2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
23 #include <asm/setup.h>
25 #define PAGE_SHIFT_64K 16
26 #define PAGE_SHIFT_16M 24
27 #define PAGE_SHIFT_16G 34
29 unsigned int HPAGE_SHIFT
;
32 * Tracks gpages after the device tree is scanned and before the
33 * huge_boot_pages list is ready. On non-Freescale implementations, this is
34 * just used to track 16G pages and so is a single array. FSL-based
35 * implementations may have more than one gpage size, so we need multiple
38 #ifdef CONFIG_PPC_FSL_BOOK3E
39 #define MAX_NUMBER_GPAGES 128
41 u64 gpage_list
[MAX_NUMBER_GPAGES
];
42 unsigned int nr_gpages
;
44 static struct psize_gpages gpage_freearray
[MMU_PAGE_COUNT
];
46 #define MAX_NUMBER_GPAGES 1024
47 static u64 gpage_freearray
[MAX_NUMBER_GPAGES
];
48 static unsigned nr_gpages
;
51 static inline int shift_to_mmu_psize(unsigned int shift
)
55 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
)
56 if (mmu_psize_defs
[psize
].shift
== shift
)
61 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize
)
63 if (mmu_psize_defs
[mmu_psize
].shift
)
64 return mmu_psize_defs
[mmu_psize
].shift
;
68 #define hugepd_none(hpd) ((hpd).pd == 0)
70 pte_t
*find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
, unsigned *shift
)
75 hugepd_t
*hpdp
= NULL
;
76 unsigned pdshift
= PGDIR_SHIFT
;
81 pg
= pgdir
+ pgd_index(ea
);
83 hpdp
= (hugepd_t
*)pg
;
84 } else if (!pgd_none(*pg
)) {
86 pu
= pud_offset(pg
, ea
);
88 hpdp
= (hugepd_t
*)pu
;
89 else if (!pud_none(*pu
)) {
91 pm
= pmd_offset(pu
, ea
);
93 hpdp
= (hugepd_t
*)pm
;
94 else if (!pmd_none(*pm
)) {
95 return pte_offset_kernel(pm
, ea
);
104 *shift
= hugepd_shift(*hpdp
);
105 return hugepte_offset(hpdp
, ea
, pdshift
);
107 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte
);
109 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
111 return find_linux_pte_or_hugepte(mm
->pgd
, addr
, NULL
);
114 static int __hugepte_alloc(struct mm_struct
*mm
, hugepd_t
*hpdp
,
115 unsigned long address
, unsigned pdshift
, unsigned pshift
)
117 struct kmem_cache
*cachep
;
120 #ifdef CONFIG_PPC_FSL_BOOK3E
122 int num_hugepd
= 1 << (pshift
- pdshift
);
123 cachep
= hugepte_cache
;
125 cachep
= PGT_CACHE(pdshift
- pshift
);
128 new = kmem_cache_zalloc(cachep
, GFP_KERNEL
|__GFP_REPEAT
);
130 BUG_ON(pshift
> HUGEPD_SHIFT_MASK
);
131 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK
);
136 spin_lock(&mm
->page_table_lock
);
137 #ifdef CONFIG_PPC_FSL_BOOK3E
139 * We have multiple higher-level entries that point to the same
140 * actual pte location. Fill in each as we go and backtrack on error.
141 * We need all of these so the DTLB pgtable walk code can find the
142 * right higher-level entry without knowing if it's a hugepage or not.
144 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++) {
145 if (unlikely(!hugepd_none(*hpdp
)))
148 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
150 /* If we bailed from the for loop early, an error occurred, clean up */
151 if (i
< num_hugepd
) {
152 for (i
= i
- 1 ; i
>= 0; i
--, hpdp
--)
154 kmem_cache_free(cachep
, new);
157 if (!hugepd_none(*hpdp
))
158 kmem_cache_free(cachep
, new);
160 hpdp
->pd
= ((unsigned long)new & ~PD_HUGE
) | pshift
;
162 spin_unlock(&mm
->page_table_lock
);
167 * These macros define how to determine which level of the page table holds
170 #ifdef CONFIG_PPC_FSL_BOOK3E
171 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
172 #define HUGEPD_PUD_SHIFT PUD_SHIFT
174 #define HUGEPD_PGD_SHIFT PUD_SHIFT
175 #define HUGEPD_PUD_SHIFT PMD_SHIFT
178 pte_t
*huge_pte_alloc(struct mm_struct
*mm
, unsigned long addr
, unsigned long sz
)
183 hugepd_t
*hpdp
= NULL
;
184 unsigned pshift
= __ffs(sz
);
185 unsigned pdshift
= PGDIR_SHIFT
;
189 pg
= pgd_offset(mm
, addr
);
191 if (pshift
>= HUGEPD_PGD_SHIFT
) {
192 hpdp
= (hugepd_t
*)pg
;
195 pu
= pud_alloc(mm
, pg
, addr
);
196 if (pshift
>= HUGEPD_PUD_SHIFT
) {
197 hpdp
= (hugepd_t
*)pu
;
200 pm
= pmd_alloc(mm
, pu
, addr
);
201 hpdp
= (hugepd_t
*)pm
;
208 BUG_ON(!hugepd_none(*hpdp
) && !hugepd_ok(*hpdp
));
210 if (hugepd_none(*hpdp
) && __hugepte_alloc(mm
, hpdp
, addr
, pdshift
, pshift
))
213 return hugepte_offset(hpdp
, addr
, pdshift
);
216 #ifdef CONFIG_PPC_FSL_BOOK3E
217 /* Build list of addresses of gigantic pages. This function is used in early
218 * boot before the buddy or bootmem allocator is setup.
220 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
222 unsigned int idx
= shift_to_mmu_psize(__ffs(page_size
));
228 gpage_freearray
[idx
].nr_gpages
= number_of_pages
;
230 for (i
= 0; i
< number_of_pages
; i
++) {
231 gpage_freearray
[idx
].gpage_list
[i
] = addr
;
237 * Moves the gigantic page addresses from the temporary list to the
238 * huge_boot_pages list.
240 int alloc_bootmem_huge_page(struct hstate
*hstate
)
242 struct huge_bootmem_page
*m
;
243 int idx
= shift_to_mmu_psize(hstate
->order
+ PAGE_SHIFT
);
244 int nr_gpages
= gpage_freearray
[idx
].nr_gpages
;
249 #ifdef CONFIG_HIGHMEM
251 * If gpages can be in highmem we can't use the trick of storing the
252 * data structure in the page; allocate space for this
254 m
= alloc_bootmem(sizeof(struct huge_bootmem_page
));
255 m
->phys
= gpage_freearray
[idx
].gpage_list
[--nr_gpages
];
257 m
= phys_to_virt(gpage_freearray
[idx
].gpage_list
[--nr_gpages
]);
260 list_add(&m
->list
, &huge_boot_pages
);
261 gpage_freearray
[idx
].nr_gpages
= nr_gpages
;
262 gpage_freearray
[idx
].gpage_list
[nr_gpages
] = 0;
268 * Scan the command line hugepagesz= options for gigantic pages; store those in
269 * a list that we use to allocate the memory once all options are parsed.
272 unsigned long gpage_npages
[MMU_PAGE_COUNT
];
274 static int __init
do_gpage_early_setup(char *param
, char *val
,
277 static phys_addr_t size
;
278 unsigned long npages
;
281 * The hugepagesz and hugepages cmdline options are interleaved. We
282 * use the size variable to keep track of whether or not this was done
283 * properly and skip over instances where it is incorrect. Other
284 * command-line parsing code will issue warnings, so we don't need to.
287 if ((strcmp(param
, "default_hugepagesz") == 0) ||
288 (strcmp(param
, "hugepagesz") == 0)) {
289 size
= memparse(val
, NULL
);
290 } else if (strcmp(param
, "hugepages") == 0) {
292 if (sscanf(val
, "%lu", &npages
) <= 0)
294 gpage_npages
[shift_to_mmu_psize(__ffs(size
))] = npages
;
303 * This function allocates physical space for pages that are larger than the
304 * buddy allocator can handle. We want to allocate these in highmem because
305 * the amount of lowmem is limited. This means that this function MUST be
306 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
307 * allocate to grab highmem.
309 void __init
reserve_hugetlb_gpages(void)
311 static __initdata
char cmdline
[COMMAND_LINE_SIZE
];
312 phys_addr_t size
, base
;
315 strlcpy(cmdline
, boot_command_line
, COMMAND_LINE_SIZE
);
316 parse_args("hugetlb gpages", cmdline
, NULL
, 0, 0, 0,
317 &do_gpage_early_setup
);
320 * Walk gpage list in reverse, allocating larger page sizes first.
321 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
322 * When we reach the point in the list where pages are no longer
323 * considered gpages, we're done.
325 for (i
= MMU_PAGE_COUNT
-1; i
>= 0; i
--) {
326 if (mmu_psize_defs
[i
].shift
== 0 || gpage_npages
[i
] == 0)
328 else if (mmu_psize_to_shift(i
) < (MAX_ORDER
+ PAGE_SHIFT
))
331 size
= (phys_addr_t
)(1ULL << mmu_psize_to_shift(i
));
332 base
= memblock_alloc_base(size
* gpage_npages
[i
], size
,
333 MEMBLOCK_ALLOC_ANYWHERE
);
334 add_gpage(base
, size
, gpage_npages
[i
]);
338 #else /* !PPC_FSL_BOOK3E */
340 /* Build list of addresses of gigantic pages. This function is used in early
341 * boot before the buddy or bootmem allocator is setup.
343 void add_gpage(u64 addr
, u64 page_size
, unsigned long number_of_pages
)
347 while (number_of_pages
> 0) {
348 gpage_freearray
[nr_gpages
] = addr
;
355 /* Moves the gigantic page addresses from the temporary list to the
356 * huge_boot_pages list.
358 int alloc_bootmem_huge_page(struct hstate
*hstate
)
360 struct huge_bootmem_page
*m
;
363 m
= phys_to_virt(gpage_freearray
[--nr_gpages
]);
364 gpage_freearray
[nr_gpages
] = 0;
365 list_add(&m
->list
, &huge_boot_pages
);
371 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
376 #ifdef CONFIG_PPC_FSL_BOOK3E
377 #define HUGEPD_FREELIST_SIZE \
378 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
380 struct hugepd_freelist
{
386 static DEFINE_PER_CPU(struct hugepd_freelist
*, hugepd_freelist_cur
);
388 static void hugepd_free_rcu_callback(struct rcu_head
*head
)
390 struct hugepd_freelist
*batch
=
391 container_of(head
, struct hugepd_freelist
, rcu
);
394 for (i
= 0; i
< batch
->index
; i
++)
395 kmem_cache_free(hugepte_cache
, batch
->ptes
[i
]);
397 free_page((unsigned long)batch
);
400 static void hugepd_free(struct mmu_gather
*tlb
, void *hugepte
)
402 struct hugepd_freelist
**batchp
;
404 batchp
= &__get_cpu_var(hugepd_freelist_cur
);
406 if (atomic_read(&tlb
->mm
->mm_users
) < 2 ||
407 cpumask_equal(mm_cpumask(tlb
->mm
),
408 cpumask_of(smp_processor_id()))) {
409 kmem_cache_free(hugepte_cache
, hugepte
);
413 if (*batchp
== NULL
) {
414 *batchp
= (struct hugepd_freelist
*)__get_free_page(GFP_ATOMIC
);
415 (*batchp
)->index
= 0;
418 (*batchp
)->ptes
[(*batchp
)->index
++] = hugepte
;
419 if ((*batchp
)->index
== HUGEPD_FREELIST_SIZE
) {
420 call_rcu_sched(&(*batchp
)->rcu
, hugepd_free_rcu_callback
);
426 static void free_hugepd_range(struct mmu_gather
*tlb
, hugepd_t
*hpdp
, int pdshift
,
427 unsigned long start
, unsigned long end
,
428 unsigned long floor
, unsigned long ceiling
)
430 pte_t
*hugepte
= hugepd_page(*hpdp
);
433 unsigned long pdmask
= ~((1UL << pdshift
) - 1);
434 unsigned int num_hugepd
= 1;
436 #ifdef CONFIG_PPC_FSL_BOOK3E
437 /* Note: On fsl the hpdp may be the first of several */
438 num_hugepd
= (1 << (hugepd_shift(*hpdp
) - pdshift
));
440 unsigned int shift
= hugepd_shift(*hpdp
);
451 if (end
- 1 > ceiling
- 1)
454 for (i
= 0; i
< num_hugepd
; i
++, hpdp
++)
459 #ifdef CONFIG_PPC_FSL_BOOK3E
460 hugepd_free(tlb
, hugepte
);
462 pgtable_free_tlb(tlb
, hugepte
, pdshift
- shift
);
466 static void hugetlb_free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
467 unsigned long addr
, unsigned long end
,
468 unsigned long floor
, unsigned long ceiling
)
476 pmd
= pmd_offset(pud
, addr
);
477 next
= pmd_addr_end(addr
, end
);
480 #ifdef CONFIG_PPC_FSL_BOOK3E
482 * Increment next by the size of the huge mapping since
483 * there may be more than one entry at this level for a
484 * single hugepage, but all of them point to
485 * the same kmem cache that holds the hugepte.
487 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pmd
));
489 free_hugepd_range(tlb
, (hugepd_t
*)pmd
, PMD_SHIFT
,
490 addr
, next
, floor
, ceiling
);
491 } while (addr
= next
, addr
!= end
);
501 if (end
- 1 > ceiling
- 1)
504 pmd
= pmd_offset(pud
, start
);
506 pmd_free_tlb(tlb
, pmd
, start
);
509 static void hugetlb_free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
510 unsigned long addr
, unsigned long end
,
511 unsigned long floor
, unsigned long ceiling
)
519 pud
= pud_offset(pgd
, addr
);
520 next
= pud_addr_end(addr
, end
);
521 if (!is_hugepd(pud
)) {
522 if (pud_none_or_clear_bad(pud
))
524 hugetlb_free_pmd_range(tlb
, pud
, addr
, next
, floor
,
527 #ifdef CONFIG_PPC_FSL_BOOK3E
529 * Increment next by the size of the huge mapping since
530 * there may be more than one entry at this level for a
531 * single hugepage, but all of them point to
532 * the same kmem cache that holds the hugepte.
534 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pud
));
536 free_hugepd_range(tlb
, (hugepd_t
*)pud
, PUD_SHIFT
,
537 addr
, next
, floor
, ceiling
);
539 } while (addr
= next
, addr
!= end
);
545 ceiling
&= PGDIR_MASK
;
549 if (end
- 1 > ceiling
- 1)
552 pud
= pud_offset(pgd
, start
);
554 pud_free_tlb(tlb
, pud
, start
);
558 * This function frees user-level page tables of a process.
560 * Must be called with pagetable lock held.
562 void hugetlb_free_pgd_range(struct mmu_gather
*tlb
,
563 unsigned long addr
, unsigned long end
,
564 unsigned long floor
, unsigned long ceiling
)
570 * Because there are a number of different possible pagetable
571 * layouts for hugepage ranges, we limit knowledge of how
572 * things should be laid out to the allocation path
573 * (huge_pte_alloc(), above). Everything else works out the
574 * structure as it goes from information in the hugepd
575 * pointers. That means that we can't here use the
576 * optimization used in the normal page free_pgd_range(), of
577 * checking whether we're actually covering a large enough
578 * range to have to do anything at the top level of the walk
579 * instead of at the bottom.
581 * To make sense of this, you should probably go read the big
582 * block comment at the top of the normal free_pgd_range(),
587 next
= pgd_addr_end(addr
, end
);
588 pgd
= pgd_offset(tlb
->mm
, addr
);
589 if (!is_hugepd(pgd
)) {
590 if (pgd_none_or_clear_bad(pgd
))
592 hugetlb_free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
594 #ifdef CONFIG_PPC_FSL_BOOK3E
596 * Increment next by the size of the huge mapping since
597 * there may be more than one entry at the pgd level
598 * for a single hugepage, but all of them point to the
599 * same kmem cache that holds the hugepte.
601 next
= addr
+ (1 << hugepd_shift(*(hugepd_t
*)pgd
));
603 free_hugepd_range(tlb
, (hugepd_t
*)pgd
, PGDIR_SHIFT
,
604 addr
, next
, floor
, ceiling
);
606 } while (addr
= next
, addr
!= end
);
610 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
617 ptep
= find_linux_pte_or_hugepte(mm
->pgd
, address
, &shift
);
619 /* Verify it is a huge page else bail. */
621 return ERR_PTR(-EINVAL
);
623 mask
= (1UL << shift
) - 1;
624 page
= pte_page(*ptep
);
626 page
+= (address
& mask
) / PAGE_SIZE
;
631 int pmd_huge(pmd_t pmd
)
636 int pud_huge(pud_t pud
)
642 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
643 pmd_t
*pmd
, int write
)
649 static noinline
int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
650 unsigned long end
, int write
, struct page
**pages
, int *nr
)
653 unsigned long pte_end
;
654 struct page
*head
, *page
, *tail
;
658 pte_end
= (addr
+ sz
) & ~(sz
-1);
663 mask
= _PAGE_PRESENT
| _PAGE_USER
;
667 if ((pte_val(pte
) & mask
) != mask
)
670 /* hugepages are never "special" */
671 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
674 head
= pte_page(pte
);
676 page
= head
+ ((addr
& (sz
-1)) >> PAGE_SHIFT
);
679 VM_BUG_ON(compound_head(page
) != head
);
684 } while (addr
+= PAGE_SIZE
, addr
!= end
);
686 if (!page_cache_add_speculative(head
, refs
)) {
691 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
692 /* Could be optimized better */
700 * Any tail page need their mapcount reference taken before we
705 get_huge_page_tail(tail
);
712 static unsigned long hugepte_addr_end(unsigned long addr
, unsigned long end
,
715 unsigned long __boundary
= (addr
+ sz
) & ~(sz
-1);
716 return (__boundary
- 1 < end
- 1) ? __boundary
: end
;
719 int gup_hugepd(hugepd_t
*hugepd
, unsigned pdshift
,
720 unsigned long addr
, unsigned long end
,
721 int write
, struct page
**pages
, int *nr
)
724 unsigned long sz
= 1UL << hugepd_shift(*hugepd
);
727 ptep
= hugepte_offset(hugepd
, addr
, pdshift
);
729 next
= hugepte_addr_end(addr
, end
, sz
);
730 if (!gup_hugepte(ptep
, sz
, addr
, end
, write
, pages
, nr
))
732 } while (ptep
++, addr
= next
, addr
!= end
);
737 #ifdef CONFIG_PPC_MM_SLICES
738 unsigned long hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
739 unsigned long len
, unsigned long pgoff
,
742 struct hstate
*hstate
= hstate_file(file
);
743 int mmu_psize
= shift_to_mmu_psize(huge_page_shift(hstate
));
745 return slice_get_unmapped_area(addr
, len
, flags
, mmu_psize
, 1, 0);
749 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
751 #ifdef CONFIG_PPC_MM_SLICES
752 unsigned int psize
= get_slice_psize(vma
->vm_mm
, vma
->vm_start
);
754 return 1UL << mmu_psize_to_shift(psize
);
756 if (!is_vm_hugetlb_page(vma
))
759 return huge_page_size(hstate_vma(vma
));
763 static inline bool is_power_of_4(unsigned long x
)
765 if (is_power_of_2(x
))
766 return (__ilog2(x
) % 2) ? false : true;
770 static int __init
add_huge_page_size(unsigned long long size
)
772 int shift
= __ffs(size
);
775 /* Check that it is a page size supported by the hardware and
776 * that it fits within pagetable and slice limits. */
777 #ifdef CONFIG_PPC_FSL_BOOK3E
778 if ((size
< PAGE_SIZE
) || !is_power_of_4(size
))
781 if (!is_power_of_2(size
)
782 || (shift
> SLICE_HIGH_SHIFT
) || (shift
<= PAGE_SHIFT
))
786 if ((mmu_psize
= shift_to_mmu_psize(shift
)) < 0)
789 #ifdef CONFIG_SPU_FS_64K_LS
790 /* Disable support for 64K huge pages when 64K SPU local store
791 * support is enabled as the current implementation conflicts.
793 if (shift
== PAGE_SHIFT_64K
)
795 #endif /* CONFIG_SPU_FS_64K_LS */
797 BUG_ON(mmu_psize_defs
[mmu_psize
].shift
!= shift
);
799 /* Return if huge page size has already been setup */
800 if (size_to_hstate(size
))
803 hugetlb_add_hstate(shift
- PAGE_SHIFT
);
808 static int __init
hugepage_setup_sz(char *str
)
810 unsigned long long size
;
812 size
= memparse(str
, &str
);
814 if (add_huge_page_size(size
) != 0)
815 printk(KERN_WARNING
"Invalid huge page size specified(%llu)\n", size
);
819 __setup("hugepagesz=", hugepage_setup_sz
);
821 #ifdef CONFIG_PPC_FSL_BOOK3E
822 struct kmem_cache
*hugepte_cache
;
823 static int __init
hugetlbpage_init(void)
827 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
830 if (!mmu_psize_defs
[psize
].shift
)
833 shift
= mmu_psize_to_shift(psize
);
835 /* Don't treat normal page sizes as huge... */
836 if (shift
!= PAGE_SHIFT
)
837 if (add_huge_page_size(1ULL << shift
) < 0)
842 * Create a kmem cache for hugeptes. The bottom bits in the pte have
843 * size information encoded in them, so align them to allow this
845 hugepte_cache
= kmem_cache_create("hugepte-cache", sizeof(pte_t
),
846 HUGEPD_SHIFT_MASK
+ 1, 0, NULL
);
847 if (hugepte_cache
== NULL
)
848 panic("%s: Unable to create kmem cache for hugeptes\n",
851 /* Default hpage size = 4M */
852 if (mmu_psize_defs
[MMU_PAGE_4M
].shift
)
853 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_4M
].shift
;
855 panic("%s: Unable to set default huge page size\n", __func__
);
861 static int __init
hugetlbpage_init(void)
865 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
868 for (psize
= 0; psize
< MMU_PAGE_COUNT
; ++psize
) {
872 if (!mmu_psize_defs
[psize
].shift
)
875 shift
= mmu_psize_to_shift(psize
);
877 if (add_huge_page_size(1ULL << shift
) < 0)
880 if (shift
< PMD_SHIFT
)
882 else if (shift
< PUD_SHIFT
)
885 pdshift
= PGDIR_SHIFT
;
887 pgtable_cache_add(pdshift
- shift
, NULL
);
888 if (!PGT_CACHE(pdshift
- shift
))
889 panic("hugetlbpage_init(): could not create "
890 "pgtable cache for %d bit pagesize\n", shift
);
893 /* Set default large page size. Currently, we pick 16M or 1M
894 * depending on what is available
896 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
897 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_16M
].shift
;
898 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
899 HPAGE_SHIFT
= mmu_psize_defs
[MMU_PAGE_1M
].shift
;
904 module_init(hugetlbpage_init
);
906 void flush_dcache_icache_hugepage(struct page
*page
)
911 BUG_ON(!PageCompound(page
));
913 for (i
= 0; i
< (1UL << compound_order(page
)); i
++) {
914 if (!PageHighMem(page
)) {
915 __flush_dcache_icache(page_address(page
+i
));
917 start
= kmap_atomic(page
+i
);
918 __flush_dcache_icache(start
);
919 kunmap_atomic(start
);