2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/export.h>
26 #include <linux/gfp.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
35 static LIST_HEAD(eeh_phb_pe
);
38 * eeh_pe_alloc - Allocate PE
39 * @phb: PCI controller
42 * Allocate PE instance dynamically.
44 static struct eeh_pe
*eeh_pe_alloc(struct pci_controller
*phb
, int type
)
49 pe
= kzalloc(sizeof(struct eeh_pe
), GFP_KERNEL
);
52 /* Initialize PHB PE */
55 INIT_LIST_HEAD(&pe
->child_list
);
56 INIT_LIST_HEAD(&pe
->child
);
57 INIT_LIST_HEAD(&pe
->edevs
);
63 * eeh_phb_pe_create - Create PHB PE
64 * @phb: PCI controller
66 * The function should be called while the PHB is detected during
67 * system boot or PCI hotplug in order to create PHB PE.
69 int eeh_phb_pe_create(struct pci_controller
*phb
)
74 pe
= eeh_pe_alloc(phb
, EEH_PE_PHB
);
76 pr_err("%s: out of memory!\n", __func__
);
80 /* Put it into the list */
82 list_add_tail(&pe
->child
, &eeh_phb_pe
);
85 pr_debug("EEH: Add PE for PHB#%d\n", phb
->global_number
);
91 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
92 * @phb: PCI controller
94 * The overall PEs form hierarchy tree. The first layer of the
95 * hierarchy tree is composed of PHB PEs. The function is used
96 * to retrieve the corresponding PHB PE according to the given PHB.
98 static struct eeh_pe
*eeh_phb_pe_get(struct pci_controller
*phb
)
102 list_for_each_entry(pe
, &eeh_phb_pe
, child
) {
104 * Actually, we needn't check the type since
105 * the PE for PHB has been determined when that
108 if ((pe
->type
& EEH_PE_PHB
) && pe
->phb
== phb
)
116 * eeh_pe_next - Retrieve the next PE in the tree
120 * The function is used to retrieve the next PE in the
123 static struct eeh_pe
*eeh_pe_next(struct eeh_pe
*pe
,
126 struct list_head
*next
= pe
->child_list
.next
;
128 if (next
== &pe
->child_list
) {
132 next
= pe
->child
.next
;
133 if (next
!= &pe
->parent
->child_list
)
139 return list_entry(next
, struct eeh_pe
, child
);
143 * eeh_pe_traverse - Traverse PEs in the specified PHB
146 * @flag: extra parameter to callback
148 * The function is used to traverse the specified PE and its
149 * child PEs. The traversing is to be terminated once the
150 * callback returns something other than NULL, or no more PEs
153 static void *eeh_pe_traverse(struct eeh_pe
*root
,
154 eeh_traverse_func fn
, void *flag
)
159 for (pe
= root
; pe
; pe
= eeh_pe_next(pe
, root
)) {
168 * eeh_pe_dev_traverse - Traverse the devices from the PE
170 * @fn: function callback
171 * @flag: extra parameter to callback
173 * The function is used to traverse the devices of the specified
174 * PE and its child PEs.
176 void *eeh_pe_dev_traverse(struct eeh_pe
*root
,
177 eeh_traverse_func fn
, void *flag
)
180 struct eeh_dev
*edev
;
184 pr_warning("%s: Invalid PE %p\n", __func__
, root
);
190 /* Traverse root PE */
191 for (pe
= root
; pe
; pe
= eeh_pe_next(pe
, root
)) {
192 eeh_pe_for_each_dev(pe
, edev
) {
193 ret
= fn(edev
, flag
);
207 * __eeh_pe_get - Check the PE address
211 * For one particular PE, it can be identified by PE address
212 * or tranditional BDF address. BDF address is composed of
213 * Bus/Device/Function number. The extra data referred by flag
214 * indicates which type of address should be used.
216 static void *__eeh_pe_get(void *data
, void *flag
)
218 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
219 struct eeh_dev
*edev
= (struct eeh_dev
*)flag
;
221 /* Unexpected PHB PE */
222 if (pe
->type
& EEH_PE_PHB
)
225 /* We prefer PE address */
226 if (edev
->pe_config_addr
&&
227 (edev
->pe_config_addr
== pe
->addr
))
230 /* Try BDF address */
231 if (edev
->pe_config_addr
&&
232 (edev
->config_addr
== pe
->config_addr
))
239 * eeh_pe_get - Search PE based on the given address
242 * Search the corresponding PE based on the specified address which
243 * is included in the eeh device. The function is used to check if
244 * the associated PE has been created against the PE address. It's
245 * notable that the PE address has 2 format: traditional PE address
246 * which is composed of PCI bus/device/function number, or unified
249 static struct eeh_pe
*eeh_pe_get(struct eeh_dev
*edev
)
251 struct eeh_pe
*root
= eeh_phb_pe_get(edev
->phb
);
254 pe
= eeh_pe_traverse(root
, __eeh_pe_get
, edev
);
260 * eeh_pe_get_parent - Retrieve the parent PE
263 * The whole PEs existing in the system are organized as hierarchy
264 * tree. The function is used to retrieve the parent PE according
265 * to the parent EEH device.
267 static struct eeh_pe
*eeh_pe_get_parent(struct eeh_dev
*edev
)
269 struct device_node
*dn
;
270 struct eeh_dev
*parent
;
273 * It might have the case for the indirect parent
274 * EEH device already having associated PE, but
275 * the direct parent EEH device doesn't have yet.
277 dn
= edev
->dn
->parent
;
279 /* We're poking out of PCI territory */
280 if (!PCI_DN(dn
)) return NULL
;
282 parent
= of_node_to_eeh_dev(dn
);
283 /* We're poking out of PCI territory */
284 if (!parent
) return NULL
;
296 * eeh_add_to_parent_pe - Add EEH device to parent PE
299 * Add EEH device to the parent PE. If the parent PE already
300 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
301 * we have to create new PE to hold the EEH device and the new
302 * PE will be linked to its parent PE as well.
304 int eeh_add_to_parent_pe(struct eeh_dev
*edev
)
306 struct eeh_pe
*pe
, *parent
;
311 * Search the PE has been existing or not according
312 * to the PE address. If that has been existing, the
313 * PE should be composed of PCI bus and its subordinate
316 pe
= eeh_pe_get(edev
);
317 if (pe
&& !(pe
->type
& EEH_PE_INVALID
)) {
318 if (!edev
->pe_config_addr
) {
320 pr_err("%s: PE with addr 0x%x already exists\n",
321 __func__
, edev
->config_addr
);
325 /* Mark the PE as type of PCI bus */
326 pe
->type
= EEH_PE_BUS
;
329 /* Put the edev to PE */
330 list_add_tail(&edev
->list
, &pe
->edevs
);
332 pr_debug("EEH: Add %s to Bus PE#%x\n",
333 edev
->dn
->full_name
, pe
->addr
);
336 } else if (pe
&& (pe
->type
& EEH_PE_INVALID
)) {
337 list_add_tail(&edev
->list
, &pe
->edevs
);
340 * We're running to here because of PCI hotplug caused by
341 * EEH recovery. We need clear EEH_PE_INVALID until the top.
345 if (!(parent
->type
& EEH_PE_INVALID
))
347 parent
->type
&= ~EEH_PE_INVALID
;
348 parent
= parent
->parent
;
351 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
352 edev
->dn
->full_name
, pe
->addr
, pe
->parent
->addr
);
357 /* Create a new EEH PE */
358 pe
= eeh_pe_alloc(edev
->phb
, EEH_PE_DEVICE
);
361 pr_err("%s: out of memory!\n", __func__
);
364 pe
->addr
= edev
->pe_config_addr
;
365 pe
->config_addr
= edev
->config_addr
;
368 * Put the new EEH PE into hierarchy tree. If the parent
369 * can't be found, the newly created PE will be attached
370 * to PHB directly. Otherwise, we have to associate the
371 * PE with its parent.
373 parent
= eeh_pe_get_parent(edev
);
375 parent
= eeh_phb_pe_get(edev
->phb
);
378 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
379 __func__
, edev
->phb
->global_number
);
388 * Put the newly created PE into the child list and
389 * link the EEH device accordingly.
391 list_add_tail(&pe
->child
, &parent
->child_list
);
392 list_add_tail(&edev
->list
, &pe
->edevs
);
395 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
396 edev
->dn
->full_name
, pe
->addr
, pe
->parent
->addr
);
402 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
404 * @purge_pe: remove PE or not
406 * The PE hierarchy tree might be changed when doing PCI hotplug.
407 * Also, the PCI devices or buses could be removed from the system
408 * during EEH recovery. So we have to call the function remove the
409 * corresponding PE accordingly if necessary.
411 int eeh_rmv_from_parent_pe(struct eeh_dev
*edev
, int purge_pe
)
413 struct eeh_pe
*pe
, *parent
, *child
;
417 pr_warning("%s: No PE found for EEH device %s\n",
418 __func__
, edev
->dn
->full_name
);
424 /* Remove the EEH device */
427 list_del(&edev
->list
);
430 * Check if the parent PE includes any EEH devices.
431 * If not, we should delete that. Also, we should
432 * delete the parent PE if it doesn't have associated
433 * child PEs and EEH devices.
437 if (pe
->type
& EEH_PE_PHB
)
441 if (list_empty(&pe
->edevs
) &&
442 list_empty(&pe
->child_list
)) {
443 list_del(&pe
->child
);
449 if (list_empty(&pe
->edevs
)) {
451 list_for_each_entry(child
, &pe
->child_list
, child
) {
452 if (!(child
->type
& EEH_PE_INVALID
)) {
459 pe
->type
|= EEH_PE_INVALID
;
474 * __eeh_pe_state_mark - Mark the state for the PE
478 * The function is used to mark the indicated state for the given
479 * PE. Also, the associated PCI devices will be put into IO frozen
482 static void *__eeh_pe_state_mark(void *data
, void *flag
)
484 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
485 int state
= *((int *)flag
);
487 struct pci_dev
*pdev
;
490 * Mark the PE with the indicated state. Also,
491 * the associated PCI device will be put into
492 * I/O frozen state to avoid I/O accesses from
493 * the PCI device driver.
496 eeh_pe_for_each_dev(pe
, tmp
) {
497 pdev
= eeh_dev_to_pci_dev(tmp
);
499 pdev
->error_state
= pci_channel_io_frozen
;
506 * eeh_pe_state_mark - Mark specified state for PE and its associated device
509 * EEH error affects the current PE and its child PEs. The function
510 * is used to mark appropriate state for the affected PEs and the
511 * associated devices.
513 void eeh_pe_state_mark(struct eeh_pe
*pe
, int state
)
516 eeh_pe_traverse(pe
, __eeh_pe_state_mark
, &state
);
521 * __eeh_pe_state_clear - Clear state for the PE
525 * The function is used to clear the indicated state from the
526 * given PE. Besides, we also clear the check count of the PE
529 static void *__eeh_pe_state_clear(void *data
, void *flag
)
531 struct eeh_pe
*pe
= (struct eeh_pe
*)data
;
532 int state
= *((int *)flag
);
541 * eeh_pe_state_clear - Clear state for the PE and its children
543 * @state: state to be cleared
545 * When the PE and its children has been recovered from error,
546 * we need clear the error state for that. The function is used
549 void eeh_pe_state_clear(struct eeh_pe
*pe
, int state
)
552 eeh_pe_traverse(pe
, __eeh_pe_state_clear
, &state
);
557 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
561 * Loads the PCI configuration space base address registers,
562 * the expansion ROM base address, the latency timer, and etc.
563 * from the saved values in the device node.
565 static void *eeh_restore_one_device_bars(void *data
, void *flag
)
569 struct eeh_dev
*edev
= (struct eeh_dev
*)data
;
570 struct device_node
*dn
= eeh_dev_to_of_node(edev
);
572 for (i
= 4; i
< 10; i
++)
573 eeh_ops
->write_config(dn
, i
*4, 4, edev
->config_space
[i
]);
574 /* 12 == Expansion ROM Address */
575 eeh_ops
->write_config(dn
, 12*4, 4, edev
->config_space
[12]);
577 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
578 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
580 eeh_ops
->write_config(dn
, PCI_CACHE_LINE_SIZE
, 1,
581 SAVED_BYTE(PCI_CACHE_LINE_SIZE
));
582 eeh_ops
->write_config(dn
, PCI_LATENCY_TIMER
, 1,
583 SAVED_BYTE(PCI_LATENCY_TIMER
));
585 /* max latency, min grant, interrupt pin and line */
586 eeh_ops
->write_config(dn
, 15*4, 4, edev
->config_space
[15]);
589 * Restore PERR & SERR bits, some devices require it,
590 * don't touch the other command bits
592 eeh_ops
->read_config(dn
, PCI_COMMAND
, 4, &cmd
);
593 if (edev
->config_space
[1] & PCI_COMMAND_PARITY
)
594 cmd
|= PCI_COMMAND_PARITY
;
596 cmd
&= ~PCI_COMMAND_PARITY
;
597 if (edev
->config_space
[1] & PCI_COMMAND_SERR
)
598 cmd
|= PCI_COMMAND_SERR
;
600 cmd
&= ~PCI_COMMAND_SERR
;
601 eeh_ops
->write_config(dn
, PCI_COMMAND
, 4, cmd
);
607 * eeh_pe_restore_bars - Restore the PCI config space info
610 * This routine performs a recursive walk to the children
611 * of this device as well.
613 void eeh_pe_restore_bars(struct eeh_pe
*pe
)
616 * We needn't take the EEH lock since eeh_pe_dev_traverse()
619 eeh_pe_dev_traverse(pe
, eeh_restore_one_device_bars
, NULL
);
623 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
626 * Retrieve the PCI bus according to the given PE. Basically,
627 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
628 * primary PCI bus will be retrieved. The parent bus will be
629 * returned for BUS PE. However, we don't have associated PCI
632 struct pci_bus
*eeh_pe_bus_get(struct eeh_pe
*pe
)
634 struct pci_bus
*bus
= NULL
;
635 struct eeh_dev
*edev
;
636 struct pci_dev
*pdev
;
640 if (pe
->type
& EEH_PE_PHB
) {
642 } else if (pe
->type
& EEH_PE_BUS
) {
643 edev
= list_first_entry(&pe
->edevs
, struct eeh_dev
, list
);
644 pdev
= eeh_dev_to_pci_dev(edev
);