x86, efi: Set runtime_version to the EFI spec revision
[linux/fpc-iii.git] / arch / arm / mach-omap2 / omap-smp.c
blobcd42d921940dcdb1dd91de67bb56b0350e2b442a
1 /*
2 * OMAP4 SMP source file. It contains platform specific fucntions
3 * needed for the linux smp kernel.
5 * Copyright (C) 2009 Texas Instruments, Inc.
7 * Author:
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
10 * Platform file needed for the OMAP4 SMP. This file is based on arm
11 * realview smp platform.
12 * * Copyright (c) 2002 ARM Limited.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
23 #include <asm/cacheflush.h>
24 #include <asm/hardware/gic.h>
25 #include <asm/smp_scu.h>
27 #include "omap-secure.h"
28 #include "omap-wakeupgen.h"
29 #include <asm/cputype.h>
31 #include "soc.h"
32 #include "iomap.h"
33 #include "common.h"
34 #include "clockdomain.h"
35 #include "pm.h"
37 #define CPU_MASK 0xff0ffff0
38 #define CPU_CORTEX_A9 0x410FC090
39 #define CPU_CORTEX_A15 0x410FC0F0
41 #define OMAP5_CORE_COUNT 0x2
43 u16 pm44xx_errata;
45 /* SCU base address */
46 static void __iomem *scu_base;
48 static DEFINE_SPINLOCK(boot_lock);
50 void __iomem *omap4_get_scu_base(void)
52 return scu_base;
55 static void __cpuinit omap4_secondary_init(unsigned int cpu)
58 * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device.
59 * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA
60 * init and for CPU1, a secure PPA API provided. CPU0 must be ON
61 * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+.
62 * OMAP443X GP devices- SMP bit isn't accessible.
63 * OMAP446X GP devices - SMP bit access is enabled on both CPUs.
65 if (cpu_is_omap443x() && (omap_type() != OMAP2_DEVICE_TYPE_GP))
66 omap_secure_dispatcher(OMAP4_PPA_CPU_ACTRL_SMP_INDEX,
67 4, 0, 0, 0, 0, 0);
70 * If any interrupts are already enabled for the primary
71 * core (e.g. timer irq), then they will not have been enabled
72 * for us: do so
74 gic_secondary_init(0);
77 * Synchronise with the boot thread.
79 spin_lock(&boot_lock);
80 spin_unlock(&boot_lock);
83 static int __cpuinit omap4_boot_secondary(unsigned int cpu, struct task_struct *idle)
85 static struct clockdomain *cpu1_clkdm;
86 static bool booted;
87 void __iomem *base = omap_get_wakeupgen_base();
90 * Set synchronisation state between this boot processor
91 * and the secondary one
93 spin_lock(&boot_lock);
96 * Update the AuxCoreBoot0 with boot state for secondary core.
97 * omap_secondary_startup() routine will hold the secondary core till
98 * the AuxCoreBoot1 register is updated with cpu state
99 * A barrier is added to ensure that write buffer is drained
101 if (omap_secure_apis_support())
102 omap_modify_auxcoreboot0(0x200, 0xfffffdff);
103 else
104 __raw_writel(0x20, base + OMAP_AUX_CORE_BOOT_0);
106 flush_cache_all();
107 smp_wmb();
109 if (!cpu1_clkdm)
110 cpu1_clkdm = clkdm_lookup("mpu1_clkdm");
113 * The SGI(Software Generated Interrupts) are not wakeup capable
114 * from low power states. This is known limitation on OMAP4 and
115 * needs to be worked around by using software forced clockdomain
116 * wake-up. To wakeup CPU1, CPU0 forces the CPU1 clockdomain to
117 * software force wakeup. The clockdomain is then put back to
118 * hardware supervised mode.
119 * More details can be found in OMAP4430 TRM - Version J
120 * Section :
121 * 4.3.4.2 Power States of CPU0 and CPU1
123 if (booted) {
125 * GIC distributor control register has changed between
126 * CortexA9 r1pX and r2pX. The Control Register secure
127 * banked version is now composed of 2 bits:
128 * bit 0 == Secure Enable
129 * bit 1 == Non-Secure Enable
130 * The Non-Secure banked register has not changed
131 * Because the ROM Code is based on the r1pX GIC, the CPU1
132 * GIC restoration will cause a problem to CPU0 Non-Secure SW.
133 * The workaround must be:
134 * 1) Before doing the CPU1 wakeup, CPU0 must disable
135 * the GIC distributor
136 * 2) CPU1 must re-enable the GIC distributor on
137 * it's wakeup path.
139 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
140 local_irq_disable();
141 gic_dist_disable();
144 clkdm_wakeup(cpu1_clkdm);
145 clkdm_allow_idle(cpu1_clkdm);
147 if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD)) {
148 while (gic_dist_disabled()) {
149 udelay(1);
150 cpu_relax();
152 gic_timer_retrigger();
153 local_irq_enable();
155 } else {
156 dsb_sev();
157 booted = true;
160 gic_raise_softirq(cpumask_of(cpu), 0);
163 * Now the secondary core is starting up let it run its
164 * calibrations, then wait for it to finish
166 spin_unlock(&boot_lock);
168 return 0;
171 static void __init wakeup_secondary(void)
173 void *startup_addr = omap_secondary_startup;
174 void __iomem *base = omap_get_wakeupgen_base();
176 if (cpu_is_omap446x()) {
177 startup_addr = omap_secondary_startup_4460;
178 pm44xx_errata |= PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD;
182 * Write the address of secondary startup routine into the
183 * AuxCoreBoot1 where ROM code will jump and start executing
184 * on secondary core once out of WFE
185 * A barrier is added to ensure that write buffer is drained
187 if (omap_secure_apis_support())
188 omap_auxcoreboot_addr(virt_to_phys(startup_addr));
189 else
190 __raw_writel(virt_to_phys(omap5_secondary_startup),
191 base + OMAP_AUX_CORE_BOOT_1);
193 smp_wmb();
196 * Send a 'sev' to wake the secondary core from WFE.
197 * Drain the outstanding writes to memory
199 dsb_sev();
200 mb();
204 * Initialise the CPU possible map early - this describes the CPUs
205 * which may be present or become present in the system.
207 static void __init omap4_smp_init_cpus(void)
209 unsigned int i = 0, ncores = 1, cpu_id;
211 /* Use ARM cpuid check here, as SoC detection will not work so early */
212 cpu_id = read_cpuid(CPUID_ID) & CPU_MASK;
213 if (cpu_id == CPU_CORTEX_A9) {
215 * Currently we can't call ioremap here because
216 * SoC detection won't work until after init_early.
218 scu_base = OMAP2_L4_IO_ADDRESS(OMAP44XX_SCU_BASE);
219 BUG_ON(!scu_base);
220 ncores = scu_get_core_count(scu_base);
221 } else if (cpu_id == CPU_CORTEX_A15) {
222 ncores = OMAP5_CORE_COUNT;
225 /* sanity check */
226 if (ncores > nr_cpu_ids) {
227 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
228 ncores, nr_cpu_ids);
229 ncores = nr_cpu_ids;
232 for (i = 0; i < ncores; i++)
233 set_cpu_possible(i, true);
235 set_smp_cross_call(gic_raise_softirq);
238 static void __init omap4_smp_prepare_cpus(unsigned int max_cpus)
242 * Initialise the SCU and wake up the secondary core using
243 * wakeup_secondary().
245 if (scu_base)
246 scu_enable(scu_base);
247 wakeup_secondary();
250 struct smp_operations omap4_smp_ops __initdata = {
251 .smp_init_cpus = omap4_smp_init_cpus,
252 .smp_prepare_cpus = omap4_smp_prepare_cpus,
253 .smp_secondary_init = omap4_secondary_init,
254 .smp_boot_secondary = omap4_boot_secondary,
255 #ifdef CONFIG_HOTPLUG_CPU
256 .cpu_die = omap4_cpu_die,
257 #endif