x86, efi: Set runtime_version to the EFI spec revision
[linux/fpc-iii.git] / arch / powerpc / platforms / powermac / nvram.c
blob014d06e6d46b88922e29367d26a227dbeef7c573
1 /*
2 * Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org)
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Todo: - add support for the OF persistent properties
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/stddef.h>
14 #include <linux/string.h>
15 #include <linux/nvram.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/adb.h>
20 #include <linux/pmu.h>
21 #include <linux/bootmem.h>
22 #include <linux/completion.h>
23 #include <linux/spinlock.h>
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/machdep.h>
28 #include <asm/nvram.h>
30 #include "pmac.h"
32 #define DEBUG
34 #ifdef DEBUG
35 #define DBG(x...) printk(x)
36 #else
37 #define DBG(x...)
38 #endif
40 #define NVRAM_SIZE 0x2000 /* 8kB of non-volatile RAM */
42 #define CORE99_SIGNATURE 0x5a
43 #define CORE99_ADLER_START 0x14
45 /* On Core99, nvram is either a sharp, a micron or an AMD flash */
46 #define SM_FLASH_STATUS_DONE 0x80
47 #define SM_FLASH_STATUS_ERR 0x38
49 #define SM_FLASH_CMD_ERASE_CONFIRM 0xd0
50 #define SM_FLASH_CMD_ERASE_SETUP 0x20
51 #define SM_FLASH_CMD_RESET 0xff
52 #define SM_FLASH_CMD_WRITE_SETUP 0x40
53 #define SM_FLASH_CMD_CLEAR_STATUS 0x50
54 #define SM_FLASH_CMD_READ_STATUS 0x70
56 /* CHRP NVRAM header */
57 struct chrp_header {
58 u8 signature;
59 u8 cksum;
60 u16 len;
61 char name[12];
62 u8 data[0];
65 struct core99_header {
66 struct chrp_header hdr;
67 u32 adler;
68 u32 generation;
69 u32 reserved[2];
73 * Read and write the non-volatile RAM on PowerMacs and CHRP machines.
75 static int nvram_naddrs;
76 static volatile unsigned char __iomem *nvram_data;
77 static int is_core_99;
78 static int core99_bank = 0;
79 static int nvram_partitions[3];
80 // XXX Turn that into a sem
81 static DEFINE_RAW_SPINLOCK(nv_lock);
83 static int (*core99_write_bank)(int bank, u8* datas);
84 static int (*core99_erase_bank)(int bank);
86 static char *nvram_image;
89 static unsigned char core99_nvram_read_byte(int addr)
91 if (nvram_image == NULL)
92 return 0xff;
93 return nvram_image[addr];
96 static void core99_nvram_write_byte(int addr, unsigned char val)
98 if (nvram_image == NULL)
99 return;
100 nvram_image[addr] = val;
103 static ssize_t core99_nvram_read(char *buf, size_t count, loff_t *index)
105 int i;
107 if (nvram_image == NULL)
108 return -ENODEV;
109 if (*index > NVRAM_SIZE)
110 return 0;
112 i = *index;
113 if (i + count > NVRAM_SIZE)
114 count = NVRAM_SIZE - i;
116 memcpy(buf, &nvram_image[i], count);
117 *index = i + count;
118 return count;
121 static ssize_t core99_nvram_write(char *buf, size_t count, loff_t *index)
123 int i;
125 if (nvram_image == NULL)
126 return -ENODEV;
127 if (*index > NVRAM_SIZE)
128 return 0;
130 i = *index;
131 if (i + count > NVRAM_SIZE)
132 count = NVRAM_SIZE - i;
134 memcpy(&nvram_image[i], buf, count);
135 *index = i + count;
136 return count;
139 static ssize_t core99_nvram_size(void)
141 if (nvram_image == NULL)
142 return -ENODEV;
143 return NVRAM_SIZE;
146 #ifdef CONFIG_PPC32
147 static volatile unsigned char __iomem *nvram_addr;
148 static int nvram_mult;
150 static unsigned char direct_nvram_read_byte(int addr)
152 return in_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult]);
155 static void direct_nvram_write_byte(int addr, unsigned char val)
157 out_8(&nvram_data[(addr & (NVRAM_SIZE - 1)) * nvram_mult], val);
161 static unsigned char indirect_nvram_read_byte(int addr)
163 unsigned char val;
164 unsigned long flags;
166 raw_spin_lock_irqsave(&nv_lock, flags);
167 out_8(nvram_addr, addr >> 5);
168 val = in_8(&nvram_data[(addr & 0x1f) << 4]);
169 raw_spin_unlock_irqrestore(&nv_lock, flags);
171 return val;
174 static void indirect_nvram_write_byte(int addr, unsigned char val)
176 unsigned long flags;
178 raw_spin_lock_irqsave(&nv_lock, flags);
179 out_8(nvram_addr, addr >> 5);
180 out_8(&nvram_data[(addr & 0x1f) << 4], val);
181 raw_spin_unlock_irqrestore(&nv_lock, flags);
185 #ifdef CONFIG_ADB_PMU
187 static void pmu_nvram_complete(struct adb_request *req)
189 if (req->arg)
190 complete((struct completion *)req->arg);
193 static unsigned char pmu_nvram_read_byte(int addr)
195 struct adb_request req;
196 DECLARE_COMPLETION_ONSTACK(req_complete);
198 req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
199 if (pmu_request(&req, pmu_nvram_complete, 3, PMU_READ_NVRAM,
200 (addr >> 8) & 0xff, addr & 0xff))
201 return 0xff;
202 if (system_state == SYSTEM_RUNNING)
203 wait_for_completion(&req_complete);
204 while (!req.complete)
205 pmu_poll();
206 return req.reply[0];
209 static void pmu_nvram_write_byte(int addr, unsigned char val)
211 struct adb_request req;
212 DECLARE_COMPLETION_ONSTACK(req_complete);
214 req.arg = system_state == SYSTEM_RUNNING ? &req_complete : NULL;
215 if (pmu_request(&req, pmu_nvram_complete, 4, PMU_WRITE_NVRAM,
216 (addr >> 8) & 0xff, addr & 0xff, val))
217 return;
218 if (system_state == SYSTEM_RUNNING)
219 wait_for_completion(&req_complete);
220 while (!req.complete)
221 pmu_poll();
224 #endif /* CONFIG_ADB_PMU */
225 #endif /* CONFIG_PPC32 */
227 static u8 chrp_checksum(struct chrp_header* hdr)
229 u8 *ptr;
230 u16 sum = hdr->signature;
231 for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++)
232 sum += *ptr;
233 while (sum > 0xFF)
234 sum = (sum & 0xFF) + (sum>>8);
235 return sum;
238 static u32 core99_calc_adler(u8 *buffer)
240 int cnt;
241 u32 low, high;
243 buffer += CORE99_ADLER_START;
244 low = 1;
245 high = 0;
246 for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) {
247 if ((cnt % 5000) == 0) {
248 high %= 65521UL;
249 high %= 65521UL;
251 low += buffer[cnt];
252 high += low;
254 low %= 65521UL;
255 high %= 65521UL;
257 return (high << 16) | low;
260 static u32 core99_check(u8* datas)
262 struct core99_header* hdr99 = (struct core99_header*)datas;
264 if (hdr99->hdr.signature != CORE99_SIGNATURE) {
265 DBG("Invalid signature\n");
266 return 0;
268 if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) {
269 DBG("Invalid checksum\n");
270 return 0;
272 if (hdr99->adler != core99_calc_adler(datas)) {
273 DBG("Invalid adler\n");
274 return 0;
276 return hdr99->generation;
279 static int sm_erase_bank(int bank)
281 int stat;
282 unsigned long timeout;
284 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
286 DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank);
288 out_8(base, SM_FLASH_CMD_ERASE_SETUP);
289 out_8(base, SM_FLASH_CMD_ERASE_CONFIRM);
290 timeout = 0;
291 do {
292 if (++timeout > 1000000) {
293 printk(KERN_ERR "nvram: Sharp/Micron flash erase timeout !\n");
294 break;
296 out_8(base, SM_FLASH_CMD_READ_STATUS);
297 stat = in_8(base);
298 } while (!(stat & SM_FLASH_STATUS_DONE));
300 out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
301 out_8(base, SM_FLASH_CMD_RESET);
303 if (memchr_inv(base, 0xff, NVRAM_SIZE)) {
304 printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n");
305 return -ENXIO;
307 return 0;
310 static int sm_write_bank(int bank, u8* datas)
312 int i, stat = 0;
313 unsigned long timeout;
315 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
317 DBG("nvram: Sharp/Micron Writing bank %d...\n", bank);
319 for (i=0; i<NVRAM_SIZE; i++) {
320 out_8(base+i, SM_FLASH_CMD_WRITE_SETUP);
321 udelay(1);
322 out_8(base+i, datas[i]);
323 timeout = 0;
324 do {
325 if (++timeout > 1000000) {
326 printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n");
327 break;
329 out_8(base, SM_FLASH_CMD_READ_STATUS);
330 stat = in_8(base);
331 } while (!(stat & SM_FLASH_STATUS_DONE));
332 if (!(stat & SM_FLASH_STATUS_DONE))
333 break;
335 out_8(base, SM_FLASH_CMD_CLEAR_STATUS);
336 out_8(base, SM_FLASH_CMD_RESET);
337 if (memcmp(base, datas, NVRAM_SIZE)) {
338 printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n");
339 return -ENXIO;
341 return 0;
344 static int amd_erase_bank(int bank)
346 int stat = 0;
347 unsigned long timeout;
349 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
351 DBG("nvram: AMD Erasing bank %d...\n", bank);
353 /* Unlock 1 */
354 out_8(base+0x555, 0xaa);
355 udelay(1);
356 /* Unlock 2 */
357 out_8(base+0x2aa, 0x55);
358 udelay(1);
360 /* Sector-Erase */
361 out_8(base+0x555, 0x80);
362 udelay(1);
363 out_8(base+0x555, 0xaa);
364 udelay(1);
365 out_8(base+0x2aa, 0x55);
366 udelay(1);
367 out_8(base, 0x30);
368 udelay(1);
370 timeout = 0;
371 do {
372 if (++timeout > 1000000) {
373 printk(KERN_ERR "nvram: AMD flash erase timeout !\n");
374 break;
376 stat = in_8(base) ^ in_8(base);
377 } while (stat != 0);
379 /* Reset */
380 out_8(base, 0xf0);
381 udelay(1);
383 if (memchr_inv(base, 0xff, NVRAM_SIZE)) {
384 printk(KERN_ERR "nvram: AMD flash erase failed !\n");
385 return -ENXIO;
387 return 0;
390 static int amd_write_bank(int bank, u8* datas)
392 int i, stat = 0;
393 unsigned long timeout;
395 u8 __iomem *base = (u8 __iomem *)nvram_data + core99_bank*NVRAM_SIZE;
397 DBG("nvram: AMD Writing bank %d...\n", bank);
399 for (i=0; i<NVRAM_SIZE; i++) {
400 /* Unlock 1 */
401 out_8(base+0x555, 0xaa);
402 udelay(1);
403 /* Unlock 2 */
404 out_8(base+0x2aa, 0x55);
405 udelay(1);
407 /* Write single word */
408 out_8(base+0x555, 0xa0);
409 udelay(1);
410 out_8(base+i, datas[i]);
412 timeout = 0;
413 do {
414 if (++timeout > 1000000) {
415 printk(KERN_ERR "nvram: AMD flash write timeout !\n");
416 break;
418 stat = in_8(base) ^ in_8(base);
419 } while (stat != 0);
420 if (stat != 0)
421 break;
424 /* Reset */
425 out_8(base, 0xf0);
426 udelay(1);
428 if (memcmp(base, datas, NVRAM_SIZE)) {
429 printk(KERN_ERR "nvram: AMD flash write failed !\n");
430 return -ENXIO;
432 return 0;
435 static void __init lookup_partitions(void)
437 u8 buffer[17];
438 int i, offset;
439 struct chrp_header* hdr;
441 if (pmac_newworld) {
442 nvram_partitions[pmac_nvram_OF] = -1;
443 nvram_partitions[pmac_nvram_XPRAM] = -1;
444 nvram_partitions[pmac_nvram_NR] = -1;
445 hdr = (struct chrp_header *)buffer;
447 offset = 0;
448 buffer[16] = 0;
449 do {
450 for (i=0;i<16;i++)
451 buffer[i] = ppc_md.nvram_read_val(offset+i);
452 if (!strcmp(hdr->name, "common"))
453 nvram_partitions[pmac_nvram_OF] = offset + 0x10;
454 if (!strcmp(hdr->name, "APL,MacOS75")) {
455 nvram_partitions[pmac_nvram_XPRAM] = offset + 0x10;
456 nvram_partitions[pmac_nvram_NR] = offset + 0x110;
458 offset += (hdr->len * 0x10);
459 } while(offset < NVRAM_SIZE);
460 } else {
461 nvram_partitions[pmac_nvram_OF] = 0x1800;
462 nvram_partitions[pmac_nvram_XPRAM] = 0x1300;
463 nvram_partitions[pmac_nvram_NR] = 0x1400;
465 DBG("nvram: OF partition at 0x%x\n", nvram_partitions[pmac_nvram_OF]);
466 DBG("nvram: XP partition at 0x%x\n", nvram_partitions[pmac_nvram_XPRAM]);
467 DBG("nvram: NR partition at 0x%x\n", nvram_partitions[pmac_nvram_NR]);
470 static void core99_nvram_sync(void)
472 struct core99_header* hdr99;
473 unsigned long flags;
475 if (!is_core_99 || !nvram_data || !nvram_image)
476 return;
478 raw_spin_lock_irqsave(&nv_lock, flags);
479 if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE,
480 NVRAM_SIZE))
481 goto bail;
483 DBG("Updating nvram...\n");
485 hdr99 = (struct core99_header*)nvram_image;
486 hdr99->generation++;
487 hdr99->hdr.signature = CORE99_SIGNATURE;
488 hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr);
489 hdr99->adler = core99_calc_adler(nvram_image);
490 core99_bank = core99_bank ? 0 : 1;
491 if (core99_erase_bank)
492 if (core99_erase_bank(core99_bank)) {
493 printk("nvram: Error erasing bank %d\n", core99_bank);
494 goto bail;
496 if (core99_write_bank)
497 if (core99_write_bank(core99_bank, nvram_image))
498 printk("nvram: Error writing bank %d\n", core99_bank);
499 bail:
500 raw_spin_unlock_irqrestore(&nv_lock, flags);
502 #ifdef DEBUG
503 mdelay(2000);
504 #endif
507 static int __init core99_nvram_setup(struct device_node *dp, unsigned long addr)
509 int i;
510 u32 gen_bank0, gen_bank1;
512 if (nvram_naddrs < 1) {
513 printk(KERN_ERR "nvram: no address\n");
514 return -EINVAL;
516 nvram_image = alloc_bootmem(NVRAM_SIZE);
517 if (nvram_image == NULL) {
518 printk(KERN_ERR "nvram: can't allocate ram image\n");
519 return -ENOMEM;
521 nvram_data = ioremap(addr, NVRAM_SIZE*2);
522 nvram_naddrs = 1; /* Make sure we get the correct case */
524 DBG("nvram: Checking bank 0...\n");
526 gen_bank0 = core99_check((u8 *)nvram_data);
527 gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE);
528 core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0;
530 DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1);
531 DBG("nvram: Active bank is: %d\n", core99_bank);
533 for (i=0; i<NVRAM_SIZE; i++)
534 nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE];
536 ppc_md.nvram_read_val = core99_nvram_read_byte;
537 ppc_md.nvram_write_val = core99_nvram_write_byte;
538 ppc_md.nvram_read = core99_nvram_read;
539 ppc_md.nvram_write = core99_nvram_write;
540 ppc_md.nvram_size = core99_nvram_size;
541 ppc_md.nvram_sync = core99_nvram_sync;
542 ppc_md.machine_shutdown = core99_nvram_sync;
544 * Maybe we could be smarter here though making an exclusive list
545 * of known flash chips is a bit nasty as older OF didn't provide us
546 * with a useful "compatible" entry. A solution would be to really
547 * identify the chip using flash id commands and base ourselves on
548 * a list of known chips IDs
550 if (of_device_is_compatible(dp, "amd-0137")) {
551 core99_erase_bank = amd_erase_bank;
552 core99_write_bank = amd_write_bank;
553 } else {
554 core99_erase_bank = sm_erase_bank;
555 core99_write_bank = sm_write_bank;
557 return 0;
560 int __init pmac_nvram_init(void)
562 struct device_node *dp;
563 struct resource r1, r2;
564 unsigned int s1 = 0, s2 = 0;
565 int err = 0;
567 nvram_naddrs = 0;
569 dp = of_find_node_by_name(NULL, "nvram");
570 if (dp == NULL) {
571 printk(KERN_ERR "Can't find NVRAM device\n");
572 return -ENODEV;
575 /* Try to obtain an address */
576 if (of_address_to_resource(dp, 0, &r1) == 0) {
577 nvram_naddrs = 1;
578 s1 = resource_size(&r1);
579 if (of_address_to_resource(dp, 1, &r2) == 0) {
580 nvram_naddrs = 2;
581 s2 = resource_size(&r2);
585 is_core_99 = of_device_is_compatible(dp, "nvram,flash");
586 if (is_core_99) {
587 err = core99_nvram_setup(dp, r1.start);
588 goto bail;
591 #ifdef CONFIG_PPC32
592 if (machine_is(chrp) && nvram_naddrs == 1) {
593 nvram_data = ioremap(r1.start, s1);
594 nvram_mult = 1;
595 ppc_md.nvram_read_val = direct_nvram_read_byte;
596 ppc_md.nvram_write_val = direct_nvram_write_byte;
597 } else if (nvram_naddrs == 1) {
598 nvram_data = ioremap(r1.start, s1);
599 nvram_mult = (s1 + NVRAM_SIZE - 1) / NVRAM_SIZE;
600 ppc_md.nvram_read_val = direct_nvram_read_byte;
601 ppc_md.nvram_write_val = direct_nvram_write_byte;
602 } else if (nvram_naddrs == 2) {
603 nvram_addr = ioremap(r1.start, s1);
604 nvram_data = ioremap(r2.start, s2);
605 ppc_md.nvram_read_val = indirect_nvram_read_byte;
606 ppc_md.nvram_write_val = indirect_nvram_write_byte;
607 } else if (nvram_naddrs == 0 && sys_ctrler == SYS_CTRLER_PMU) {
608 #ifdef CONFIG_ADB_PMU
609 nvram_naddrs = -1;
610 ppc_md.nvram_read_val = pmu_nvram_read_byte;
611 ppc_md.nvram_write_val = pmu_nvram_write_byte;
612 #endif /* CONFIG_ADB_PMU */
613 } else {
614 printk(KERN_ERR "Incompatible type of NVRAM\n");
615 err = -ENXIO;
617 #endif /* CONFIG_PPC32 */
618 bail:
619 of_node_put(dp);
620 if (err == 0)
621 lookup_partitions();
622 return err;
625 int pmac_get_partition(int partition)
627 return nvram_partitions[partition];
630 u8 pmac_xpram_read(int xpaddr)
632 int offset = pmac_get_partition(pmac_nvram_XPRAM);
634 if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
635 return 0xff;
637 return ppc_md.nvram_read_val(xpaddr + offset);
640 void pmac_xpram_write(int xpaddr, u8 data)
642 int offset = pmac_get_partition(pmac_nvram_XPRAM);
644 if (offset < 0 || xpaddr < 0 || xpaddr > 0x100)
645 return;
647 ppc_md.nvram_write_val(xpaddr + offset, data);
650 EXPORT_SYMBOL(pmac_get_partition);
651 EXPORT_SYMBOL(pmac_xpram_read);
652 EXPORT_SYMBOL(pmac_xpram_write);