mic: vop: Fix use-after-free on remove
[linux/fpc-iii.git] / drivers / nvme / target / tcp.c
blobad0df786fe933794c2c2a158a03d2ab5fffbfd37
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP target.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/inet.h>
15 #include <linux/llist.h>
16 #include <crypto/hash.h>
18 #include "nvmet.h"
20 #define NVMET_TCP_DEF_INLINE_DATA_SIZE (4 * PAGE_SIZE)
22 #define NVMET_TCP_RECV_BUDGET 8
23 #define NVMET_TCP_SEND_BUDGET 8
24 #define NVMET_TCP_IO_WORK_BUDGET 64
26 enum nvmet_tcp_send_state {
27 NVMET_TCP_SEND_DATA_PDU,
28 NVMET_TCP_SEND_DATA,
29 NVMET_TCP_SEND_R2T,
30 NVMET_TCP_SEND_DDGST,
31 NVMET_TCP_SEND_RESPONSE
34 enum nvmet_tcp_recv_state {
35 NVMET_TCP_RECV_PDU,
36 NVMET_TCP_RECV_DATA,
37 NVMET_TCP_RECV_DDGST,
38 NVMET_TCP_RECV_ERR,
41 enum {
42 NVMET_TCP_F_INIT_FAILED = (1 << 0),
45 struct nvmet_tcp_cmd {
46 struct nvmet_tcp_queue *queue;
47 struct nvmet_req req;
49 struct nvme_tcp_cmd_pdu *cmd_pdu;
50 struct nvme_tcp_rsp_pdu *rsp_pdu;
51 struct nvme_tcp_data_pdu *data_pdu;
52 struct nvme_tcp_r2t_pdu *r2t_pdu;
54 u32 rbytes_done;
55 u32 wbytes_done;
57 u32 pdu_len;
58 u32 pdu_recv;
59 int sg_idx;
60 int nr_mapped;
61 struct msghdr recv_msg;
62 struct kvec *iov;
63 u32 flags;
65 struct list_head entry;
66 struct llist_node lentry;
68 /* send state */
69 u32 offset;
70 struct scatterlist *cur_sg;
71 enum nvmet_tcp_send_state state;
73 __le32 exp_ddgst;
74 __le32 recv_ddgst;
77 enum nvmet_tcp_queue_state {
78 NVMET_TCP_Q_CONNECTING,
79 NVMET_TCP_Q_LIVE,
80 NVMET_TCP_Q_DISCONNECTING,
83 struct nvmet_tcp_queue {
84 struct socket *sock;
85 struct nvmet_tcp_port *port;
86 struct work_struct io_work;
87 int cpu;
88 struct nvmet_cq nvme_cq;
89 struct nvmet_sq nvme_sq;
91 /* send state */
92 struct nvmet_tcp_cmd *cmds;
93 unsigned int nr_cmds;
94 struct list_head free_list;
95 struct llist_head resp_list;
96 struct list_head resp_send_list;
97 int send_list_len;
98 struct nvmet_tcp_cmd *snd_cmd;
100 /* recv state */
101 int offset;
102 int left;
103 enum nvmet_tcp_recv_state rcv_state;
104 struct nvmet_tcp_cmd *cmd;
105 union nvme_tcp_pdu pdu;
107 /* digest state */
108 bool hdr_digest;
109 bool data_digest;
110 struct ahash_request *snd_hash;
111 struct ahash_request *rcv_hash;
113 spinlock_t state_lock;
114 enum nvmet_tcp_queue_state state;
116 struct sockaddr_storage sockaddr;
117 struct sockaddr_storage sockaddr_peer;
118 struct work_struct release_work;
120 int idx;
121 struct list_head queue_list;
123 struct nvmet_tcp_cmd connect;
125 struct page_frag_cache pf_cache;
127 void (*data_ready)(struct sock *);
128 void (*state_change)(struct sock *);
129 void (*write_space)(struct sock *);
132 struct nvmet_tcp_port {
133 struct socket *sock;
134 struct work_struct accept_work;
135 struct nvmet_port *nport;
136 struct sockaddr_storage addr;
137 int last_cpu;
138 void (*data_ready)(struct sock *);
141 static DEFINE_IDA(nvmet_tcp_queue_ida);
142 static LIST_HEAD(nvmet_tcp_queue_list);
143 static DEFINE_MUTEX(nvmet_tcp_queue_mutex);
145 static struct workqueue_struct *nvmet_tcp_wq;
146 static struct nvmet_fabrics_ops nvmet_tcp_ops;
147 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c);
148 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd);
150 static inline u16 nvmet_tcp_cmd_tag(struct nvmet_tcp_queue *queue,
151 struct nvmet_tcp_cmd *cmd)
153 return cmd - queue->cmds;
156 static inline bool nvmet_tcp_has_data_in(struct nvmet_tcp_cmd *cmd)
158 return nvme_is_write(cmd->req.cmd) &&
159 cmd->rbytes_done < cmd->req.transfer_len;
162 static inline bool nvmet_tcp_need_data_in(struct nvmet_tcp_cmd *cmd)
164 return nvmet_tcp_has_data_in(cmd) && !cmd->req.rsp->status;
167 static inline bool nvmet_tcp_need_data_out(struct nvmet_tcp_cmd *cmd)
169 return !nvme_is_write(cmd->req.cmd) &&
170 cmd->req.transfer_len > 0 &&
171 !cmd->req.rsp->status;
174 static inline bool nvmet_tcp_has_inline_data(struct nvmet_tcp_cmd *cmd)
176 return nvme_is_write(cmd->req.cmd) && cmd->pdu_len &&
177 !cmd->rbytes_done;
180 static inline struct nvmet_tcp_cmd *
181 nvmet_tcp_get_cmd(struct nvmet_tcp_queue *queue)
183 struct nvmet_tcp_cmd *cmd;
185 cmd = list_first_entry_or_null(&queue->free_list,
186 struct nvmet_tcp_cmd, entry);
187 if (!cmd)
188 return NULL;
189 list_del_init(&cmd->entry);
191 cmd->rbytes_done = cmd->wbytes_done = 0;
192 cmd->pdu_len = 0;
193 cmd->pdu_recv = 0;
194 cmd->iov = NULL;
195 cmd->flags = 0;
196 return cmd;
199 static inline void nvmet_tcp_put_cmd(struct nvmet_tcp_cmd *cmd)
201 if (unlikely(cmd == &cmd->queue->connect))
202 return;
204 list_add_tail(&cmd->entry, &cmd->queue->free_list);
207 static inline u8 nvmet_tcp_hdgst_len(struct nvmet_tcp_queue *queue)
209 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
212 static inline u8 nvmet_tcp_ddgst_len(struct nvmet_tcp_queue *queue)
214 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
217 static inline void nvmet_tcp_hdgst(struct ahash_request *hash,
218 void *pdu, size_t len)
220 struct scatterlist sg;
222 sg_init_one(&sg, pdu, len);
223 ahash_request_set_crypt(hash, &sg, pdu + len, len);
224 crypto_ahash_digest(hash);
227 static int nvmet_tcp_verify_hdgst(struct nvmet_tcp_queue *queue,
228 void *pdu, size_t len)
230 struct nvme_tcp_hdr *hdr = pdu;
231 __le32 recv_digest;
232 __le32 exp_digest;
234 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
235 pr_err("queue %d: header digest enabled but no header digest\n",
236 queue->idx);
237 return -EPROTO;
240 recv_digest = *(__le32 *)(pdu + hdr->hlen);
241 nvmet_tcp_hdgst(queue->rcv_hash, pdu, len);
242 exp_digest = *(__le32 *)(pdu + hdr->hlen);
243 if (recv_digest != exp_digest) {
244 pr_err("queue %d: header digest error: recv %#x expected %#x\n",
245 queue->idx, le32_to_cpu(recv_digest),
246 le32_to_cpu(exp_digest));
247 return -EPROTO;
250 return 0;
253 static int nvmet_tcp_check_ddgst(struct nvmet_tcp_queue *queue, void *pdu)
255 struct nvme_tcp_hdr *hdr = pdu;
256 u8 digest_len = nvmet_tcp_hdgst_len(queue);
257 u32 len;
259 len = le32_to_cpu(hdr->plen) - hdr->hlen -
260 (hdr->flags & NVME_TCP_F_HDGST ? digest_len : 0);
262 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
263 pr_err("queue %d: data digest flag is cleared\n", queue->idx);
264 return -EPROTO;
267 return 0;
270 static void nvmet_tcp_unmap_pdu_iovec(struct nvmet_tcp_cmd *cmd)
272 struct scatterlist *sg;
273 int i;
275 sg = &cmd->req.sg[cmd->sg_idx];
277 for (i = 0; i < cmd->nr_mapped; i++)
278 kunmap(sg_page(&sg[i]));
281 static void nvmet_tcp_map_pdu_iovec(struct nvmet_tcp_cmd *cmd)
283 struct kvec *iov = cmd->iov;
284 struct scatterlist *sg;
285 u32 length, offset, sg_offset;
287 length = cmd->pdu_len;
288 cmd->nr_mapped = DIV_ROUND_UP(length, PAGE_SIZE);
289 offset = cmd->rbytes_done;
290 cmd->sg_idx = DIV_ROUND_UP(offset, PAGE_SIZE);
291 sg_offset = offset % PAGE_SIZE;
292 sg = &cmd->req.sg[cmd->sg_idx];
294 while (length) {
295 u32 iov_len = min_t(u32, length, sg->length - sg_offset);
297 iov->iov_base = kmap(sg_page(sg)) + sg->offset + sg_offset;
298 iov->iov_len = iov_len;
300 length -= iov_len;
301 sg = sg_next(sg);
302 iov++;
305 iov_iter_kvec(&cmd->recv_msg.msg_iter, READ, cmd->iov,
306 cmd->nr_mapped, cmd->pdu_len);
309 static void nvmet_tcp_fatal_error(struct nvmet_tcp_queue *queue)
311 queue->rcv_state = NVMET_TCP_RECV_ERR;
312 if (queue->nvme_sq.ctrl)
313 nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl);
314 else
315 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
318 static int nvmet_tcp_map_data(struct nvmet_tcp_cmd *cmd)
320 struct nvme_sgl_desc *sgl = &cmd->req.cmd->common.dptr.sgl;
321 u32 len = le32_to_cpu(sgl->length);
323 if (!cmd->req.data_len)
324 return 0;
326 if (sgl->type == ((NVME_SGL_FMT_DATA_DESC << 4) |
327 NVME_SGL_FMT_OFFSET)) {
328 if (!nvme_is_write(cmd->req.cmd))
329 return NVME_SC_INVALID_FIELD | NVME_SC_DNR;
331 if (len > cmd->req.port->inline_data_size)
332 return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR;
333 cmd->pdu_len = len;
335 cmd->req.transfer_len += len;
337 cmd->req.sg = sgl_alloc(len, GFP_KERNEL, &cmd->req.sg_cnt);
338 if (!cmd->req.sg)
339 return NVME_SC_INTERNAL;
340 cmd->cur_sg = cmd->req.sg;
342 if (nvmet_tcp_has_data_in(cmd)) {
343 cmd->iov = kmalloc_array(cmd->req.sg_cnt,
344 sizeof(*cmd->iov), GFP_KERNEL);
345 if (!cmd->iov)
346 goto err;
349 return 0;
350 err:
351 sgl_free(cmd->req.sg);
352 return NVME_SC_INTERNAL;
355 static void nvmet_tcp_ddgst(struct ahash_request *hash,
356 struct nvmet_tcp_cmd *cmd)
358 ahash_request_set_crypt(hash, cmd->req.sg,
359 (void *)&cmd->exp_ddgst, cmd->req.transfer_len);
360 crypto_ahash_digest(hash);
363 static void nvmet_setup_c2h_data_pdu(struct nvmet_tcp_cmd *cmd)
365 struct nvme_tcp_data_pdu *pdu = cmd->data_pdu;
366 struct nvmet_tcp_queue *queue = cmd->queue;
367 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
368 u8 ddgst = nvmet_tcp_ddgst_len(cmd->queue);
370 cmd->offset = 0;
371 cmd->state = NVMET_TCP_SEND_DATA_PDU;
373 pdu->hdr.type = nvme_tcp_c2h_data;
374 pdu->hdr.flags = NVME_TCP_F_DATA_LAST;
375 pdu->hdr.hlen = sizeof(*pdu);
376 pdu->hdr.pdo = pdu->hdr.hlen + hdgst;
377 pdu->hdr.plen =
378 cpu_to_le32(pdu->hdr.hlen + hdgst +
379 cmd->req.transfer_len + ddgst);
380 pdu->command_id = cmd->req.rsp->command_id;
381 pdu->data_length = cpu_to_le32(cmd->req.transfer_len);
382 pdu->data_offset = cpu_to_le32(cmd->wbytes_done);
384 if (queue->data_digest) {
385 pdu->hdr.flags |= NVME_TCP_F_DDGST;
386 nvmet_tcp_ddgst(queue->snd_hash, cmd);
389 if (cmd->queue->hdr_digest) {
390 pdu->hdr.flags |= NVME_TCP_F_HDGST;
391 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
395 static void nvmet_setup_r2t_pdu(struct nvmet_tcp_cmd *cmd)
397 struct nvme_tcp_r2t_pdu *pdu = cmd->r2t_pdu;
398 struct nvmet_tcp_queue *queue = cmd->queue;
399 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
401 cmd->offset = 0;
402 cmd->state = NVMET_TCP_SEND_R2T;
404 pdu->hdr.type = nvme_tcp_r2t;
405 pdu->hdr.flags = 0;
406 pdu->hdr.hlen = sizeof(*pdu);
407 pdu->hdr.pdo = 0;
408 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
410 pdu->command_id = cmd->req.cmd->common.command_id;
411 pdu->ttag = nvmet_tcp_cmd_tag(cmd->queue, cmd);
412 pdu->r2t_length = cpu_to_le32(cmd->req.transfer_len - cmd->rbytes_done);
413 pdu->r2t_offset = cpu_to_le32(cmd->rbytes_done);
414 if (cmd->queue->hdr_digest) {
415 pdu->hdr.flags |= NVME_TCP_F_HDGST;
416 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
420 static void nvmet_setup_response_pdu(struct nvmet_tcp_cmd *cmd)
422 struct nvme_tcp_rsp_pdu *pdu = cmd->rsp_pdu;
423 struct nvmet_tcp_queue *queue = cmd->queue;
424 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
426 cmd->offset = 0;
427 cmd->state = NVMET_TCP_SEND_RESPONSE;
429 pdu->hdr.type = nvme_tcp_rsp;
430 pdu->hdr.flags = 0;
431 pdu->hdr.hlen = sizeof(*pdu);
432 pdu->hdr.pdo = 0;
433 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
434 if (cmd->queue->hdr_digest) {
435 pdu->hdr.flags |= NVME_TCP_F_HDGST;
436 nvmet_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
440 static void nvmet_tcp_process_resp_list(struct nvmet_tcp_queue *queue)
442 struct llist_node *node;
444 node = llist_del_all(&queue->resp_list);
445 if (!node)
446 return;
448 while (node) {
449 struct nvmet_tcp_cmd *cmd = llist_entry(node,
450 struct nvmet_tcp_cmd, lentry);
452 list_add(&cmd->entry, &queue->resp_send_list);
453 node = node->next;
454 queue->send_list_len++;
458 static struct nvmet_tcp_cmd *nvmet_tcp_fetch_cmd(struct nvmet_tcp_queue *queue)
460 queue->snd_cmd = list_first_entry_or_null(&queue->resp_send_list,
461 struct nvmet_tcp_cmd, entry);
462 if (!queue->snd_cmd) {
463 nvmet_tcp_process_resp_list(queue);
464 queue->snd_cmd =
465 list_first_entry_or_null(&queue->resp_send_list,
466 struct nvmet_tcp_cmd, entry);
467 if (unlikely(!queue->snd_cmd))
468 return NULL;
471 list_del_init(&queue->snd_cmd->entry);
472 queue->send_list_len--;
474 if (nvmet_tcp_need_data_out(queue->snd_cmd))
475 nvmet_setup_c2h_data_pdu(queue->snd_cmd);
476 else if (nvmet_tcp_need_data_in(queue->snd_cmd))
477 nvmet_setup_r2t_pdu(queue->snd_cmd);
478 else
479 nvmet_setup_response_pdu(queue->snd_cmd);
481 return queue->snd_cmd;
484 static void nvmet_tcp_queue_response(struct nvmet_req *req)
486 struct nvmet_tcp_cmd *cmd =
487 container_of(req, struct nvmet_tcp_cmd, req);
488 struct nvmet_tcp_queue *queue = cmd->queue;
490 llist_add(&cmd->lentry, &queue->resp_list);
491 queue_work_on(cmd->queue->cpu, nvmet_tcp_wq, &cmd->queue->io_work);
494 static int nvmet_try_send_data_pdu(struct nvmet_tcp_cmd *cmd)
496 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
497 int left = sizeof(*cmd->data_pdu) - cmd->offset + hdgst;
498 int ret;
500 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->data_pdu),
501 offset_in_page(cmd->data_pdu) + cmd->offset,
502 left, MSG_DONTWAIT | MSG_MORE);
503 if (ret <= 0)
504 return ret;
506 cmd->offset += ret;
507 left -= ret;
509 if (left)
510 return -EAGAIN;
512 cmd->state = NVMET_TCP_SEND_DATA;
513 cmd->offset = 0;
514 return 1;
517 static int nvmet_try_send_data(struct nvmet_tcp_cmd *cmd)
519 struct nvmet_tcp_queue *queue = cmd->queue;
520 int ret;
522 while (cmd->cur_sg) {
523 struct page *page = sg_page(cmd->cur_sg);
524 u32 left = cmd->cur_sg->length - cmd->offset;
526 ret = kernel_sendpage(cmd->queue->sock, page, cmd->offset,
527 left, MSG_DONTWAIT | MSG_MORE);
528 if (ret <= 0)
529 return ret;
531 cmd->offset += ret;
532 cmd->wbytes_done += ret;
534 /* Done with sg?*/
535 if (cmd->offset == cmd->cur_sg->length) {
536 cmd->cur_sg = sg_next(cmd->cur_sg);
537 cmd->offset = 0;
541 if (queue->data_digest) {
542 cmd->state = NVMET_TCP_SEND_DDGST;
543 cmd->offset = 0;
544 } else {
545 nvmet_setup_response_pdu(cmd);
547 return 1;
551 static int nvmet_try_send_response(struct nvmet_tcp_cmd *cmd,
552 bool last_in_batch)
554 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
555 int left = sizeof(*cmd->rsp_pdu) - cmd->offset + hdgst;
556 int flags = MSG_DONTWAIT;
557 int ret;
559 if (!last_in_batch && cmd->queue->send_list_len)
560 flags |= MSG_MORE;
561 else
562 flags |= MSG_EOR;
564 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->rsp_pdu),
565 offset_in_page(cmd->rsp_pdu) + cmd->offset, left, flags);
566 if (ret <= 0)
567 return ret;
568 cmd->offset += ret;
569 left -= ret;
571 if (left)
572 return -EAGAIN;
574 kfree(cmd->iov);
575 sgl_free(cmd->req.sg);
576 cmd->queue->snd_cmd = NULL;
577 nvmet_tcp_put_cmd(cmd);
578 return 1;
581 static int nvmet_try_send_r2t(struct nvmet_tcp_cmd *cmd, bool last_in_batch)
583 u8 hdgst = nvmet_tcp_hdgst_len(cmd->queue);
584 int left = sizeof(*cmd->r2t_pdu) - cmd->offset + hdgst;
585 int flags = MSG_DONTWAIT;
586 int ret;
588 if (!last_in_batch && cmd->queue->send_list_len)
589 flags |= MSG_MORE;
590 else
591 flags |= MSG_EOR;
593 ret = kernel_sendpage(cmd->queue->sock, virt_to_page(cmd->r2t_pdu),
594 offset_in_page(cmd->r2t_pdu) + cmd->offset, left, flags);
595 if (ret <= 0)
596 return ret;
597 cmd->offset += ret;
598 left -= ret;
600 if (left)
601 return -EAGAIN;
603 cmd->queue->snd_cmd = NULL;
604 return 1;
607 static int nvmet_try_send_ddgst(struct nvmet_tcp_cmd *cmd)
609 struct nvmet_tcp_queue *queue = cmd->queue;
610 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
611 struct kvec iov = {
612 .iov_base = &cmd->exp_ddgst + cmd->offset,
613 .iov_len = NVME_TCP_DIGEST_LENGTH - cmd->offset
615 int ret;
617 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
618 if (unlikely(ret <= 0))
619 return ret;
621 cmd->offset += ret;
622 nvmet_setup_response_pdu(cmd);
623 return 1;
626 static int nvmet_tcp_try_send_one(struct nvmet_tcp_queue *queue,
627 bool last_in_batch)
629 struct nvmet_tcp_cmd *cmd = queue->snd_cmd;
630 int ret = 0;
632 if (!cmd || queue->state == NVMET_TCP_Q_DISCONNECTING) {
633 cmd = nvmet_tcp_fetch_cmd(queue);
634 if (unlikely(!cmd))
635 return 0;
638 if (cmd->state == NVMET_TCP_SEND_DATA_PDU) {
639 ret = nvmet_try_send_data_pdu(cmd);
640 if (ret <= 0)
641 goto done_send;
644 if (cmd->state == NVMET_TCP_SEND_DATA) {
645 ret = nvmet_try_send_data(cmd);
646 if (ret <= 0)
647 goto done_send;
650 if (cmd->state == NVMET_TCP_SEND_DDGST) {
651 ret = nvmet_try_send_ddgst(cmd);
652 if (ret <= 0)
653 goto done_send;
656 if (cmd->state == NVMET_TCP_SEND_R2T) {
657 ret = nvmet_try_send_r2t(cmd, last_in_batch);
658 if (ret <= 0)
659 goto done_send;
662 if (cmd->state == NVMET_TCP_SEND_RESPONSE)
663 ret = nvmet_try_send_response(cmd, last_in_batch);
665 done_send:
666 if (ret < 0) {
667 if (ret == -EAGAIN)
668 return 0;
669 return ret;
672 return 1;
675 static int nvmet_tcp_try_send(struct nvmet_tcp_queue *queue,
676 int budget, int *sends)
678 int i, ret = 0;
680 for (i = 0; i < budget; i++) {
681 ret = nvmet_tcp_try_send_one(queue, i == budget - 1);
682 if (ret <= 0)
683 break;
684 (*sends)++;
687 return ret;
690 static void nvmet_prepare_receive_pdu(struct nvmet_tcp_queue *queue)
692 queue->offset = 0;
693 queue->left = sizeof(struct nvme_tcp_hdr);
694 queue->cmd = NULL;
695 queue->rcv_state = NVMET_TCP_RECV_PDU;
698 static void nvmet_tcp_free_crypto(struct nvmet_tcp_queue *queue)
700 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
702 ahash_request_free(queue->rcv_hash);
703 ahash_request_free(queue->snd_hash);
704 crypto_free_ahash(tfm);
707 static int nvmet_tcp_alloc_crypto(struct nvmet_tcp_queue *queue)
709 struct crypto_ahash *tfm;
711 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
712 if (IS_ERR(tfm))
713 return PTR_ERR(tfm);
715 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
716 if (!queue->snd_hash)
717 goto free_tfm;
718 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
720 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
721 if (!queue->rcv_hash)
722 goto free_snd_hash;
723 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
725 return 0;
726 free_snd_hash:
727 ahash_request_free(queue->snd_hash);
728 free_tfm:
729 crypto_free_ahash(tfm);
730 return -ENOMEM;
734 static int nvmet_tcp_handle_icreq(struct nvmet_tcp_queue *queue)
736 struct nvme_tcp_icreq_pdu *icreq = &queue->pdu.icreq;
737 struct nvme_tcp_icresp_pdu *icresp = &queue->pdu.icresp;
738 struct msghdr msg = {};
739 struct kvec iov;
740 int ret;
742 if (le32_to_cpu(icreq->hdr.plen) != sizeof(struct nvme_tcp_icreq_pdu)) {
743 pr_err("bad nvme-tcp pdu length (%d)\n",
744 le32_to_cpu(icreq->hdr.plen));
745 nvmet_tcp_fatal_error(queue);
748 if (icreq->pfv != NVME_TCP_PFV_1_0) {
749 pr_err("queue %d: bad pfv %d\n", queue->idx, icreq->pfv);
750 return -EPROTO;
753 if (icreq->hpda != 0) {
754 pr_err("queue %d: unsupported hpda %d\n", queue->idx,
755 icreq->hpda);
756 return -EPROTO;
759 if (icreq->maxr2t != 0) {
760 pr_err("queue %d: unsupported maxr2t %d\n", queue->idx,
761 le32_to_cpu(icreq->maxr2t) + 1);
762 return -EPROTO;
765 queue->hdr_digest = !!(icreq->digest & NVME_TCP_HDR_DIGEST_ENABLE);
766 queue->data_digest = !!(icreq->digest & NVME_TCP_DATA_DIGEST_ENABLE);
767 if (queue->hdr_digest || queue->data_digest) {
768 ret = nvmet_tcp_alloc_crypto(queue);
769 if (ret)
770 return ret;
773 memset(icresp, 0, sizeof(*icresp));
774 icresp->hdr.type = nvme_tcp_icresp;
775 icresp->hdr.hlen = sizeof(*icresp);
776 icresp->hdr.pdo = 0;
777 icresp->hdr.plen = cpu_to_le32(icresp->hdr.hlen);
778 icresp->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
779 icresp->maxdata = cpu_to_le32(0xffff); /* FIXME: support r2t */
780 icresp->cpda = 0;
781 if (queue->hdr_digest)
782 icresp->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
783 if (queue->data_digest)
784 icresp->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
786 iov.iov_base = icresp;
787 iov.iov_len = sizeof(*icresp);
788 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
789 if (ret < 0)
790 goto free_crypto;
792 queue->state = NVMET_TCP_Q_LIVE;
793 nvmet_prepare_receive_pdu(queue);
794 return 0;
795 free_crypto:
796 if (queue->hdr_digest || queue->data_digest)
797 nvmet_tcp_free_crypto(queue);
798 return ret;
801 static void nvmet_tcp_handle_req_failure(struct nvmet_tcp_queue *queue,
802 struct nvmet_tcp_cmd *cmd, struct nvmet_req *req)
804 int ret;
806 /* recover the expected data transfer length */
807 req->data_len = le32_to_cpu(req->cmd->common.dptr.sgl.length);
809 if (!nvme_is_write(cmd->req.cmd) ||
810 req->data_len > cmd->req.port->inline_data_size) {
811 nvmet_prepare_receive_pdu(queue);
812 return;
815 ret = nvmet_tcp_map_data(cmd);
816 if (unlikely(ret)) {
817 pr_err("queue %d: failed to map data\n", queue->idx);
818 nvmet_tcp_fatal_error(queue);
819 return;
822 queue->rcv_state = NVMET_TCP_RECV_DATA;
823 nvmet_tcp_map_pdu_iovec(cmd);
824 cmd->flags |= NVMET_TCP_F_INIT_FAILED;
827 static int nvmet_tcp_handle_h2c_data_pdu(struct nvmet_tcp_queue *queue)
829 struct nvme_tcp_data_pdu *data = &queue->pdu.data;
830 struct nvmet_tcp_cmd *cmd;
832 cmd = &queue->cmds[data->ttag];
834 if (le32_to_cpu(data->data_offset) != cmd->rbytes_done) {
835 pr_err("ttag %u unexpected data offset %u (expected %u)\n",
836 data->ttag, le32_to_cpu(data->data_offset),
837 cmd->rbytes_done);
838 /* FIXME: use path and transport errors */
839 nvmet_req_complete(&cmd->req,
840 NVME_SC_INVALID_FIELD | NVME_SC_DNR);
841 return -EPROTO;
844 cmd->pdu_len = le32_to_cpu(data->data_length);
845 cmd->pdu_recv = 0;
846 nvmet_tcp_map_pdu_iovec(cmd);
847 queue->cmd = cmd;
848 queue->rcv_state = NVMET_TCP_RECV_DATA;
850 return 0;
853 static int nvmet_tcp_done_recv_pdu(struct nvmet_tcp_queue *queue)
855 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
856 struct nvme_command *nvme_cmd = &queue->pdu.cmd.cmd;
857 struct nvmet_req *req;
858 int ret;
860 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
861 if (hdr->type != nvme_tcp_icreq) {
862 pr_err("unexpected pdu type (%d) before icreq\n",
863 hdr->type);
864 nvmet_tcp_fatal_error(queue);
865 return -EPROTO;
867 return nvmet_tcp_handle_icreq(queue);
870 if (hdr->type == nvme_tcp_h2c_data) {
871 ret = nvmet_tcp_handle_h2c_data_pdu(queue);
872 if (unlikely(ret))
873 return ret;
874 return 0;
877 queue->cmd = nvmet_tcp_get_cmd(queue);
878 if (unlikely(!queue->cmd)) {
879 /* This should never happen */
880 pr_err("queue %d: out of commands (%d) send_list_len: %d, opcode: %d",
881 queue->idx, queue->nr_cmds, queue->send_list_len,
882 nvme_cmd->common.opcode);
883 nvmet_tcp_fatal_error(queue);
884 return -ENOMEM;
887 req = &queue->cmd->req;
888 memcpy(req->cmd, nvme_cmd, sizeof(*nvme_cmd));
890 if (unlikely(!nvmet_req_init(req, &queue->nvme_cq,
891 &queue->nvme_sq, &nvmet_tcp_ops))) {
892 pr_err("failed cmd %p id %d opcode %d, data_len: %d\n",
893 req->cmd, req->cmd->common.command_id,
894 req->cmd->common.opcode,
895 le32_to_cpu(req->cmd->common.dptr.sgl.length));
897 nvmet_tcp_handle_req_failure(queue, queue->cmd, req);
898 return -EAGAIN;
901 ret = nvmet_tcp_map_data(queue->cmd);
902 if (unlikely(ret)) {
903 pr_err("queue %d: failed to map data\n", queue->idx);
904 if (nvmet_tcp_has_inline_data(queue->cmd))
905 nvmet_tcp_fatal_error(queue);
906 else
907 nvmet_req_complete(req, ret);
908 ret = -EAGAIN;
909 goto out;
912 if (nvmet_tcp_need_data_in(queue->cmd)) {
913 if (nvmet_tcp_has_inline_data(queue->cmd)) {
914 queue->rcv_state = NVMET_TCP_RECV_DATA;
915 nvmet_tcp_map_pdu_iovec(queue->cmd);
916 return 0;
918 /* send back R2T */
919 nvmet_tcp_queue_response(&queue->cmd->req);
920 goto out;
923 nvmet_req_execute(&queue->cmd->req);
924 out:
925 nvmet_prepare_receive_pdu(queue);
926 return ret;
929 static const u8 nvme_tcp_pdu_sizes[] = {
930 [nvme_tcp_icreq] = sizeof(struct nvme_tcp_icreq_pdu),
931 [nvme_tcp_cmd] = sizeof(struct nvme_tcp_cmd_pdu),
932 [nvme_tcp_h2c_data] = sizeof(struct nvme_tcp_data_pdu),
935 static inline u8 nvmet_tcp_pdu_size(u8 type)
937 size_t idx = type;
939 return (idx < ARRAY_SIZE(nvme_tcp_pdu_sizes) &&
940 nvme_tcp_pdu_sizes[idx]) ?
941 nvme_tcp_pdu_sizes[idx] : 0;
944 static inline bool nvmet_tcp_pdu_valid(u8 type)
946 switch (type) {
947 case nvme_tcp_icreq:
948 case nvme_tcp_cmd:
949 case nvme_tcp_h2c_data:
950 /* fallthru */
951 return true;
954 return false;
957 static int nvmet_tcp_try_recv_pdu(struct nvmet_tcp_queue *queue)
959 struct nvme_tcp_hdr *hdr = &queue->pdu.cmd.hdr;
960 int len;
961 struct kvec iov;
962 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
964 recv:
965 iov.iov_base = (void *)&queue->pdu + queue->offset;
966 iov.iov_len = queue->left;
967 len = kernel_recvmsg(queue->sock, &msg, &iov, 1,
968 iov.iov_len, msg.msg_flags);
969 if (unlikely(len < 0))
970 return len;
972 queue->offset += len;
973 queue->left -= len;
974 if (queue->left)
975 return -EAGAIN;
977 if (queue->offset == sizeof(struct nvme_tcp_hdr)) {
978 u8 hdgst = nvmet_tcp_hdgst_len(queue);
980 if (unlikely(!nvmet_tcp_pdu_valid(hdr->type))) {
981 pr_err("unexpected pdu type %d\n", hdr->type);
982 nvmet_tcp_fatal_error(queue);
983 return -EIO;
986 if (unlikely(hdr->hlen != nvmet_tcp_pdu_size(hdr->type))) {
987 pr_err("pdu %d bad hlen %d\n", hdr->type, hdr->hlen);
988 return -EIO;
991 queue->left = hdr->hlen - queue->offset + hdgst;
992 goto recv;
995 if (queue->hdr_digest &&
996 nvmet_tcp_verify_hdgst(queue, &queue->pdu, queue->offset)) {
997 nvmet_tcp_fatal_error(queue); /* fatal */
998 return -EPROTO;
1001 if (queue->data_digest &&
1002 nvmet_tcp_check_ddgst(queue, &queue->pdu)) {
1003 nvmet_tcp_fatal_error(queue); /* fatal */
1004 return -EPROTO;
1007 return nvmet_tcp_done_recv_pdu(queue);
1010 static void nvmet_tcp_prep_recv_ddgst(struct nvmet_tcp_cmd *cmd)
1012 struct nvmet_tcp_queue *queue = cmd->queue;
1014 nvmet_tcp_ddgst(queue->rcv_hash, cmd);
1015 queue->offset = 0;
1016 queue->left = NVME_TCP_DIGEST_LENGTH;
1017 queue->rcv_state = NVMET_TCP_RECV_DDGST;
1020 static int nvmet_tcp_try_recv_data(struct nvmet_tcp_queue *queue)
1022 struct nvmet_tcp_cmd *cmd = queue->cmd;
1023 int ret;
1025 while (msg_data_left(&cmd->recv_msg)) {
1026 ret = sock_recvmsg(cmd->queue->sock, &cmd->recv_msg,
1027 cmd->recv_msg.msg_flags);
1028 if (ret <= 0)
1029 return ret;
1031 cmd->pdu_recv += ret;
1032 cmd->rbytes_done += ret;
1035 nvmet_tcp_unmap_pdu_iovec(cmd);
1037 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1038 cmd->rbytes_done == cmd->req.transfer_len) {
1039 if (queue->data_digest) {
1040 nvmet_tcp_prep_recv_ddgst(cmd);
1041 return 0;
1043 nvmet_req_execute(&cmd->req);
1046 nvmet_prepare_receive_pdu(queue);
1047 return 0;
1050 static int nvmet_tcp_try_recv_ddgst(struct nvmet_tcp_queue *queue)
1052 struct nvmet_tcp_cmd *cmd = queue->cmd;
1053 int ret;
1054 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1055 struct kvec iov = {
1056 .iov_base = (void *)&cmd->recv_ddgst + queue->offset,
1057 .iov_len = queue->left
1060 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1061 iov.iov_len, msg.msg_flags);
1062 if (unlikely(ret < 0))
1063 return ret;
1065 queue->offset += ret;
1066 queue->left -= ret;
1067 if (queue->left)
1068 return -EAGAIN;
1070 if (queue->data_digest && cmd->exp_ddgst != cmd->recv_ddgst) {
1071 pr_err("queue %d: cmd %d pdu (%d) data digest error: recv %#x expected %#x\n",
1072 queue->idx, cmd->req.cmd->common.command_id,
1073 queue->pdu.cmd.hdr.type, le32_to_cpu(cmd->recv_ddgst),
1074 le32_to_cpu(cmd->exp_ddgst));
1075 nvmet_tcp_finish_cmd(cmd);
1076 nvmet_tcp_fatal_error(queue);
1077 ret = -EPROTO;
1078 goto out;
1081 if (!(cmd->flags & NVMET_TCP_F_INIT_FAILED) &&
1082 cmd->rbytes_done == cmd->req.transfer_len)
1083 nvmet_req_execute(&cmd->req);
1084 ret = 0;
1085 out:
1086 nvmet_prepare_receive_pdu(queue);
1087 return ret;
1090 static int nvmet_tcp_try_recv_one(struct nvmet_tcp_queue *queue)
1092 int result = 0;
1094 if (unlikely(queue->rcv_state == NVMET_TCP_RECV_ERR))
1095 return 0;
1097 if (queue->rcv_state == NVMET_TCP_RECV_PDU) {
1098 result = nvmet_tcp_try_recv_pdu(queue);
1099 if (result != 0)
1100 goto done_recv;
1103 if (queue->rcv_state == NVMET_TCP_RECV_DATA) {
1104 result = nvmet_tcp_try_recv_data(queue);
1105 if (result != 0)
1106 goto done_recv;
1109 if (queue->rcv_state == NVMET_TCP_RECV_DDGST) {
1110 result = nvmet_tcp_try_recv_ddgst(queue);
1111 if (result != 0)
1112 goto done_recv;
1115 done_recv:
1116 if (result < 0) {
1117 if (result == -EAGAIN)
1118 return 0;
1119 return result;
1121 return 1;
1124 static int nvmet_tcp_try_recv(struct nvmet_tcp_queue *queue,
1125 int budget, int *recvs)
1127 int i, ret = 0;
1129 for (i = 0; i < budget; i++) {
1130 ret = nvmet_tcp_try_recv_one(queue);
1131 if (ret <= 0)
1132 break;
1133 (*recvs)++;
1136 return ret;
1139 static void nvmet_tcp_schedule_release_queue(struct nvmet_tcp_queue *queue)
1141 spin_lock(&queue->state_lock);
1142 if (queue->state != NVMET_TCP_Q_DISCONNECTING) {
1143 queue->state = NVMET_TCP_Q_DISCONNECTING;
1144 schedule_work(&queue->release_work);
1146 spin_unlock(&queue->state_lock);
1149 static void nvmet_tcp_io_work(struct work_struct *w)
1151 struct nvmet_tcp_queue *queue =
1152 container_of(w, struct nvmet_tcp_queue, io_work);
1153 bool pending;
1154 int ret, ops = 0;
1156 do {
1157 pending = false;
1159 ret = nvmet_tcp_try_recv(queue, NVMET_TCP_RECV_BUDGET, &ops);
1160 if (ret > 0) {
1161 pending = true;
1162 } else if (ret < 0) {
1163 if (ret == -EPIPE || ret == -ECONNRESET)
1164 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1165 else
1166 nvmet_tcp_fatal_error(queue);
1167 return;
1170 ret = nvmet_tcp_try_send(queue, NVMET_TCP_SEND_BUDGET, &ops);
1171 if (ret > 0) {
1172 /* transmitted message/data */
1173 pending = true;
1174 } else if (ret < 0) {
1175 if (ret == -EPIPE || ret == -ECONNRESET)
1176 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1177 else
1178 nvmet_tcp_fatal_error(queue);
1179 return;
1182 } while (pending && ops < NVMET_TCP_IO_WORK_BUDGET);
1185 * We exahusted our budget, requeue our selves
1187 if (pending)
1188 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1191 static int nvmet_tcp_alloc_cmd(struct nvmet_tcp_queue *queue,
1192 struct nvmet_tcp_cmd *c)
1194 u8 hdgst = nvmet_tcp_hdgst_len(queue);
1196 c->queue = queue;
1197 c->req.port = queue->port->nport;
1199 c->cmd_pdu = page_frag_alloc(&queue->pf_cache,
1200 sizeof(*c->cmd_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1201 if (!c->cmd_pdu)
1202 return -ENOMEM;
1203 c->req.cmd = &c->cmd_pdu->cmd;
1205 c->rsp_pdu = page_frag_alloc(&queue->pf_cache,
1206 sizeof(*c->rsp_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1207 if (!c->rsp_pdu)
1208 goto out_free_cmd;
1209 c->req.rsp = &c->rsp_pdu->cqe;
1211 c->data_pdu = page_frag_alloc(&queue->pf_cache,
1212 sizeof(*c->data_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1213 if (!c->data_pdu)
1214 goto out_free_rsp;
1216 c->r2t_pdu = page_frag_alloc(&queue->pf_cache,
1217 sizeof(*c->r2t_pdu) + hdgst, GFP_KERNEL | __GFP_ZERO);
1218 if (!c->r2t_pdu)
1219 goto out_free_data;
1221 c->recv_msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1223 list_add_tail(&c->entry, &queue->free_list);
1225 return 0;
1226 out_free_data:
1227 page_frag_free(c->data_pdu);
1228 out_free_rsp:
1229 page_frag_free(c->rsp_pdu);
1230 out_free_cmd:
1231 page_frag_free(c->cmd_pdu);
1232 return -ENOMEM;
1235 static void nvmet_tcp_free_cmd(struct nvmet_tcp_cmd *c)
1237 page_frag_free(c->r2t_pdu);
1238 page_frag_free(c->data_pdu);
1239 page_frag_free(c->rsp_pdu);
1240 page_frag_free(c->cmd_pdu);
1243 static int nvmet_tcp_alloc_cmds(struct nvmet_tcp_queue *queue)
1245 struct nvmet_tcp_cmd *cmds;
1246 int i, ret = -EINVAL, nr_cmds = queue->nr_cmds;
1248 cmds = kcalloc(nr_cmds, sizeof(struct nvmet_tcp_cmd), GFP_KERNEL);
1249 if (!cmds)
1250 goto out;
1252 for (i = 0; i < nr_cmds; i++) {
1253 ret = nvmet_tcp_alloc_cmd(queue, cmds + i);
1254 if (ret)
1255 goto out_free;
1258 queue->cmds = cmds;
1260 return 0;
1261 out_free:
1262 while (--i >= 0)
1263 nvmet_tcp_free_cmd(cmds + i);
1264 kfree(cmds);
1265 out:
1266 return ret;
1269 static void nvmet_tcp_free_cmds(struct nvmet_tcp_queue *queue)
1271 struct nvmet_tcp_cmd *cmds = queue->cmds;
1272 int i;
1274 for (i = 0; i < queue->nr_cmds; i++)
1275 nvmet_tcp_free_cmd(cmds + i);
1277 nvmet_tcp_free_cmd(&queue->connect);
1278 kfree(cmds);
1281 static void nvmet_tcp_restore_socket_callbacks(struct nvmet_tcp_queue *queue)
1283 struct socket *sock = queue->sock;
1285 write_lock_bh(&sock->sk->sk_callback_lock);
1286 sock->sk->sk_data_ready = queue->data_ready;
1287 sock->sk->sk_state_change = queue->state_change;
1288 sock->sk->sk_write_space = queue->write_space;
1289 sock->sk->sk_user_data = NULL;
1290 write_unlock_bh(&sock->sk->sk_callback_lock);
1293 static void nvmet_tcp_finish_cmd(struct nvmet_tcp_cmd *cmd)
1295 nvmet_req_uninit(&cmd->req);
1296 nvmet_tcp_unmap_pdu_iovec(cmd);
1297 sgl_free(cmd->req.sg);
1300 static void nvmet_tcp_uninit_data_in_cmds(struct nvmet_tcp_queue *queue)
1302 struct nvmet_tcp_cmd *cmd = queue->cmds;
1303 int i;
1305 for (i = 0; i < queue->nr_cmds; i++, cmd++) {
1306 if (nvmet_tcp_need_data_in(cmd))
1307 nvmet_tcp_finish_cmd(cmd);
1310 if (!queue->nr_cmds && nvmet_tcp_need_data_in(&queue->connect)) {
1311 /* failed in connect */
1312 nvmet_tcp_finish_cmd(&queue->connect);
1316 static void nvmet_tcp_release_queue_work(struct work_struct *w)
1318 struct nvmet_tcp_queue *queue =
1319 container_of(w, struct nvmet_tcp_queue, release_work);
1321 mutex_lock(&nvmet_tcp_queue_mutex);
1322 list_del_init(&queue->queue_list);
1323 mutex_unlock(&nvmet_tcp_queue_mutex);
1325 nvmet_tcp_restore_socket_callbacks(queue);
1326 flush_work(&queue->io_work);
1328 nvmet_tcp_uninit_data_in_cmds(queue);
1329 nvmet_sq_destroy(&queue->nvme_sq);
1330 cancel_work_sync(&queue->io_work);
1331 sock_release(queue->sock);
1332 nvmet_tcp_free_cmds(queue);
1333 if (queue->hdr_digest || queue->data_digest)
1334 nvmet_tcp_free_crypto(queue);
1335 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1337 kfree(queue);
1340 static void nvmet_tcp_data_ready(struct sock *sk)
1342 struct nvmet_tcp_queue *queue;
1344 read_lock_bh(&sk->sk_callback_lock);
1345 queue = sk->sk_user_data;
1346 if (likely(queue))
1347 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1348 read_unlock_bh(&sk->sk_callback_lock);
1351 static void nvmet_tcp_write_space(struct sock *sk)
1353 struct nvmet_tcp_queue *queue;
1355 read_lock_bh(&sk->sk_callback_lock);
1356 queue = sk->sk_user_data;
1357 if (unlikely(!queue))
1358 goto out;
1360 if (unlikely(queue->state == NVMET_TCP_Q_CONNECTING)) {
1361 queue->write_space(sk);
1362 goto out;
1365 if (sk_stream_is_writeable(sk)) {
1366 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1367 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1369 out:
1370 read_unlock_bh(&sk->sk_callback_lock);
1373 static void nvmet_tcp_state_change(struct sock *sk)
1375 struct nvmet_tcp_queue *queue;
1377 write_lock_bh(&sk->sk_callback_lock);
1378 queue = sk->sk_user_data;
1379 if (!queue)
1380 goto done;
1382 switch (sk->sk_state) {
1383 case TCP_FIN_WAIT1:
1384 case TCP_CLOSE_WAIT:
1385 case TCP_CLOSE:
1386 /* FALLTHRU */
1387 sk->sk_user_data = NULL;
1388 nvmet_tcp_schedule_release_queue(queue);
1389 break;
1390 default:
1391 pr_warn("queue %d unhandled state %d\n",
1392 queue->idx, sk->sk_state);
1394 done:
1395 write_unlock_bh(&sk->sk_callback_lock);
1398 static int nvmet_tcp_set_queue_sock(struct nvmet_tcp_queue *queue)
1400 struct socket *sock = queue->sock;
1401 struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1402 int ret;
1404 ret = kernel_getsockname(sock,
1405 (struct sockaddr *)&queue->sockaddr);
1406 if (ret < 0)
1407 return ret;
1409 ret = kernel_getpeername(sock,
1410 (struct sockaddr *)&queue->sockaddr_peer);
1411 if (ret < 0)
1412 return ret;
1415 * Cleanup whatever is sitting in the TCP transmit queue on socket
1416 * close. This is done to prevent stale data from being sent should
1417 * the network connection be restored before TCP times out.
1419 ret = kernel_setsockopt(sock, SOL_SOCKET, SO_LINGER,
1420 (char *)&sol, sizeof(sol));
1421 if (ret)
1422 return ret;
1424 write_lock_bh(&sock->sk->sk_callback_lock);
1425 sock->sk->sk_user_data = queue;
1426 queue->data_ready = sock->sk->sk_data_ready;
1427 sock->sk->sk_data_ready = nvmet_tcp_data_ready;
1428 queue->state_change = sock->sk->sk_state_change;
1429 sock->sk->sk_state_change = nvmet_tcp_state_change;
1430 queue->write_space = sock->sk->sk_write_space;
1431 sock->sk->sk_write_space = nvmet_tcp_write_space;
1432 write_unlock_bh(&sock->sk->sk_callback_lock);
1434 return 0;
1437 static int nvmet_tcp_alloc_queue(struct nvmet_tcp_port *port,
1438 struct socket *newsock)
1440 struct nvmet_tcp_queue *queue;
1441 int ret;
1443 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
1444 if (!queue)
1445 return -ENOMEM;
1447 INIT_WORK(&queue->release_work, nvmet_tcp_release_queue_work);
1448 INIT_WORK(&queue->io_work, nvmet_tcp_io_work);
1449 queue->sock = newsock;
1450 queue->port = port;
1451 queue->nr_cmds = 0;
1452 spin_lock_init(&queue->state_lock);
1453 queue->state = NVMET_TCP_Q_CONNECTING;
1454 INIT_LIST_HEAD(&queue->free_list);
1455 init_llist_head(&queue->resp_list);
1456 INIT_LIST_HEAD(&queue->resp_send_list);
1458 queue->idx = ida_simple_get(&nvmet_tcp_queue_ida, 0, 0, GFP_KERNEL);
1459 if (queue->idx < 0) {
1460 ret = queue->idx;
1461 goto out_free_queue;
1464 ret = nvmet_tcp_alloc_cmd(queue, &queue->connect);
1465 if (ret)
1466 goto out_ida_remove;
1468 ret = nvmet_sq_init(&queue->nvme_sq);
1469 if (ret)
1470 goto out_free_connect;
1472 port->last_cpu = cpumask_next_wrap(port->last_cpu,
1473 cpu_online_mask, -1, false);
1474 queue->cpu = port->last_cpu;
1475 nvmet_prepare_receive_pdu(queue);
1477 mutex_lock(&nvmet_tcp_queue_mutex);
1478 list_add_tail(&queue->queue_list, &nvmet_tcp_queue_list);
1479 mutex_unlock(&nvmet_tcp_queue_mutex);
1481 ret = nvmet_tcp_set_queue_sock(queue);
1482 if (ret)
1483 goto out_destroy_sq;
1485 queue_work_on(queue->cpu, nvmet_tcp_wq, &queue->io_work);
1487 return 0;
1488 out_destroy_sq:
1489 mutex_lock(&nvmet_tcp_queue_mutex);
1490 list_del_init(&queue->queue_list);
1491 mutex_unlock(&nvmet_tcp_queue_mutex);
1492 nvmet_sq_destroy(&queue->nvme_sq);
1493 out_free_connect:
1494 nvmet_tcp_free_cmd(&queue->connect);
1495 out_ida_remove:
1496 ida_simple_remove(&nvmet_tcp_queue_ida, queue->idx);
1497 out_free_queue:
1498 kfree(queue);
1499 return ret;
1502 static void nvmet_tcp_accept_work(struct work_struct *w)
1504 struct nvmet_tcp_port *port =
1505 container_of(w, struct nvmet_tcp_port, accept_work);
1506 struct socket *newsock;
1507 int ret;
1509 while (true) {
1510 ret = kernel_accept(port->sock, &newsock, O_NONBLOCK);
1511 if (ret < 0) {
1512 if (ret != -EAGAIN)
1513 pr_warn("failed to accept err=%d\n", ret);
1514 return;
1516 ret = nvmet_tcp_alloc_queue(port, newsock);
1517 if (ret) {
1518 pr_err("failed to allocate queue\n");
1519 sock_release(newsock);
1524 static void nvmet_tcp_listen_data_ready(struct sock *sk)
1526 struct nvmet_tcp_port *port;
1528 read_lock_bh(&sk->sk_callback_lock);
1529 port = sk->sk_user_data;
1530 if (!port)
1531 goto out;
1533 if (sk->sk_state == TCP_LISTEN)
1534 schedule_work(&port->accept_work);
1535 out:
1536 read_unlock_bh(&sk->sk_callback_lock);
1539 static int nvmet_tcp_add_port(struct nvmet_port *nport)
1541 struct nvmet_tcp_port *port;
1542 __kernel_sa_family_t af;
1543 int opt, ret;
1545 port = kzalloc(sizeof(*port), GFP_KERNEL);
1546 if (!port)
1547 return -ENOMEM;
1549 switch (nport->disc_addr.adrfam) {
1550 case NVMF_ADDR_FAMILY_IP4:
1551 af = AF_INET;
1552 break;
1553 case NVMF_ADDR_FAMILY_IP6:
1554 af = AF_INET6;
1555 break;
1556 default:
1557 pr_err("address family %d not supported\n",
1558 nport->disc_addr.adrfam);
1559 ret = -EINVAL;
1560 goto err_port;
1563 ret = inet_pton_with_scope(&init_net, af, nport->disc_addr.traddr,
1564 nport->disc_addr.trsvcid, &port->addr);
1565 if (ret) {
1566 pr_err("malformed ip/port passed: %s:%s\n",
1567 nport->disc_addr.traddr, nport->disc_addr.trsvcid);
1568 goto err_port;
1571 port->nport = nport;
1572 port->last_cpu = -1;
1573 INIT_WORK(&port->accept_work, nvmet_tcp_accept_work);
1574 if (port->nport->inline_data_size < 0)
1575 port->nport->inline_data_size = NVMET_TCP_DEF_INLINE_DATA_SIZE;
1577 ret = sock_create(port->addr.ss_family, SOCK_STREAM,
1578 IPPROTO_TCP, &port->sock);
1579 if (ret) {
1580 pr_err("failed to create a socket\n");
1581 goto err_port;
1584 port->sock->sk->sk_user_data = port;
1585 port->data_ready = port->sock->sk->sk_data_ready;
1586 port->sock->sk->sk_data_ready = nvmet_tcp_listen_data_ready;
1588 opt = 1;
1589 ret = kernel_setsockopt(port->sock, IPPROTO_TCP,
1590 TCP_NODELAY, (char *)&opt, sizeof(opt));
1591 if (ret) {
1592 pr_err("failed to set TCP_NODELAY sock opt %d\n", ret);
1593 goto err_sock;
1596 ret = kernel_setsockopt(port->sock, SOL_SOCKET, SO_REUSEADDR,
1597 (char *)&opt, sizeof(opt));
1598 if (ret) {
1599 pr_err("failed to set SO_REUSEADDR sock opt %d\n", ret);
1600 goto err_sock;
1603 ret = kernel_bind(port->sock, (struct sockaddr *)&port->addr,
1604 sizeof(port->addr));
1605 if (ret) {
1606 pr_err("failed to bind port socket %d\n", ret);
1607 goto err_sock;
1610 ret = kernel_listen(port->sock, 128);
1611 if (ret) {
1612 pr_err("failed to listen %d on port sock\n", ret);
1613 goto err_sock;
1616 nport->priv = port;
1617 pr_info("enabling port %d (%pISpc)\n",
1618 le16_to_cpu(nport->disc_addr.portid), &port->addr);
1620 return 0;
1622 err_sock:
1623 sock_release(port->sock);
1624 err_port:
1625 kfree(port);
1626 return ret;
1629 static void nvmet_tcp_remove_port(struct nvmet_port *nport)
1631 struct nvmet_tcp_port *port = nport->priv;
1633 write_lock_bh(&port->sock->sk->sk_callback_lock);
1634 port->sock->sk->sk_data_ready = port->data_ready;
1635 port->sock->sk->sk_user_data = NULL;
1636 write_unlock_bh(&port->sock->sk->sk_callback_lock);
1637 cancel_work_sync(&port->accept_work);
1639 sock_release(port->sock);
1640 kfree(port);
1643 static void nvmet_tcp_delete_ctrl(struct nvmet_ctrl *ctrl)
1645 struct nvmet_tcp_queue *queue;
1647 mutex_lock(&nvmet_tcp_queue_mutex);
1648 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1649 if (queue->nvme_sq.ctrl == ctrl)
1650 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1651 mutex_unlock(&nvmet_tcp_queue_mutex);
1654 static u16 nvmet_tcp_install_queue(struct nvmet_sq *sq)
1656 struct nvmet_tcp_queue *queue =
1657 container_of(sq, struct nvmet_tcp_queue, nvme_sq);
1659 if (sq->qid == 0) {
1660 /* Let inflight controller teardown complete */
1661 flush_scheduled_work();
1664 queue->nr_cmds = sq->size * 2;
1665 if (nvmet_tcp_alloc_cmds(queue))
1666 return NVME_SC_INTERNAL;
1667 return 0;
1670 static void nvmet_tcp_disc_port_addr(struct nvmet_req *req,
1671 struct nvmet_port *nport, char *traddr)
1673 struct nvmet_tcp_port *port = nport->priv;
1675 if (inet_addr_is_any((struct sockaddr *)&port->addr)) {
1676 struct nvmet_tcp_cmd *cmd =
1677 container_of(req, struct nvmet_tcp_cmd, req);
1678 struct nvmet_tcp_queue *queue = cmd->queue;
1680 sprintf(traddr, "%pISc", (struct sockaddr *)&queue->sockaddr);
1681 } else {
1682 memcpy(traddr, nport->disc_addr.traddr, NVMF_TRADDR_SIZE);
1686 static struct nvmet_fabrics_ops nvmet_tcp_ops = {
1687 .owner = THIS_MODULE,
1688 .type = NVMF_TRTYPE_TCP,
1689 .msdbd = 1,
1690 .has_keyed_sgls = 0,
1691 .add_port = nvmet_tcp_add_port,
1692 .remove_port = nvmet_tcp_remove_port,
1693 .queue_response = nvmet_tcp_queue_response,
1694 .delete_ctrl = nvmet_tcp_delete_ctrl,
1695 .install_queue = nvmet_tcp_install_queue,
1696 .disc_traddr = nvmet_tcp_disc_port_addr,
1699 static int __init nvmet_tcp_init(void)
1701 int ret;
1703 nvmet_tcp_wq = alloc_workqueue("nvmet_tcp_wq", WQ_HIGHPRI, 0);
1704 if (!nvmet_tcp_wq)
1705 return -ENOMEM;
1707 ret = nvmet_register_transport(&nvmet_tcp_ops);
1708 if (ret)
1709 goto err;
1711 return 0;
1712 err:
1713 destroy_workqueue(nvmet_tcp_wq);
1714 return ret;
1717 static void __exit nvmet_tcp_exit(void)
1719 struct nvmet_tcp_queue *queue;
1721 nvmet_unregister_transport(&nvmet_tcp_ops);
1723 flush_scheduled_work();
1724 mutex_lock(&nvmet_tcp_queue_mutex);
1725 list_for_each_entry(queue, &nvmet_tcp_queue_list, queue_list)
1726 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1727 mutex_unlock(&nvmet_tcp_queue_mutex);
1728 flush_scheduled_work();
1730 destroy_workqueue(nvmet_tcp_wq);
1733 module_init(nvmet_tcp_init);
1734 module_exit(nvmet_tcp_exit);
1736 MODULE_LICENSE("GPL v2");
1737 MODULE_ALIAS("nvmet-transport-3"); /* 3 == NVMF_TRTYPE_TCP */