x86, efi: Set runtime_version to the EFI spec revision
[linux/fpc-iii.git] / arch / s390 / mm / pgtable.c
blobae44d2a34313258b7a570a25cab979c24c4f5a20
1 /*
2 * Copyright IBM Corp. 2007, 2011
3 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4 */
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
27 #ifndef CONFIG_64BIT
28 #define ALLOC_ORDER 1
29 #define FRAG_MASK 0x0f
30 #else
31 #define ALLOC_ORDER 2
32 #define FRAG_MASK 0x03
33 #endif
36 unsigned long *crst_table_alloc(struct mm_struct *mm)
38 struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
40 if (!page)
41 return NULL;
42 return (unsigned long *) page_to_phys(page);
45 void crst_table_free(struct mm_struct *mm, unsigned long *table)
47 free_pages((unsigned long) table, ALLOC_ORDER);
50 #ifdef CONFIG_64BIT
51 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
53 unsigned long *table, *pgd;
54 unsigned long entry;
56 BUG_ON(limit > (1UL << 53));
57 repeat:
58 table = crst_table_alloc(mm);
59 if (!table)
60 return -ENOMEM;
61 spin_lock_bh(&mm->page_table_lock);
62 if (mm->context.asce_limit < limit) {
63 pgd = (unsigned long *) mm->pgd;
64 if (mm->context.asce_limit <= (1UL << 31)) {
65 entry = _REGION3_ENTRY_EMPTY;
66 mm->context.asce_limit = 1UL << 42;
67 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
68 _ASCE_USER_BITS |
69 _ASCE_TYPE_REGION3;
70 } else {
71 entry = _REGION2_ENTRY_EMPTY;
72 mm->context.asce_limit = 1UL << 53;
73 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
74 _ASCE_USER_BITS |
75 _ASCE_TYPE_REGION2;
77 crst_table_init(table, entry);
78 pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
79 mm->pgd = (pgd_t *) table;
80 mm->task_size = mm->context.asce_limit;
81 table = NULL;
83 spin_unlock_bh(&mm->page_table_lock);
84 if (table)
85 crst_table_free(mm, table);
86 if (mm->context.asce_limit < limit)
87 goto repeat;
88 return 0;
91 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
93 pgd_t *pgd;
95 while (mm->context.asce_limit > limit) {
96 pgd = mm->pgd;
97 switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
98 case _REGION_ENTRY_TYPE_R2:
99 mm->context.asce_limit = 1UL << 42;
100 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
101 _ASCE_USER_BITS |
102 _ASCE_TYPE_REGION3;
103 break;
104 case _REGION_ENTRY_TYPE_R3:
105 mm->context.asce_limit = 1UL << 31;
106 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
107 _ASCE_USER_BITS |
108 _ASCE_TYPE_SEGMENT;
109 break;
110 default:
111 BUG();
113 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
114 mm->task_size = mm->context.asce_limit;
115 crst_table_free(mm, (unsigned long *) pgd);
118 #endif
120 #ifdef CONFIG_PGSTE
123 * gmap_alloc - allocate a guest address space
124 * @mm: pointer to the parent mm_struct
126 * Returns a guest address space structure.
128 struct gmap *gmap_alloc(struct mm_struct *mm)
130 struct gmap *gmap;
131 struct page *page;
132 unsigned long *table;
134 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
135 if (!gmap)
136 goto out;
137 INIT_LIST_HEAD(&gmap->crst_list);
138 gmap->mm = mm;
139 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
140 if (!page)
141 goto out_free;
142 list_add(&page->lru, &gmap->crst_list);
143 table = (unsigned long *) page_to_phys(page);
144 crst_table_init(table, _REGION1_ENTRY_EMPTY);
145 gmap->table = table;
146 gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
147 _ASCE_USER_BITS | __pa(table);
148 list_add(&gmap->list, &mm->context.gmap_list);
149 return gmap;
151 out_free:
152 kfree(gmap);
153 out:
154 return NULL;
156 EXPORT_SYMBOL_GPL(gmap_alloc);
158 static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
160 struct gmap_pgtable *mp;
161 struct gmap_rmap *rmap;
162 struct page *page;
164 if (*table & _SEGMENT_ENTRY_INV)
165 return 0;
166 page = pfn_to_page(*table >> PAGE_SHIFT);
167 mp = (struct gmap_pgtable *) page->index;
168 list_for_each_entry(rmap, &mp->mapper, list) {
169 if (rmap->entry != table)
170 continue;
171 list_del(&rmap->list);
172 kfree(rmap);
173 break;
175 *table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
176 return 1;
179 static void gmap_flush_tlb(struct gmap *gmap)
181 if (MACHINE_HAS_IDTE)
182 __tlb_flush_idte((unsigned long) gmap->table |
183 _ASCE_TYPE_REGION1);
184 else
185 __tlb_flush_global();
189 * gmap_free - free a guest address space
190 * @gmap: pointer to the guest address space structure
192 void gmap_free(struct gmap *gmap)
194 struct page *page, *next;
195 unsigned long *table;
196 int i;
199 /* Flush tlb. */
200 if (MACHINE_HAS_IDTE)
201 __tlb_flush_idte((unsigned long) gmap->table |
202 _ASCE_TYPE_REGION1);
203 else
204 __tlb_flush_global();
206 /* Free all segment & region tables. */
207 down_read(&gmap->mm->mmap_sem);
208 spin_lock(&gmap->mm->page_table_lock);
209 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
210 table = (unsigned long *) page_to_phys(page);
211 if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
212 /* Remove gmap rmap structures for segment table. */
213 for (i = 0; i < PTRS_PER_PMD; i++, table++)
214 gmap_unlink_segment(gmap, table);
215 __free_pages(page, ALLOC_ORDER);
217 spin_unlock(&gmap->mm->page_table_lock);
218 up_read(&gmap->mm->mmap_sem);
219 list_del(&gmap->list);
220 kfree(gmap);
222 EXPORT_SYMBOL_GPL(gmap_free);
225 * gmap_enable - switch primary space to the guest address space
226 * @gmap: pointer to the guest address space structure
228 void gmap_enable(struct gmap *gmap)
230 S390_lowcore.gmap = (unsigned long) gmap;
232 EXPORT_SYMBOL_GPL(gmap_enable);
235 * gmap_disable - switch back to the standard primary address space
236 * @gmap: pointer to the guest address space structure
238 void gmap_disable(struct gmap *gmap)
240 S390_lowcore.gmap = 0UL;
242 EXPORT_SYMBOL_GPL(gmap_disable);
245 * gmap_alloc_table is assumed to be called with mmap_sem held
247 static int gmap_alloc_table(struct gmap *gmap,
248 unsigned long *table, unsigned long init)
250 struct page *page;
251 unsigned long *new;
253 /* since we dont free the gmap table until gmap_free we can unlock */
254 spin_unlock(&gmap->mm->page_table_lock);
255 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
256 spin_lock(&gmap->mm->page_table_lock);
257 if (!page)
258 return -ENOMEM;
259 new = (unsigned long *) page_to_phys(page);
260 crst_table_init(new, init);
261 if (*table & _REGION_ENTRY_INV) {
262 list_add(&page->lru, &gmap->crst_list);
263 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
264 (*table & _REGION_ENTRY_TYPE_MASK);
265 } else
266 __free_pages(page, ALLOC_ORDER);
267 return 0;
271 * gmap_unmap_segment - unmap segment from the guest address space
272 * @gmap: pointer to the guest address space structure
273 * @addr: address in the guest address space
274 * @len: length of the memory area to unmap
276 * Returns 0 if the unmap succeded, -EINVAL if not.
278 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
280 unsigned long *table;
281 unsigned long off;
282 int flush;
284 if ((to | len) & (PMD_SIZE - 1))
285 return -EINVAL;
286 if (len == 0 || to + len < to)
287 return -EINVAL;
289 flush = 0;
290 down_read(&gmap->mm->mmap_sem);
291 spin_lock(&gmap->mm->page_table_lock);
292 for (off = 0; off < len; off += PMD_SIZE) {
293 /* Walk the guest addr space page table */
294 table = gmap->table + (((to + off) >> 53) & 0x7ff);
295 if (*table & _REGION_ENTRY_INV)
296 goto out;
297 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
298 table = table + (((to + off) >> 42) & 0x7ff);
299 if (*table & _REGION_ENTRY_INV)
300 goto out;
301 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
302 table = table + (((to + off) >> 31) & 0x7ff);
303 if (*table & _REGION_ENTRY_INV)
304 goto out;
305 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
306 table = table + (((to + off) >> 20) & 0x7ff);
308 /* Clear segment table entry in guest address space. */
309 flush |= gmap_unlink_segment(gmap, table);
310 *table = _SEGMENT_ENTRY_INV;
312 out:
313 spin_unlock(&gmap->mm->page_table_lock);
314 up_read(&gmap->mm->mmap_sem);
315 if (flush)
316 gmap_flush_tlb(gmap);
317 return 0;
319 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
322 * gmap_mmap_segment - map a segment to the guest address space
323 * @gmap: pointer to the guest address space structure
324 * @from: source address in the parent address space
325 * @to: target address in the guest address space
327 * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
329 int gmap_map_segment(struct gmap *gmap, unsigned long from,
330 unsigned long to, unsigned long len)
332 unsigned long *table;
333 unsigned long off;
334 int flush;
336 if ((from | to | len) & (PMD_SIZE - 1))
337 return -EINVAL;
338 if (len == 0 || from + len > PGDIR_SIZE ||
339 from + len < from || to + len < to)
340 return -EINVAL;
342 flush = 0;
343 down_read(&gmap->mm->mmap_sem);
344 spin_lock(&gmap->mm->page_table_lock);
345 for (off = 0; off < len; off += PMD_SIZE) {
346 /* Walk the gmap address space page table */
347 table = gmap->table + (((to + off) >> 53) & 0x7ff);
348 if ((*table & _REGION_ENTRY_INV) &&
349 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
350 goto out_unmap;
351 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
352 table = table + (((to + off) >> 42) & 0x7ff);
353 if ((*table & _REGION_ENTRY_INV) &&
354 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
355 goto out_unmap;
356 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
357 table = table + (((to + off) >> 31) & 0x7ff);
358 if ((*table & _REGION_ENTRY_INV) &&
359 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
360 goto out_unmap;
361 table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
362 table = table + (((to + off) >> 20) & 0x7ff);
364 /* Store 'from' address in an invalid segment table entry. */
365 flush |= gmap_unlink_segment(gmap, table);
366 *table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | (from + off);
368 spin_unlock(&gmap->mm->page_table_lock);
369 up_read(&gmap->mm->mmap_sem);
370 if (flush)
371 gmap_flush_tlb(gmap);
372 return 0;
374 out_unmap:
375 spin_unlock(&gmap->mm->page_table_lock);
376 up_read(&gmap->mm->mmap_sem);
377 gmap_unmap_segment(gmap, to, len);
378 return -ENOMEM;
380 EXPORT_SYMBOL_GPL(gmap_map_segment);
383 * this function is assumed to be called with mmap_sem held
385 unsigned long __gmap_fault(unsigned long address, struct gmap *gmap)
387 unsigned long *table, vmaddr, segment;
388 struct mm_struct *mm;
389 struct gmap_pgtable *mp;
390 struct gmap_rmap *rmap;
391 struct vm_area_struct *vma;
392 struct page *page;
393 pgd_t *pgd;
394 pud_t *pud;
395 pmd_t *pmd;
397 current->thread.gmap_addr = address;
398 mm = gmap->mm;
399 /* Walk the gmap address space page table */
400 table = gmap->table + ((address >> 53) & 0x7ff);
401 if (unlikely(*table & _REGION_ENTRY_INV))
402 return -EFAULT;
403 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
404 table = table + ((address >> 42) & 0x7ff);
405 if (unlikely(*table & _REGION_ENTRY_INV))
406 return -EFAULT;
407 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
408 table = table + ((address >> 31) & 0x7ff);
409 if (unlikely(*table & _REGION_ENTRY_INV))
410 return -EFAULT;
411 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
412 table = table + ((address >> 20) & 0x7ff);
414 /* Convert the gmap address to an mm address. */
415 segment = *table;
416 if (likely(!(segment & _SEGMENT_ENTRY_INV))) {
417 page = pfn_to_page(segment >> PAGE_SHIFT);
418 mp = (struct gmap_pgtable *) page->index;
419 return mp->vmaddr | (address & ~PMD_MASK);
420 } else if (segment & _SEGMENT_ENTRY_RO) {
421 vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
422 vma = find_vma(mm, vmaddr);
423 if (!vma || vma->vm_start > vmaddr)
424 return -EFAULT;
426 /* Walk the parent mm page table */
427 pgd = pgd_offset(mm, vmaddr);
428 pud = pud_alloc(mm, pgd, vmaddr);
429 if (!pud)
430 return -ENOMEM;
431 pmd = pmd_alloc(mm, pud, vmaddr);
432 if (!pmd)
433 return -ENOMEM;
434 if (!pmd_present(*pmd) &&
435 __pte_alloc(mm, vma, pmd, vmaddr))
436 return -ENOMEM;
437 /* pmd now points to a valid segment table entry. */
438 rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
439 if (!rmap)
440 return -ENOMEM;
441 /* Link gmap segment table entry location to page table. */
442 page = pmd_page(*pmd);
443 mp = (struct gmap_pgtable *) page->index;
444 rmap->entry = table;
445 spin_lock(&mm->page_table_lock);
446 list_add(&rmap->list, &mp->mapper);
447 spin_unlock(&mm->page_table_lock);
448 /* Set gmap segment table entry to page table. */
449 *table = pmd_val(*pmd) & PAGE_MASK;
450 return vmaddr | (address & ~PMD_MASK);
452 return -EFAULT;
455 unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
457 unsigned long rc;
459 down_read(&gmap->mm->mmap_sem);
460 rc = __gmap_fault(address, gmap);
461 up_read(&gmap->mm->mmap_sem);
463 return rc;
465 EXPORT_SYMBOL_GPL(gmap_fault);
467 void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap)
470 unsigned long *table, address, size;
471 struct vm_area_struct *vma;
472 struct gmap_pgtable *mp;
473 struct page *page;
475 down_read(&gmap->mm->mmap_sem);
476 address = from;
477 while (address < to) {
478 /* Walk the gmap address space page table */
479 table = gmap->table + ((address >> 53) & 0x7ff);
480 if (unlikely(*table & _REGION_ENTRY_INV)) {
481 address = (address + PMD_SIZE) & PMD_MASK;
482 continue;
484 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
485 table = table + ((address >> 42) & 0x7ff);
486 if (unlikely(*table & _REGION_ENTRY_INV)) {
487 address = (address + PMD_SIZE) & PMD_MASK;
488 continue;
490 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
491 table = table + ((address >> 31) & 0x7ff);
492 if (unlikely(*table & _REGION_ENTRY_INV)) {
493 address = (address + PMD_SIZE) & PMD_MASK;
494 continue;
496 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
497 table = table + ((address >> 20) & 0x7ff);
498 if (unlikely(*table & _SEGMENT_ENTRY_INV)) {
499 address = (address + PMD_SIZE) & PMD_MASK;
500 continue;
502 page = pfn_to_page(*table >> PAGE_SHIFT);
503 mp = (struct gmap_pgtable *) page->index;
504 vma = find_vma(gmap->mm, mp->vmaddr);
505 size = min(to - address, PMD_SIZE - (address & ~PMD_MASK));
506 zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK),
507 size, NULL);
508 address = (address + PMD_SIZE) & PMD_MASK;
510 up_read(&gmap->mm->mmap_sem);
512 EXPORT_SYMBOL_GPL(gmap_discard);
514 void gmap_unmap_notifier(struct mm_struct *mm, unsigned long *table)
516 struct gmap_rmap *rmap, *next;
517 struct gmap_pgtable *mp;
518 struct page *page;
519 int flush;
521 flush = 0;
522 spin_lock(&mm->page_table_lock);
523 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
524 mp = (struct gmap_pgtable *) page->index;
525 list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
526 *rmap->entry =
527 _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
528 list_del(&rmap->list);
529 kfree(rmap);
530 flush = 1;
532 spin_unlock(&mm->page_table_lock);
533 if (flush)
534 __tlb_flush_global();
537 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
538 unsigned long vmaddr)
540 struct page *page;
541 unsigned long *table;
542 struct gmap_pgtable *mp;
544 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
545 if (!page)
546 return NULL;
547 mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
548 if (!mp) {
549 __free_page(page);
550 return NULL;
552 pgtable_page_ctor(page);
553 mp->vmaddr = vmaddr & PMD_MASK;
554 INIT_LIST_HEAD(&mp->mapper);
555 page->index = (unsigned long) mp;
556 atomic_set(&page->_mapcount, 3);
557 table = (unsigned long *) page_to_phys(page);
558 clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE/2);
559 clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
560 return table;
563 static inline void page_table_free_pgste(unsigned long *table)
565 struct page *page;
566 struct gmap_pgtable *mp;
568 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
569 mp = (struct gmap_pgtable *) page->index;
570 BUG_ON(!list_empty(&mp->mapper));
571 pgtable_page_dtor(page);
572 atomic_set(&page->_mapcount, -1);
573 kfree(mp);
574 __free_page(page);
577 #else /* CONFIG_PGSTE */
579 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
580 unsigned long vmaddr)
582 return NULL;
585 static inline void page_table_free_pgste(unsigned long *table)
589 static inline void gmap_unmap_notifier(struct mm_struct *mm,
590 unsigned long *table)
594 #endif /* CONFIG_PGSTE */
596 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
598 unsigned int old, new;
600 do {
601 old = atomic_read(v);
602 new = old ^ bits;
603 } while (atomic_cmpxchg(v, old, new) != old);
604 return new;
608 * page table entry allocation/free routines.
610 unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
612 unsigned long *uninitialized_var(table);
613 struct page *uninitialized_var(page);
614 unsigned int mask, bit;
616 if (mm_has_pgste(mm))
617 return page_table_alloc_pgste(mm, vmaddr);
618 /* Allocate fragments of a 4K page as 1K/2K page table */
619 spin_lock_bh(&mm->context.list_lock);
620 mask = FRAG_MASK;
621 if (!list_empty(&mm->context.pgtable_list)) {
622 page = list_first_entry(&mm->context.pgtable_list,
623 struct page, lru);
624 table = (unsigned long *) page_to_phys(page);
625 mask = atomic_read(&page->_mapcount);
626 mask = mask | (mask >> 4);
628 if ((mask & FRAG_MASK) == FRAG_MASK) {
629 spin_unlock_bh(&mm->context.list_lock);
630 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
631 if (!page)
632 return NULL;
633 pgtable_page_ctor(page);
634 atomic_set(&page->_mapcount, 1);
635 table = (unsigned long *) page_to_phys(page);
636 clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE);
637 spin_lock_bh(&mm->context.list_lock);
638 list_add(&page->lru, &mm->context.pgtable_list);
639 } else {
640 for (bit = 1; mask & bit; bit <<= 1)
641 table += PTRS_PER_PTE;
642 mask = atomic_xor_bits(&page->_mapcount, bit);
643 if ((mask & FRAG_MASK) == FRAG_MASK)
644 list_del(&page->lru);
646 spin_unlock_bh(&mm->context.list_lock);
647 return table;
650 void page_table_free(struct mm_struct *mm, unsigned long *table)
652 struct page *page;
653 unsigned int bit, mask;
655 if (mm_has_pgste(mm)) {
656 gmap_unmap_notifier(mm, table);
657 return page_table_free_pgste(table);
659 /* Free 1K/2K page table fragment of a 4K page */
660 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
661 bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
662 spin_lock_bh(&mm->context.list_lock);
663 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
664 list_del(&page->lru);
665 mask = atomic_xor_bits(&page->_mapcount, bit);
666 if (mask & FRAG_MASK)
667 list_add(&page->lru, &mm->context.pgtable_list);
668 spin_unlock_bh(&mm->context.list_lock);
669 if (mask == 0) {
670 pgtable_page_dtor(page);
671 atomic_set(&page->_mapcount, -1);
672 __free_page(page);
676 static void __page_table_free_rcu(void *table, unsigned bit)
678 struct page *page;
680 if (bit == FRAG_MASK)
681 return page_table_free_pgste(table);
682 /* Free 1K/2K page table fragment of a 4K page */
683 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
684 if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
685 pgtable_page_dtor(page);
686 atomic_set(&page->_mapcount, -1);
687 __free_page(page);
691 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
693 struct mm_struct *mm;
694 struct page *page;
695 unsigned int bit, mask;
697 mm = tlb->mm;
698 if (mm_has_pgste(mm)) {
699 gmap_unmap_notifier(mm, table);
700 table = (unsigned long *) (__pa(table) | FRAG_MASK);
701 tlb_remove_table(tlb, table);
702 return;
704 bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
705 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
706 spin_lock_bh(&mm->context.list_lock);
707 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
708 list_del(&page->lru);
709 mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
710 if (mask & FRAG_MASK)
711 list_add_tail(&page->lru, &mm->context.pgtable_list);
712 spin_unlock_bh(&mm->context.list_lock);
713 table = (unsigned long *) (__pa(table) | (bit << 4));
714 tlb_remove_table(tlb, table);
717 void __tlb_remove_table(void *_table)
719 const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
720 void *table = (void *)((unsigned long) _table & ~mask);
721 unsigned type = (unsigned long) _table & mask;
723 if (type)
724 __page_table_free_rcu(table, type);
725 else
726 free_pages((unsigned long) table, ALLOC_ORDER);
729 static void tlb_remove_table_smp_sync(void *arg)
731 /* Simply deliver the interrupt */
734 static void tlb_remove_table_one(void *table)
737 * This isn't an RCU grace period and hence the page-tables cannot be
738 * assumed to be actually RCU-freed.
740 * It is however sufficient for software page-table walkers that rely
741 * on IRQ disabling. See the comment near struct mmu_table_batch.
743 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
744 __tlb_remove_table(table);
747 static void tlb_remove_table_rcu(struct rcu_head *head)
749 struct mmu_table_batch *batch;
750 int i;
752 batch = container_of(head, struct mmu_table_batch, rcu);
754 for (i = 0; i < batch->nr; i++)
755 __tlb_remove_table(batch->tables[i]);
757 free_page((unsigned long)batch);
760 void tlb_table_flush(struct mmu_gather *tlb)
762 struct mmu_table_batch **batch = &tlb->batch;
764 if (*batch) {
765 __tlb_flush_mm(tlb->mm);
766 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
767 *batch = NULL;
771 void tlb_remove_table(struct mmu_gather *tlb, void *table)
773 struct mmu_table_batch **batch = &tlb->batch;
775 if (*batch == NULL) {
776 *batch = (struct mmu_table_batch *)
777 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
778 if (*batch == NULL) {
779 __tlb_flush_mm(tlb->mm);
780 tlb_remove_table_one(table);
781 return;
783 (*batch)->nr = 0;
785 (*batch)->tables[(*batch)->nr++] = table;
786 if ((*batch)->nr == MAX_TABLE_BATCH)
787 tlb_table_flush(tlb);
790 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
791 void thp_split_vma(struct vm_area_struct *vma)
793 unsigned long addr;
794 struct page *page;
796 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
797 page = follow_page(vma, addr, FOLL_SPLIT);
801 void thp_split_mm(struct mm_struct *mm)
803 struct vm_area_struct *vma = mm->mmap;
805 while (vma != NULL) {
806 thp_split_vma(vma);
807 vma->vm_flags &= ~VM_HUGEPAGE;
808 vma->vm_flags |= VM_NOHUGEPAGE;
809 vma = vma->vm_next;
812 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
815 * switch on pgstes for its userspace process (for kvm)
817 int s390_enable_sie(void)
819 struct task_struct *tsk = current;
820 struct mm_struct *mm, *old_mm;
822 /* Do we have switched amode? If no, we cannot do sie */
823 if (s390_user_mode == HOME_SPACE_MODE)
824 return -EINVAL;
826 /* Do we have pgstes? if yes, we are done */
827 if (mm_has_pgste(tsk->mm))
828 return 0;
830 /* lets check if we are allowed to replace the mm */
831 task_lock(tsk);
832 if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
833 #ifdef CONFIG_AIO
834 !hlist_empty(&tsk->mm->ioctx_list) ||
835 #endif
836 tsk->mm != tsk->active_mm) {
837 task_unlock(tsk);
838 return -EINVAL;
840 task_unlock(tsk);
842 /* we copy the mm and let dup_mm create the page tables with_pgstes */
843 tsk->mm->context.alloc_pgste = 1;
844 /* make sure that both mms have a correct rss state */
845 sync_mm_rss(tsk->mm);
846 mm = dup_mm(tsk);
847 tsk->mm->context.alloc_pgste = 0;
848 if (!mm)
849 return -ENOMEM;
851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
852 /* split thp mappings and disable thp for future mappings */
853 thp_split_mm(mm);
854 mm->def_flags |= VM_NOHUGEPAGE;
855 #endif
857 /* Now lets check again if something happened */
858 task_lock(tsk);
859 if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
860 #ifdef CONFIG_AIO
861 !hlist_empty(&tsk->mm->ioctx_list) ||
862 #endif
863 tsk->mm != tsk->active_mm) {
864 mmput(mm);
865 task_unlock(tsk);
866 return -EINVAL;
869 /* ok, we are alone. No ptrace, no threads, etc. */
870 old_mm = tsk->mm;
871 tsk->mm = tsk->active_mm = mm;
872 preempt_disable();
873 update_mm(mm, tsk);
874 atomic_inc(&mm->context.attach_count);
875 atomic_dec(&old_mm->context.attach_count);
876 cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
877 preempt_enable();
878 task_unlock(tsk);
879 mmput(old_mm);
880 return 0;
882 EXPORT_SYMBOL_GPL(s390_enable_sie);
884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
885 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
886 pmd_t *pmdp)
888 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
889 /* No need to flush TLB
890 * On s390 reference bits are in storage key and never in TLB */
891 return pmdp_test_and_clear_young(vma, address, pmdp);
894 int pmdp_set_access_flags(struct vm_area_struct *vma,
895 unsigned long address, pmd_t *pmdp,
896 pmd_t entry, int dirty)
898 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
900 if (pmd_same(*pmdp, entry))
901 return 0;
902 pmdp_invalidate(vma, address, pmdp);
903 set_pmd_at(vma->vm_mm, address, pmdp, entry);
904 return 1;
907 static void pmdp_splitting_flush_sync(void *arg)
909 /* Simply deliver the interrupt */
912 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
913 pmd_t *pmdp)
915 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
916 if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
917 (unsigned long *) pmdp)) {
918 /* need to serialize against gup-fast (IRQ disabled) */
919 smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
923 void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable)
925 struct list_head *lh = (struct list_head *) pgtable;
927 assert_spin_locked(&mm->page_table_lock);
929 /* FIFO */
930 if (!mm->pmd_huge_pte)
931 INIT_LIST_HEAD(lh);
932 else
933 list_add(lh, (struct list_head *) mm->pmd_huge_pte);
934 mm->pmd_huge_pte = pgtable;
937 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm)
939 struct list_head *lh;
940 pgtable_t pgtable;
941 pte_t *ptep;
943 assert_spin_locked(&mm->page_table_lock);
945 /* FIFO */
946 pgtable = mm->pmd_huge_pte;
947 lh = (struct list_head *) pgtable;
948 if (list_empty(lh))
949 mm->pmd_huge_pte = NULL;
950 else {
951 mm->pmd_huge_pte = (pgtable_t) lh->next;
952 list_del(lh);
954 ptep = (pte_t *) pgtable;
955 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
956 ptep++;
957 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
958 return pgtable;
960 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */