x86, efi: Set runtime_version to the EFI spec revision
[linux/fpc-iii.git] / arch / arm / mm / fault.c
blob5dbf13f954f6f493aaae525d4f3b93282ac88f75
1 /*
2 * linux/arch/arm/mm/fault.c
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched.h>
20 #include <linux/highmem.h>
21 #include <linux/perf_event.h>
23 #include <asm/exception.h>
24 #include <asm/pgtable.h>
25 #include <asm/system_misc.h>
26 #include <asm/system_info.h>
27 #include <asm/tlbflush.h>
29 #include "fault.h"
31 #ifdef CONFIG_MMU
33 #ifdef CONFIG_KPROBES
34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
36 int ret = 0;
38 if (!user_mode(regs)) {
39 /* kprobe_running() needs smp_processor_id() */
40 preempt_disable();
41 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 ret = 1;
43 preempt_enable();
46 return ret;
48 #else
49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
51 return 0;
53 #endif
56 * This is useful to dump out the page tables associated with
57 * 'addr' in mm 'mm'.
59 void show_pte(struct mm_struct *mm, unsigned long addr)
61 pgd_t *pgd;
63 if (!mm)
64 mm = &init_mm;
66 printk(KERN_ALERT "pgd = %p\n", mm->pgd);
67 pgd = pgd_offset(mm, addr);
68 printk(KERN_ALERT "[%08lx] *pgd=%08llx",
69 addr, (long long)pgd_val(*pgd));
71 do {
72 pud_t *pud;
73 pmd_t *pmd;
74 pte_t *pte;
76 if (pgd_none(*pgd))
77 break;
79 if (pgd_bad(*pgd)) {
80 printk("(bad)");
81 break;
84 pud = pud_offset(pgd, addr);
85 if (PTRS_PER_PUD != 1)
86 printk(", *pud=%08llx", (long long)pud_val(*pud));
88 if (pud_none(*pud))
89 break;
91 if (pud_bad(*pud)) {
92 printk("(bad)");
93 break;
96 pmd = pmd_offset(pud, addr);
97 if (PTRS_PER_PMD != 1)
98 printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
100 if (pmd_none(*pmd))
101 break;
103 if (pmd_bad(*pmd)) {
104 printk("(bad)");
105 break;
108 /* We must not map this if we have highmem enabled */
109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 break;
112 pte = pte_offset_map(pmd, addr);
113 printk(", *pte=%08llx", (long long)pte_val(*pte));
114 #ifndef CONFIG_ARM_LPAE
115 printk(", *ppte=%08llx",
116 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117 #endif
118 pte_unmap(pte);
119 } while(0);
121 printk("\n");
123 #else /* CONFIG_MMU */
124 void show_pte(struct mm_struct *mm, unsigned long addr)
126 #endif /* CONFIG_MMU */
129 * Oops. The kernel tried to access some page that wasn't present.
131 static void
132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
136 * Are we prepared to handle this kernel fault?
138 if (fixup_exception(regs))
139 return;
142 * No handler, we'll have to terminate things with extreme prejudice.
144 bust_spinlocks(1);
145 printk(KERN_ALERT
146 "Unable to handle kernel %s at virtual address %08lx\n",
147 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
148 "paging request", addr);
150 show_pte(mm, addr);
151 die("Oops", regs, fsr);
152 bust_spinlocks(0);
153 do_exit(SIGKILL);
157 * Something tried to access memory that isn't in our memory map..
158 * User mode accesses just cause a SIGSEGV
160 static void
161 __do_user_fault(struct task_struct *tsk, unsigned long addr,
162 unsigned int fsr, unsigned int sig, int code,
163 struct pt_regs *regs)
165 struct siginfo si;
167 #ifdef CONFIG_DEBUG_USER
168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171 tsk->comm, sig, addr, fsr);
172 show_pte(tsk->mm, addr);
173 show_regs(regs);
175 #endif
177 tsk->thread.address = addr;
178 tsk->thread.error_code = fsr;
179 tsk->thread.trap_no = 14;
180 si.si_signo = sig;
181 si.si_errno = 0;
182 si.si_code = code;
183 si.si_addr = (void __user *)addr;
184 force_sig_info(sig, &si, tsk);
187 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
189 struct task_struct *tsk = current;
190 struct mm_struct *mm = tsk->active_mm;
193 * If we are in kernel mode at this point, we
194 * have no context to handle this fault with.
196 if (user_mode(regs))
197 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198 else
199 __do_kernel_fault(mm, addr, fsr, regs);
202 #ifdef CONFIG_MMU
203 #define VM_FAULT_BADMAP 0x010000
204 #define VM_FAULT_BADACCESS 0x020000
207 * Check that the permissions on the VMA allow for the fault which occurred.
208 * If we encountered a write fault, we must have write permission, otherwise
209 * we allow any permission.
211 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
213 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
215 if (fsr & FSR_WRITE)
216 mask = VM_WRITE;
217 if (fsr & FSR_LNX_PF)
218 mask = VM_EXEC;
220 return vma->vm_flags & mask ? false : true;
223 static int __kprobes
224 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225 unsigned int flags, struct task_struct *tsk)
227 struct vm_area_struct *vma;
228 int fault;
230 vma = find_vma(mm, addr);
231 fault = VM_FAULT_BADMAP;
232 if (unlikely(!vma))
233 goto out;
234 if (unlikely(vma->vm_start > addr))
235 goto check_stack;
238 * Ok, we have a good vm_area for this
239 * memory access, so we can handle it.
241 good_area:
242 if (access_error(fsr, vma)) {
243 fault = VM_FAULT_BADACCESS;
244 goto out;
247 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
249 check_stack:
250 /* Don't allow expansion below FIRST_USER_ADDRESS */
251 if (vma->vm_flags & VM_GROWSDOWN &&
252 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253 goto good_area;
254 out:
255 return fault;
258 static int __kprobes
259 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
261 struct task_struct *tsk;
262 struct mm_struct *mm;
263 int fault, sig, code;
264 int write = fsr & FSR_WRITE;
265 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
266 (write ? FAULT_FLAG_WRITE : 0);
268 if (notify_page_fault(regs, fsr))
269 return 0;
271 tsk = current;
272 mm = tsk->mm;
274 /* Enable interrupts if they were enabled in the parent context. */
275 if (interrupts_enabled(regs))
276 local_irq_enable();
279 * If we're in an interrupt or have no user
280 * context, we must not take the fault..
282 if (in_atomic() || !mm)
283 goto no_context;
286 * As per x86, we may deadlock here. However, since the kernel only
287 * validly references user space from well defined areas of the code,
288 * we can bug out early if this is from code which shouldn't.
290 if (!down_read_trylock(&mm->mmap_sem)) {
291 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
292 goto no_context;
293 retry:
294 down_read(&mm->mmap_sem);
295 } else {
297 * The above down_read_trylock() might have succeeded in
298 * which case, we'll have missed the might_sleep() from
299 * down_read()
301 might_sleep();
302 #ifdef CONFIG_DEBUG_VM
303 if (!user_mode(regs) &&
304 !search_exception_tables(regs->ARM_pc))
305 goto no_context;
306 #endif
309 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
311 /* If we need to retry but a fatal signal is pending, handle the
312 * signal first. We do not need to release the mmap_sem because
313 * it would already be released in __lock_page_or_retry in
314 * mm/filemap.c. */
315 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
316 return 0;
319 * Major/minor page fault accounting is only done on the
320 * initial attempt. If we go through a retry, it is extremely
321 * likely that the page will be found in page cache at that point.
324 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
325 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
326 if (fault & VM_FAULT_MAJOR) {
327 tsk->maj_flt++;
328 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
329 regs, addr);
330 } else {
331 tsk->min_flt++;
332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
333 regs, addr);
335 if (fault & VM_FAULT_RETRY) {
336 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
337 * of starvation. */
338 flags &= ~FAULT_FLAG_ALLOW_RETRY;
339 flags |= FAULT_FLAG_TRIED;
340 goto retry;
344 up_read(&mm->mmap_sem);
347 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
349 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
350 return 0;
352 if (fault & VM_FAULT_OOM) {
354 * We ran out of memory, call the OOM killer, and return to
355 * userspace (which will retry the fault, or kill us if we
356 * got oom-killed)
358 pagefault_out_of_memory();
359 return 0;
363 * If we are in kernel mode at this point, we
364 * have no context to handle this fault with.
366 if (!user_mode(regs))
367 goto no_context;
369 if (fault & VM_FAULT_SIGBUS) {
371 * We had some memory, but were unable to
372 * successfully fix up this page fault.
374 sig = SIGBUS;
375 code = BUS_ADRERR;
376 } else {
378 * Something tried to access memory that
379 * isn't in our memory map..
381 sig = SIGSEGV;
382 code = fault == VM_FAULT_BADACCESS ?
383 SEGV_ACCERR : SEGV_MAPERR;
386 __do_user_fault(tsk, addr, fsr, sig, code, regs);
387 return 0;
389 no_context:
390 __do_kernel_fault(mm, addr, fsr, regs);
391 return 0;
393 #else /* CONFIG_MMU */
394 static int
395 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
397 return 0;
399 #endif /* CONFIG_MMU */
402 * First Level Translation Fault Handler
404 * We enter here because the first level page table doesn't contain
405 * a valid entry for the address.
407 * If the address is in kernel space (>= TASK_SIZE), then we are
408 * probably faulting in the vmalloc() area.
410 * If the init_task's first level page tables contains the relevant
411 * entry, we copy the it to this task. If not, we send the process
412 * a signal, fixup the exception, or oops the kernel.
414 * NOTE! We MUST NOT take any locks for this case. We may be in an
415 * interrupt or a critical region, and should only copy the information
416 * from the master page table, nothing more.
418 #ifdef CONFIG_MMU
419 static int __kprobes
420 do_translation_fault(unsigned long addr, unsigned int fsr,
421 struct pt_regs *regs)
423 unsigned int index;
424 pgd_t *pgd, *pgd_k;
425 pud_t *pud, *pud_k;
426 pmd_t *pmd, *pmd_k;
428 if (addr < TASK_SIZE)
429 return do_page_fault(addr, fsr, regs);
431 if (user_mode(regs))
432 goto bad_area;
434 index = pgd_index(addr);
436 pgd = cpu_get_pgd() + index;
437 pgd_k = init_mm.pgd + index;
439 if (pgd_none(*pgd_k))
440 goto bad_area;
441 if (!pgd_present(*pgd))
442 set_pgd(pgd, *pgd_k);
444 pud = pud_offset(pgd, addr);
445 pud_k = pud_offset(pgd_k, addr);
447 if (pud_none(*pud_k))
448 goto bad_area;
449 if (!pud_present(*pud))
450 set_pud(pud, *pud_k);
452 pmd = pmd_offset(pud, addr);
453 pmd_k = pmd_offset(pud_k, addr);
455 #ifdef CONFIG_ARM_LPAE
457 * Only one hardware entry per PMD with LPAE.
459 index = 0;
460 #else
462 * On ARM one Linux PGD entry contains two hardware entries (see page
463 * tables layout in pgtable.h). We normally guarantee that we always
464 * fill both L1 entries. But create_mapping() doesn't follow the rule.
465 * It can create inidividual L1 entries, so here we have to call
466 * pmd_none() check for the entry really corresponded to address, not
467 * for the first of pair.
469 index = (addr >> SECTION_SHIFT) & 1;
470 #endif
471 if (pmd_none(pmd_k[index]))
472 goto bad_area;
474 copy_pmd(pmd, pmd_k);
475 return 0;
477 bad_area:
478 do_bad_area(addr, fsr, regs);
479 return 0;
481 #else /* CONFIG_MMU */
482 static int
483 do_translation_fault(unsigned long addr, unsigned int fsr,
484 struct pt_regs *regs)
486 return 0;
488 #endif /* CONFIG_MMU */
491 * Some section permission faults need to be handled gracefully.
492 * They can happen due to a __{get,put}_user during an oops.
494 static int
495 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
497 do_bad_area(addr, fsr, regs);
498 return 0;
502 * This abort handler always returns "fault".
504 static int
505 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
507 return 1;
510 struct fsr_info {
511 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
512 int sig;
513 int code;
514 const char *name;
517 /* FSR definition */
518 #ifdef CONFIG_ARM_LPAE
519 #include "fsr-3level.c"
520 #else
521 #include "fsr-2level.c"
522 #endif
524 void __init
525 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
526 int sig, int code, const char *name)
528 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
529 BUG();
531 fsr_info[nr].fn = fn;
532 fsr_info[nr].sig = sig;
533 fsr_info[nr].code = code;
534 fsr_info[nr].name = name;
538 * Dispatch a data abort to the relevant handler.
540 asmlinkage void __exception
541 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
543 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
544 struct siginfo info;
546 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
547 return;
549 printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
550 inf->name, fsr, addr);
552 info.si_signo = inf->sig;
553 info.si_errno = 0;
554 info.si_code = inf->code;
555 info.si_addr = (void __user *)addr;
556 arm_notify_die("", regs, &info, fsr, 0);
559 void __init
560 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
561 int sig, int code, const char *name)
563 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
564 BUG();
566 ifsr_info[nr].fn = fn;
567 ifsr_info[nr].sig = sig;
568 ifsr_info[nr].code = code;
569 ifsr_info[nr].name = name;
572 asmlinkage void __exception
573 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
575 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
576 struct siginfo info;
578 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
579 return;
581 printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
582 inf->name, ifsr, addr);
584 info.si_signo = inf->sig;
585 info.si_errno = 0;
586 info.si_code = inf->code;
587 info.si_addr = (void __user *)addr;
588 arm_notify_die("", regs, &info, ifsr, 0);
591 #ifndef CONFIG_ARM_LPAE
592 static int __init exceptions_init(void)
594 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
595 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
596 "I-cache maintenance fault");
599 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
601 * TODO: Access flag faults introduced in ARMv6K.
602 * Runtime check for 'K' extension is needed
604 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
605 "section access flag fault");
606 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
607 "section access flag fault");
610 return 0;
613 arch_initcall(exceptions_init);
614 #endif