x86, efi: Set runtime_version to the EFI spec revision
[linux/fpc-iii.git] / arch / powerpc / kvm / e500_tlb.c
blobcf3f180123717cb8e7439f6460c537ec24d0523b
1 /*
2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
9 * Description:
10 * This file is based on arch/powerpc/kvm/44x_tlb.c,
11 * by Hollis Blanchard <hollisb@us.ibm.com>.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License, version 2, as
15 * published by the Free Software Foundation.
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/slab.h>
21 #include <linux/string.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/highmem.h>
25 #include <linux/log2.h>
26 #include <linux/uaccess.h>
27 #include <linux/sched.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hugetlb.h>
31 #include <asm/kvm_ppc.h>
33 #include "e500.h"
34 #include "trace.h"
35 #include "timing.h"
37 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
39 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
41 static inline unsigned int gtlb0_get_next_victim(
42 struct kvmppc_vcpu_e500 *vcpu_e500)
44 unsigned int victim;
46 victim = vcpu_e500->gtlb_nv[0]++;
47 if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
48 vcpu_e500->gtlb_nv[0] = 0;
50 return victim;
53 static inline unsigned int tlb1_max_shadow_size(void)
55 /* reserve one entry for magic page */
56 return host_tlb_params[1].entries - tlbcam_index - 1;
59 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
61 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
64 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
66 /* Mask off reserved bits. */
67 mas3 &= MAS3_ATTRIB_MASK;
69 #ifndef CONFIG_KVM_BOOKE_HV
70 if (!usermode) {
71 /* Guest is in supervisor mode,
72 * so we need to translate guest
73 * supervisor permissions into user permissions. */
74 mas3 &= ~E500_TLB_USER_PERM_MASK;
75 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
77 mas3 |= E500_TLB_SUPER_PERM_MASK;
78 #endif
79 return mas3;
82 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
84 #ifdef CONFIG_SMP
85 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
86 #else
87 return mas2 & MAS2_ATTRIB_MASK;
88 #endif
92 * writing shadow tlb entry to host TLB
94 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
95 uint32_t mas0)
97 unsigned long flags;
99 local_irq_save(flags);
100 mtspr(SPRN_MAS0, mas0);
101 mtspr(SPRN_MAS1, stlbe->mas1);
102 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
103 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
104 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
105 #ifdef CONFIG_KVM_BOOKE_HV
106 mtspr(SPRN_MAS8, stlbe->mas8);
107 #endif
108 asm volatile("isync; tlbwe" : : : "memory");
110 #ifdef CONFIG_KVM_BOOKE_HV
111 /* Must clear mas8 for other host tlbwe's */
112 mtspr(SPRN_MAS8, 0);
113 isync();
114 #endif
115 local_irq_restore(flags);
117 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
118 stlbe->mas2, stlbe->mas7_3);
122 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
124 * We don't care about the address we're searching for, other than that it's
125 * in the right set and is not present in the TLB. Using a zero PID and a
126 * userspace address means we don't have to set and then restore MAS5, or
127 * calculate a proper MAS6 value.
129 static u32 get_host_mas0(unsigned long eaddr)
131 unsigned long flags;
132 u32 mas0;
134 local_irq_save(flags);
135 mtspr(SPRN_MAS6, 0);
136 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
137 mas0 = mfspr(SPRN_MAS0);
138 local_irq_restore(flags);
140 return mas0;
143 /* sesel is for tlb1 only */
144 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
145 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
147 u32 mas0;
149 if (tlbsel == 0) {
150 mas0 = get_host_mas0(stlbe->mas2);
151 __write_host_tlbe(stlbe, mas0);
152 } else {
153 __write_host_tlbe(stlbe,
154 MAS0_TLBSEL(1) |
155 MAS0_ESEL(to_htlb1_esel(sesel)));
159 #ifdef CONFIG_KVM_E500V2
160 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
162 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
163 struct kvm_book3e_206_tlb_entry magic;
164 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
165 unsigned int stid;
166 pfn_t pfn;
168 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
169 get_page(pfn_to_page(pfn));
171 preempt_disable();
172 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
174 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
175 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
176 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
177 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
178 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
179 magic.mas8 = 0;
181 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
182 preempt_enable();
184 #endif
186 static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
187 int tlbsel, int esel)
189 struct kvm_book3e_206_tlb_entry *gtlbe =
190 get_entry(vcpu_e500, tlbsel, esel);
192 if (tlbsel == 1 &&
193 vcpu_e500->gtlb_priv[1][esel].ref.flags & E500_TLB_BITMAP) {
194 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
195 int hw_tlb_indx;
196 unsigned long flags;
198 local_irq_save(flags);
199 while (tmp) {
200 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
201 mtspr(SPRN_MAS0,
202 MAS0_TLBSEL(1) |
203 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
204 mtspr(SPRN_MAS1, 0);
205 asm volatile("tlbwe");
206 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
207 tmp &= tmp - 1;
209 mb();
210 vcpu_e500->g2h_tlb1_map[esel] = 0;
211 vcpu_e500->gtlb_priv[1][esel].ref.flags &= ~E500_TLB_BITMAP;
212 local_irq_restore(flags);
214 return;
217 /* Guest tlbe is backed by at most one host tlbe per shadow pid. */
218 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
221 static int tlb0_set_base(gva_t addr, int sets, int ways)
223 int set_base;
225 set_base = (addr >> PAGE_SHIFT) & (sets - 1);
226 set_base *= ways;
228 return set_base;
231 static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
233 return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
234 vcpu_e500->gtlb_params[0].ways);
237 static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
239 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
240 int esel = get_tlb_esel_bit(vcpu);
242 if (tlbsel == 0) {
243 esel &= vcpu_e500->gtlb_params[0].ways - 1;
244 esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
245 } else {
246 esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
249 return esel;
252 /* Search the guest TLB for a matching entry. */
253 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
254 gva_t eaddr, int tlbsel, unsigned int pid, int as)
256 int size = vcpu_e500->gtlb_params[tlbsel].entries;
257 unsigned int set_base, offset;
258 int i;
260 if (tlbsel == 0) {
261 set_base = gtlb0_set_base(vcpu_e500, eaddr);
262 size = vcpu_e500->gtlb_params[0].ways;
263 } else {
264 if (eaddr < vcpu_e500->tlb1_min_eaddr ||
265 eaddr > vcpu_e500->tlb1_max_eaddr)
266 return -1;
267 set_base = 0;
270 offset = vcpu_e500->gtlb_offset[tlbsel];
272 for (i = 0; i < size; i++) {
273 struct kvm_book3e_206_tlb_entry *tlbe =
274 &vcpu_e500->gtlb_arch[offset + set_base + i];
275 unsigned int tid;
277 if (eaddr < get_tlb_eaddr(tlbe))
278 continue;
280 if (eaddr > get_tlb_end(tlbe))
281 continue;
283 tid = get_tlb_tid(tlbe);
284 if (tid && (tid != pid))
285 continue;
287 if (!get_tlb_v(tlbe))
288 continue;
290 if (get_tlb_ts(tlbe) != as && as != -1)
291 continue;
293 return set_base + i;
296 return -1;
299 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
300 struct kvm_book3e_206_tlb_entry *gtlbe,
301 pfn_t pfn)
303 ref->pfn = pfn;
304 ref->flags = E500_TLB_VALID;
306 if (tlbe_is_writable(gtlbe))
307 kvm_set_pfn_dirty(pfn);
310 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
312 if (ref->flags & E500_TLB_VALID) {
313 trace_kvm_booke206_ref_release(ref->pfn, ref->flags);
314 ref->flags = 0;
318 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
320 if (vcpu_e500->g2h_tlb1_map)
321 memset(vcpu_e500->g2h_tlb1_map, 0,
322 sizeof(u64) * vcpu_e500->gtlb_params[1].entries);
323 if (vcpu_e500->h2g_tlb1_rmap)
324 memset(vcpu_e500->h2g_tlb1_rmap, 0,
325 sizeof(unsigned int) * host_tlb_params[1].entries);
328 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
330 int tlbsel = 0;
331 int i;
333 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
334 struct tlbe_ref *ref =
335 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
336 kvmppc_e500_ref_release(ref);
340 static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
342 int stlbsel = 1;
343 int i;
345 kvmppc_e500_tlbil_all(vcpu_e500);
347 for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
348 struct tlbe_ref *ref =
349 &vcpu_e500->tlb_refs[stlbsel][i];
350 kvmppc_e500_ref_release(ref);
353 clear_tlb_privs(vcpu_e500);
356 void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu)
358 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
359 clear_tlb_refs(vcpu_e500);
360 clear_tlb1_bitmap(vcpu_e500);
363 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
364 unsigned int eaddr, int as)
366 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
367 unsigned int victim, tsized;
368 int tlbsel;
370 /* since we only have two TLBs, only lower bit is used. */
371 tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
372 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
373 tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
375 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
376 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
377 vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
378 | MAS1_TID(get_tlbmiss_tid(vcpu))
379 | MAS1_TSIZE(tsized);
380 vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
381 | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
382 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
383 vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
384 | (get_cur_pid(vcpu) << 16)
385 | (as ? MAS6_SAS : 0);
388 /* TID must be supplied by the caller */
389 static inline void kvmppc_e500_setup_stlbe(
390 struct kvm_vcpu *vcpu,
391 struct kvm_book3e_206_tlb_entry *gtlbe,
392 int tsize, struct tlbe_ref *ref, u64 gvaddr,
393 struct kvm_book3e_206_tlb_entry *stlbe)
395 pfn_t pfn = ref->pfn;
396 u32 pr = vcpu->arch.shared->msr & MSR_PR;
398 BUG_ON(!(ref->flags & E500_TLB_VALID));
400 /* Force IPROT=0 for all guest mappings. */
401 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
402 stlbe->mas2 = (gvaddr & MAS2_EPN) |
403 e500_shadow_mas2_attrib(gtlbe->mas2, pr);
404 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
405 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
407 #ifdef CONFIG_KVM_BOOKE_HV
408 stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
409 #endif
412 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
413 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
414 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
415 struct tlbe_ref *ref)
417 struct kvm_memory_slot *slot;
418 unsigned long pfn = 0; /* silence GCC warning */
419 unsigned long hva;
420 int pfnmap = 0;
421 int tsize = BOOK3E_PAGESZ_4K;
424 * Translate guest physical to true physical, acquiring
425 * a page reference if it is normal, non-reserved memory.
427 * gfn_to_memslot() must succeed because otherwise we wouldn't
428 * have gotten this far. Eventually we should just pass the slot
429 * pointer through from the first lookup.
431 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
432 hva = gfn_to_hva_memslot(slot, gfn);
434 if (tlbsel == 1) {
435 struct vm_area_struct *vma;
436 down_read(&current->mm->mmap_sem);
438 vma = find_vma(current->mm, hva);
439 if (vma && hva >= vma->vm_start &&
440 (vma->vm_flags & VM_PFNMAP)) {
442 * This VMA is a physically contiguous region (e.g.
443 * /dev/mem) that bypasses normal Linux page
444 * management. Find the overlap between the
445 * vma and the memslot.
448 unsigned long start, end;
449 unsigned long slot_start, slot_end;
451 pfnmap = 1;
453 start = vma->vm_pgoff;
454 end = start +
455 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
457 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
459 slot_start = pfn - (gfn - slot->base_gfn);
460 slot_end = slot_start + slot->npages;
462 if (start < slot_start)
463 start = slot_start;
464 if (end > slot_end)
465 end = slot_end;
467 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
468 MAS1_TSIZE_SHIFT;
471 * e500 doesn't implement the lowest tsize bit,
472 * or 1K pages.
474 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
477 * Now find the largest tsize (up to what the guest
478 * requested) that will cover gfn, stay within the
479 * range, and for which gfn and pfn are mutually
480 * aligned.
483 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
484 unsigned long gfn_start, gfn_end, tsize_pages;
485 tsize_pages = 1 << (tsize - 2);
487 gfn_start = gfn & ~(tsize_pages - 1);
488 gfn_end = gfn_start + tsize_pages;
490 if (gfn_start + pfn - gfn < start)
491 continue;
492 if (gfn_end + pfn - gfn > end)
493 continue;
494 if ((gfn & (tsize_pages - 1)) !=
495 (pfn & (tsize_pages - 1)))
496 continue;
498 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
499 pfn &= ~(tsize_pages - 1);
500 break;
502 } else if (vma && hva >= vma->vm_start &&
503 (vma->vm_flags & VM_HUGETLB)) {
504 unsigned long psize = vma_kernel_pagesize(vma);
506 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
507 MAS1_TSIZE_SHIFT;
510 * Take the largest page size that satisfies both host
511 * and guest mapping
513 tsize = min(__ilog2(psize) - 10, tsize);
516 * e500 doesn't implement the lowest tsize bit,
517 * or 1K pages.
519 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
522 up_read(&current->mm->mmap_sem);
525 if (likely(!pfnmap)) {
526 unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
527 pfn = gfn_to_pfn_memslot(slot, gfn);
528 if (is_error_noslot_pfn(pfn)) {
529 printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
530 (long)gfn);
531 return;
534 /* Align guest and physical address to page map boundaries */
535 pfn &= ~(tsize_pages - 1);
536 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
539 /* Drop old ref and setup new one. */
540 kvmppc_e500_ref_release(ref);
541 kvmppc_e500_ref_setup(ref, gtlbe, pfn);
543 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
544 ref, gvaddr, stlbe);
546 /* Clear i-cache for new pages */
547 kvmppc_mmu_flush_icache(pfn);
549 /* Drop refcount on page, so that mmu notifiers can clear it */
550 kvm_release_pfn_clean(pfn);
553 /* XXX only map the one-one case, for now use TLB0 */
554 static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
555 int esel,
556 struct kvm_book3e_206_tlb_entry *stlbe)
558 struct kvm_book3e_206_tlb_entry *gtlbe;
559 struct tlbe_ref *ref;
561 gtlbe = get_entry(vcpu_e500, 0, esel);
562 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
564 kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
565 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
566 gtlbe, 0, stlbe, ref);
569 /* Caller must ensure that the specified guest TLB entry is safe to insert into
570 * the shadow TLB. */
571 /* XXX for both one-one and one-to-many , for now use TLB1 */
572 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
573 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
574 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
576 struct tlbe_ref *ref;
577 unsigned int victim;
579 victim = vcpu_e500->host_tlb1_nv++;
581 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
582 vcpu_e500->host_tlb1_nv = 0;
584 ref = &vcpu_e500->tlb_refs[1][victim];
585 kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
587 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << victim;
588 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
589 if (vcpu_e500->h2g_tlb1_rmap[victim]) {
590 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[victim];
591 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << victim);
593 vcpu_e500->h2g_tlb1_rmap[victim] = esel;
595 return victim;
598 static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
600 int size = vcpu_e500->gtlb_params[1].entries;
601 unsigned int offset;
602 gva_t eaddr;
603 int i;
605 vcpu_e500->tlb1_min_eaddr = ~0UL;
606 vcpu_e500->tlb1_max_eaddr = 0;
607 offset = vcpu_e500->gtlb_offset[1];
609 for (i = 0; i < size; i++) {
610 struct kvm_book3e_206_tlb_entry *tlbe =
611 &vcpu_e500->gtlb_arch[offset + i];
613 if (!get_tlb_v(tlbe))
614 continue;
616 eaddr = get_tlb_eaddr(tlbe);
617 vcpu_e500->tlb1_min_eaddr =
618 min(vcpu_e500->tlb1_min_eaddr, eaddr);
620 eaddr = get_tlb_end(tlbe);
621 vcpu_e500->tlb1_max_eaddr =
622 max(vcpu_e500->tlb1_max_eaddr, eaddr);
626 static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
627 struct kvm_book3e_206_tlb_entry *gtlbe)
629 unsigned long start, end, size;
631 size = get_tlb_bytes(gtlbe);
632 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
633 end = start + size - 1;
635 return vcpu_e500->tlb1_min_eaddr == start ||
636 vcpu_e500->tlb1_max_eaddr == end;
639 /* This function is supposed to be called for a adding a new valid tlb entry */
640 static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
641 struct kvm_book3e_206_tlb_entry *gtlbe)
643 unsigned long start, end, size;
644 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
646 if (!get_tlb_v(gtlbe))
647 return;
649 size = get_tlb_bytes(gtlbe);
650 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
651 end = start + size - 1;
653 vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
654 vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
657 static inline int kvmppc_e500_gtlbe_invalidate(
658 struct kvmppc_vcpu_e500 *vcpu_e500,
659 int tlbsel, int esel)
661 struct kvm_book3e_206_tlb_entry *gtlbe =
662 get_entry(vcpu_e500, tlbsel, esel);
664 if (unlikely(get_tlb_iprot(gtlbe)))
665 return -1;
667 if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
668 kvmppc_recalc_tlb1map_range(vcpu_e500);
670 gtlbe->mas1 = 0;
672 return 0;
675 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
677 int esel;
679 if (value & MMUCSR0_TLB0FI)
680 for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
681 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
682 if (value & MMUCSR0_TLB1FI)
683 for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
684 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
686 /* Invalidate all vcpu id mappings */
687 kvmppc_e500_tlbil_all(vcpu_e500);
689 return EMULATE_DONE;
692 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea)
694 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
695 unsigned int ia;
696 int esel, tlbsel;
698 ia = (ea >> 2) & 0x1;
700 /* since we only have two TLBs, only lower bit is used. */
701 tlbsel = (ea >> 3) & 0x1;
703 if (ia) {
704 /* invalidate all entries */
705 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
706 esel++)
707 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
708 } else {
709 ea &= 0xfffff000;
710 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
711 get_cur_pid(vcpu), -1);
712 if (esel >= 0)
713 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
716 /* Invalidate all vcpu id mappings */
717 kvmppc_e500_tlbil_all(vcpu_e500);
719 return EMULATE_DONE;
722 static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
723 int pid, int type)
725 struct kvm_book3e_206_tlb_entry *tlbe;
726 int tid, esel;
728 /* invalidate all entries */
729 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
730 tlbe = get_entry(vcpu_e500, tlbsel, esel);
731 tid = get_tlb_tid(tlbe);
732 if (type == 0 || tid == pid) {
733 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
734 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
739 static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
740 gva_t ea)
742 int tlbsel, esel;
744 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
745 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
746 if (esel >= 0) {
747 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
748 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
749 break;
754 int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea)
756 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
757 int pid = get_cur_spid(vcpu);
759 if (type == 0 || type == 1) {
760 tlbilx_all(vcpu_e500, 0, pid, type);
761 tlbilx_all(vcpu_e500, 1, pid, type);
762 } else if (type == 3) {
763 tlbilx_one(vcpu_e500, pid, ea);
766 return EMULATE_DONE;
769 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
771 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
772 int tlbsel, esel;
773 struct kvm_book3e_206_tlb_entry *gtlbe;
775 tlbsel = get_tlb_tlbsel(vcpu);
776 esel = get_tlb_esel(vcpu, tlbsel);
778 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
779 vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
780 vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
781 vcpu->arch.shared->mas1 = gtlbe->mas1;
782 vcpu->arch.shared->mas2 = gtlbe->mas2;
783 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
785 return EMULATE_DONE;
788 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea)
790 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
791 int as = !!get_cur_sas(vcpu);
792 unsigned int pid = get_cur_spid(vcpu);
793 int esel, tlbsel;
794 struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
796 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
797 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
798 if (esel >= 0) {
799 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
800 break;
804 if (gtlbe) {
805 esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
807 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
808 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
809 vcpu->arch.shared->mas1 = gtlbe->mas1;
810 vcpu->arch.shared->mas2 = gtlbe->mas2;
811 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
812 } else {
813 int victim;
815 /* since we only have two TLBs, only lower bit is used. */
816 tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
817 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
819 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
820 | MAS0_ESEL(victim)
821 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
822 vcpu->arch.shared->mas1 =
823 (vcpu->arch.shared->mas6 & MAS6_SPID0)
824 | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
825 | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
826 vcpu->arch.shared->mas2 &= MAS2_EPN;
827 vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
828 MAS2_ATTRIB_MASK;
829 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
830 MAS3_U2 | MAS3_U3;
833 kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
834 return EMULATE_DONE;
837 /* sesel is for tlb1 only */
838 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
839 struct kvm_book3e_206_tlb_entry *gtlbe,
840 struct kvm_book3e_206_tlb_entry *stlbe,
841 int stlbsel, int sesel)
843 int stid;
845 preempt_disable();
846 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
848 stlbe->mas1 |= MAS1_TID(stid);
849 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
850 preempt_enable();
853 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
855 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
856 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
857 int tlbsel, esel, stlbsel, sesel;
858 int recal = 0;
860 tlbsel = get_tlb_tlbsel(vcpu);
861 esel = get_tlb_esel(vcpu, tlbsel);
863 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
865 if (get_tlb_v(gtlbe)) {
866 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
867 if ((tlbsel == 1) &&
868 kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
869 recal = 1;
872 gtlbe->mas1 = vcpu->arch.shared->mas1;
873 gtlbe->mas2 = vcpu->arch.shared->mas2;
874 if (!(vcpu->arch.shared->msr & MSR_CM))
875 gtlbe->mas2 &= 0xffffffffUL;
876 gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
878 trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
879 gtlbe->mas2, gtlbe->mas7_3);
881 if (tlbsel == 1) {
883 * If a valid tlb1 entry is overwritten then recalculate the
884 * min/max TLB1 map address range otherwise no need to look
885 * in tlb1 array.
887 if (recal)
888 kvmppc_recalc_tlb1map_range(vcpu_e500);
889 else
890 kvmppc_set_tlb1map_range(vcpu, gtlbe);
893 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
894 if (tlbe_is_host_safe(vcpu, gtlbe)) {
895 u64 eaddr;
896 u64 raddr;
898 switch (tlbsel) {
899 case 0:
900 /* TLB0 */
901 gtlbe->mas1 &= ~MAS1_TSIZE(~0);
902 gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
904 stlbsel = 0;
905 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
906 sesel = 0; /* unused */
908 break;
910 case 1:
911 /* TLB1 */
912 eaddr = get_tlb_eaddr(gtlbe);
913 raddr = get_tlb_raddr(gtlbe);
915 /* Create a 4KB mapping on the host.
916 * If the guest wanted a large page,
917 * only the first 4KB is mapped here and the rest
918 * are mapped on the fly. */
919 stlbsel = 1;
920 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
921 raddr >> PAGE_SHIFT, gtlbe, &stlbe, esel);
922 break;
924 default:
925 BUG();
928 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
931 kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
932 return EMULATE_DONE;
935 static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
936 gva_t eaddr, unsigned int pid, int as)
938 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
939 int esel, tlbsel;
941 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
942 esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
943 if (esel >= 0)
944 return index_of(tlbsel, esel);
947 return -1;
950 /* 'linear_address' is actually an encoding of AS|PID|EADDR . */
951 int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
952 struct kvm_translation *tr)
954 int index;
955 gva_t eaddr;
956 u8 pid;
957 u8 as;
959 eaddr = tr->linear_address;
960 pid = (tr->linear_address >> 32) & 0xff;
961 as = (tr->linear_address >> 40) & 0x1;
963 index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
964 if (index < 0) {
965 tr->valid = 0;
966 return 0;
969 tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
970 /* XXX what does "writeable" and "usermode" even mean? */
971 tr->valid = 1;
973 return 0;
977 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
979 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
981 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
984 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
986 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
988 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
991 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
993 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
995 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
998 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
1000 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
1002 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
1005 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
1006 gva_t eaddr)
1008 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1009 struct kvm_book3e_206_tlb_entry *gtlbe;
1010 u64 pgmask;
1012 gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
1013 pgmask = get_tlb_bytes(gtlbe) - 1;
1015 return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
1018 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
1022 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
1023 unsigned int index)
1025 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1026 struct tlbe_priv *priv;
1027 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
1028 int tlbsel = tlbsel_of(index);
1029 int esel = esel_of(index);
1030 int stlbsel, sesel;
1032 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
1034 switch (tlbsel) {
1035 case 0:
1036 stlbsel = 0;
1037 sesel = 0; /* unused */
1038 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
1040 /* Only triggers after clear_tlb_refs */
1041 if (unlikely(!(priv->ref.flags & E500_TLB_VALID)))
1042 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
1043 else
1044 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
1045 &priv->ref, eaddr, &stlbe);
1046 break;
1048 case 1: {
1049 gfn_t gfn = gpaddr >> PAGE_SHIFT;
1051 stlbsel = 1;
1052 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
1053 gtlbe, &stlbe, esel);
1054 break;
1057 default:
1058 BUG();
1059 break;
1062 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
1065 /************* MMU Notifiers *************/
1067 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1069 trace_kvm_unmap_hva(hva);
1072 * Flush all shadow tlb entries everywhere. This is slow, but
1073 * we are 100% sure that we catch the to be unmapped page
1075 kvm_flush_remote_tlbs(kvm);
1077 return 0;
1080 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1082 /* kvm_unmap_hva flushes everything anyways */
1083 kvm_unmap_hva(kvm, start);
1085 return 0;
1088 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1090 /* XXX could be more clever ;) */
1091 return 0;
1094 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1096 /* XXX could be more clever ;) */
1097 return 0;
1100 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1102 /* The page will get remapped properly on its next fault */
1103 kvm_unmap_hva(kvm, hva);
1106 /*****************************************/
1108 static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
1110 int i;
1112 clear_tlb1_bitmap(vcpu_e500);
1113 kfree(vcpu_e500->g2h_tlb1_map);
1115 clear_tlb_refs(vcpu_e500);
1116 kfree(vcpu_e500->gtlb_priv[0]);
1117 kfree(vcpu_e500->gtlb_priv[1]);
1119 if (vcpu_e500->shared_tlb_pages) {
1120 vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
1121 PAGE_SIZE)));
1123 for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
1124 set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
1125 put_page(vcpu_e500->shared_tlb_pages[i]);
1128 vcpu_e500->num_shared_tlb_pages = 0;
1130 kfree(vcpu_e500->shared_tlb_pages);
1131 vcpu_e500->shared_tlb_pages = NULL;
1132 } else {
1133 kfree(vcpu_e500->gtlb_arch);
1136 vcpu_e500->gtlb_arch = NULL;
1139 void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
1141 sregs->u.e.mas0 = vcpu->arch.shared->mas0;
1142 sregs->u.e.mas1 = vcpu->arch.shared->mas1;
1143 sregs->u.e.mas2 = vcpu->arch.shared->mas2;
1144 sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
1145 sregs->u.e.mas4 = vcpu->arch.shared->mas4;
1146 sregs->u.e.mas6 = vcpu->arch.shared->mas6;
1148 sregs->u.e.mmucfg = vcpu->arch.mmucfg;
1149 sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
1150 sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
1151 sregs->u.e.tlbcfg[2] = 0;
1152 sregs->u.e.tlbcfg[3] = 0;
1155 int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
1157 if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1158 vcpu->arch.shared->mas0 = sregs->u.e.mas0;
1159 vcpu->arch.shared->mas1 = sregs->u.e.mas1;
1160 vcpu->arch.shared->mas2 = sregs->u.e.mas2;
1161 vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
1162 vcpu->arch.shared->mas4 = sregs->u.e.mas4;
1163 vcpu->arch.shared->mas6 = sregs->u.e.mas6;
1166 return 0;
1169 int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
1170 struct kvm_config_tlb *cfg)
1172 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1173 struct kvm_book3e_206_tlb_params params;
1174 char *virt;
1175 struct page **pages;
1176 struct tlbe_priv *privs[2] = {};
1177 u64 *g2h_bitmap = NULL;
1178 size_t array_len;
1179 u32 sets;
1180 int num_pages, ret, i;
1182 if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
1183 return -EINVAL;
1185 if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
1186 sizeof(params)))
1187 return -EFAULT;
1189 if (params.tlb_sizes[1] > 64)
1190 return -EINVAL;
1191 if (params.tlb_ways[1] != params.tlb_sizes[1])
1192 return -EINVAL;
1193 if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
1194 return -EINVAL;
1195 if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
1196 return -EINVAL;
1198 if (!is_power_of_2(params.tlb_ways[0]))
1199 return -EINVAL;
1201 sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
1202 if (!is_power_of_2(sets))
1203 return -EINVAL;
1205 array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
1206 array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
1208 if (cfg->array_len < array_len)
1209 return -EINVAL;
1211 num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
1212 cfg->array / PAGE_SIZE;
1213 pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
1214 if (!pages)
1215 return -ENOMEM;
1217 ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
1218 if (ret < 0)
1219 goto err_pages;
1221 if (ret != num_pages) {
1222 num_pages = ret;
1223 ret = -EFAULT;
1224 goto err_put_page;
1227 virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
1228 if (!virt) {
1229 ret = -ENOMEM;
1230 goto err_put_page;
1233 privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
1234 GFP_KERNEL);
1235 privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
1236 GFP_KERNEL);
1238 if (!privs[0] || !privs[1]) {
1239 ret = -ENOMEM;
1240 goto err_privs;
1243 g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
1244 GFP_KERNEL);
1245 if (!g2h_bitmap) {
1246 ret = -ENOMEM;
1247 goto err_privs;
1250 free_gtlb(vcpu_e500);
1252 vcpu_e500->gtlb_priv[0] = privs[0];
1253 vcpu_e500->gtlb_priv[1] = privs[1];
1254 vcpu_e500->g2h_tlb1_map = g2h_bitmap;
1256 vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
1257 (virt + (cfg->array & (PAGE_SIZE - 1)));
1259 vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
1260 vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
1262 vcpu_e500->gtlb_offset[0] = 0;
1263 vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
1265 vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
1267 vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1268 if (params.tlb_sizes[0] <= 2048)
1269 vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0];
1270 vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
1272 vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1273 vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1];
1274 vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
1276 vcpu_e500->shared_tlb_pages = pages;
1277 vcpu_e500->num_shared_tlb_pages = num_pages;
1279 vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
1280 vcpu_e500->gtlb_params[0].sets = sets;
1282 vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
1283 vcpu_e500->gtlb_params[1].sets = 1;
1285 kvmppc_recalc_tlb1map_range(vcpu_e500);
1286 return 0;
1288 err_privs:
1289 kfree(privs[0]);
1290 kfree(privs[1]);
1292 err_put_page:
1293 for (i = 0; i < num_pages; i++)
1294 put_page(pages[i]);
1296 err_pages:
1297 kfree(pages);
1298 return ret;
1301 int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
1302 struct kvm_dirty_tlb *dirty)
1304 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1305 kvmppc_recalc_tlb1map_range(vcpu_e500);
1306 clear_tlb_refs(vcpu_e500);
1307 return 0;
1310 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
1312 struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
1313 int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
1314 int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
1316 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
1317 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
1320 * This should never happen on real e500 hardware, but is
1321 * architecturally possible -- e.g. in some weird nested
1322 * virtualization case.
1324 if (host_tlb_params[0].entries == 0 ||
1325 host_tlb_params[1].entries == 0) {
1326 pr_err("%s: need to know host tlb size\n", __func__);
1327 return -ENODEV;
1330 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
1331 TLBnCFG_ASSOC_SHIFT;
1332 host_tlb_params[1].ways = host_tlb_params[1].entries;
1334 if (!is_power_of_2(host_tlb_params[0].entries) ||
1335 !is_power_of_2(host_tlb_params[0].ways) ||
1336 host_tlb_params[0].entries < host_tlb_params[0].ways ||
1337 host_tlb_params[0].ways == 0) {
1338 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
1339 __func__, host_tlb_params[0].entries,
1340 host_tlb_params[0].ways);
1341 return -ENODEV;
1344 host_tlb_params[0].sets =
1345 host_tlb_params[0].entries / host_tlb_params[0].ways;
1346 host_tlb_params[1].sets = 1;
1348 vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
1349 vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
1351 vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
1352 vcpu_e500->gtlb_params[0].sets =
1353 KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
1355 vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
1356 vcpu_e500->gtlb_params[1].sets = 1;
1358 vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
1359 if (!vcpu_e500->gtlb_arch)
1360 return -ENOMEM;
1362 vcpu_e500->gtlb_offset[0] = 0;
1363 vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
1365 vcpu_e500->tlb_refs[0] =
1366 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
1367 GFP_KERNEL);
1368 if (!vcpu_e500->tlb_refs[0])
1369 goto err;
1371 vcpu_e500->tlb_refs[1] =
1372 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
1373 GFP_KERNEL);
1374 if (!vcpu_e500->tlb_refs[1])
1375 goto err;
1377 vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
1378 vcpu_e500->gtlb_params[0].entries,
1379 GFP_KERNEL);
1380 if (!vcpu_e500->gtlb_priv[0])
1381 goto err;
1383 vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
1384 vcpu_e500->gtlb_params[1].entries,
1385 GFP_KERNEL);
1386 if (!vcpu_e500->gtlb_priv[1])
1387 goto err;
1389 vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(u64) *
1390 vcpu_e500->gtlb_params[1].entries,
1391 GFP_KERNEL);
1392 if (!vcpu_e500->g2h_tlb1_map)
1393 goto err;
1395 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
1396 host_tlb_params[1].entries,
1397 GFP_KERNEL);
1398 if (!vcpu_e500->h2g_tlb1_rmap)
1399 goto err;
1401 /* Init TLB configuration register */
1402 vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
1403 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1404 vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries;
1405 vcpu->arch.tlbcfg[0] |=
1406 vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
1408 vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
1409 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1410 vcpu->arch.tlbcfg[1] |= vcpu_e500->gtlb_params[1].entries;
1411 vcpu->arch.tlbcfg[1] |=
1412 vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
1414 kvmppc_recalc_tlb1map_range(vcpu_e500);
1415 return 0;
1417 err:
1418 free_gtlb(vcpu_e500);
1419 kfree(vcpu_e500->tlb_refs[0]);
1420 kfree(vcpu_e500->tlb_refs[1]);
1421 return -1;
1424 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
1426 free_gtlb(vcpu_e500);
1427 kfree(vcpu_e500->h2g_tlb1_rmap);
1428 kfree(vcpu_e500->tlb_refs[0]);
1429 kfree(vcpu_e500->tlb_refs[1]);