2 * Port on Texas Instruments TMS320C6x architecture
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/dma-mapping.h>
12 #include <linux/memblock.h>
13 #include <linux/seq_file.h>
14 #include <linux/bootmem.h>
15 #include <linux/clkdev.h>
16 #include <linux/initrd.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of_fdt.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25 #include <linux/clk.h>
26 #include <linux/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/div64.h>
33 #include <asm/setup.h>
35 #include <asm/clock.h>
37 #include <asm/special_insns.h>
39 static const char *c6x_soc_name
;
42 EXPORT_SYMBOL_GPL(c6x_num_cores
);
44 unsigned int c6x_silicon_rev
;
45 EXPORT_SYMBOL_GPL(c6x_silicon_rev
);
48 * Device status register. This holds information
49 * about device configuration needed by some drivers.
51 unsigned int c6x_devstat
;
52 EXPORT_SYMBOL_GPL(c6x_devstat
);
55 * Some SoCs have fuse registers holding a unique MAC
56 * address. This is parsed out of the device tree with
57 * the resulting MAC being held here.
59 unsigned char c6x_fuse_mac
[6];
61 unsigned long memory_start
;
62 unsigned long memory_end
;
64 unsigned long ram_start
;
65 unsigned long ram_end
;
67 /* Uncached memory for DMA consistent use (memdma=) */
68 static unsigned long dma_start __initdata
;
69 static unsigned long dma_size __initdata
;
71 char c6x_command_line
[COMMAND_LINE_SIZE
];
73 #if defined(CONFIG_CMDLINE_BOOL)
74 static const char default_command_line
[COMMAND_LINE_SIZE
] __section(.cmdline
) =
80 const char *cpu_voltage
;
88 static DEFINE_PER_CPU(struct cpuinfo_c6x
, cpu_data
);
90 unsigned int ticks_per_ns_scaled
;
91 EXPORT_SYMBOL(ticks_per_ns_scaled
);
93 unsigned int c6x_core_freq
;
95 static void __init
get_cpuinfo(void)
97 unsigned cpu_id
, rev_id
, csr
;
98 struct clk
*coreclk
= clk_get_sys(NULL
, "core");
99 unsigned long core_khz
;
101 struct cpuinfo_c6x
*p
;
102 struct device_node
*node
, *np
;
104 p
= &per_cpu(cpu_data
, smp_processor_id());
106 if (!IS_ERR(coreclk
))
107 c6x_core_freq
= clk_get_rate(coreclk
);
110 "Cannot find core clock frequency. Using 700MHz\n");
111 c6x_core_freq
= 700000000;
114 core_khz
= c6x_core_freq
/ 1000;
116 tmp
= (uint64_t)core_khz
<< C6X_NDELAY_SCALE
;
117 do_div(tmp
, 1000000);
118 ticks_per_ns_scaled
= tmp
;
122 rev_id
= (csr
>> 16) & 0xff;
126 p
->cpu_voltage
= "unknown";
130 p
->cpu_name
= "C67x";
134 p
->cpu_name
= "C62x";
137 p
->cpu_name
= "C64x";
140 p
->cpu_name
= "C64x";
143 p
->cpu_name
= "C64x+";
144 p
->cpu_voltage
= "1.2";
147 p
->cpu_name
= "C66X";
148 p
->cpu_voltage
= "1.2";
151 p
->cpu_name
= "unknown";
159 p
->cpu_rev
= "DM640/DM641/DM642/DM643";
160 p
->cpu_voltage
= "1.2 - 1.4";
162 p
->cpu_rev
= "C6201";
163 p
->cpu_voltage
= "2.5";
167 p
->cpu_rev
= "C6201B/C6202/C6211";
168 p
->cpu_voltage
= "1.8";
171 p
->cpu_rev
= "C6202B/C6203/C6204/C6205";
172 p
->cpu_voltage
= "1.5";
175 p
->cpu_rev
= "C6701 revision 0 (early CPU)";
176 p
->cpu_voltage
= "1.8";
179 p
->cpu_rev
= "C6701/C6711/C6712";
180 p
->cpu_voltage
= "1.8";
184 p
->cpu_voltage
= "1.5";
187 p
->cpu_rev
= "unknown";
190 p
->cpu_rev
= p
->__cpu_rev
;
191 snprintf(p
->__cpu_rev
, sizeof(p
->__cpu_rev
), "0x%x", cpu_id
);
194 p
->core_id
= get_coreid();
196 node
= of_find_node_by_name(NULL
, "cpus");
198 for_each_child_of_node(node
, np
)
199 if (!strcmp("cpu", np
->name
))
204 node
= of_find_node_by_name(NULL
, "soc");
206 if (of_property_read_string(node
, "model", &c6x_soc_name
))
207 c6x_soc_name
= "unknown";
210 c6x_soc_name
= "unknown";
212 printk(KERN_INFO
"CPU%d: %s rev %s, %s volts, %uMHz\n",
213 p
->core_id
, p
->cpu_name
, p
->cpu_rev
,
214 p
->cpu_voltage
, c6x_core_freq
/ 1000000);
218 * Early parsing of the command line
220 static u32 mem_size __initdata
;
222 /* "mem=" parsing. */
223 static int __init
early_mem(char *p
)
228 mem_size
= memparse(p
, &p
);
229 /* don't remove all of memory when handling "mem={invalid}" */
235 early_param("mem", early_mem
);
237 /* "memdma=<size>[@<address>]" parsing. */
238 static int __init
early_memdma(char *p
)
243 dma_size
= memparse(p
, &p
);
245 dma_start
= memparse(p
, &p
);
249 early_param("memdma", early_memdma
);
251 int __init
c6x_add_memory(phys_addr_t start
, unsigned long size
)
253 static int ram_found __initdata
;
255 /* We only handle one bank (the one with PAGE_OFFSET) for now */
259 if (start
> PAGE_OFFSET
|| PAGE_OFFSET
>= (start
+ size
))
263 ram_end
= start
+ size
;
270 * Do early machine setup and device tree parsing. This is called very
271 * early on the boot process.
273 notrace
void __init
machine_init(unsigned long dt_ptr
)
275 struct boot_param_header
*dtb
= __va(dt_ptr
);
276 struct boot_param_header
*fdt
= (struct boot_param_header
*)_fdt_start
;
278 /* interrupts must be masked */
282 * Set the Interrupt Service Table (IST) to the beginning of the
285 set_ist(_vectors_start
);
290 * dtb is passed in from bootloader.
291 * fdt is linked in blob.
293 if (dtb
&& dtb
!= fdt
)
296 /* Do some early initialization based on the flat device tree */
297 early_init_devtree(fdt
);
299 /* parse_early_param needs a boot_command_line */
300 strlcpy(boot_command_line
, c6x_command_line
, COMMAND_LINE_SIZE
);
304 void __init
setup_arch(char **cmdline_p
)
307 struct memblock_region
*reg
;
309 printk(KERN_INFO
"Initializing kernel\n");
311 /* Initialize command line */
312 *cmdline_p
= c6x_command_line
;
314 memory_end
= ram_end
;
315 memory_end
&= ~(PAGE_SIZE
- 1);
317 if (mem_size
&& (PAGE_OFFSET
+ PAGE_ALIGN(mem_size
)) < memory_end
)
318 memory_end
= PAGE_OFFSET
+ PAGE_ALIGN(mem_size
);
320 /* add block that this kernel can use */
321 memblock_add(PAGE_OFFSET
, memory_end
- PAGE_OFFSET
);
323 /* reserve kernel text/data/bss */
324 memblock_reserve(PAGE_OFFSET
,
325 PAGE_ALIGN((unsigned long)&_end
- PAGE_OFFSET
));
328 /* align to cacheability granularity */
329 dma_size
= CACHE_REGION_END(dma_size
);
332 dma_start
= memory_end
- dma_size
;
334 /* align to cacheability granularity */
335 dma_start
= CACHE_REGION_START(dma_start
);
337 /* reserve DMA memory taken from kernel memory */
338 if (memblock_is_region_memory(dma_start
, dma_size
))
339 memblock_reserve(dma_start
, dma_size
);
342 memory_start
= PAGE_ALIGN((unsigned int) &_end
);
344 printk(KERN_INFO
"Memory Start=%08lx, Memory End=%08lx\n",
345 memory_start
, memory_end
);
347 #ifdef CONFIG_BLK_DEV_INITRD
349 * Reserve initrd memory if in kernel memory.
351 if (initrd_start
< initrd_end
)
352 if (memblock_is_region_memory(initrd_start
,
353 initrd_end
- initrd_start
))
354 memblock_reserve(initrd_start
,
355 initrd_end
- initrd_start
);
358 init_mm
.start_code
= (unsigned long) &_stext
;
359 init_mm
.end_code
= (unsigned long) &_etext
;
360 init_mm
.end_data
= memory_start
;
361 init_mm
.brk
= memory_start
;
364 * Give all the memory to the bootmap allocator, tell it to put the
365 * boot mem_map at the start of memory
367 bootmap_size
= init_bootmem_node(NODE_DATA(0),
368 memory_start
>> PAGE_SHIFT
,
369 PAGE_OFFSET
>> PAGE_SHIFT
,
370 memory_end
>> PAGE_SHIFT
);
371 memblock_reserve(memory_start
, bootmap_size
);
373 unflatten_device_tree();
377 /* Set the whole external memory as non-cacheable */
378 disable_caching(ram_start
, ram_end
- 1);
380 /* Set caching of external RAM used by Linux */
381 for_each_memblock(memory
, reg
)
382 enable_caching(CACHE_REGION_START(reg
->base
),
383 CACHE_REGION_START(reg
->base
+ reg
->size
- 1));
385 #ifdef CONFIG_BLK_DEV_INITRD
387 * Enable caching for initrd which falls outside kernel memory.
389 if (initrd_start
< initrd_end
) {
390 if (!memblock_is_region_memory(initrd_start
,
391 initrd_end
- initrd_start
))
392 enable_caching(CACHE_REGION_START(initrd_start
),
393 CACHE_REGION_START(initrd_end
- 1));
398 * Disable caching for dma coherent memory taken from kernel memory.
400 if (dma_size
&& memblock_is_region_memory(dma_start
, dma_size
))
401 disable_caching(dma_start
,
402 CACHE_REGION_START(dma_start
+ dma_size
- 1));
404 /* Initialize the coherent memory allocator */
405 coherent_mem_init(dma_start
, dma_size
);
408 * Free all memory as a starting point.
410 free_bootmem(PAGE_OFFSET
, memory_end
- PAGE_OFFSET
);
413 * Then reserve memory which is already being used.
415 for_each_memblock(reserved
, reg
) {
416 pr_debug("reserved - 0x%08x-0x%08x\n",
417 (u32
) reg
->base
, (u32
) reg
->size
);
418 reserve_bootmem(reg
->base
, reg
->size
, BOOTMEM_DEFAULT
);
421 max_low_pfn
= PFN_DOWN(memory_end
);
422 min_low_pfn
= PFN_UP(memory_start
);
423 max_mapnr
= max_low_pfn
- min_low_pfn
;
425 /* Get kmalloc into gear */
429 * Probe for Device State Configuration Registers.
430 * We have to do this early in case timer needs to be enabled
435 /* We do this early for timer and core clock frequency */
441 #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
442 conswitchp
= &dummy_con
;
446 #define cpu_to_ptr(n) ((void *)((long)(n)+1))
447 #define ptr_to_cpu(p) ((long)(p) - 1)
449 static int show_cpuinfo(struct seq_file
*m
, void *v
)
451 int n
= ptr_to_cpu(v
);
452 struct cpuinfo_c6x
*p
= &per_cpu(cpu_data
, n
);
457 "soc revision\t: 0x%x\n"
459 c6x_soc_name
, c6x_silicon_rev
, c6x_num_cores
);
466 "core revision\t: %s\n"
467 "core voltage\t: %s\n"
472 "bogomips\t: %lu.%02lu\n\n",
474 p
->cpu_name
, p
->cpu_rev
, p
->cpu_voltage
,
475 p
->core_id
, p
->mmu
, p
->fpu
,
476 (c6x_core_freq
+ 500000) / 1000000,
477 (loops_per_jiffy
/(500000/HZ
)),
478 (loops_per_jiffy
/(5000/HZ
))%100);
483 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
485 return *pos
< nr_cpu_ids
? cpu_to_ptr(*pos
) : NULL
;
487 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
492 static void c_stop(struct seq_file
*m
, void *v
)
496 const struct seq_operations cpuinfo_op
= {
503 static struct cpu cpu_devices
[NR_CPUS
];
505 static int __init
topology_init(void)
509 for_each_present_cpu(i
)
510 register_cpu(&cpu_devices
[i
], i
);
515 subsys_initcall(topology_init
);