pinctrl: uniphier: add UniPhier PH1-LD11 pinctrl driver
[linux/fpc-iii.git] / security / keys / keyring.c
blobc91e4e0cea08b94c38fcde47da0b5d9d9823dd5e
1 /* Keyring handling
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
29 #define KEYRING_SEARCH_MAX_DEPTH 6
32 * We keep all named keyrings in a hash to speed looking them up.
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
40 #define KEYRING_PTR_SUBTYPE 0x2UL
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
51 static inline void *keyring_key_to_ptr(struct key *key)
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
61 static inline unsigned keyring_hash(const char *desc)
63 unsigned bucket = 0;
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
97 EXPORT_SYMBOL(key_type_keyring);
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
109 static void keyring_publish_name(struct key *keyring)
111 int bucket;
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
116 write_lock(&keyring_name_lock);
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
124 write_unlock(&keyring_name_lock);
129 * Preparse a keyring payload
131 static int keyring_preparse(struct key_preparsed_payload *prep)
133 return prep->datalen != 0 ? -EINVAL : 0;
137 * Free a preparse of a user defined key payload
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
144 * Initialise a keyring.
146 * Returns 0 on success, -EINVAL if given any data.
148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
169 * Hash a key type and description.
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
181 type = (unsigned long)index_key->type;
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
216 * Build the next index key chunk.
218 * On 32-bit systems the index key is laid out as:
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
223 * On 64-bit systems:
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
228 * We return it one word-sized chunk at a time.
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
268 return chunk;
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
278 static bool keyring_compare_object(const void *object, const void *data)
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
293 static int keyring_diff_objects(const void *object, const void *data)
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
347 same:
348 return -1;
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
358 * Free an object after stripping the keyring flag off of the pointer.
360 static void keyring_free_object(void *object)
362 key_put(keyring_ptr_to_key(object));
366 * Operations for keyring management by the index-tree routines.
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
385 static void keyring_destroy(struct key *keyring)
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
394 write_unlock(&keyring_name_lock);
397 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
401 * Describe a keyring for /proc.
403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
405 if (keyring->description)
406 seq_puts(m, keyring->description);
407 else
408 seq_puts(m, "[anon]");
410 if (key_is_instantiated(keyring)) {
411 if (keyring->keys.nr_leaves_on_tree != 0)
412 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 else
414 seq_puts(m, ": empty");
418 struct keyring_read_iterator_context {
419 size_t qty;
420 size_t count;
421 key_serial_t __user *buffer;
424 static int keyring_read_iterator(const void *object, void *data)
426 struct keyring_read_iterator_context *ctx = data;
427 const struct key *key = keyring_ptr_to_key(object);
428 int ret;
430 kenter("{%s,%d},,{%zu/%zu}",
431 key->type->name, key->serial, ctx->count, ctx->qty);
433 if (ctx->count >= ctx->qty)
434 return 1;
436 ret = put_user(key->serial, ctx->buffer);
437 if (ret < 0)
438 return ret;
439 ctx->buffer++;
440 ctx->count += sizeof(key->serial);
441 return 0;
445 * Read a list of key IDs from the keyring's contents in binary form
447 * The keyring's semaphore is read-locked by the caller. This prevents someone
448 * from modifying it under us - which could cause us to read key IDs multiple
449 * times.
451 static long keyring_read(const struct key *keyring,
452 char __user *buffer, size_t buflen)
454 struct keyring_read_iterator_context ctx;
455 unsigned long nr_keys;
456 int ret;
458 kenter("{%d},,%zu", key_serial(keyring), buflen);
460 if (buflen & (sizeof(key_serial_t) - 1))
461 return -EINVAL;
463 nr_keys = keyring->keys.nr_leaves_on_tree;
464 if (nr_keys == 0)
465 return 0;
467 /* Calculate how much data we could return */
468 ctx.qty = nr_keys * sizeof(key_serial_t);
470 if (!buffer || !buflen)
471 return ctx.qty;
473 if (buflen > ctx.qty)
474 ctx.qty = buflen;
476 /* Copy the IDs of the subscribed keys into the buffer */
477 ctx.buffer = (key_serial_t __user *)buffer;
478 ctx.count = 0;
479 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
480 if (ret < 0) {
481 kleave(" = %d [iterate]", ret);
482 return ret;
485 kleave(" = %zu [ok]", ctx.count);
486 return ctx.count;
490 * Allocate a keyring and link into the destination keyring.
492 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
493 const struct cred *cred, key_perm_t perm,
494 unsigned long flags,
495 int (*restrict_link)(struct key *,
496 const struct key_type *,
497 const union key_payload *),
498 struct key *dest)
500 struct key *keyring;
501 int ret;
503 keyring = key_alloc(&key_type_keyring, description,
504 uid, gid, cred, perm, flags, restrict_link);
505 if (!IS_ERR(keyring)) {
506 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
507 if (ret < 0) {
508 key_put(keyring);
509 keyring = ERR_PTR(ret);
513 return keyring;
515 EXPORT_SYMBOL(keyring_alloc);
518 * restrict_link_reject - Give -EPERM to restrict link
519 * @keyring: The keyring being added to.
520 * @type: The type of key being added.
521 * @payload: The payload of the key intended to be added.
523 * Reject the addition of any links to a keyring. It can be overridden by
524 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
525 * adding a key to a keyring.
527 * This is meant to be passed as the restrict_link parameter to
528 * keyring_alloc().
530 int restrict_link_reject(struct key *keyring,
531 const struct key_type *type,
532 const union key_payload *payload)
534 return -EPERM;
538 * By default, we keys found by getting an exact match on their descriptions.
540 bool key_default_cmp(const struct key *key,
541 const struct key_match_data *match_data)
543 return strcmp(key->description, match_data->raw_data) == 0;
547 * Iteration function to consider each key found.
549 static int keyring_search_iterator(const void *object, void *iterator_data)
551 struct keyring_search_context *ctx = iterator_data;
552 const struct key *key = keyring_ptr_to_key(object);
553 unsigned long kflags = key->flags;
555 kenter("{%d}", key->serial);
557 /* ignore keys not of this type */
558 if (key->type != ctx->index_key.type) {
559 kleave(" = 0 [!type]");
560 return 0;
563 /* skip invalidated, revoked and expired keys */
564 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
565 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
566 (1 << KEY_FLAG_REVOKED))) {
567 ctx->result = ERR_PTR(-EKEYREVOKED);
568 kleave(" = %d [invrev]", ctx->skipped_ret);
569 goto skipped;
572 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
573 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
574 ctx->result = ERR_PTR(-EKEYEXPIRED);
575 kleave(" = %d [expire]", ctx->skipped_ret);
576 goto skipped;
580 /* keys that don't match */
581 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
582 kleave(" = 0 [!match]");
583 return 0;
586 /* key must have search permissions */
587 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
588 key_task_permission(make_key_ref(key, ctx->possessed),
589 ctx->cred, KEY_NEED_SEARCH) < 0) {
590 ctx->result = ERR_PTR(-EACCES);
591 kleave(" = %d [!perm]", ctx->skipped_ret);
592 goto skipped;
595 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
596 /* we set a different error code if we pass a negative key */
597 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
598 smp_rmb();
599 ctx->result = ERR_PTR(key->reject_error);
600 kleave(" = %d [neg]", ctx->skipped_ret);
601 goto skipped;
605 /* Found */
606 ctx->result = make_key_ref(key, ctx->possessed);
607 kleave(" = 1 [found]");
608 return 1;
610 skipped:
611 return ctx->skipped_ret;
615 * Search inside a keyring for a key. We can search by walking to it
616 * directly based on its index-key or we can iterate over the entire
617 * tree looking for it, based on the match function.
619 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
621 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
622 const void *object;
624 object = assoc_array_find(&keyring->keys,
625 &keyring_assoc_array_ops,
626 &ctx->index_key);
627 return object ? ctx->iterator(object, ctx) : 0;
629 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
633 * Search a tree of keyrings that point to other keyrings up to the maximum
634 * depth.
636 static bool search_nested_keyrings(struct key *keyring,
637 struct keyring_search_context *ctx)
639 struct {
640 struct key *keyring;
641 struct assoc_array_node *node;
642 int slot;
643 } stack[KEYRING_SEARCH_MAX_DEPTH];
645 struct assoc_array_shortcut *shortcut;
646 struct assoc_array_node *node;
647 struct assoc_array_ptr *ptr;
648 struct key *key;
649 int sp = 0, slot;
651 kenter("{%d},{%s,%s}",
652 keyring->serial,
653 ctx->index_key.type->name,
654 ctx->index_key.description);
656 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
657 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
658 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
660 if (ctx->index_key.description)
661 ctx->index_key.desc_len = strlen(ctx->index_key.description);
663 /* Check to see if this top-level keyring is what we are looking for
664 * and whether it is valid or not.
666 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
667 keyring_compare_object(keyring, &ctx->index_key)) {
668 ctx->skipped_ret = 2;
669 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
670 case 1:
671 goto found;
672 case 2:
673 return false;
674 default:
675 break;
679 ctx->skipped_ret = 0;
681 /* Start processing a new keyring */
682 descend_to_keyring:
683 kdebug("descend to %d", keyring->serial);
684 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
685 (1 << KEY_FLAG_REVOKED)))
686 goto not_this_keyring;
688 /* Search through the keys in this keyring before its searching its
689 * subtrees.
691 if (search_keyring(keyring, ctx))
692 goto found;
694 /* Then manually iterate through the keyrings nested in this one.
696 * Start from the root node of the index tree. Because of the way the
697 * hash function has been set up, keyrings cluster on the leftmost
698 * branch of the root node (root slot 0) or in the root node itself.
699 * Non-keyrings avoid the leftmost branch of the root entirely (root
700 * slots 1-15).
702 ptr = ACCESS_ONCE(keyring->keys.root);
703 if (!ptr)
704 goto not_this_keyring;
706 if (assoc_array_ptr_is_shortcut(ptr)) {
707 /* If the root is a shortcut, either the keyring only contains
708 * keyring pointers (everything clusters behind root slot 0) or
709 * doesn't contain any keyring pointers.
711 shortcut = assoc_array_ptr_to_shortcut(ptr);
712 smp_read_barrier_depends();
713 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
714 goto not_this_keyring;
716 ptr = ACCESS_ONCE(shortcut->next_node);
717 node = assoc_array_ptr_to_node(ptr);
718 goto begin_node;
721 node = assoc_array_ptr_to_node(ptr);
722 smp_read_barrier_depends();
724 ptr = node->slots[0];
725 if (!assoc_array_ptr_is_meta(ptr))
726 goto begin_node;
728 descend_to_node:
729 /* Descend to a more distal node in this keyring's content tree and go
730 * through that.
732 kdebug("descend");
733 if (assoc_array_ptr_is_shortcut(ptr)) {
734 shortcut = assoc_array_ptr_to_shortcut(ptr);
735 smp_read_barrier_depends();
736 ptr = ACCESS_ONCE(shortcut->next_node);
737 BUG_ON(!assoc_array_ptr_is_node(ptr));
739 node = assoc_array_ptr_to_node(ptr);
741 begin_node:
742 kdebug("begin_node");
743 smp_read_barrier_depends();
744 slot = 0;
745 ascend_to_node:
746 /* Go through the slots in a node */
747 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
748 ptr = ACCESS_ONCE(node->slots[slot]);
750 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
751 goto descend_to_node;
753 if (!keyring_ptr_is_keyring(ptr))
754 continue;
756 key = keyring_ptr_to_key(ptr);
758 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
759 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
760 ctx->result = ERR_PTR(-ELOOP);
761 return false;
763 goto not_this_keyring;
766 /* Search a nested keyring */
767 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
768 key_task_permission(make_key_ref(key, ctx->possessed),
769 ctx->cred, KEY_NEED_SEARCH) < 0)
770 continue;
772 /* stack the current position */
773 stack[sp].keyring = keyring;
774 stack[sp].node = node;
775 stack[sp].slot = slot;
776 sp++;
778 /* begin again with the new keyring */
779 keyring = key;
780 goto descend_to_keyring;
783 /* We've dealt with all the slots in the current node, so now we need
784 * to ascend to the parent and continue processing there.
786 ptr = ACCESS_ONCE(node->back_pointer);
787 slot = node->parent_slot;
789 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
790 shortcut = assoc_array_ptr_to_shortcut(ptr);
791 smp_read_barrier_depends();
792 ptr = ACCESS_ONCE(shortcut->back_pointer);
793 slot = shortcut->parent_slot;
795 if (!ptr)
796 goto not_this_keyring;
797 node = assoc_array_ptr_to_node(ptr);
798 smp_read_barrier_depends();
799 slot++;
801 /* If we've ascended to the root (zero backpointer), we must have just
802 * finished processing the leftmost branch rather than the root slots -
803 * so there can't be any more keyrings for us to find.
805 if (node->back_pointer) {
806 kdebug("ascend %d", slot);
807 goto ascend_to_node;
810 /* The keyring we're looking at was disqualified or didn't contain a
811 * matching key.
813 not_this_keyring:
814 kdebug("not_this_keyring %d", sp);
815 if (sp <= 0) {
816 kleave(" = false");
817 return false;
820 /* Resume the processing of a keyring higher up in the tree */
821 sp--;
822 keyring = stack[sp].keyring;
823 node = stack[sp].node;
824 slot = stack[sp].slot + 1;
825 kdebug("ascend to %d [%d]", keyring->serial, slot);
826 goto ascend_to_node;
828 /* We found a viable match */
829 found:
830 key = key_ref_to_ptr(ctx->result);
831 key_check(key);
832 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
833 key->last_used_at = ctx->now.tv_sec;
834 keyring->last_used_at = ctx->now.tv_sec;
835 while (sp > 0)
836 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
838 kleave(" = true");
839 return true;
843 * keyring_search_aux - Search a keyring tree for a key matching some criteria
844 * @keyring_ref: A pointer to the keyring with possession indicator.
845 * @ctx: The keyring search context.
847 * Search the supplied keyring tree for a key that matches the criteria given.
848 * The root keyring and any linked keyrings must grant Search permission to the
849 * caller to be searchable and keys can only be found if they too grant Search
850 * to the caller. The possession flag on the root keyring pointer controls use
851 * of the possessor bits in permissions checking of the entire tree. In
852 * addition, the LSM gets to forbid keyring searches and key matches.
854 * The search is performed as a breadth-then-depth search up to the prescribed
855 * limit (KEYRING_SEARCH_MAX_DEPTH).
857 * Keys are matched to the type provided and are then filtered by the match
858 * function, which is given the description to use in any way it sees fit. The
859 * match function may use any attributes of a key that it wishes to to
860 * determine the match. Normally the match function from the key type would be
861 * used.
863 * RCU can be used to prevent the keyring key lists from disappearing without
864 * the need to take lots of locks.
866 * Returns a pointer to the found key and increments the key usage count if
867 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
868 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
869 * specified keyring wasn't a keyring.
871 * In the case of a successful return, the possession attribute from
872 * @keyring_ref is propagated to the returned key reference.
874 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
875 struct keyring_search_context *ctx)
877 struct key *keyring;
878 long err;
880 ctx->iterator = keyring_search_iterator;
881 ctx->possessed = is_key_possessed(keyring_ref);
882 ctx->result = ERR_PTR(-EAGAIN);
884 keyring = key_ref_to_ptr(keyring_ref);
885 key_check(keyring);
887 if (keyring->type != &key_type_keyring)
888 return ERR_PTR(-ENOTDIR);
890 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
891 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
892 if (err < 0)
893 return ERR_PTR(err);
896 rcu_read_lock();
897 ctx->now = current_kernel_time();
898 if (search_nested_keyrings(keyring, ctx))
899 __key_get(key_ref_to_ptr(ctx->result));
900 rcu_read_unlock();
901 return ctx->result;
905 * keyring_search - Search the supplied keyring tree for a matching key
906 * @keyring: The root of the keyring tree to be searched.
907 * @type: The type of keyring we want to find.
908 * @description: The name of the keyring we want to find.
910 * As keyring_search_aux() above, but using the current task's credentials and
911 * type's default matching function and preferred search method.
913 key_ref_t keyring_search(key_ref_t keyring,
914 struct key_type *type,
915 const char *description)
917 struct keyring_search_context ctx = {
918 .index_key.type = type,
919 .index_key.description = description,
920 .cred = current_cred(),
921 .match_data.cmp = key_default_cmp,
922 .match_data.raw_data = description,
923 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
924 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
926 key_ref_t key;
927 int ret;
929 if (type->match_preparse) {
930 ret = type->match_preparse(&ctx.match_data);
931 if (ret < 0)
932 return ERR_PTR(ret);
935 key = keyring_search_aux(keyring, &ctx);
937 if (type->match_free)
938 type->match_free(&ctx.match_data);
939 return key;
941 EXPORT_SYMBOL(keyring_search);
944 * Search the given keyring for a key that might be updated.
946 * The caller must guarantee that the keyring is a keyring and that the
947 * permission is granted to modify the keyring as no check is made here. The
948 * caller must also hold a lock on the keyring semaphore.
950 * Returns a pointer to the found key with usage count incremented if
951 * successful and returns NULL if not found. Revoked and invalidated keys are
952 * skipped over.
954 * If successful, the possession indicator is propagated from the keyring ref
955 * to the returned key reference.
957 key_ref_t find_key_to_update(key_ref_t keyring_ref,
958 const struct keyring_index_key *index_key)
960 struct key *keyring, *key;
961 const void *object;
963 keyring = key_ref_to_ptr(keyring_ref);
965 kenter("{%d},{%s,%s}",
966 keyring->serial, index_key->type->name, index_key->description);
968 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
969 index_key);
971 if (object)
972 goto found;
974 kleave(" = NULL");
975 return NULL;
977 found:
978 key = keyring_ptr_to_key(object);
979 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
980 (1 << KEY_FLAG_REVOKED))) {
981 kleave(" = NULL [x]");
982 return NULL;
984 __key_get(key);
985 kleave(" = {%d}", key->serial);
986 return make_key_ref(key, is_key_possessed(keyring_ref));
990 * Find a keyring with the specified name.
992 * All named keyrings in the current user namespace are searched, provided they
993 * grant Search permission directly to the caller (unless this check is
994 * skipped). Keyrings whose usage points have reached zero or who have been
995 * revoked are skipped.
997 * Returns a pointer to the keyring with the keyring's refcount having being
998 * incremented on success. -ENOKEY is returned if a key could not be found.
1000 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
1002 struct key *keyring;
1003 int bucket;
1005 if (!name)
1006 return ERR_PTR(-EINVAL);
1008 bucket = keyring_hash(name);
1010 read_lock(&keyring_name_lock);
1012 if (keyring_name_hash[bucket].next) {
1013 /* search this hash bucket for a keyring with a matching name
1014 * that's readable and that hasn't been revoked */
1015 list_for_each_entry(keyring,
1016 &keyring_name_hash[bucket],
1017 name_link
1019 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1020 continue;
1022 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1023 continue;
1025 if (strcmp(keyring->description, name) != 0)
1026 continue;
1028 if (!skip_perm_check &&
1029 key_permission(make_key_ref(keyring, 0),
1030 KEY_NEED_SEARCH) < 0)
1031 continue;
1033 /* we've got a match but we might end up racing with
1034 * key_cleanup() if the keyring is currently 'dead'
1035 * (ie. it has a zero usage count) */
1036 if (!atomic_inc_not_zero(&keyring->usage))
1037 continue;
1038 keyring->last_used_at = current_kernel_time().tv_sec;
1039 goto out;
1043 keyring = ERR_PTR(-ENOKEY);
1044 out:
1045 read_unlock(&keyring_name_lock);
1046 return keyring;
1049 static int keyring_detect_cycle_iterator(const void *object,
1050 void *iterator_data)
1052 struct keyring_search_context *ctx = iterator_data;
1053 const struct key *key = keyring_ptr_to_key(object);
1055 kenter("{%d}", key->serial);
1057 /* We might get a keyring with matching index-key that is nonetheless a
1058 * different keyring. */
1059 if (key != ctx->match_data.raw_data)
1060 return 0;
1062 ctx->result = ERR_PTR(-EDEADLK);
1063 return 1;
1067 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1068 * tree A at the topmost level (ie: as a direct child of A).
1070 * Since we are adding B to A at the top level, checking for cycles should just
1071 * be a matter of seeing if node A is somewhere in tree B.
1073 static int keyring_detect_cycle(struct key *A, struct key *B)
1075 struct keyring_search_context ctx = {
1076 .index_key = A->index_key,
1077 .match_data.raw_data = A,
1078 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1079 .iterator = keyring_detect_cycle_iterator,
1080 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1081 KEYRING_SEARCH_NO_UPDATE_TIME |
1082 KEYRING_SEARCH_NO_CHECK_PERM |
1083 KEYRING_SEARCH_DETECT_TOO_DEEP),
1086 rcu_read_lock();
1087 search_nested_keyrings(B, &ctx);
1088 rcu_read_unlock();
1089 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1093 * Preallocate memory so that a key can be linked into to a keyring.
1095 int __key_link_begin(struct key *keyring,
1096 const struct keyring_index_key *index_key,
1097 struct assoc_array_edit **_edit)
1098 __acquires(&keyring->sem)
1099 __acquires(&keyring_serialise_link_sem)
1101 struct assoc_array_edit *edit;
1102 int ret;
1104 kenter("%d,%s,%s,",
1105 keyring->serial, index_key->type->name, index_key->description);
1107 BUG_ON(index_key->desc_len == 0);
1109 if (keyring->type != &key_type_keyring)
1110 return -ENOTDIR;
1112 down_write(&keyring->sem);
1114 ret = -EKEYREVOKED;
1115 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1116 goto error_krsem;
1118 /* serialise link/link calls to prevent parallel calls causing a cycle
1119 * when linking two keyring in opposite orders */
1120 if (index_key->type == &key_type_keyring)
1121 down_write(&keyring_serialise_link_sem);
1123 /* Create an edit script that will insert/replace the key in the
1124 * keyring tree.
1126 edit = assoc_array_insert(&keyring->keys,
1127 &keyring_assoc_array_ops,
1128 index_key,
1129 NULL);
1130 if (IS_ERR(edit)) {
1131 ret = PTR_ERR(edit);
1132 goto error_sem;
1135 /* If we're not replacing a link in-place then we're going to need some
1136 * extra quota.
1138 if (!edit->dead_leaf) {
1139 ret = key_payload_reserve(keyring,
1140 keyring->datalen + KEYQUOTA_LINK_BYTES);
1141 if (ret < 0)
1142 goto error_cancel;
1145 *_edit = edit;
1146 kleave(" = 0");
1147 return 0;
1149 error_cancel:
1150 assoc_array_cancel_edit(edit);
1151 error_sem:
1152 if (index_key->type == &key_type_keyring)
1153 up_write(&keyring_serialise_link_sem);
1154 error_krsem:
1155 up_write(&keyring->sem);
1156 kleave(" = %d", ret);
1157 return ret;
1161 * Check already instantiated keys aren't going to be a problem.
1163 * The caller must have called __key_link_begin(). Don't need to call this for
1164 * keys that were created since __key_link_begin() was called.
1166 int __key_link_check_live_key(struct key *keyring, struct key *key)
1168 if (key->type == &key_type_keyring)
1169 /* check that we aren't going to create a cycle by linking one
1170 * keyring to another */
1171 return keyring_detect_cycle(keyring, key);
1172 return 0;
1176 * Link a key into to a keyring.
1178 * Must be called with __key_link_begin() having being called. Discards any
1179 * already extant link to matching key if there is one, so that each keyring
1180 * holds at most one link to any given key of a particular type+description
1181 * combination.
1183 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1185 __key_get(key);
1186 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1187 assoc_array_apply_edit(*_edit);
1188 *_edit = NULL;
1192 * Finish linking a key into to a keyring.
1194 * Must be called with __key_link_begin() having being called.
1196 void __key_link_end(struct key *keyring,
1197 const struct keyring_index_key *index_key,
1198 struct assoc_array_edit *edit)
1199 __releases(&keyring->sem)
1200 __releases(&keyring_serialise_link_sem)
1202 BUG_ON(index_key->type == NULL);
1203 kenter("%d,%s,", keyring->serial, index_key->type->name);
1205 if (index_key->type == &key_type_keyring)
1206 up_write(&keyring_serialise_link_sem);
1208 if (edit) {
1209 if (!edit->dead_leaf) {
1210 key_payload_reserve(keyring,
1211 keyring->datalen - KEYQUOTA_LINK_BYTES);
1213 assoc_array_cancel_edit(edit);
1215 up_write(&keyring->sem);
1219 * Check addition of keys to restricted keyrings.
1221 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1223 if (!keyring->restrict_link)
1224 return 0;
1225 return keyring->restrict_link(keyring, key->type, &key->payload);
1229 * key_link - Link a key to a keyring
1230 * @keyring: The keyring to make the link in.
1231 * @key: The key to link to.
1233 * Make a link in a keyring to a key, such that the keyring holds a reference
1234 * on that key and the key can potentially be found by searching that keyring.
1236 * This function will write-lock the keyring's semaphore and will consume some
1237 * of the user's key data quota to hold the link.
1239 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1240 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1241 * full, -EDQUOT if there is insufficient key data quota remaining to add
1242 * another link or -ENOMEM if there's insufficient memory.
1244 * It is assumed that the caller has checked that it is permitted for a link to
1245 * be made (the keyring should have Write permission and the key Link
1246 * permission).
1248 int key_link(struct key *keyring, struct key *key)
1250 struct assoc_array_edit *edit;
1251 int ret;
1253 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1255 key_check(keyring);
1256 key_check(key);
1258 ret = __key_link_begin(keyring, &key->index_key, &edit);
1259 if (ret == 0) {
1260 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1261 ret = __key_link_check_restriction(keyring, key);
1262 if (ret == 0)
1263 ret = __key_link_check_live_key(keyring, key);
1264 if (ret == 0)
1265 __key_link(key, &edit);
1266 __key_link_end(keyring, &key->index_key, edit);
1269 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1270 return ret;
1272 EXPORT_SYMBOL(key_link);
1275 * key_unlink - Unlink the first link to a key from a keyring.
1276 * @keyring: The keyring to remove the link from.
1277 * @key: The key the link is to.
1279 * Remove a link from a keyring to a key.
1281 * This function will write-lock the keyring's semaphore.
1283 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1284 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1285 * memory.
1287 * It is assumed that the caller has checked that it is permitted for a link to
1288 * be removed (the keyring should have Write permission; no permissions are
1289 * required on the key).
1291 int key_unlink(struct key *keyring, struct key *key)
1293 struct assoc_array_edit *edit;
1294 int ret;
1296 key_check(keyring);
1297 key_check(key);
1299 if (keyring->type != &key_type_keyring)
1300 return -ENOTDIR;
1302 down_write(&keyring->sem);
1304 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1305 &key->index_key);
1306 if (IS_ERR(edit)) {
1307 ret = PTR_ERR(edit);
1308 goto error;
1310 ret = -ENOENT;
1311 if (edit == NULL)
1312 goto error;
1314 assoc_array_apply_edit(edit);
1315 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1316 ret = 0;
1318 error:
1319 up_write(&keyring->sem);
1320 return ret;
1322 EXPORT_SYMBOL(key_unlink);
1325 * keyring_clear - Clear a keyring
1326 * @keyring: The keyring to clear.
1328 * Clear the contents of the specified keyring.
1330 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1332 int keyring_clear(struct key *keyring)
1334 struct assoc_array_edit *edit;
1335 int ret;
1337 if (keyring->type != &key_type_keyring)
1338 return -ENOTDIR;
1340 down_write(&keyring->sem);
1342 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1343 if (IS_ERR(edit)) {
1344 ret = PTR_ERR(edit);
1345 } else {
1346 if (edit)
1347 assoc_array_apply_edit(edit);
1348 key_payload_reserve(keyring, 0);
1349 ret = 0;
1352 up_write(&keyring->sem);
1353 return ret;
1355 EXPORT_SYMBOL(keyring_clear);
1358 * Dispose of the links from a revoked keyring.
1360 * This is called with the key sem write-locked.
1362 static void keyring_revoke(struct key *keyring)
1364 struct assoc_array_edit *edit;
1366 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1367 if (!IS_ERR(edit)) {
1368 if (edit)
1369 assoc_array_apply_edit(edit);
1370 key_payload_reserve(keyring, 0);
1374 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1376 struct key *key = keyring_ptr_to_key(object);
1377 time_t *limit = iterator_data;
1379 if (key_is_dead(key, *limit))
1380 return false;
1381 key_get(key);
1382 return true;
1385 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1387 const struct key *key = keyring_ptr_to_key(object);
1388 time_t *limit = iterator_data;
1390 key_check(key);
1391 return key_is_dead(key, *limit);
1395 * Garbage collect pointers from a keyring.
1397 * Not called with any locks held. The keyring's key struct will not be
1398 * deallocated under us as only our caller may deallocate it.
1400 void keyring_gc(struct key *keyring, time_t limit)
1402 int result;
1404 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1406 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1407 (1 << KEY_FLAG_REVOKED)))
1408 goto dont_gc;
1410 /* scan the keyring looking for dead keys */
1411 rcu_read_lock();
1412 result = assoc_array_iterate(&keyring->keys,
1413 keyring_gc_check_iterator, &limit);
1414 rcu_read_unlock();
1415 if (result == true)
1416 goto do_gc;
1418 dont_gc:
1419 kleave(" [no gc]");
1420 return;
1422 do_gc:
1423 down_write(&keyring->sem);
1424 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1425 keyring_gc_select_iterator, &limit);
1426 up_write(&keyring->sem);
1427 kleave(" [gc]");