2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
37 #include <asm/processor.h>
38 #include <asm/pgtable.h>
40 #include <asm/mmu_context.h>
42 #include <asm/types.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
46 #include <asm/tlbflush.h>
50 #include <asm/cacheflush.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
55 #include <asm/code-patching.h>
56 #include <asm/fadump.h>
57 #include <asm/firmware.h>
60 #define DBG(fmt...) udbg_printf(fmt)
66 #define DBG_LOW(fmt...) udbg_printf(fmt)
68 #define DBG_LOW(fmt...)
76 * Note: pte --> Linux PTE
77 * HPTE --> PowerPC Hashed Page Table Entry
80 * htab_initialize is called with the MMU off (of course), but
81 * the kernel has been copied down to zero so it can directly
82 * reference global data. At this point it is very difficult
83 * to print debug info.
88 extern unsigned long dart_tablebase
;
89 #endif /* CONFIG_U3_DART */
91 static unsigned long _SDR1
;
92 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
94 struct hash_pte
*htab_address
;
95 unsigned long htab_size_bytes
;
96 unsigned long htab_hash_mask
;
97 EXPORT_SYMBOL_GPL(htab_hash_mask
);
98 int mmu_linear_psize
= MMU_PAGE_4K
;
99 int mmu_virtual_psize
= MMU_PAGE_4K
;
100 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
101 #ifdef CONFIG_SPARSEMEM_VMEMMAP
102 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
104 int mmu_io_psize
= MMU_PAGE_4K
;
105 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
106 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
107 u16 mmu_slb_size
= 64;
108 EXPORT_SYMBOL_GPL(mmu_slb_size
);
109 #ifdef CONFIG_PPC_64K_PAGES
110 int mmu_ci_restrictions
;
112 #ifdef CONFIG_DEBUG_PAGEALLOC
113 static u8
*linear_map_hash_slots
;
114 static unsigned long linear_map_hash_count
;
115 static DEFINE_SPINLOCK(linear_map_hash_lock
);
116 #endif /* CONFIG_DEBUG_PAGEALLOC */
118 /* There are definitions of page sizes arrays to be used when none
119 * is provided by the firmware.
122 /* Pre-POWER4 CPUs (4k pages only)
124 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
134 /* POWER4, GPUL, POWER5
136 * Support for 16Mb large pages
138 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
155 static unsigned long htab_convert_pte_flags(unsigned long pteflags
)
157 unsigned long rflags
= pteflags
& 0x1fa;
159 /* _PAGE_EXEC -> NOEXEC */
160 if ((pteflags
& _PAGE_EXEC
) == 0)
163 /* PP bits. PAGE_USER is already PP bit 0x2, so we only
164 * need to add in 0x1 if it's a read-only user page
166 if ((pteflags
& _PAGE_USER
) && !((pteflags
& _PAGE_RW
) &&
167 (pteflags
& _PAGE_DIRTY
)))
171 return rflags
| HPTE_R_C
;
174 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
175 unsigned long pstart
, unsigned long prot
,
176 int psize
, int ssize
)
178 unsigned long vaddr
, paddr
;
179 unsigned int step
, shift
;
182 shift
= mmu_psize_defs
[psize
].shift
;
185 prot
= htab_convert_pte_flags(prot
);
187 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
188 vstart
, vend
, pstart
, prot
, psize
, ssize
);
190 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
191 vaddr
+= step
, paddr
+= step
) {
192 unsigned long hash
, hpteg
;
193 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
194 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
195 unsigned long tprot
= prot
;
197 /* Make kernel text executable */
198 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
201 hash
= hpt_hash(vpn
, shift
, ssize
);
202 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
204 BUG_ON(!ppc_md
.hpte_insert
);
205 ret
= ppc_md
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
206 HPTE_V_BOLTED
, psize
, ssize
);
210 #ifdef CONFIG_DEBUG_PAGEALLOC
211 if ((paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
212 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
213 #endif /* CONFIG_DEBUG_PAGEALLOC */
215 return ret
< 0 ? ret
: 0;
218 #ifdef CONFIG_MEMORY_HOTPLUG
219 static int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
220 int psize
, int ssize
)
223 unsigned int step
, shift
;
225 shift
= mmu_psize_defs
[psize
].shift
;
228 if (!ppc_md
.hpte_removebolted
) {
229 printk(KERN_WARNING
"Platform doesn't implement "
230 "hpte_removebolted\n");
234 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
)
235 ppc_md
.hpte_removebolted(vaddr
, psize
, ssize
);
239 #endif /* CONFIG_MEMORY_HOTPLUG */
241 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
242 const char *uname
, int depth
,
245 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
247 unsigned long size
= 0;
249 /* We are scanning "cpu" nodes only */
250 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
253 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes",
257 for (; size
>= 4; size
-= 4, ++prop
) {
259 DBG("1T segment support detected\n");
260 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
264 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
268 static void __init
htab_init_seg_sizes(void)
270 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
273 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
274 const char *uname
, int depth
,
277 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
279 unsigned long size
= 0;
281 /* We are scanning "cpu" nodes only */
282 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
285 prop
= (u32
*)of_get_flat_dt_prop(node
,
286 "ibm,segment-page-sizes", &size
);
288 DBG("Page sizes from device-tree:\n");
290 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
292 unsigned int shift
= prop
[0];
293 unsigned int slbenc
= prop
[1];
294 unsigned int lpnum
= prop
[2];
295 unsigned int lpenc
= 0;
296 struct mmu_psize_def
*def
;
299 size
-= 3; prop
+= 3;
300 while(size
> 0 && lpnum
) {
301 if (prop
[0] == shift
)
303 prop
+= 2; size
-= 2;
318 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
326 def
= &mmu_psize_defs
[idx
];
331 def
->avpnm
= (1 << (shift
- 23)) - 1;
334 /* We don't know for sure what's up with tlbiel, so
335 * for now we only set it for 4K and 64K pages
337 if (idx
== MMU_PAGE_4K
|| idx
== MMU_PAGE_64K
)
342 DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
343 "tlbiel=%d, penc=%d\n",
344 idx
, shift
, def
->sllp
, def
->avpnm
, def
->tlbiel
,
352 #ifdef CONFIG_HUGETLB_PAGE
353 /* Scan for 16G memory blocks that have been set aside for huge pages
354 * and reserve those blocks for 16G huge pages.
356 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
357 const char *uname
, int depth
,
359 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
360 unsigned long *addr_prop
;
361 u32
*page_count_prop
;
362 unsigned int expected_pages
;
363 long unsigned int phys_addr
;
364 long unsigned int block_size
;
366 /* We are scanning "memory" nodes only */
367 if (type
== NULL
|| strcmp(type
, "memory") != 0)
370 /* This property is the log base 2 of the number of virtual pages that
371 * will represent this memory block. */
372 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
373 if (page_count_prop
== NULL
)
375 expected_pages
= (1 << page_count_prop
[0]);
376 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
377 if (addr_prop
== NULL
)
379 phys_addr
= addr_prop
[0];
380 block_size
= addr_prop
[1];
381 if (block_size
!= (16 * GB
))
383 printk(KERN_INFO
"Huge page(16GB) memory: "
384 "addr = 0x%lX size = 0x%lX pages = %d\n",
385 phys_addr
, block_size
, expected_pages
);
386 if (phys_addr
+ (16 * GB
) <= memblock_end_of_DRAM()) {
387 memblock_reserve(phys_addr
, block_size
* expected_pages
);
388 add_gpage(phys_addr
, block_size
, expected_pages
);
392 #endif /* CONFIG_HUGETLB_PAGE */
394 static void __init
htab_init_page_sizes(void)
398 /* Default to 4K pages only */
399 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
400 sizeof(mmu_psize_defaults_old
));
403 * Try to find the available page sizes in the device-tree
405 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
406 if (rc
!= 0) /* Found */
410 * Not in the device-tree, let's fallback on known size
411 * list for 16M capable GP & GR
413 if (mmu_has_feature(MMU_FTR_16M_PAGE
))
414 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
415 sizeof(mmu_psize_defaults_gp
));
417 #ifndef CONFIG_DEBUG_PAGEALLOC
419 * Pick a size for the linear mapping. Currently, we only support
420 * 16M, 1M and 4K which is the default
422 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
423 mmu_linear_psize
= MMU_PAGE_16M
;
424 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
425 mmu_linear_psize
= MMU_PAGE_1M
;
426 #endif /* CONFIG_DEBUG_PAGEALLOC */
428 #ifdef CONFIG_PPC_64K_PAGES
430 * Pick a size for the ordinary pages. Default is 4K, we support
431 * 64K for user mappings and vmalloc if supported by the processor.
432 * We only use 64k for ioremap if the processor
433 * (and firmware) support cache-inhibited large pages.
434 * If not, we use 4k and set mmu_ci_restrictions so that
435 * hash_page knows to switch processes that use cache-inhibited
436 * mappings to 4k pages.
438 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
439 mmu_virtual_psize
= MMU_PAGE_64K
;
440 mmu_vmalloc_psize
= MMU_PAGE_64K
;
441 if (mmu_linear_psize
== MMU_PAGE_4K
)
442 mmu_linear_psize
= MMU_PAGE_64K
;
443 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
445 * Don't use 64k pages for ioremap on pSeries, since
446 * that would stop us accessing the HEA ethernet.
448 if (!machine_is(pseries
))
449 mmu_io_psize
= MMU_PAGE_64K
;
451 mmu_ci_restrictions
= 1;
453 #endif /* CONFIG_PPC_64K_PAGES */
455 #ifdef CONFIG_SPARSEMEM_VMEMMAP
456 /* We try to use 16M pages for vmemmap if that is supported
457 * and we have at least 1G of RAM at boot
459 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
460 memblock_phys_mem_size() >= 0x40000000)
461 mmu_vmemmap_psize
= MMU_PAGE_16M
;
462 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
463 mmu_vmemmap_psize
= MMU_PAGE_64K
;
465 mmu_vmemmap_psize
= MMU_PAGE_4K
;
466 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
468 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
469 "virtual = %d, io = %d"
470 #ifdef CONFIG_SPARSEMEM_VMEMMAP
474 mmu_psize_defs
[mmu_linear_psize
].shift
,
475 mmu_psize_defs
[mmu_virtual_psize
].shift
,
476 mmu_psize_defs
[mmu_io_psize
].shift
477 #ifdef CONFIG_SPARSEMEM_VMEMMAP
478 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
482 #ifdef CONFIG_HUGETLB_PAGE
483 /* Reserve 16G huge page memory sections for huge pages */
484 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
485 #endif /* CONFIG_HUGETLB_PAGE */
488 static int __init
htab_dt_scan_pftsize(unsigned long node
,
489 const char *uname
, int depth
,
492 char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
495 /* We are scanning "cpu" nodes only */
496 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
499 prop
= (u32
*)of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
501 /* pft_size[0] is the NUMA CEC cookie */
502 ppc64_pft_size
= prop
[1];
508 static unsigned long __init
htab_get_table_size(void)
510 unsigned long mem_size
, rnd_mem_size
, pteg_count
, psize
;
512 /* If hash size isn't already provided by the platform, we try to
513 * retrieve it from the device-tree. If it's not there neither, we
514 * calculate it now based on the total RAM size
516 if (ppc64_pft_size
== 0)
517 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
519 return 1UL << ppc64_pft_size
;
521 /* round mem_size up to next power of 2 */
522 mem_size
= memblock_phys_mem_size();
523 rnd_mem_size
= 1UL << __ilog2(mem_size
);
524 if (rnd_mem_size
< mem_size
)
528 psize
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
529 pteg_count
= max(rnd_mem_size
>> (psize
+ 1), 1UL << 11);
531 return pteg_count
<< 7;
534 #ifdef CONFIG_MEMORY_HOTPLUG
535 int create_section_mapping(unsigned long start
, unsigned long end
)
537 return htab_bolt_mapping(start
, end
, __pa(start
),
538 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
542 int remove_section_mapping(unsigned long start
, unsigned long end
)
544 return htab_remove_mapping(start
, end
, mmu_linear_psize
,
547 #endif /* CONFIG_MEMORY_HOTPLUG */
549 #define FUNCTION_TEXT(A) ((*(unsigned long *)(A)))
551 static void __init
htab_finish_init(void)
553 extern unsigned int *htab_call_hpte_insert1
;
554 extern unsigned int *htab_call_hpte_insert2
;
555 extern unsigned int *htab_call_hpte_remove
;
556 extern unsigned int *htab_call_hpte_updatepp
;
558 #ifdef CONFIG_PPC_HAS_HASH_64K
559 extern unsigned int *ht64_call_hpte_insert1
;
560 extern unsigned int *ht64_call_hpte_insert2
;
561 extern unsigned int *ht64_call_hpte_remove
;
562 extern unsigned int *ht64_call_hpte_updatepp
;
564 patch_branch(ht64_call_hpte_insert1
,
565 FUNCTION_TEXT(ppc_md
.hpte_insert
),
567 patch_branch(ht64_call_hpte_insert2
,
568 FUNCTION_TEXT(ppc_md
.hpte_insert
),
570 patch_branch(ht64_call_hpte_remove
,
571 FUNCTION_TEXT(ppc_md
.hpte_remove
),
573 patch_branch(ht64_call_hpte_updatepp
,
574 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
577 #endif /* CONFIG_PPC_HAS_HASH_64K */
579 patch_branch(htab_call_hpte_insert1
,
580 FUNCTION_TEXT(ppc_md
.hpte_insert
),
582 patch_branch(htab_call_hpte_insert2
,
583 FUNCTION_TEXT(ppc_md
.hpte_insert
),
585 patch_branch(htab_call_hpte_remove
,
586 FUNCTION_TEXT(ppc_md
.hpte_remove
),
588 patch_branch(htab_call_hpte_updatepp
,
589 FUNCTION_TEXT(ppc_md
.hpte_updatepp
),
593 static void __init
htab_initialize(void)
596 unsigned long pteg_count
;
598 unsigned long base
= 0, size
= 0, limit
;
599 struct memblock_region
*reg
;
601 DBG(" -> htab_initialize()\n");
603 /* Initialize segment sizes */
604 htab_init_seg_sizes();
606 /* Initialize page sizes */
607 htab_init_page_sizes();
609 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
610 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
611 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
612 printk(KERN_INFO
"Using 1TB segments\n");
616 * Calculate the required size of the htab. We want the number of
617 * PTEGs to equal one half the number of real pages.
619 htab_size_bytes
= htab_get_table_size();
620 pteg_count
= htab_size_bytes
>> 7;
622 htab_hash_mask
= pteg_count
- 1;
624 if (firmware_has_feature(FW_FEATURE_LPAR
)) {
625 /* Using a hypervisor which owns the htab */
628 #ifdef CONFIG_FA_DUMP
630 * If firmware assisted dump is active firmware preserves
631 * the contents of htab along with entire partition memory.
632 * Clear the htab if firmware assisted dump is active so
633 * that we dont end up using old mappings.
635 if (is_fadump_active() && ppc_md
.hpte_clear_all
)
636 ppc_md
.hpte_clear_all();
639 /* Find storage for the HPT. Must be contiguous in
640 * the absolute address space. On cell we want it to be
641 * in the first 2 Gig so we can use it for IOMMU hacks.
643 if (machine_is(cell
))
646 limit
= MEMBLOCK_ALLOC_ANYWHERE
;
648 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
, limit
);
650 DBG("Hash table allocated at %lx, size: %lx\n", table
,
653 htab_address
= __va(table
);
655 /* htab absolute addr + encoded htabsize */
656 _SDR1
= table
+ __ilog2(pteg_count
) - 11;
658 /* Initialize the HPT with no entries */
659 memset((void *)table
, 0, htab_size_bytes
);
662 mtspr(SPRN_SDR1
, _SDR1
);
665 prot
= pgprot_val(PAGE_KERNEL
);
667 #ifdef CONFIG_DEBUG_PAGEALLOC
668 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
669 linear_map_hash_slots
= __va(memblock_alloc_base(linear_map_hash_count
,
671 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
672 #endif /* CONFIG_DEBUG_PAGEALLOC */
674 /* On U3 based machines, we need to reserve the DART area and
675 * _NOT_ map it to avoid cache paradoxes as it's remapped non
679 /* create bolted the linear mapping in the hash table */
680 for_each_memblock(memory
, reg
) {
681 base
= (unsigned long)__va(reg
->base
);
684 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
687 #ifdef CONFIG_U3_DART
688 /* Do not map the DART space. Fortunately, it will be aligned
689 * in such a way that it will not cross two memblock regions and
690 * will fit within a single 16Mb page.
691 * The DART space is assumed to be a full 16Mb region even if
692 * we only use 2Mb of that space. We will use more of it later
693 * for AGP GART. We have to use a full 16Mb large page.
695 DBG("DART base: %lx\n", dart_tablebase
);
697 if (dart_tablebase
!= 0 && dart_tablebase
>= base
698 && dart_tablebase
< (base
+ size
)) {
699 unsigned long dart_table_end
= dart_tablebase
+ 16 * MB
;
700 if (base
!= dart_tablebase
)
701 BUG_ON(htab_bolt_mapping(base
, dart_tablebase
,
705 if ((base
+ size
) > dart_table_end
)
706 BUG_ON(htab_bolt_mapping(dart_tablebase
+16*MB
,
708 __pa(dart_table_end
),
714 #endif /* CONFIG_U3_DART */
715 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
716 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
718 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
721 * If we have a memory_limit and we've allocated TCEs then we need to
722 * explicitly map the TCE area at the top of RAM. We also cope with the
723 * case that the TCEs start below memory_limit.
724 * tce_alloc_start/end are 16MB aligned so the mapping should work
725 * for either 4K or 16MB pages.
727 if (tce_alloc_start
) {
728 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
729 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
731 if (base
+ size
>= tce_alloc_start
)
732 tce_alloc_start
= base
+ size
+ 1;
734 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
735 __pa(tce_alloc_start
), prot
,
736 mmu_linear_psize
, mmu_kernel_ssize
));
741 DBG(" <- htab_initialize()\n");
746 void __init
early_init_mmu(void)
748 /* Setup initial STAB address in the PACA */
749 get_paca()->stab_real
= __pa((u64
)&initial_stab
);
750 get_paca()->stab_addr
= (u64
)&initial_stab
;
752 /* Initialize the MMU Hash table and create the linear mapping
753 * of memory. Has to be done before stab/slb initialization as
754 * this is currently where the page size encoding is obtained
758 /* Initialize stab / SLB management */
759 if (mmu_has_feature(MMU_FTR_SLB
))
764 void __cpuinit
early_init_mmu_secondary(void)
766 /* Initialize hash table for that CPU */
767 if (!firmware_has_feature(FW_FEATURE_LPAR
))
768 mtspr(SPRN_SDR1
, _SDR1
);
770 /* Initialize STAB/SLB. We use a virtual address as it works
771 * in real mode on pSeries.
773 if (mmu_has_feature(MMU_FTR_SLB
))
776 stab_initialize(get_paca()->stab_addr
);
778 #endif /* CONFIG_SMP */
781 * Called by asm hashtable.S for doing lazy icache flush
783 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
787 if (!pfn_valid(pte_pfn(pte
)))
790 page
= pte_page(pte
);
793 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
795 flush_dcache_icache_page(page
);
796 set_bit(PG_arch_1
, &page
->flags
);
803 #ifdef CONFIG_PPC_MM_SLICES
804 unsigned int get_paca_psize(unsigned long addr
)
807 unsigned char *hpsizes
;
808 unsigned long index
, mask_index
;
810 if (addr
< SLICE_LOW_TOP
) {
811 lpsizes
= get_paca()->context
.low_slices_psize
;
812 index
= GET_LOW_SLICE_INDEX(addr
);
813 return (lpsizes
>> (index
* 4)) & 0xF;
815 hpsizes
= get_paca()->context
.high_slices_psize
;
816 index
= GET_HIGH_SLICE_INDEX(addr
);
817 mask_index
= index
& 0x1;
818 return (hpsizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
822 unsigned int get_paca_psize(unsigned long addr
)
824 return get_paca()->context
.user_psize
;
829 * Demote a segment to using 4k pages.
830 * For now this makes the whole process use 4k pages.
832 #ifdef CONFIG_PPC_64K_PAGES
833 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
835 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
837 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
838 #ifdef CONFIG_SPU_BASE
839 spu_flush_all_slbs(mm
);
841 if (get_paca_psize(addr
) != MMU_PAGE_4K
) {
842 get_paca()->context
= mm
->context
;
843 slb_flush_and_rebolt();
846 #endif /* CONFIG_PPC_64K_PAGES */
848 #ifdef CONFIG_PPC_SUBPAGE_PROT
850 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
851 * Userspace sets the subpage permissions using the subpage_prot system call.
853 * Result is 0: full permissions, _PAGE_RW: read-only,
854 * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
856 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
858 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
862 if (ea
>= spt
->maxaddr
)
864 if (ea
< 0x100000000) {
865 /* addresses below 4GB use spt->low_prot */
866 sbpm
= spt
->low_prot
;
868 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
872 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
875 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
877 /* extract 2-bit bitfield for this 4k subpage */
878 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
880 /* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
881 spp
= ((spp
& 2) ? _PAGE_USER
: 0) | ((spp
& 1) ? _PAGE_RW
: 0);
885 #else /* CONFIG_PPC_SUBPAGE_PROT */
886 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
892 void hash_failure_debug(unsigned long ea
, unsigned long access
,
893 unsigned long vsid
, unsigned long trap
,
894 int ssize
, int psize
, unsigned long pte
)
896 if (!printk_ratelimit())
898 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
899 ea
, access
, current
->comm
);
900 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
901 trap
, vsid
, ssize
, psize
, pte
);
906 * 1 - normal page fault
907 * -1 - critical hash insertion error
908 * -2 - access not permitted by subpage protection mechanism
910 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
)
914 struct mm_struct
*mm
;
917 const struct cpumask
*tmp
;
918 int rc
, user_region
= 0, local
= 0;
921 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
924 if ((ea
& ~REGION_MASK
) >= PGTABLE_RANGE
) {
925 DBG_LOW(" out of pgtable range !\n");
929 /* Get region & vsid */
930 switch (REGION_ID(ea
)) {
935 DBG_LOW(" user region with no mm !\n");
938 psize
= get_slice_psize(mm
, ea
);
939 ssize
= user_segment_size(ea
);
940 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
942 case VMALLOC_REGION_ID
:
944 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
945 if (ea
< VMALLOC_END
)
946 psize
= mmu_vmalloc_psize
;
948 psize
= mmu_io_psize
;
949 ssize
= mmu_kernel_ssize
;
953 * Send the problem up to do_page_fault
957 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
964 /* Check CPU locality */
965 tmp
= cpumask_of(smp_processor_id());
966 if (user_region
&& cpumask_equal(mm_cpumask(mm
), tmp
))
969 #ifndef CONFIG_PPC_64K_PAGES
970 /* If we use 4K pages and our psize is not 4K, then we might
971 * be hitting a special driver mapping, and need to align the
972 * address before we fetch the PTE.
974 * It could also be a hugepage mapping, in which case this is
975 * not necessary, but it's not harmful, either.
977 if (psize
!= MMU_PAGE_4K
)
978 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
979 #endif /* CONFIG_PPC_64K_PAGES */
981 /* Get PTE and page size from page tables */
982 ptep
= find_linux_pte_or_hugepte(pgdir
, ea
, &hugeshift
);
983 if (ptep
== NULL
|| !pte_present(*ptep
)) {
984 DBG_LOW(" no PTE !\n");
988 /* Add _PAGE_PRESENT to the required access perm */
989 access
|= _PAGE_PRESENT
;
991 /* Pre-check access permissions (will be re-checked atomically
992 * in __hash_page_XX but this pre-check is a fast path
994 if (access
& ~pte_val(*ptep
)) {
995 DBG_LOW(" no access !\n");
999 #ifdef CONFIG_HUGETLB_PAGE
1001 return __hash_page_huge(ea
, access
, vsid
, ptep
, trap
, local
,
1002 ssize
, hugeshift
, psize
);
1003 #endif /* CONFIG_HUGETLB_PAGE */
1005 #ifndef CONFIG_PPC_64K_PAGES
1006 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1008 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1009 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1011 /* Do actual hashing */
1012 #ifdef CONFIG_PPC_64K_PAGES
1013 /* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
1014 if ((pte_val(*ptep
) & _PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1015 demote_segment_4k(mm
, ea
);
1016 psize
= MMU_PAGE_4K
;
1019 /* If this PTE is non-cacheable and we have restrictions on
1020 * using non cacheable large pages, then we switch to 4k
1022 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&&
1023 (pte_val(*ptep
) & _PAGE_NO_CACHE
)) {
1025 demote_segment_4k(mm
, ea
);
1026 psize
= MMU_PAGE_4K
;
1027 } else if (ea
< VMALLOC_END
) {
1029 * some driver did a non-cacheable mapping
1030 * in vmalloc space, so switch vmalloc
1033 printk(KERN_ALERT
"Reducing vmalloc segment "
1034 "to 4kB pages because of "
1035 "non-cacheable mapping\n");
1036 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1037 #ifdef CONFIG_SPU_BASE
1038 spu_flush_all_slbs(mm
);
1043 if (psize
!= get_paca_psize(ea
)) {
1044 get_paca()->context
= mm
->context
;
1045 slb_flush_and_rebolt();
1047 } else if (get_paca()->vmalloc_sllp
!=
1048 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1049 get_paca()->vmalloc_sllp
=
1050 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1051 slb_vmalloc_update();
1053 #endif /* CONFIG_PPC_64K_PAGES */
1055 #ifdef CONFIG_PPC_HAS_HASH_64K
1056 if (psize
== MMU_PAGE_64K
)
1057 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1059 #endif /* CONFIG_PPC_HAS_HASH_64K */
1061 int spp
= subpage_protection(mm
, ea
);
1065 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1069 /* Dump some info in case of hash insertion failure, they should
1070 * never happen so it is really useful to know if/when they do
1073 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1075 #ifndef CONFIG_PPC_64K_PAGES
1076 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1078 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1079 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1081 DBG_LOW(" -> rc=%d\n", rc
);
1084 EXPORT_SYMBOL_GPL(hash_page
);
1086 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1087 unsigned long access
, unsigned long trap
)
1092 unsigned long flags
;
1093 int rc
, ssize
, local
= 0;
1095 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1097 #ifdef CONFIG_PPC_MM_SLICES
1098 /* We only prefault standard pages for now */
1099 if (unlikely(get_slice_psize(mm
, ea
) != mm
->context
.user_psize
))
1103 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1104 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1106 /* Get Linux PTE if available */
1110 ptep
= find_linux_pte(pgdir
, ea
);
1114 #ifdef CONFIG_PPC_64K_PAGES
1115 /* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1116 * a 64K kernel), then we don't preload, hash_page() will take
1117 * care of it once we actually try to access the page.
1118 * That way we don't have to duplicate all of the logic for segment
1119 * page size demotion here
1121 if (pte_val(*ptep
) & (_PAGE_4K_PFN
| _PAGE_NO_CACHE
))
1123 #endif /* CONFIG_PPC_64K_PAGES */
1126 ssize
= user_segment_size(ea
);
1127 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1129 /* Hash doesn't like irqs */
1130 local_irq_save(flags
);
1132 /* Is that local to this CPU ? */
1133 if (cpumask_equal(mm_cpumask(mm
), cpumask_of(smp_processor_id())))
1137 #ifdef CONFIG_PPC_HAS_HASH_64K
1138 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1139 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
);
1141 #endif /* CONFIG_PPC_HAS_HASH_64K */
1142 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, local
, ssize
,
1143 subpage_protection(mm
, ea
));
1145 /* Dump some info in case of hash insertion failure, they should
1146 * never happen so it is really useful to know if/when they do
1149 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1150 mm
->context
.user_psize
, pte_val(*ptep
));
1152 local_irq_restore(flags
);
1155 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1156 * do not forget to update the assembly call site !
1158 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1161 unsigned long hash
, index
, shift
, hidx
, slot
;
1163 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1164 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1165 hash
= hpt_hash(vpn
, shift
, ssize
);
1166 hidx
= __rpte_to_hidx(pte
, index
);
1167 if (hidx
& _PTEIDX_SECONDARY
)
1169 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1170 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1171 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index
, slot
, hidx
);
1172 ppc_md
.hpte_invalidate(slot
, vpn
, psize
, ssize
, local
);
1173 } pte_iterate_hashed_end();
1176 void flush_hash_range(unsigned long number
, int local
)
1178 if (ppc_md
.flush_hash_range
)
1179 ppc_md
.flush_hash_range(number
, local
);
1182 struct ppc64_tlb_batch
*batch
=
1183 &__get_cpu_var(ppc64_tlb_batch
);
1185 for (i
= 0; i
< number
; i
++)
1186 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1187 batch
->psize
, batch
->ssize
, local
);
1192 * low_hash_fault is called when we the low level hash code failed
1193 * to instert a PTE due to an hypervisor error
1195 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1197 if (user_mode(regs
)) {
1198 #ifdef CONFIG_PPC_SUBPAGE_PROT
1200 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1203 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1205 bad_page_fault(regs
, address
, SIGBUS
);
1208 #ifdef CONFIG_DEBUG_PAGEALLOC
1209 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1211 unsigned long hash
, hpteg
;
1212 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1213 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1214 unsigned long mode
= htab_convert_pte_flags(PAGE_KERNEL
);
1217 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1218 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
1220 ret
= ppc_md
.hpte_insert(hpteg
, vpn
, __pa(vaddr
),
1221 mode
, HPTE_V_BOLTED
,
1222 mmu_linear_psize
, mmu_kernel_ssize
);
1224 spin_lock(&linear_map_hash_lock
);
1225 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1226 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1227 spin_unlock(&linear_map_hash_lock
);
1230 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1232 unsigned long hash
, hidx
, slot
;
1233 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1234 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1236 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1237 spin_lock(&linear_map_hash_lock
);
1238 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1239 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1240 linear_map_hash_slots
[lmi
] = 0;
1241 spin_unlock(&linear_map_hash_lock
);
1242 if (hidx
& _PTEIDX_SECONDARY
)
1244 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1245 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1246 ppc_md
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
, mmu_kernel_ssize
, 0);
1249 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1251 unsigned long flags
, vaddr
, lmi
;
1254 local_irq_save(flags
);
1255 for (i
= 0; i
< numpages
; i
++, page
++) {
1256 vaddr
= (unsigned long)page_address(page
);
1257 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1258 if (lmi
>= linear_map_hash_count
)
1261 kernel_map_linear_page(vaddr
, lmi
);
1263 kernel_unmap_linear_page(vaddr
, lmi
);
1265 local_irq_restore(flags
);
1267 #endif /* CONFIG_DEBUG_PAGEALLOC */
1269 void setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1270 phys_addr_t first_memblock_size
)
1272 /* We don't currently support the first MEMBLOCK not mapping 0
1273 * physical on those processors
1275 BUG_ON(first_memblock_base
!= 0);
1277 /* On LPAR systems, the first entry is our RMA region,
1278 * non-LPAR 64-bit hash MMU systems don't have a limitation
1279 * on real mode access, but using the first entry works well
1280 * enough. We also clamp it to 1G to avoid some funky things
1281 * such as RTAS bugs etc...
1283 ppc64_rma_size
= min_t(u64
, first_memblock_size
, 0x40000000);
1285 /* Finally limit subsequent allocations */
1286 memblock_set_current_limit(ppc64_rma_size
);