
= 0;
1264 adap
->is_configuring
= false;
1265 adap
->is_configured
= false;
1266 memset(adap
->phys_addrs
, 0xff, sizeof(adap
->phys_addrs
));
1268 wake_up_interruptible(&adap
->kthread_waitq
);
1269 cec_post_state_event(adap
);
1273 * Attempt to claim the required logical addresses.
1275 static int cec_config_thread_func(void *arg
)
1277 /* The various LAs for each type of device */
1278 static const u8 tv_log_addrs
[] = {
1279 CEC_LOG_ADDR_TV
, CEC_LOG_ADDR_SPECIFIC
,
1280 CEC_LOG_ADDR_INVALID
1282 static const u8 record_log_addrs
[] = {
1283 CEC_LOG_ADDR_RECORD_1
, CEC_LOG_ADDR_RECORD_2
,
1284 CEC_LOG_ADDR_RECORD_3
,
1285 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1286 CEC_LOG_ADDR_INVALID
1288 static const u8 tuner_log_addrs
[] = {
1289 CEC_LOG_ADDR_TUNER_1
, CEC_LOG_ADDR_TUNER_2
,
1290 CEC_LOG_ADDR_TUNER_3
, CEC_LOG_ADDR_TUNER_4
,
1291 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1292 CEC_LOG_ADDR_INVALID
1294 static const u8 playback_log_addrs
[] = {
1295 CEC_LOG_ADDR_PLAYBACK_1
, CEC_LOG_ADDR_PLAYBACK_2
,
1296 CEC_LOG_ADDR_PLAYBACK_3
,
1297 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1298 CEC_LOG_ADDR_INVALID
1300 static const u8 audiosystem_log_addrs
[] = {
1301 CEC_LOG_ADDR_AUDIOSYSTEM
,
1302 CEC_LOG_ADDR_INVALID
1304 static const u8 specific_use_log_addrs
[] = {
1305 CEC_LOG_ADDR_SPECIFIC
,
1306 CEC_LOG_ADDR_BACKUP_1
, CEC_LOG_ADDR_BACKUP_2
,
1307 CEC_LOG_ADDR_INVALID
1309 static const u8
*type2addrs
[6] = {
1310 [CEC_LOG_ADDR_TYPE_TV
] = tv_log_addrs
,
1311 [CEC_LOG_ADDR_TYPE_RECORD
] = record_log_addrs
,
1312 [CEC_LOG_ADDR_TYPE_TUNER
] = tuner_log_addrs
,
1313 [CEC_LOG_ADDR_TYPE_PLAYBACK
] = playback_log_addrs
,
1314 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM
] = audiosystem_log_addrs
,
1315 [CEC_LOG_ADDR_TYPE_SPECIFIC
] = specific_use_log_addrs
,
1317 static const u16 type2mask
[] = {
1318 [CEC_LOG_ADDR_TYPE_TV
] = CEC_LOG_ADDR_MASK_TV
,
1319 [CEC_LOG_ADDR_TYPE_RECORD
] = CEC_LOG_ADDR_MASK_RECORD
,
1320 [CEC_LOG_ADDR_TYPE_TUNER
] = CEC_LOG_ADDR_MASK_TUNER
,
1321 [CEC_LOG_ADDR_TYPE_PLAYBACK
] = CEC_LOG_ADDR_MASK_PLAYBACK
,
1322 [CEC_LOG_ADDR_TYPE_AUDIOSYSTEM
] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM
,
1323 [CEC_LOG_ADDR_TYPE_SPECIFIC
] = CEC_LOG_ADDR_MASK_SPECIFIC
,
1325 struct cec_adapter
*adap
= arg
;
1326 struct cec_log_addrs
*las
= &adap
->log_addrs
;
1330 mutex_lock(&adap
->lock
);
1331 dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1332 cec_phys_addr_exp(adap
->phys_addr
), las
->num_log_addrs
);
1333 las
->log_addr_mask
= 0;
1335 if (las
->log_addr_type
[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED
)
1338 for (i
= 0; i
< las
->num_log_addrs
; i
++) {
1339 unsigned int type
= las
->log_addr_type
[i
];
1344 * The TV functionality can only map to physical address 0.
1345 * For any other address, try the Specific functionality
1346 * instead as per the spec.
1348 if (adap
->phys_addr
&& type
== CEC_LOG_ADDR_TYPE_TV
)
1349 type
= CEC_LOG_ADDR_TYPE_SPECIFIC
;
1351 la_list
= type2addrs
[type
];
1352 last_la
= las
->log_addr
[i
];
1353 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1354 if (last_la
== CEC_LOG_ADDR_INVALID
||
1355 last_la
== CEC_LOG_ADDR_UNREGISTERED
||
1356 !((1 << last_la
) & type2mask
[type
]))
1357 last_la
= la_list
[0];
1359 err
= cec_config_log_addr(adap
, i
, last_la
);
1360 if (err
> 0) /* Reused last LA */
1366 for (j
= 0; la_list
[j
] != CEC_LOG_ADDR_INVALID
; j
++) {
1367 /* Tried this one already, skip it */
1368 if (la_list
[j
] == last_la
)
1370 /* The backup addresses are CEC 2.0 specific */
1371 if ((la_list
[j
] == CEC_LOG_ADDR_BACKUP_1
||
1372 la_list
[j
] == CEC_LOG_ADDR_BACKUP_2
) &&
1373 las
->cec_version
< CEC_OP_CEC_VERSION_2_0
)
1376 err
= cec_config_log_addr(adap
, i
, la_list
[j
]);
1377 if (err
== 0) /* LA is in use */
1381 /* Done, claimed an LA */
1385 if (la_list
[j
] == CEC_LOG_ADDR_INVALID
)
1386 dprintk(1, "could not claim LA %d\n", i
);
1389 if (adap
->log_addrs
.log_addr_mask
== 0 &&
1390 !(las
->flags
& CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK
))
1394 if (adap
->log_addrs
.log_addr_mask
== 0) {
1395 /* Fall back to unregistered */
1396 las
->log_addr
[0] = CEC_LOG_ADDR_UNREGISTERED
;
1397 las
->log_addr_mask
= 1 << las
->log_addr
[0];
1398 for (i
= 1; i
< las
->num_log_addrs
; i
++)
1399 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1401 for (i
= las
->num_log_addrs
; i
< CEC_MAX_LOG_ADDRS
; i
++)
1402 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1403 adap
->is_configured
= true;
1404 adap
->is_configuring
= false;
1405 cec_post_state_event(adap
);
1408 * Now post the Report Features and Report Physical Address broadcast
1409 * messages. Note that these are non-blocking transmits, meaning that
1410 * they are just queued up and once adap->lock is unlocked the main
1411 * thread will kick in and start transmitting these.
1413 * If after this function is done (but before one or more of these
1414 * messages are actually transmitted) the CEC adapter is unconfigured,
1415 * then any remaining messages will be dropped by the main thread.
1417 for (i
= 0; i
< las
->num_log_addrs
; i
++) {
1418 struct cec_msg msg
= {};
1420 if (las
->log_addr
[i
] == CEC_LOG_ADDR_INVALID
||
1421 (las
->flags
& CEC_LOG_ADDRS_FL_CDC_ONLY
))
1424 msg
.msg
[0] = (las
->log_addr
[i
] << 4) | 0x0f;
1426 /* Report Features must come first according to CEC 2.0 */
1427 if (las
->log_addr
[i
] != CEC_LOG_ADDR_UNREGISTERED
&&
1428 adap
->log_addrs
.cec_version
>= CEC_OP_CEC_VERSION_2_0
) {
1429 cec_fill_msg_report_features(adap
, &msg
, i
);
1430 cec_transmit_msg_fh(adap
, &msg
, NULL
, false);
1433 /* Report Physical Address */
1434 cec_msg_report_physical_addr(&msg
, adap
->phys_addr
,
1435 las
->primary_device_type
[i
]);
1436 dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1438 cec_phys_addr_exp(adap
->phys_addr
));
1439 cec_transmit_msg_fh(adap
, &msg
, NULL
, false);
1441 /* Report Vendor ID */
1442 if (adap
->log_addrs
.vendor_id
!= CEC_VENDOR_ID_NONE
) {
1443 cec_msg_device_vendor_id(&msg
,
1444 adap
->log_addrs
.vendor_id
);
1445 cec_transmit_msg_fh(adap
, &msg
, NULL
, false);
1448 adap
->kthread_config
= NULL
;
1449 complete(&adap
->config_completion
);
1450 mutex_unlock(&adap
->lock
);
1454 for (i
= 0; i
< las
->num_log_addrs
; i
++)
1455 las
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1456 cec_adap_unconfigure(adap
);
1457 adap
->kthread_config
= NULL
;
1458 mutex_unlock(&adap
->lock
);
1459 complete(&adap
->config_completion
);
1464 * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1465 * logical addresses.
1467 * This function is called with adap->lock held.
1469 static void cec_claim_log_addrs(struct cec_adapter
*adap
, bool block
)
1471 if (WARN_ON(adap
->is_configuring
|| adap
->is_configured
))
1474 init_completion(&adap
->config_completion
);
1476 /* Ready to kick off the thread */
1477 adap
->is_configuring
= true;
1478 adap
->kthread_config
= kthread_run(cec_config_thread_func
, adap
,
1479 "ceccfg-%s", adap
->name
);
1480 if (IS_ERR(adap
->kthread_config
)) {
1481 adap
->kthread_config
= NULL
;
1483 mutex_unlock(&adap
->lock
);
1484 wait_for_completion(&adap
->config_completion
);
1485 mutex_lock(&adap
->lock
);
1489 /* Set a new physical address and send an event notifying userspace of this.
1491 * This function is called with adap->lock held.
1493 void __cec_s_phys_addr(struct cec_adapter
*adap
, u16 phys_addr
, bool block
)
1495 if (phys_addr
== adap
->phys_addr
)
1497 if (phys_addr
!= CEC_PHYS_ADDR_INVALID
&& adap
->devnode
.unregistered
)
1500 dprintk(1, "new physical address %x.%x.%x.%x\n",
1501 cec_phys_addr_exp(phys_addr
));
1502 if (phys_addr
== CEC_PHYS_ADDR_INVALID
||
1503 adap
->phys_addr
!= CEC_PHYS_ADDR_INVALID
) {
1504 adap
->phys_addr
= CEC_PHYS_ADDR_INVALID
;
1505 cec_post_state_event(adap
);
1506 cec_adap_unconfigure(adap
);
1507 /* Disabling monitor all mode should always succeed */
1508 if (adap
->monitor_all_cnt
)
1509 WARN_ON(call_op(adap
, adap_monitor_all_enable
, false));
1510 mutex_lock(&adap
->devnode
.lock
);
1511 if (adap
->needs_hpd
|| list_empty(&adap
->devnode
.fhs
)) {
1512 WARN_ON(adap
->ops
->adap_enable(adap
, false));
1513 adap
->transmit_in_progress
= false;
1514 wake_up_interruptible(&adap
->kthread_waitq
);
1516 mutex_unlock(&adap
->devnode
.lock
);
1517 if (phys_addr
== CEC_PHYS_ADDR_INVALID
)
1521 mutex_lock(&adap
->devnode
.lock
);
1522 adap
->last_initiator
= 0xff;
1523 adap
->transmit_in_progress
= false;
1525 if ((adap
->needs_hpd
|| list_empty(&adap
->devnode
.fhs
)) &&
1526 adap
->ops
->adap_enable(adap
, true)) {
1527 mutex_unlock(&adap
->devnode
.lock
);
1531 if (adap
->monitor_all_cnt
&&
1532 call_op(adap
, adap_monitor_all_enable
, true)) {
1533 if (adap
->needs_hpd
|| list_empty(&adap
->devnode
.fhs
))
1534 WARN_ON(adap
->ops
->adap_enable(adap
, false));
1535 mutex_unlock(&adap
->devnode
.lock
);
1538 mutex_unlock(&adap
->devnode
.lock
);
1540 adap
->phys_addr
= phys_addr
;
1541 cec_post_state_event(adap
);
1542 if (adap
->log_addrs
.num_log_addrs
)
1543 cec_claim_log_addrs(adap
, block
);
1546 void cec_s_phys_addr(struct cec_adapter
*adap
, u16 phys_addr
, bool block
)
1548 if (IS_ERR_OR_NULL(adap
))
1551 mutex_lock(&adap
->lock
);
1552 __cec_s_phys_addr(adap
, phys_addr
, block
);
1553 mutex_unlock(&adap
->lock
);
1555 EXPORT_SYMBOL_GPL(cec_s_phys_addr
);
1557 void cec_s_phys_addr_from_edid(struct cec_adapter
*adap
,
1558 const struct edid
*edid
)
1560 u16 pa
= CEC_PHYS_ADDR_INVALID
;
1562 if (edid
&& edid
->extensions
)
1563 pa
= cec_get_edid_phys_addr((const u8
*)edid
,
1564 EDID_LENGTH
* (edid
->extensions
+ 1), NULL
);
1565 cec_s_phys_addr(adap
, pa
, false);
1567 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid
);
1570 * Called from either the ioctl or a driver to set the logical addresses.
1572 * This function is called with adap->lock held.
1574 int __cec_s_log_addrs(struct cec_adapter
*adap
,
1575 struct cec_log_addrs
*log_addrs
, bool block
)
1580 if (adap
->devnode
.unregistered
)
1583 if (!log_addrs
|| log_addrs
->num_log_addrs
== 0) {
1584 cec_adap_unconfigure(adap
);
1585 adap
->log_addrs
.num_log_addrs
= 0;
1586 for (i
= 0; i
< CEC_MAX_LOG_ADDRS
; i
++)
1587 adap
->log_addrs
.log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1588 adap
->log_addrs
.osd_name
[0] = '\0';
1589 adap
->log_addrs
.vendor_id
= CEC_VENDOR_ID_NONE
;
1590 adap
->log_addrs
.cec_version
= CEC_OP_CEC_VERSION_2_0
;
1594 if (log_addrs
->flags
& CEC_LOG_ADDRS_FL_CDC_ONLY
) {
1596 * Sanitize log_addrs fields if a CDC-Only device is
1599 log_addrs
->num_log_addrs
= 1;
1600 log_addrs
->osd_name
[0] = '\0';
1601 log_addrs
->vendor_id
= CEC_VENDOR_ID_NONE
;
1602 log_addrs
->log_addr_type
[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED
;
1604 * This is just an internal convention since a CDC-Only device
1605 * doesn't have to be a switch. But switches already use
1606 * unregistered, so it makes some kind of sense to pick this
1607 * as the primary device. Since a CDC-Only device never sends
1608 * any 'normal' CEC messages this primary device type is never
1609 * sent over the CEC bus.
1611 log_addrs
->primary_device_type
[0] = CEC_OP_PRIM_DEVTYPE_SWITCH
;
1612 log_addrs
->all_device_types
[0] = 0;
1613 log_addrs
->features
[0][0] = 0;
1614 log_addrs
->features
[0][1] = 0;
1617 /* Ensure the osd name is 0-terminated */
1618 log_addrs
->osd_name
[sizeof(log_addrs
->osd_name
) - 1] = '\0';
1621 if (log_addrs
->num_log_addrs
> adap
->available_log_addrs
) {
1622 dprintk(1, "num_log_addrs > %d\n", adap
->available_log_addrs
);
1627 * Vendor ID is a 24 bit number, so check if the value is
1628 * within the correct range.
1630 if (log_addrs
->vendor_id
!= CEC_VENDOR_ID_NONE
&&
1631 (log_addrs
->vendor_id
& 0xff000000) != 0) {
1632 dprintk(1, "invalid vendor ID\n");
1636 if (log_addrs
->cec_version
!= CEC_OP_CEC_VERSION_1_4
&&
1637 log_addrs
->cec_version
!= CEC_OP_CEC_VERSION_2_0
) {
1638 dprintk(1, "invalid CEC version\n");
1642 if (log_addrs
->num_log_addrs
> 1)
1643 for (i
= 0; i
< log_addrs
->num_log_addrs
; i
++)
1644 if (log_addrs
->log_addr_type
[i
] ==
1645 CEC_LOG_ADDR_TYPE_UNREGISTERED
) {
1646 dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1650 for (i
= 0; i
< log_addrs
->num_log_addrs
; i
++) {
1651 const u8 feature_sz
= ARRAY_SIZE(log_addrs
->features
[0]);
1652 u8
*features
= log_addrs
->features
[i
];
1653 bool op_is_dev_features
= false;
1656 log_addrs
->log_addr
[i
] = CEC_LOG_ADDR_INVALID
;
1657 if (type_mask
& (1 << log_addrs
->log_addr_type
[i
])) {
1658 dprintk(1, "duplicate logical address type\n");
1661 type_mask
|= 1 << log_addrs
->log_addr_type
[i
];
1662 if ((type_mask
& (1 << CEC_LOG_ADDR_TYPE_RECORD
)) &&
1663 (type_mask
& (1 << CEC_LOG_ADDR_TYPE_PLAYBACK
))) {
1664 /* Record already contains the playback functionality */
1665 dprintk(1, "invalid record + playback combination\n");
1668 if (log_addrs
->primary_device_type
[i
] >
1669 CEC_OP_PRIM_DEVTYPE_PROCESSOR
) {
1670 dprintk(1, "unknown primary device type\n");
1673 if (log_addrs
->primary_device_type
[i
] == 2) {
1674 dprintk(1, "invalid primary device type\n");
1677 if (log_addrs
->log_addr_type
[i
] > CEC_LOG_ADDR_TYPE_UNREGISTERED
) {
1678 dprintk(1, "unknown logical address type\n");
1681 for (j
= 0; j
< feature_sz
; j
++) {
1682 if ((features
[j
] & 0x80) == 0) {
1683 if (op_is_dev_features
)
1685 op_is_dev_features
= true;
1688 if (!op_is_dev_features
|| j
== feature_sz
) {
1689 dprintk(1, "malformed features\n");
1692 /* Zero unused part of the feature array */
1693 memset(features
+ j
+ 1, 0, feature_sz
- j
- 1);
1696 if (log_addrs
->cec_version
>= CEC_OP_CEC_VERSION_2_0
) {
1697 if (log_addrs
->num_log_addrs
> 2) {
1698 dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1701 if (log_addrs
->num_log_addrs
== 2) {
1702 if (!(type_mask
& ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM
) |
1703 (1 << CEC_LOG_ADDR_TYPE_TV
)))) {
1704 dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1707 if (!(type_mask
& ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK
) |
1708 (1 << CEC_LOG_ADDR_TYPE_RECORD
)))) {
1709 dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1715 /* Zero unused LAs */
1716 for (i
= log_addrs
->num_log_addrs
; i
< CEC_MAX_LOG_ADDRS
; i
++) {
1717 log_addrs
->primary_device_type
[i
] = 0;
1718 log_addrs
->log_addr_type
[i
] = 0;
1719 log_addrs
->all_device_types
[i
] = 0;
1720 memset(log_addrs
->features
[i
], 0,
1721 sizeof(log_addrs
->features
[i
]));
1724 log_addrs
->log_addr_mask
= adap
->log_addrs
.log_addr_mask
;
1725 adap
->log_addrs
= *log_addrs
;
1726 if (adap
->phys_addr
!= CEC_PHYS_ADDR_INVALID
)
1727 cec_claim_log_addrs(adap
, block
);
1731 int cec_s_log_addrs(struct cec_adapter
*adap
,
1732 struct cec_log_addrs
*log_addrs
, bool block
)
1736 mutex_lock(&adap
->lock
);
1737 err
= __cec_s_log_addrs(adap
, log_addrs
, block
);
1738 mutex_unlock(&adap
->lock
);
1741 EXPORT_SYMBOL_GPL(cec_s_log_addrs
);
1743 /* High-level core CEC message handling */
1745 /* Fill in the Report Features message */
1746 static void cec_fill_msg_report_features(struct cec_adapter
*adap
,
1747 struct cec_msg
*msg
,
1748 unsigned int la_idx
)
1750 const struct cec_log_addrs
*las
= &adap
->log_addrs
;
1751 const u8
*features
= las
->features
[la_idx
];
1752 bool op_is_dev_features
= false;
1755 /* Report Features */
1756 msg
->msg
[0] = (las
->log_addr
[la_idx
] << 4) | 0x0f;
1758 msg
->msg
[1] = CEC_MSG_REPORT_FEATURES
;
1759 msg
->msg
[2] = adap
->log_addrs
.cec_version
;
1760 msg
->msg
[3] = las
->all_device_types
[la_idx
];
1762 /* Write RC Profiles first, then Device Features */
1763 for (idx
= 0; idx
< ARRAY_SIZE(las
->features
[0]); idx
++) {
1764 msg
->msg
[msg
->len
++] = features
[idx
];
1765 if ((features
[idx
] & CEC_OP_FEAT_EXT
) == 0) {
1766 if (op_is_dev_features
)
1768 op_is_dev_features
= true;
1773 /* Transmit the Feature Abort message */
1774 static int cec_feature_abort_reason(struct cec_adapter
*adap
,
1775 struct cec_msg
*msg
, u8 reason
)
1777 struct cec_msg tx_msg
= { };
1780 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1783 if (msg
->msg
[1] == CEC_MSG_FEATURE_ABORT
)
1785 /* Don't Feature Abort messages from 'Unregistered' */
1786 if (cec_msg_initiator(msg
) == CEC_LOG_ADDR_UNREGISTERED
)
1788 cec_msg_set_reply_to(&tx_msg
, msg
);
1789 cec_msg_feature_abort(&tx_msg
, msg
->msg
[1], reason
);
1790 return cec_transmit_msg(adap
, &tx_msg
, false);
1793 static int cec_feature_abort(struct cec_adapter
*adap
, struct cec_msg
*msg
)
1795 return cec_feature_abort_reason(adap
, msg
,
1796 CEC_OP_ABORT_UNRECOGNIZED_OP
);
1799 static int cec_feature_refused(struct cec_adapter
*adap
, struct cec_msg
*msg
)
1801 return cec_feature_abort_reason(adap
, msg
,
1802 CEC_OP_ABORT_REFUSED
);
1806 * Called when a CEC message is received. This function will do any
1807 * necessary core processing. The is_reply bool is true if this message
1808 * is a reply to an earlier transmit.
1810 * The message is either a broadcast message or a valid directed message.
1812 static int cec_receive_notify(struct cec_adapter
*adap
, struct cec_msg
*msg
,
1815 bool is_broadcast
= cec_msg_is_broadcast(msg
);
1816 u8 dest_laddr
= cec_msg_destination(msg
);
1817 u8 init_laddr
= cec_msg_initiator(msg
);
1818 u8 devtype
= cec_log_addr2dev(adap
, dest_laddr
);
1819 int la_idx
= cec_log_addr2idx(adap
, dest_laddr
);
1820 bool from_unregistered
= init_laddr
== 0xf;
1821 struct cec_msg tx_cec_msg
= { };
1823 dprintk(2, "%s: %*ph\n", __func__
, msg
->len
, msg
->msg
);
1825 /* If this is a CDC-Only device, then ignore any non-CDC messages */
1826 if (cec_is_cdc_only(&adap
->log_addrs
) &&
1827 msg
->msg
[1] != CEC_MSG_CDC_MESSAGE
)
1830 if (adap
->ops
->received
) {
1831 /* Allow drivers to process the message first */
1832 if (adap
->ops
->received(adap
, msg
) != -ENOMSG
)
1837 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1838 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1839 * handled by the CEC core, even if the passthrough mode is on.
1840 * The others are just ignored if passthrough mode is on.
1842 switch (msg
->msg
[1]) {
1843 case CEC_MSG_GET_CEC_VERSION
:
1845 case CEC_MSG_GIVE_DEVICE_POWER_STATUS
:
1846 case CEC_MSG_GIVE_OSD_NAME
:
1848 * These messages reply with a directed message, so ignore if
1849 * the initiator is Unregistered.
1851 if (!adap
->passthrough
&& from_unregistered
)
1854 case CEC_MSG_GIVE_DEVICE_VENDOR_ID
:
1855 case CEC_MSG_GIVE_FEATURES
:
1856 case CEC_MSG_GIVE_PHYSICAL_ADDR
:
1858 * Skip processing these messages if the passthrough mode
1861 if (adap
->passthrough
)
1862 goto skip_processing
;
1863 /* Ignore if addressing is wrong */
1868 case CEC_MSG_USER_CONTROL_PRESSED
:
1869 case CEC_MSG_USER_CONTROL_RELEASED
:
1870 /* Wrong addressing mode: don't process */
1871 if (is_broadcast
|| from_unregistered
)
1872 goto skip_processing
;
1875 case CEC_MSG_REPORT_PHYSICAL_ADDR
:
1877 * This message is always processed, regardless of the
1878 * passthrough setting.
1880 * Exception: don't process if wrong addressing mode.
1883 goto skip_processing
;
1890 cec_msg_set_reply_to(&tx_cec_msg
, msg
);
1892 switch (msg
->msg
[1]) {
1893 /* The following messages are processed but still passed through */
1894 case CEC_MSG_REPORT_PHYSICAL_ADDR
: {
1895 u16 pa
= (msg
->msg
[2] << 8) | msg
->msg
[3];
1897 if (!from_unregistered
)
1898 adap
->phys_addrs
[init_laddr
] = pa
;
1899 dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1900 cec_phys_addr_exp(pa
), init_laddr
);
1904 case CEC_MSG_USER_CONTROL_PRESSED
:
1905 if (!(adap
->capabilities
& CEC_CAP_RC
) ||
1906 !(adap
->log_addrs
.flags
& CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU
))
1909 #ifdef CONFIG_MEDIA_CEC_RC
1910 switch (msg
->msg
[2]) {
1912 * Play function, this message can have variable length
1913 * depending on the specific play function that is used.
1917 rc_keydown(adap
->rc
, RC_PROTO_CEC
,
1920 rc_keydown(adap
->rc
, RC_PROTO_CEC
,
1921 msg
->msg
[2] << 8 | msg
->msg
[3], 0);
1924 * Other function messages that are not handled.
1925 * Currently the RC framework does not allow to supply an
1926 * additional parameter to a keypress. These "keys" contain
1927 * other information such as channel number, an input number
1929 * For the time being these messages are not processed by the
1930 * framework and are simply forwarded to the user space.
1932 case 0x56: case 0x57:
1933 case 0x67: case 0x68: case 0x69: case 0x6a:
1936 rc_keydown(adap
->rc
, RC_PROTO_CEC
, msg
->msg
[2], 0);
1942 case CEC_MSG_USER_CONTROL_RELEASED
:
1943 if (!(adap
->capabilities
& CEC_CAP_RC
) ||
1944 !(adap
->log_addrs
.flags
& CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU
))
1946 #ifdef CONFIG_MEDIA_CEC_RC
1952 * The remaining messages are only processed if the passthrough mode
1955 case CEC_MSG_GET_CEC_VERSION
:
1956 cec_msg_cec_version(&tx_cec_msg
, adap
->log_addrs
.cec_version
);
1957 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1959 case CEC_MSG_GIVE_PHYSICAL_ADDR
:
1960 /* Do nothing for CEC switches using addr 15 */
1961 if (devtype
== CEC_OP_PRIM_DEVTYPE_SWITCH
&& dest_laddr
== 15)
1963 cec_msg_report_physical_addr(&tx_cec_msg
, adap
->phys_addr
, devtype
);
1964 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1966 case CEC_MSG_GIVE_DEVICE_VENDOR_ID
:
1967 if (adap
->log_addrs
.vendor_id
== CEC_VENDOR_ID_NONE
)
1968 return cec_feature_abort(adap
, msg
);
1969 cec_msg_device_vendor_id(&tx_cec_msg
, adap
->log_addrs
.vendor_id
);
1970 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1973 /* Do nothing for CEC switches */
1974 if (devtype
== CEC_OP_PRIM_DEVTYPE_SWITCH
)
1976 return cec_feature_refused(adap
, msg
);
1978 case CEC_MSG_GIVE_OSD_NAME
: {
1979 if (adap
->log_addrs
.osd_name
[0] == 0)
1980 return cec_feature_abort(adap
, msg
);
1981 cec_msg_set_osd_name(&tx_cec_msg
, adap
->log_addrs
.osd_name
);
1982 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1985 case CEC_MSG_GIVE_FEATURES
:
1986 if (adap
->log_addrs
.cec_version
< CEC_OP_CEC_VERSION_2_0
)
1987 return cec_feature_abort(adap
, msg
);
1988 cec_fill_msg_report_features(adap
, &tx_cec_msg
, la_idx
);
1989 return cec_transmit_msg(adap
, &tx_cec_msg
, false);
1993 * Unprocessed messages are aborted if userspace isn't doing
1994 * any processing either.
1996 if (!is_broadcast
&& !is_reply
&& !adap
->follower_cnt
&&
1997 !adap
->cec_follower
&& msg
->msg
[1] != CEC_MSG_FEATURE_ABORT
)
1998 return cec_feature_abort(adap
, msg
);
2003 /* If this was a reply, then we're done, unless otherwise specified */
2004 if (is_reply
&& !(msg
->flags
& CEC_MSG_FL_REPLY_TO_FOLLOWERS
))
2008 * Send to the exclusive follower if there is one, otherwise send
2011 if (adap
->cec_follower
)
2012 cec_queue_msg_fh(adap
->cec_follower
, msg
);
2014 cec_queue_msg_followers(adap
, msg
);
2019 * Helper functions to keep track of the 'monitor all' use count.
2021 * These functions are called with adap->lock held.
2023 int cec_monitor_all_cnt_inc(struct cec_adapter
*adap
)
2027 if (adap
->monitor_all_cnt
== 0)
2028 ret
= call_op(adap
, adap_monitor_all_enable
, 1);
2030 adap
->monitor_all_cnt
++;
2034 void cec_monitor_all_cnt_dec(struct cec_adapter
*adap
)
2036 adap
->monitor_all_cnt
--;
2037 if (adap
->monitor_all_cnt
== 0)
2038 WARN_ON(call_op(adap
, adap_monitor_all_enable
, 0));
2042 * Helper functions to keep track of the 'monitor pin' use count.
2044 * These functions are called with adap->lock held.
2046 int cec_monitor_pin_cnt_inc(struct cec_adapter
*adap
)
2050 if (adap
->monitor_pin_cnt
== 0)
2051 ret
= call_op(adap
, adap_monitor_pin_enable
, 1);
2053 adap
->monitor_pin_cnt
++;
2057 void cec_monitor_pin_cnt_dec(struct cec_adapter
*adap
)
2059 adap
->monitor_pin_cnt
--;
2060 if (adap
->monitor_pin_cnt
== 0)
2061 WARN_ON(call_op(adap
, adap_monitor_pin_enable
, 0));
2064 #ifdef CONFIG_DEBUG_FS
2066 * Log the current state of the CEC adapter.
2067 * Very useful for debugging.
2069 int cec_adap_status(struct seq_file
*file
, void *priv
)
2071 struct cec_adapter
*adap
= dev_get_drvdata(file
->private);
2072 struct cec_data
*data
;
2074 mutex_lock(&adap
->lock
);
2075 seq_printf(file
, "configured: %d\n", adap
->is_configured
);
2076 seq_printf(file
, "configuring: %d\n", adap
->is_configuring
);
2077 seq_printf(file
, "phys_addr: %x.%x.%x.%x\n",
2078 cec_phys_addr_exp(adap
->phys_addr
));
2079 seq_printf(file
, "number of LAs: %d\n", adap
->log_addrs
.num_log_addrs
);
2080 seq_printf(file
, "LA mask: 0x%04x\n", adap
->log_addrs
.log_addr_mask
);
2081 if (adap
->cec_follower
)
2082 seq_printf(file
, "has CEC follower%s\n",
2083 adap
->passthrough
? " (in passthrough mode)" : "");
2084 if (adap
->cec_initiator
)
2085 seq_puts(file
, "has CEC initiator\n");
2086 if (adap
->monitor_all_cnt
)
2087 seq_printf(file
, "file handles in Monitor All mode: %u\n",
2088 adap
->monitor_all_cnt
);
2089 if (adap
->tx_timeouts
) {
2090 seq_printf(file
, "transmit timeouts: %u\n",
2092 adap
->tx_timeouts
= 0;
2094 data
= adap
->transmitting
;
2096 seq_printf(file
, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2097 data
->msg
.len
, data
->msg
.msg
, data
->msg
.reply
,
2099 seq_printf(file
, "pending transmits: %u\n", adap
->transmit_queue_sz
);
2100 list_for_each_entry(data
, &adap
->transmit_queue
, list
) {
2101 seq_printf(file
, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2102 data
->msg
.len
, data
->msg
.msg
, data
->msg
.reply
,
2105 list_for_each_entry(data
, &adap
->wait_queue
, list
) {
2106 seq_printf(file
, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2107 data
->msg
.len
, data
->msg
.msg
, data
->msg
.reply
,
2111 call_void_op(adap
, adap_status
, file
);
2112 mutex_unlock(&adap
->lock
);