3 * Common boot and setup code.
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
41 #include <asm/kdump.h>
43 #include <asm/processor.h>
44 #include <asm/pgtable.h>
47 #include <asm/machdep.h>
50 #include <asm/cputable.h>
51 #include <asm/sections.h>
52 #include <asm/btext.h>
53 #include <asm/nvram.h>
54 #include <asm/setup.h>
56 #include <asm/iommu.h>
57 #include <asm/serial.h>
58 #include <asm/cache.h>
61 #include <asm/firmware.h>
64 #include <asm/kexec.h>
65 #include <asm/mmu_context.h>
66 #include <asm/code-patching.h>
67 #include <asm/kvm_ppc.h>
68 #include <asm/hugetlb.h>
73 #define DBG(fmt...) udbg_printf(fmt)
79 int __initdata spinning_secondaries
;
82 /* Pick defaults since we might want to patch instructions
83 * before we've read this from the device tree.
85 struct ppc64_caches ppc64_caches
= {
91 EXPORT_SYMBOL_GPL(ppc64_caches
);
94 * These are used in binfmt_elf.c to put aux entries on the stack
95 * for each elf executable being started.
103 static char *smt_enabled_cmdline
;
105 /* Look for ibm,smt-enabled OF option */
106 static void check_smt_enabled(void)
108 struct device_node
*dn
;
109 const char *smt_option
;
111 /* Default to enabling all threads */
112 smt_enabled_at_boot
= threads_per_core
;
114 /* Allow the command line to overrule the OF option */
115 if (smt_enabled_cmdline
) {
116 if (!strcmp(smt_enabled_cmdline
, "on"))
117 smt_enabled_at_boot
= threads_per_core
;
118 else if (!strcmp(smt_enabled_cmdline
, "off"))
119 smt_enabled_at_boot
= 0;
124 rc
= strict_strtol(smt_enabled_cmdline
, 10, &smt
);
126 smt_enabled_at_boot
=
127 min(threads_per_core
, (int)smt
);
130 dn
= of_find_node_by_path("/options");
132 smt_option
= of_get_property(dn
, "ibm,smt-enabled",
136 if (!strcmp(smt_option
, "on"))
137 smt_enabled_at_boot
= threads_per_core
;
138 else if (!strcmp(smt_option
, "off"))
139 smt_enabled_at_boot
= 0;
147 /* Look for smt-enabled= cmdline option */
148 static int __init
early_smt_enabled(char *p
)
150 smt_enabled_cmdline
= p
;
153 early_param("smt-enabled", early_smt_enabled
);
156 #define check_smt_enabled()
157 #endif /* CONFIG_SMP */
160 * Early initialization entry point. This is called by head.S
161 * with MMU translation disabled. We rely on the "feature" of
162 * the CPU that ignores the top 2 bits of the address in real
163 * mode so we can access kernel globals normally provided we
164 * only toy with things in the RMO region. From here, we do
165 * some early parsing of the device-tree to setup out MEMBLOCK
166 * data structures, and allocate & initialize the hash table
167 * and segment tables so we can start running with translation
170 * It is this function which will call the probe() callback of
171 * the various platform types and copy the matching one to the
172 * global ppc_md structure. Your platform can eventually do
173 * some very early initializations from the probe() routine, but
174 * this is not recommended, be very careful as, for example, the
175 * device-tree is not accessible via normal means at this point.
178 void __init
early_setup(unsigned long dt_ptr
)
180 /* -------- printk is _NOT_ safe to use here ! ------- */
182 /* Identify CPU type */
183 identify_cpu(0, mfspr(SPRN_PVR
));
185 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
186 initialise_paca(&boot_paca
, 0);
187 setup_paca(&boot_paca
);
189 /* Initialize lockdep early or else spinlocks will blow */
192 /* -------- printk is now safe to use ------- */
194 /* Enable early debugging if any specified (see udbg.h) */
197 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr
);
200 * Do early initialization using the flattened device
201 * tree, such as retrieving the physical memory map or
202 * calculating/retrieving the hash table size.
204 early_init_devtree(__va(dt_ptr
));
206 /* Now we know the logical id of our boot cpu, setup the paca. */
207 setup_paca(&paca
[boot_cpuid
]);
209 /* Fix up paca fields required for the boot cpu */
210 get_paca()->cpu_start
= 1;
211 /* Allow percpu accesses to "work" until we setup percpu data */
212 get_paca()->data_offset
= 0;
214 /* Probe the machine type */
217 setup_kdump_trampoline();
219 DBG("Found, Initializing memory management...\n");
221 /* Initialize the hash table or TLB handling */
225 * Reserve any gigantic pages requested on the command line.
226 * memblock needs to have been initialized by the time this is
227 * called since this will reserve memory.
229 reserve_hugetlb_gpages();
231 DBG(" <- early_setup()\n");
235 void early_setup_secondary(void)
237 /* Mark interrupts enabled in PACA */
238 get_paca()->soft_enabled
= 0;
240 /* Initialize the hash table or TLB handling */
241 early_init_mmu_secondary();
244 #endif /* CONFIG_SMP */
246 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
247 void smp_release_cpus(void)
252 DBG(" -> smp_release_cpus()\n");
254 /* All secondary cpus are spinning on a common spinloop, release them
255 * all now so they can start to spin on their individual paca
256 * spinloops. For non SMP kernels, the secondary cpus never get out
257 * of the common spinloop.
260 ptr
= (unsigned long *)((unsigned long)&__secondary_hold_spinloop
262 *ptr
= __pa(generic_secondary_smp_init
);
264 /* And wait a bit for them to catch up */
265 for (i
= 0; i
< 100000; i
++) {
268 if (spinning_secondaries
== 0)
272 DBG("spinning_secondaries = %d\n", spinning_secondaries
);
274 DBG(" <- smp_release_cpus()\n");
276 #endif /* CONFIG_SMP || CONFIG_KEXEC */
279 * Initialize some remaining members of the ppc64_caches and systemcfg
281 * (at least until we get rid of them completely). This is mostly some
282 * cache informations about the CPU that will be used by cache flush
283 * routines and/or provided to userland
285 static void __init
initialize_cache_info(void)
287 struct device_node
*np
;
288 unsigned long num_cpus
= 0;
290 DBG(" -> initialize_cache_info()\n");
292 for_each_node_by_type(np
, "cpu") {
296 * We're assuming *all* of the CPUs have the same
297 * d-cache and i-cache sizes... -Peter
300 const u32
*sizep
, *lsizep
;
304 lsize
= cur_cpu_spec
->dcache_bsize
;
305 sizep
= of_get_property(np
, "d-cache-size", NULL
);
308 lsizep
= of_get_property(np
, "d-cache-block-size",
310 /* fallback if block size missing */
312 lsizep
= of_get_property(np
,
317 if (sizep
== 0 || lsizep
== 0)
318 DBG("Argh, can't find dcache properties ! "
319 "sizep: %p, lsizep: %p\n", sizep
, lsizep
);
321 ppc64_caches
.dsize
= size
;
322 ppc64_caches
.dline_size
= lsize
;
323 ppc64_caches
.log_dline_size
= __ilog2(lsize
);
324 ppc64_caches
.dlines_per_page
= PAGE_SIZE
/ lsize
;
327 lsize
= cur_cpu_spec
->icache_bsize
;
328 sizep
= of_get_property(np
, "i-cache-size", NULL
);
331 lsizep
= of_get_property(np
, "i-cache-block-size",
334 lsizep
= of_get_property(np
,
339 if (sizep
== 0 || lsizep
== 0)
340 DBG("Argh, can't find icache properties ! "
341 "sizep: %p, lsizep: %p\n", sizep
, lsizep
);
343 ppc64_caches
.isize
= size
;
344 ppc64_caches
.iline_size
= lsize
;
345 ppc64_caches
.log_iline_size
= __ilog2(lsize
);
346 ppc64_caches
.ilines_per_page
= PAGE_SIZE
/ lsize
;
350 DBG(" <- initialize_cache_info()\n");
355 * Do some initial setup of the system. The parameters are those which
356 * were passed in from the bootloader.
358 void __init
setup_system(void)
360 DBG(" -> setup_system()\n");
362 /* Apply the CPUs-specific and firmware specific fixups to kernel
363 * text (nop out sections not relevant to this CPU or this firmware)
365 do_feature_fixups(cur_cpu_spec
->cpu_features
,
366 &__start___ftr_fixup
, &__stop___ftr_fixup
);
367 do_feature_fixups(cur_cpu_spec
->mmu_features
,
368 &__start___mmu_ftr_fixup
, &__stop___mmu_ftr_fixup
);
369 do_feature_fixups(powerpc_firmware_features
,
370 &__start___fw_ftr_fixup
, &__stop___fw_ftr_fixup
);
371 do_lwsync_fixups(cur_cpu_spec
->cpu_features
,
372 &__start___lwsync_fixup
, &__stop___lwsync_fixup
);
376 * Unflatten the device-tree passed by prom_init or kexec
378 unflatten_device_tree();
381 * Fill the ppc64_caches & systemcfg structures with informations
382 * retrieved from the device-tree.
384 initialize_cache_info();
386 #ifdef CONFIG_PPC_RTAS
388 * Initialize RTAS if available
391 #endif /* CONFIG_PPC_RTAS */
394 * Check if we have an initrd provided via the device-tree
399 * Do some platform specific early initializations, that includes
400 * setting up the hash table pointers. It also sets up some interrupt-mapping
401 * related options that will be used by finish_device_tree()
403 if (ppc_md
.init_early
)
407 * We can discover serial ports now since the above did setup the
408 * hash table management for us, thus ioremap works. We do that early
409 * so that further code can be debugged
411 find_legacy_serial_ports();
414 * Register early console
416 register_early_udbg_console();
423 smp_setup_cpu_maps();
427 /* Release secondary cpus out of their spinloops at 0x60 now that
428 * we can map physical -> logical CPU ids
433 printk("Starting Linux PPC64 %s\n", init_utsname()->version
);
435 printk("-----------------------------------------------------\n");
436 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size
);
437 printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size());
438 if (ppc64_caches
.dline_size
!= 0x80)
439 printk("ppc64_caches.dcache_line_size = 0x%x\n",
440 ppc64_caches
.dline_size
);
441 if (ppc64_caches
.iline_size
!= 0x80)
442 printk("ppc64_caches.icache_line_size = 0x%x\n",
443 ppc64_caches
.iline_size
);
444 #ifdef CONFIG_PPC_STD_MMU_64
446 printk("htab_address = 0x%p\n", htab_address
);
447 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask
);
448 #endif /* CONFIG_PPC_STD_MMU_64 */
449 if (PHYSICAL_START
> 0)
450 printk("physical_start = 0x%llx\n",
451 (unsigned long long)PHYSICAL_START
);
452 printk("-----------------------------------------------------\n");
454 DBG(" <- setup_system()\n");
457 /* This returns the limit below which memory accesses to the linear
458 * mapping are guarnateed not to cause a TLB or SLB miss. This is
459 * used to allocate interrupt or emergency stacks for which our
460 * exception entry path doesn't deal with being interrupted.
462 static u64
safe_stack_limit(void)
464 #ifdef CONFIG_PPC_BOOK3E
465 /* Freescale BookE bolts the entire linear mapping */
466 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E
))
467 return linear_map_top
;
468 /* Other BookE, we assume the first GB is bolted */
471 /* BookS, the first segment is bolted */
472 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
473 return 1UL << SID_SHIFT_1T
;
474 return 1UL << SID_SHIFT
;
478 static void __init
irqstack_early_init(void)
480 u64 limit
= safe_stack_limit();
484 * Interrupt stacks must be in the first segment since we
485 * cannot afford to take SLB misses on them.
487 for_each_possible_cpu(i
) {
488 softirq_ctx
[i
] = (struct thread_info
*)
489 __va(memblock_alloc_base(THREAD_SIZE
,
490 THREAD_SIZE
, limit
));
491 hardirq_ctx
[i
] = (struct thread_info
*)
492 __va(memblock_alloc_base(THREAD_SIZE
,
493 THREAD_SIZE
, limit
));
497 #ifdef CONFIG_PPC_BOOK3E
498 static void __init
exc_lvl_early_init(void)
500 extern unsigned int interrupt_base_book3e
;
501 extern unsigned int exc_debug_debug_book3e
;
505 for_each_possible_cpu(i
) {
506 critirq_ctx
[i
] = (struct thread_info
*)
507 __va(memblock_alloc(THREAD_SIZE
, THREAD_SIZE
));
508 dbgirq_ctx
[i
] = (struct thread_info
*)
509 __va(memblock_alloc(THREAD_SIZE
, THREAD_SIZE
));
510 mcheckirq_ctx
[i
] = (struct thread_info
*)
511 __va(memblock_alloc(THREAD_SIZE
, THREAD_SIZE
));
514 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC
))
515 patch_branch(&interrupt_base_book3e
+ (0x040 / 4) + 1,
516 (unsigned long)&exc_debug_debug_book3e
, 0);
519 #define exc_lvl_early_init()
523 * Stack space used when we detect a bad kernel stack pointer, and
524 * early in SMP boots before relocation is enabled.
526 static void __init
emergency_stack_init(void)
532 * Emergency stacks must be under 256MB, we cannot afford to take
533 * SLB misses on them. The ABI also requires them to be 128-byte
536 * Since we use these as temporary stacks during secondary CPU
537 * bringup, we need to get at them in real mode. This means they
538 * must also be within the RMO region.
540 limit
= min(safe_stack_limit(), ppc64_rma_size
);
542 for_each_possible_cpu(i
) {
544 sp
= memblock_alloc_base(THREAD_SIZE
, THREAD_SIZE
, limit
);
546 paca
[i
].emergency_sp
= __va(sp
);
551 * Called into from start_kernel this initializes bootmem, which is used
552 * to manage page allocation until mem_init is called.
554 void __init
setup_arch(char **cmdline_p
)
556 ppc64_boot_msg(0x12, "Setup Arch");
558 *cmdline_p
= cmd_line
;
561 * Set cache line size based on type of cpu as a default.
562 * Systems with OF can look in the properties on the cpu node(s)
563 * for a possibly more accurate value.
565 dcache_bsize
= ppc64_caches
.dline_size
;
566 icache_bsize
= ppc64_caches
.iline_size
;
568 /* reboot on panic */
574 init_mm
.start_code
= (unsigned long)_stext
;
575 init_mm
.end_code
= (unsigned long) _etext
;
576 init_mm
.end_data
= (unsigned long) _edata
;
577 init_mm
.brk
= klimit
;
579 irqstack_early_init();
580 exc_lvl_early_init();
581 emergency_stack_init();
583 #ifdef CONFIG_PPC_STD_MMU_64
586 /* set up the bootmem stuff with available memory */
590 #ifdef CONFIG_DUMMY_CONSOLE
591 conswitchp
= &dummy_con
;
594 if (ppc_md
.setup_arch
)
599 /* Initialize the MMU context management stuff */
604 /* Interrupt code needs to be 64K-aligned */
605 if ((unsigned long)_stext
& 0xffff)
606 panic("Kernelbase not 64K-aligned (0x%lx)!\n",
607 (unsigned long)_stext
);
609 ppc64_boot_msg(0x15, "Setup Done");
613 /* ToDo: do something useful if ppc_md is not yet setup. */
614 #define PPC64_LINUX_FUNCTION 0x0f000000
615 #define PPC64_IPL_MESSAGE 0xc0000000
616 #define PPC64_TERM_MESSAGE 0xb0000000
618 static void ppc64_do_msg(unsigned int src
, const char *msg
)
620 if (ppc_md
.progress
) {
623 sprintf(buf
, "%08X\n", src
);
624 ppc_md
.progress(buf
, 0);
625 snprintf(buf
, 128, "%s", msg
);
626 ppc_md
.progress(buf
, 0);
630 /* Print a boot progress message. */
631 void ppc64_boot_msg(unsigned int src
, const char *msg
)
633 ppc64_do_msg(PPC64_LINUX_FUNCTION
|PPC64_IPL_MESSAGE
|src
, msg
);
634 printk("[boot]%04x %s\n", src
, msg
);
638 #define PCPU_DYN_SIZE ()
640 static void * __init
pcpu_fc_alloc(unsigned int cpu
, size_t size
, size_t align
)
642 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu
)), size
, align
,
643 __pa(MAX_DMA_ADDRESS
));
646 static void __init
pcpu_fc_free(void *ptr
, size_t size
)
648 free_bootmem(__pa(ptr
), size
);
651 static int pcpu_cpu_distance(unsigned int from
, unsigned int to
)
653 if (cpu_to_node(from
) == cpu_to_node(to
))
654 return LOCAL_DISTANCE
;
656 return REMOTE_DISTANCE
;
659 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
660 EXPORT_SYMBOL(__per_cpu_offset
);
662 void __init
setup_per_cpu_areas(void)
664 const size_t dyn_size
= PERCPU_MODULE_RESERVE
+ PERCPU_DYNAMIC_RESERVE
;
671 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
672 * to group units. For larger mappings, use 1M atom which
673 * should be large enough to contain a number of units.
675 if (mmu_linear_psize
== MMU_PAGE_4K
)
676 atom_size
= PAGE_SIZE
;
680 rc
= pcpu_embed_first_chunk(0, dyn_size
, atom_size
, pcpu_cpu_distance
,
681 pcpu_fc_alloc
, pcpu_fc_free
);
683 panic("cannot initialize percpu area (err=%d)", rc
);
685 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
686 for_each_possible_cpu(cpu
) {
687 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
688 paca
[cpu
].data_offset
= __per_cpu_offset
[cpu
];
694 #ifdef CONFIG_PPC_INDIRECT_IO
695 struct ppc_pci_io ppc_pci_io
;
696 EXPORT_SYMBOL(ppc_pci_io
);
697 #endif /* CONFIG_PPC_INDIRECT_IO */