PM / Domains: Validate cases of a non-bound driver in genpd governor
[linux/fpc-iii.git] / include / net / sock.h
blob7aa78440559a47db8e5ccc8ea69a34f87b90c125
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
66 #include <linux/atomic.h>
67 #include <net/dst.h>
68 #include <net/checksum.h>
69 #include <net/tcp_states.h>
70 #include <linux/net_tstamp.h>
72 struct cgroup;
73 struct cgroup_subsys;
74 #ifdef CONFIG_NET
75 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
76 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 #else
78 static inline
79 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
81 return 0;
83 static inline
84 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
87 #endif
89 * This structure really needs to be cleaned up.
90 * Most of it is for TCP, and not used by any of
91 * the other protocols.
94 /* Define this to get the SOCK_DBG debugging facility. */
95 #define SOCK_DEBUGGING
96 #ifdef SOCK_DEBUGGING
97 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
98 printk(KERN_DEBUG msg); } while (0)
99 #else
100 /* Validate arguments and do nothing */
101 static inline __printf(2, 3)
102 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
105 #endif
107 /* This is the per-socket lock. The spinlock provides a synchronization
108 * between user contexts and software interrupt processing, whereas the
109 * mini-semaphore synchronizes multiple users amongst themselves.
111 typedef struct {
112 spinlock_t slock;
113 int owned;
114 wait_queue_head_t wq;
116 * We express the mutex-alike socket_lock semantics
117 * to the lock validator by explicitly managing
118 * the slock as a lock variant (in addition to
119 * the slock itself):
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 struct lockdep_map dep_map;
123 #endif
124 } socket_lock_t;
126 struct sock;
127 struct proto;
128 struct net;
130 typedef __u32 __bitwise __portpair;
131 typedef __u64 __bitwise __addrpair;
134 * struct sock_common - minimal network layer representation of sockets
135 * @skc_daddr: Foreign IPv4 addr
136 * @skc_rcv_saddr: Bound local IPv4 addr
137 * @skc_hash: hash value used with various protocol lookup tables
138 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
139 * @skc_dport: placeholder for inet_dport/tw_dport
140 * @skc_num: placeholder for inet_num/tw_num
141 * @skc_family: network address family
142 * @skc_state: Connection state
143 * @skc_reuse: %SO_REUSEADDR setting
144 * @skc_reuseport: %SO_REUSEPORT setting
145 * @skc_bound_dev_if: bound device index if != 0
146 * @skc_bind_node: bind hash linkage for various protocol lookup tables
147 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
148 * @skc_prot: protocol handlers inside a network family
149 * @skc_net: reference to the network namespace of this socket
150 * @skc_node: main hash linkage for various protocol lookup tables
151 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
152 * @skc_tx_queue_mapping: tx queue number for this connection
153 * @skc_refcnt: reference count
155 * This is the minimal network layer representation of sockets, the header
156 * for struct sock and struct inet_timewait_sock.
158 struct sock_common {
159 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
160 * address on 64bit arches : cf INET_MATCH()
162 union {
163 __addrpair skc_addrpair;
164 struct {
165 __be32 skc_daddr;
166 __be32 skc_rcv_saddr;
169 union {
170 unsigned int skc_hash;
171 __u16 skc_u16hashes[2];
173 /* skc_dport && skc_num must be grouped as well */
174 union {
175 __portpair skc_portpair;
176 struct {
177 __be16 skc_dport;
178 __u16 skc_num;
182 unsigned short skc_family;
183 volatile unsigned char skc_state;
184 unsigned char skc_reuse:4;
185 unsigned char skc_reuseport:1;
186 unsigned char skc_ipv6only:1;
187 unsigned char skc_net_refcnt:1;
188 int skc_bound_dev_if;
189 union {
190 struct hlist_node skc_bind_node;
191 struct hlist_nulls_node skc_portaddr_node;
193 struct proto *skc_prot;
194 possible_net_t skc_net;
196 #if IS_ENABLED(CONFIG_IPV6)
197 struct in6_addr skc_v6_daddr;
198 struct in6_addr skc_v6_rcv_saddr;
199 #endif
201 atomic64_t skc_cookie;
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
214 int skc_tx_queue_mapping;
215 atomic_t skc_refcnt;
216 /* private: */
217 int skc_dontcopy_end[0];
218 /* public: */
221 struct cg_proto;
223 * struct sock - network layer representation of sockets
224 * @__sk_common: shared layout with inet_timewait_sock
225 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
226 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
227 * @sk_lock: synchronizer
228 * @sk_rcvbuf: size of receive buffer in bytes
229 * @sk_wq: sock wait queue and async head
230 * @sk_rx_dst: receive input route used by early demux
231 * @sk_dst_cache: destination cache
232 * @sk_dst_lock: destination cache lock
233 * @sk_policy: flow policy
234 * @sk_receive_queue: incoming packets
235 * @sk_wmem_alloc: transmit queue bytes committed
236 * @sk_write_queue: Packet sending queue
237 * @sk_omem_alloc: "o" is "option" or "other"
238 * @sk_wmem_queued: persistent queue size
239 * @sk_forward_alloc: space allocated forward
240 * @sk_napi_id: id of the last napi context to receive data for sk
241 * @sk_ll_usec: usecs to busypoll when there is no data
242 * @sk_allocation: allocation mode
243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
245 * @sk_sndbuf: size of send buffer in bytes
246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
249 * @sk_no_check_rx: allow zero checksum in RX packets
250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
253 * @sk_gso_max_size: Maximum GSO segment size to build
254 * @sk_gso_max_segs: Maximum number of GSO segments
255 * @sk_lingertime: %SO_LINGER l_linger setting
256 * @sk_backlog: always used with the per-socket spinlock held
257 * @sk_callback_lock: used with the callbacks in the end of this struct
258 * @sk_error_queue: rarely used
259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
260 * IPV6_ADDRFORM for instance)
261 * @sk_err: last error
262 * @sk_err_soft: errors that don't cause failure but are the cause of a
263 * persistent failure not just 'timed out'
264 * @sk_drops: raw/udp drops counter
265 * @sk_ack_backlog: current listen backlog
266 * @sk_max_ack_backlog: listen backlog set in listen()
267 * @sk_priority: %SO_PRIORITY setting
268 * @sk_cgrp_prioidx: socket group's priority map index
269 * @sk_type: socket type (%SOCK_STREAM, etc)
270 * @sk_protocol: which protocol this socket belongs in this network family
271 * @sk_peer_pid: &struct pid for this socket's peer
272 * @sk_peer_cred: %SO_PEERCRED setting
273 * @sk_rcvlowat: %SO_RCVLOWAT setting
274 * @sk_rcvtimeo: %SO_RCVTIMEO setting
275 * @sk_sndtimeo: %SO_SNDTIMEO setting
276 * @sk_rxhash: flow hash received from netif layer
277 * @sk_incoming_cpu: record cpu processing incoming packets
278 * @sk_txhash: computed flow hash for use on transmit
279 * @sk_filter: socket filtering instructions
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
301 struct sock {
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
306 struct sock_common __sk_common;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_net_refcnt __sk_common.skc_net_refcnt
327 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
328 #define sk_bind_node __sk_common.skc_bind_node
329 #define sk_prot __sk_common.skc_prot
330 #define sk_net __sk_common.skc_net
331 #define sk_v6_daddr __sk_common.skc_v6_daddr
332 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
333 #define sk_cookie __sk_common.skc_cookie
335 socket_lock_t sk_lock;
336 struct sk_buff_head sk_receive_queue;
338 * The backlog queue is special, it is always used with
339 * the per-socket spinlock held and requires low latency
340 * access. Therefore we special case it's implementation.
341 * Note : rmem_alloc is in this structure to fill a hole
342 * on 64bit arches, not because its logically part of
343 * backlog.
345 struct {
346 atomic_t rmem_alloc;
347 int len;
348 struct sk_buff *head;
349 struct sk_buff *tail;
350 } sk_backlog;
351 #define sk_rmem_alloc sk_backlog.rmem_alloc
352 int sk_forward_alloc;
353 #ifdef CONFIG_RPS
354 __u32 sk_rxhash;
355 #endif
356 u16 sk_incoming_cpu;
357 /* 16bit hole
358 * Warned : sk_incoming_cpu can be set from softirq,
359 * Do not use this hole without fully understanding possible issues.
362 __u32 sk_txhash;
363 #ifdef CONFIG_NET_RX_BUSY_POLL
364 unsigned int sk_napi_id;
365 unsigned int sk_ll_usec;
366 #endif
367 atomic_t sk_drops;
368 int sk_rcvbuf;
370 struct sk_filter __rcu *sk_filter;
371 struct socket_wq __rcu *sk_wq;
373 #ifdef CONFIG_XFRM
374 struct xfrm_policy *sk_policy[2];
375 #endif
376 unsigned long sk_flags;
377 struct dst_entry *sk_rx_dst;
378 struct dst_entry __rcu *sk_dst_cache;
379 spinlock_t sk_dst_lock;
380 atomic_t sk_wmem_alloc;
381 atomic_t sk_omem_alloc;
382 int sk_sndbuf;
383 struct sk_buff_head sk_write_queue;
384 kmemcheck_bitfield_begin(flags);
385 unsigned int sk_shutdown : 2,
386 sk_no_check_tx : 1,
387 sk_no_check_rx : 1,
388 sk_userlocks : 4,
389 sk_protocol : 8,
390 sk_type : 16;
391 kmemcheck_bitfield_end(flags);
392 int sk_wmem_queued;
393 gfp_t sk_allocation;
394 u32 sk_pacing_rate; /* bytes per second */
395 u32 sk_max_pacing_rate;
396 netdev_features_t sk_route_caps;
397 netdev_features_t sk_route_nocaps;
398 int sk_gso_type;
399 unsigned int sk_gso_max_size;
400 u16 sk_gso_max_segs;
401 int sk_rcvlowat;
402 unsigned long sk_lingertime;
403 struct sk_buff_head sk_error_queue;
404 struct proto *sk_prot_creator;
405 rwlock_t sk_callback_lock;
406 int sk_err,
407 sk_err_soft;
408 u32 sk_ack_backlog;
409 u32 sk_max_ack_backlog;
410 __u32 sk_priority;
411 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
412 __u32 sk_cgrp_prioidx;
413 #endif
414 struct pid *sk_peer_pid;
415 const struct cred *sk_peer_cred;
416 long sk_rcvtimeo;
417 long sk_sndtimeo;
418 struct timer_list sk_timer;
419 ktime_t sk_stamp;
420 u16 sk_tsflags;
421 u32 sk_tskey;
422 struct socket *sk_socket;
423 void *sk_user_data;
424 struct page_frag sk_frag;
425 struct sk_buff *sk_send_head;
426 __s32 sk_peek_off;
427 int sk_write_pending;
428 #ifdef CONFIG_SECURITY
429 void *sk_security;
430 #endif
431 __u32 sk_mark;
432 #ifdef CONFIG_CGROUP_NET_CLASSID
433 u32 sk_classid;
434 #endif
435 struct cg_proto *sk_cgrp;
436 void (*sk_state_change)(struct sock *sk);
437 void (*sk_data_ready)(struct sock *sk);
438 void (*sk_write_space)(struct sock *sk);
439 void (*sk_error_report)(struct sock *sk);
440 int (*sk_backlog_rcv)(struct sock *sk,
441 struct sk_buff *skb);
442 void (*sk_destruct)(struct sock *sk);
445 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
447 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
448 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
451 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
452 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
453 * on a socket means that the socket will reuse everybody else's port
454 * without looking at the other's sk_reuse value.
457 #define SK_NO_REUSE 0
458 #define SK_CAN_REUSE 1
459 #define SK_FORCE_REUSE 2
461 static inline int sk_peek_offset(struct sock *sk, int flags)
463 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
464 return sk->sk_peek_off;
465 else
466 return 0;
469 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
471 if (sk->sk_peek_off >= 0) {
472 if (sk->sk_peek_off >= val)
473 sk->sk_peek_off -= val;
474 else
475 sk->sk_peek_off = 0;
479 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
481 if (sk->sk_peek_off >= 0)
482 sk->sk_peek_off += val;
486 * Hashed lists helper routines
488 static inline struct sock *sk_entry(const struct hlist_node *node)
490 return hlist_entry(node, struct sock, sk_node);
493 static inline struct sock *__sk_head(const struct hlist_head *head)
495 return hlist_entry(head->first, struct sock, sk_node);
498 static inline struct sock *sk_head(const struct hlist_head *head)
500 return hlist_empty(head) ? NULL : __sk_head(head);
503 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
505 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
508 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
510 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
513 static inline struct sock *sk_next(const struct sock *sk)
515 return sk->sk_node.next ?
516 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
519 static inline struct sock *sk_nulls_next(const struct sock *sk)
521 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
522 hlist_nulls_entry(sk->sk_nulls_node.next,
523 struct sock, sk_nulls_node) :
524 NULL;
527 static inline bool sk_unhashed(const struct sock *sk)
529 return hlist_unhashed(&sk->sk_node);
532 static inline bool sk_hashed(const struct sock *sk)
534 return !sk_unhashed(sk);
537 static inline void sk_node_init(struct hlist_node *node)
539 node->pprev = NULL;
542 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
544 node->pprev = NULL;
547 static inline void __sk_del_node(struct sock *sk)
549 __hlist_del(&sk->sk_node);
552 /* NB: equivalent to hlist_del_init_rcu */
553 static inline bool __sk_del_node_init(struct sock *sk)
555 if (sk_hashed(sk)) {
556 __sk_del_node(sk);
557 sk_node_init(&sk->sk_node);
558 return true;
560 return false;
563 /* Grab socket reference count. This operation is valid only
564 when sk is ALREADY grabbed f.e. it is found in hash table
565 or a list and the lookup is made under lock preventing hash table
566 modifications.
569 static inline void sock_hold(struct sock *sk)
571 atomic_inc(&sk->sk_refcnt);
574 /* Ungrab socket in the context, which assumes that socket refcnt
575 cannot hit zero, f.e. it is true in context of any socketcall.
577 static inline void __sock_put(struct sock *sk)
579 atomic_dec(&sk->sk_refcnt);
582 static inline bool sk_del_node_init(struct sock *sk)
584 bool rc = __sk_del_node_init(sk);
586 if (rc) {
587 /* paranoid for a while -acme */
588 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
589 __sock_put(sk);
591 return rc;
593 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
595 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
597 if (sk_hashed(sk)) {
598 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
599 return true;
601 return false;
604 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
606 bool rc = __sk_nulls_del_node_init_rcu(sk);
608 if (rc) {
609 /* paranoid for a while -acme */
610 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
611 __sock_put(sk);
613 return rc;
616 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
618 hlist_add_head(&sk->sk_node, list);
621 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
623 sock_hold(sk);
624 __sk_add_node(sk, list);
627 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
629 sock_hold(sk);
630 hlist_add_head_rcu(&sk->sk_node, list);
633 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
635 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
638 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
640 sock_hold(sk);
641 __sk_nulls_add_node_rcu(sk, list);
644 static inline void __sk_del_bind_node(struct sock *sk)
646 __hlist_del(&sk->sk_bind_node);
649 static inline void sk_add_bind_node(struct sock *sk,
650 struct hlist_head *list)
652 hlist_add_head(&sk->sk_bind_node, list);
655 #define sk_for_each(__sk, list) \
656 hlist_for_each_entry(__sk, list, sk_node)
657 #define sk_for_each_rcu(__sk, list) \
658 hlist_for_each_entry_rcu(__sk, list, sk_node)
659 #define sk_nulls_for_each(__sk, node, list) \
660 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
661 #define sk_nulls_for_each_rcu(__sk, node, list) \
662 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
663 #define sk_for_each_from(__sk) \
664 hlist_for_each_entry_from(__sk, sk_node)
665 #define sk_nulls_for_each_from(__sk, node) \
666 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
667 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
668 #define sk_for_each_safe(__sk, tmp, list) \
669 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
670 #define sk_for_each_bound(__sk, list) \
671 hlist_for_each_entry(__sk, list, sk_bind_node)
674 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
675 * @tpos: the type * to use as a loop cursor.
676 * @pos: the &struct hlist_node to use as a loop cursor.
677 * @head: the head for your list.
678 * @offset: offset of hlist_node within the struct.
681 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
682 for (pos = (head)->first; \
683 (!is_a_nulls(pos)) && \
684 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
685 pos = pos->next)
687 static inline struct user_namespace *sk_user_ns(struct sock *sk)
689 /* Careful only use this in a context where these parameters
690 * can not change and must all be valid, such as recvmsg from
691 * userspace.
693 return sk->sk_socket->file->f_cred->user_ns;
696 /* Sock flags */
697 enum sock_flags {
698 SOCK_DEAD,
699 SOCK_DONE,
700 SOCK_URGINLINE,
701 SOCK_KEEPOPEN,
702 SOCK_LINGER,
703 SOCK_DESTROY,
704 SOCK_BROADCAST,
705 SOCK_TIMESTAMP,
706 SOCK_ZAPPED,
707 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
708 SOCK_DBG, /* %SO_DEBUG setting */
709 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
710 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
711 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
712 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
713 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
714 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
715 SOCK_FASYNC, /* fasync() active */
716 SOCK_RXQ_OVFL,
717 SOCK_ZEROCOPY, /* buffers from userspace */
718 SOCK_WIFI_STATUS, /* push wifi status to userspace */
719 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
720 * Will use last 4 bytes of packet sent from
721 * user-space instead.
723 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
724 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
727 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
729 nsk->sk_flags = osk->sk_flags;
732 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
734 __set_bit(flag, &sk->sk_flags);
737 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
739 __clear_bit(flag, &sk->sk_flags);
742 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
744 return test_bit(flag, &sk->sk_flags);
747 #ifdef CONFIG_NET
748 extern struct static_key memalloc_socks;
749 static inline int sk_memalloc_socks(void)
751 return static_key_false(&memalloc_socks);
753 #else
755 static inline int sk_memalloc_socks(void)
757 return 0;
760 #endif
762 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
764 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
767 static inline void sk_acceptq_removed(struct sock *sk)
769 sk->sk_ack_backlog--;
772 static inline void sk_acceptq_added(struct sock *sk)
774 sk->sk_ack_backlog++;
777 static inline bool sk_acceptq_is_full(const struct sock *sk)
779 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
783 * Compute minimal free write space needed to queue new packets.
785 static inline int sk_stream_min_wspace(const struct sock *sk)
787 return sk->sk_wmem_queued >> 1;
790 static inline int sk_stream_wspace(const struct sock *sk)
792 return sk->sk_sndbuf - sk->sk_wmem_queued;
795 void sk_stream_write_space(struct sock *sk);
797 /* OOB backlog add */
798 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
800 /* dont let skb dst not refcounted, we are going to leave rcu lock */
801 skb_dst_force(skb);
803 if (!sk->sk_backlog.tail)
804 sk->sk_backlog.head = skb;
805 else
806 sk->sk_backlog.tail->next = skb;
808 sk->sk_backlog.tail = skb;
809 skb->next = NULL;
813 * Take into account size of receive queue and backlog queue
814 * Do not take into account this skb truesize,
815 * to allow even a single big packet to come.
817 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
819 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
821 return qsize > limit;
824 /* The per-socket spinlock must be held here. */
825 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
826 unsigned int limit)
828 if (sk_rcvqueues_full(sk, limit))
829 return -ENOBUFS;
831 __sk_add_backlog(sk, skb);
832 sk->sk_backlog.len += skb->truesize;
833 return 0;
836 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
838 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
840 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
841 return __sk_backlog_rcv(sk, skb);
843 return sk->sk_backlog_rcv(sk, skb);
846 static inline void sk_incoming_cpu_update(struct sock *sk)
848 sk->sk_incoming_cpu = raw_smp_processor_id();
851 static inline void sock_rps_record_flow_hash(__u32 hash)
853 #ifdef CONFIG_RPS
854 struct rps_sock_flow_table *sock_flow_table;
856 rcu_read_lock();
857 sock_flow_table = rcu_dereference(rps_sock_flow_table);
858 rps_record_sock_flow(sock_flow_table, hash);
859 rcu_read_unlock();
860 #endif
863 static inline void sock_rps_record_flow(const struct sock *sk)
865 #ifdef CONFIG_RPS
866 sock_rps_record_flow_hash(sk->sk_rxhash);
867 #endif
870 static inline void sock_rps_save_rxhash(struct sock *sk,
871 const struct sk_buff *skb)
873 #ifdef CONFIG_RPS
874 if (unlikely(sk->sk_rxhash != skb->hash))
875 sk->sk_rxhash = skb->hash;
876 #endif
879 static inline void sock_rps_reset_rxhash(struct sock *sk)
881 #ifdef CONFIG_RPS
882 sk->sk_rxhash = 0;
883 #endif
886 #define sk_wait_event(__sk, __timeo, __condition) \
887 ({ int __rc; \
888 release_sock(__sk); \
889 __rc = __condition; \
890 if (!__rc) { \
891 *(__timeo) = schedule_timeout(*(__timeo)); \
893 sched_annotate_sleep(); \
894 lock_sock(__sk); \
895 __rc = __condition; \
896 __rc; \
899 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
900 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
901 void sk_stream_wait_close(struct sock *sk, long timeo_p);
902 int sk_stream_error(struct sock *sk, int flags, int err);
903 void sk_stream_kill_queues(struct sock *sk);
904 void sk_set_memalloc(struct sock *sk);
905 void sk_clear_memalloc(struct sock *sk);
907 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
909 struct request_sock_ops;
910 struct timewait_sock_ops;
911 struct inet_hashinfo;
912 struct raw_hashinfo;
913 struct module;
916 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
917 * un-modified. Special care is taken when initializing object to zero.
919 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
921 if (offsetof(struct sock, sk_node.next) != 0)
922 memset(sk, 0, offsetof(struct sock, sk_node.next));
923 memset(&sk->sk_node.pprev, 0,
924 size - offsetof(struct sock, sk_node.pprev));
927 /* Networking protocol blocks we attach to sockets.
928 * socket layer -> transport layer interface
930 struct proto {
931 void (*close)(struct sock *sk,
932 long timeout);
933 int (*connect)(struct sock *sk,
934 struct sockaddr *uaddr,
935 int addr_len);
936 int (*disconnect)(struct sock *sk, int flags);
938 struct sock * (*accept)(struct sock *sk, int flags, int *err);
940 int (*ioctl)(struct sock *sk, int cmd,
941 unsigned long arg);
942 int (*init)(struct sock *sk);
943 void (*destroy)(struct sock *sk);
944 void (*shutdown)(struct sock *sk, int how);
945 int (*setsockopt)(struct sock *sk, int level,
946 int optname, char __user *optval,
947 unsigned int optlen);
948 int (*getsockopt)(struct sock *sk, int level,
949 int optname, char __user *optval,
950 int __user *option);
951 #ifdef CONFIG_COMPAT
952 int (*compat_setsockopt)(struct sock *sk,
953 int level,
954 int optname, char __user *optval,
955 unsigned int optlen);
956 int (*compat_getsockopt)(struct sock *sk,
957 int level,
958 int optname, char __user *optval,
959 int __user *option);
960 int (*compat_ioctl)(struct sock *sk,
961 unsigned int cmd, unsigned long arg);
962 #endif
963 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
964 size_t len);
965 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
966 size_t len, int noblock, int flags,
967 int *addr_len);
968 int (*sendpage)(struct sock *sk, struct page *page,
969 int offset, size_t size, int flags);
970 int (*bind)(struct sock *sk,
971 struct sockaddr *uaddr, int addr_len);
973 int (*backlog_rcv) (struct sock *sk,
974 struct sk_buff *skb);
976 void (*release_cb)(struct sock *sk);
978 /* Keeping track of sk's, looking them up, and port selection methods. */
979 void (*hash)(struct sock *sk);
980 void (*unhash)(struct sock *sk);
981 void (*rehash)(struct sock *sk);
982 int (*get_port)(struct sock *sk, unsigned short snum);
983 void (*clear_sk)(struct sock *sk, int size);
985 /* Keeping track of sockets in use */
986 #ifdef CONFIG_PROC_FS
987 unsigned int inuse_idx;
988 #endif
990 bool (*stream_memory_free)(const struct sock *sk);
991 /* Memory pressure */
992 void (*enter_memory_pressure)(struct sock *sk);
993 atomic_long_t *memory_allocated; /* Current allocated memory. */
994 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
996 * Pressure flag: try to collapse.
997 * Technical note: it is used by multiple contexts non atomically.
998 * All the __sk_mem_schedule() is of this nature: accounting
999 * is strict, actions are advisory and have some latency.
1001 int *memory_pressure;
1002 long *sysctl_mem;
1003 int *sysctl_wmem;
1004 int *sysctl_rmem;
1005 int max_header;
1006 bool no_autobind;
1008 struct kmem_cache *slab;
1009 unsigned int obj_size;
1010 int slab_flags;
1012 struct percpu_counter *orphan_count;
1014 struct request_sock_ops *rsk_prot;
1015 struct timewait_sock_ops *twsk_prot;
1017 union {
1018 struct inet_hashinfo *hashinfo;
1019 struct udp_table *udp_table;
1020 struct raw_hashinfo *raw_hash;
1021 } h;
1023 struct module *owner;
1025 char name[32];
1027 struct list_head node;
1028 #ifdef SOCK_REFCNT_DEBUG
1029 atomic_t socks;
1030 #endif
1031 #ifdef CONFIG_MEMCG_KMEM
1033 * cgroup specific init/deinit functions. Called once for all
1034 * protocols that implement it, from cgroups populate function.
1035 * This function has to setup any files the protocol want to
1036 * appear in the kmem cgroup filesystem.
1038 int (*init_cgroup)(struct mem_cgroup *memcg,
1039 struct cgroup_subsys *ss);
1040 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1041 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1042 #endif
1045 int proto_register(struct proto *prot, int alloc_slab);
1046 void proto_unregister(struct proto *prot);
1048 #ifdef SOCK_REFCNT_DEBUG
1049 static inline void sk_refcnt_debug_inc(struct sock *sk)
1051 atomic_inc(&sk->sk_prot->socks);
1054 static inline void sk_refcnt_debug_dec(struct sock *sk)
1056 atomic_dec(&sk->sk_prot->socks);
1057 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1058 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1061 static inline void sk_refcnt_debug_release(const struct sock *sk)
1063 if (atomic_read(&sk->sk_refcnt) != 1)
1064 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1065 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1067 #else /* SOCK_REFCNT_DEBUG */
1068 #define sk_refcnt_debug_inc(sk) do { } while (0)
1069 #define sk_refcnt_debug_dec(sk) do { } while (0)
1070 #define sk_refcnt_debug_release(sk) do { } while (0)
1071 #endif /* SOCK_REFCNT_DEBUG */
1073 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1074 extern struct static_key memcg_socket_limit_enabled;
1075 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1076 struct cg_proto *cg_proto)
1078 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1080 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1081 #else
1082 #define mem_cgroup_sockets_enabled 0
1083 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1084 struct cg_proto *cg_proto)
1086 return NULL;
1088 #endif
1090 static inline bool sk_stream_memory_free(const struct sock *sk)
1092 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1093 return false;
1095 return sk->sk_prot->stream_memory_free ?
1096 sk->sk_prot->stream_memory_free(sk) : true;
1099 static inline bool sk_stream_is_writeable(const struct sock *sk)
1101 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1102 sk_stream_memory_free(sk);
1106 static inline bool sk_has_memory_pressure(const struct sock *sk)
1108 return sk->sk_prot->memory_pressure != NULL;
1111 static inline bool sk_under_memory_pressure(const struct sock *sk)
1113 if (!sk->sk_prot->memory_pressure)
1114 return false;
1116 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1117 return !!sk->sk_cgrp->memory_pressure;
1119 return !!*sk->sk_prot->memory_pressure;
1122 static inline void sk_leave_memory_pressure(struct sock *sk)
1124 int *memory_pressure = sk->sk_prot->memory_pressure;
1126 if (!memory_pressure)
1127 return;
1129 if (*memory_pressure)
1130 *memory_pressure = 0;
1132 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1133 struct cg_proto *cg_proto = sk->sk_cgrp;
1134 struct proto *prot = sk->sk_prot;
1136 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1137 cg_proto->memory_pressure = 0;
1142 static inline void sk_enter_memory_pressure(struct sock *sk)
1144 if (!sk->sk_prot->enter_memory_pressure)
1145 return;
1147 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1148 struct cg_proto *cg_proto = sk->sk_cgrp;
1149 struct proto *prot = sk->sk_prot;
1151 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1152 cg_proto->memory_pressure = 1;
1155 sk->sk_prot->enter_memory_pressure(sk);
1158 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1160 long *prot = sk->sk_prot->sysctl_mem;
1161 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1162 prot = sk->sk_cgrp->sysctl_mem;
1163 return prot[index];
1166 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1167 unsigned long amt,
1168 int *parent_status)
1170 page_counter_charge(&prot->memory_allocated, amt);
1172 if (page_counter_read(&prot->memory_allocated) >
1173 prot->memory_allocated.limit)
1174 *parent_status = OVER_LIMIT;
1177 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1178 unsigned long amt)
1180 page_counter_uncharge(&prot->memory_allocated, amt);
1183 static inline long
1184 sk_memory_allocated(const struct sock *sk)
1186 struct proto *prot = sk->sk_prot;
1188 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1189 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1191 return atomic_long_read(prot->memory_allocated);
1194 static inline long
1195 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1197 struct proto *prot = sk->sk_prot;
1199 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1200 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1201 /* update the root cgroup regardless */
1202 atomic_long_add_return(amt, prot->memory_allocated);
1203 return page_counter_read(&sk->sk_cgrp->memory_allocated);
1206 return atomic_long_add_return(amt, prot->memory_allocated);
1209 static inline void
1210 sk_memory_allocated_sub(struct sock *sk, int amt)
1212 struct proto *prot = sk->sk_prot;
1214 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1215 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1217 atomic_long_sub(amt, prot->memory_allocated);
1220 static inline void sk_sockets_allocated_dec(struct sock *sk)
1222 struct proto *prot = sk->sk_prot;
1224 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1225 struct cg_proto *cg_proto = sk->sk_cgrp;
1227 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1228 percpu_counter_dec(&cg_proto->sockets_allocated);
1231 percpu_counter_dec(prot->sockets_allocated);
1234 static inline void sk_sockets_allocated_inc(struct sock *sk)
1236 struct proto *prot = sk->sk_prot;
1238 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1239 struct cg_proto *cg_proto = sk->sk_cgrp;
1241 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1242 percpu_counter_inc(&cg_proto->sockets_allocated);
1245 percpu_counter_inc(prot->sockets_allocated);
1248 static inline int
1249 sk_sockets_allocated_read_positive(struct sock *sk)
1251 struct proto *prot = sk->sk_prot;
1253 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1254 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1256 return percpu_counter_read_positive(prot->sockets_allocated);
1259 static inline int
1260 proto_sockets_allocated_sum_positive(struct proto *prot)
1262 return percpu_counter_sum_positive(prot->sockets_allocated);
1265 static inline long
1266 proto_memory_allocated(struct proto *prot)
1268 return atomic_long_read(prot->memory_allocated);
1271 static inline bool
1272 proto_memory_pressure(struct proto *prot)
1274 if (!prot->memory_pressure)
1275 return false;
1276 return !!*prot->memory_pressure;
1280 #ifdef CONFIG_PROC_FS
1281 /* Called with local bh disabled */
1282 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1283 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1284 #else
1285 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1286 int inc)
1289 #endif
1292 /* With per-bucket locks this operation is not-atomic, so that
1293 * this version is not worse.
1295 static inline void __sk_prot_rehash(struct sock *sk)
1297 sk->sk_prot->unhash(sk);
1298 sk->sk_prot->hash(sk);
1301 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1303 /* About 10 seconds */
1304 #define SOCK_DESTROY_TIME (10*HZ)
1306 /* Sockets 0-1023 can't be bound to unless you are superuser */
1307 #define PROT_SOCK 1024
1309 #define SHUTDOWN_MASK 3
1310 #define RCV_SHUTDOWN 1
1311 #define SEND_SHUTDOWN 2
1313 #define SOCK_SNDBUF_LOCK 1
1314 #define SOCK_RCVBUF_LOCK 2
1315 #define SOCK_BINDADDR_LOCK 4
1316 #define SOCK_BINDPORT_LOCK 8
1318 struct socket_alloc {
1319 struct socket socket;
1320 struct inode vfs_inode;
1323 static inline struct socket *SOCKET_I(struct inode *inode)
1325 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1328 static inline struct inode *SOCK_INODE(struct socket *socket)
1330 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1334 * Functions for memory accounting
1336 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1337 void __sk_mem_reclaim(struct sock *sk, int amount);
1339 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1340 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1341 #define SK_MEM_SEND 0
1342 #define SK_MEM_RECV 1
1344 static inline int sk_mem_pages(int amt)
1346 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1349 static inline bool sk_has_account(struct sock *sk)
1351 /* return true if protocol supports memory accounting */
1352 return !!sk->sk_prot->memory_allocated;
1355 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1357 if (!sk_has_account(sk))
1358 return true;
1359 return size <= sk->sk_forward_alloc ||
1360 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1363 static inline bool
1364 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1366 if (!sk_has_account(sk))
1367 return true;
1368 return size<= sk->sk_forward_alloc ||
1369 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1370 skb_pfmemalloc(skb);
1373 static inline void sk_mem_reclaim(struct sock *sk)
1375 if (!sk_has_account(sk))
1376 return;
1377 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1378 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1381 static inline void sk_mem_reclaim_partial(struct sock *sk)
1383 if (!sk_has_account(sk))
1384 return;
1385 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1386 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1389 static inline void sk_mem_charge(struct sock *sk, int size)
1391 if (!sk_has_account(sk))
1392 return;
1393 sk->sk_forward_alloc -= size;
1396 static inline void sk_mem_uncharge(struct sock *sk, int size)
1398 if (!sk_has_account(sk))
1399 return;
1400 sk->sk_forward_alloc += size;
1403 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1405 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1406 sk->sk_wmem_queued -= skb->truesize;
1407 sk_mem_uncharge(sk, skb->truesize);
1408 __kfree_skb(skb);
1411 /* Used by processes to "lock" a socket state, so that
1412 * interrupts and bottom half handlers won't change it
1413 * from under us. It essentially blocks any incoming
1414 * packets, so that we won't get any new data or any
1415 * packets that change the state of the socket.
1417 * While locked, BH processing will add new packets to
1418 * the backlog queue. This queue is processed by the
1419 * owner of the socket lock right before it is released.
1421 * Since ~2.3.5 it is also exclusive sleep lock serializing
1422 * accesses from user process context.
1424 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1426 static inline void sock_release_ownership(struct sock *sk)
1428 sk->sk_lock.owned = 0;
1432 * Macro so as to not evaluate some arguments when
1433 * lockdep is not enabled.
1435 * Mark both the sk_lock and the sk_lock.slock as a
1436 * per-address-family lock class.
1438 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1439 do { \
1440 sk->sk_lock.owned = 0; \
1441 init_waitqueue_head(&sk->sk_lock.wq); \
1442 spin_lock_init(&(sk)->sk_lock.slock); \
1443 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1444 sizeof((sk)->sk_lock)); \
1445 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1446 (skey), (sname)); \
1447 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1448 } while (0)
1450 void lock_sock_nested(struct sock *sk, int subclass);
1452 static inline void lock_sock(struct sock *sk)
1454 lock_sock_nested(sk, 0);
1457 void release_sock(struct sock *sk);
1459 /* BH context may only use the following locking interface. */
1460 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1461 #define bh_lock_sock_nested(__sk) \
1462 spin_lock_nested(&((__sk)->sk_lock.slock), \
1463 SINGLE_DEPTH_NESTING)
1464 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1466 bool lock_sock_fast(struct sock *sk);
1468 * unlock_sock_fast - complement of lock_sock_fast
1469 * @sk: socket
1470 * @slow: slow mode
1472 * fast unlock socket for user context.
1473 * If slow mode is on, we call regular release_sock()
1475 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1477 if (slow)
1478 release_sock(sk);
1479 else
1480 spin_unlock_bh(&sk->sk_lock.slock);
1484 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1485 struct proto *prot, int kern);
1486 void sk_free(struct sock *sk);
1487 void sk_destruct(struct sock *sk);
1488 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1490 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1491 gfp_t priority);
1492 void sock_wfree(struct sk_buff *skb);
1493 void skb_orphan_partial(struct sk_buff *skb);
1494 void sock_rfree(struct sk_buff *skb);
1495 void sock_efree(struct sk_buff *skb);
1496 #ifdef CONFIG_INET
1497 void sock_edemux(struct sk_buff *skb);
1498 #else
1499 #define sock_edemux(skb) sock_efree(skb)
1500 #endif
1502 int sock_setsockopt(struct socket *sock, int level, int op,
1503 char __user *optval, unsigned int optlen);
1505 int sock_getsockopt(struct socket *sock, int level, int op,
1506 char __user *optval, int __user *optlen);
1507 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1508 int noblock, int *errcode);
1509 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1510 unsigned long data_len, int noblock,
1511 int *errcode, int max_page_order);
1512 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1513 void sock_kfree_s(struct sock *sk, void *mem, int size);
1514 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1515 void sk_send_sigurg(struct sock *sk);
1518 * Functions to fill in entries in struct proto_ops when a protocol
1519 * does not implement a particular function.
1521 int sock_no_bind(struct socket *, struct sockaddr *, int);
1522 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1523 int sock_no_socketpair(struct socket *, struct socket *);
1524 int sock_no_accept(struct socket *, struct socket *, int);
1525 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1526 unsigned int sock_no_poll(struct file *, struct socket *,
1527 struct poll_table_struct *);
1528 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1529 int sock_no_listen(struct socket *, int);
1530 int sock_no_shutdown(struct socket *, int);
1531 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1532 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1533 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1534 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1535 int sock_no_mmap(struct file *file, struct socket *sock,
1536 struct vm_area_struct *vma);
1537 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1538 size_t size, int flags);
1541 * Functions to fill in entries in struct proto_ops when a protocol
1542 * uses the inet style.
1544 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1545 char __user *optval, int __user *optlen);
1546 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1547 int flags);
1548 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1549 char __user *optval, unsigned int optlen);
1550 int compat_sock_common_getsockopt(struct socket *sock, int level,
1551 int optname, char __user *optval, int __user *optlen);
1552 int compat_sock_common_setsockopt(struct socket *sock, int level,
1553 int optname, char __user *optval, unsigned int optlen);
1555 void sk_common_release(struct sock *sk);
1558 * Default socket callbacks and setup code
1561 /* Initialise core socket variables */
1562 void sock_init_data(struct socket *sock, struct sock *sk);
1565 * Socket reference counting postulates.
1567 * * Each user of socket SHOULD hold a reference count.
1568 * * Each access point to socket (an hash table bucket, reference from a list,
1569 * running timer, skb in flight MUST hold a reference count.
1570 * * When reference count hits 0, it means it will never increase back.
1571 * * When reference count hits 0, it means that no references from
1572 * outside exist to this socket and current process on current CPU
1573 * is last user and may/should destroy this socket.
1574 * * sk_free is called from any context: process, BH, IRQ. When
1575 * it is called, socket has no references from outside -> sk_free
1576 * may release descendant resources allocated by the socket, but
1577 * to the time when it is called, socket is NOT referenced by any
1578 * hash tables, lists etc.
1579 * * Packets, delivered from outside (from network or from another process)
1580 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1581 * when they sit in queue. Otherwise, packets will leak to hole, when
1582 * socket is looked up by one cpu and unhasing is made by another CPU.
1583 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1584 * (leak to backlog). Packet socket does all the processing inside
1585 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1586 * use separate SMP lock, so that they are prone too.
1589 /* Ungrab socket and destroy it, if it was the last reference. */
1590 static inline void sock_put(struct sock *sk)
1592 if (atomic_dec_and_test(&sk->sk_refcnt))
1593 sk_free(sk);
1595 /* Generic version of sock_put(), dealing with all sockets
1596 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1598 void sock_gen_put(struct sock *sk);
1600 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1602 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1604 sk->sk_tx_queue_mapping = tx_queue;
1607 static inline void sk_tx_queue_clear(struct sock *sk)
1609 sk->sk_tx_queue_mapping = -1;
1612 static inline int sk_tx_queue_get(const struct sock *sk)
1614 return sk ? sk->sk_tx_queue_mapping : -1;
1617 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1619 sk_tx_queue_clear(sk);
1620 sk->sk_socket = sock;
1623 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1625 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1626 return &rcu_dereference_raw(sk->sk_wq)->wait;
1628 /* Detach socket from process context.
1629 * Announce socket dead, detach it from wait queue and inode.
1630 * Note that parent inode held reference count on this struct sock,
1631 * we do not release it in this function, because protocol
1632 * probably wants some additional cleanups or even continuing
1633 * to work with this socket (TCP).
1635 static inline void sock_orphan(struct sock *sk)
1637 write_lock_bh(&sk->sk_callback_lock);
1638 sock_set_flag(sk, SOCK_DEAD);
1639 sk_set_socket(sk, NULL);
1640 sk->sk_wq = NULL;
1641 write_unlock_bh(&sk->sk_callback_lock);
1644 static inline void sock_graft(struct sock *sk, struct socket *parent)
1646 write_lock_bh(&sk->sk_callback_lock);
1647 sk->sk_wq = parent->wq;
1648 parent->sk = sk;
1649 sk_set_socket(sk, parent);
1650 security_sock_graft(sk, parent);
1651 write_unlock_bh(&sk->sk_callback_lock);
1654 kuid_t sock_i_uid(struct sock *sk);
1655 unsigned long sock_i_ino(struct sock *sk);
1657 static inline void sk_set_txhash(struct sock *sk)
1659 sk->sk_txhash = prandom_u32();
1661 if (unlikely(!sk->sk_txhash))
1662 sk->sk_txhash = 1;
1665 static inline void sk_rethink_txhash(struct sock *sk)
1667 if (sk->sk_txhash)
1668 sk_set_txhash(sk);
1671 static inline struct dst_entry *
1672 __sk_dst_get(struct sock *sk)
1674 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1675 lockdep_is_held(&sk->sk_lock.slock));
1678 static inline struct dst_entry *
1679 sk_dst_get(struct sock *sk)
1681 struct dst_entry *dst;
1683 rcu_read_lock();
1684 dst = rcu_dereference(sk->sk_dst_cache);
1685 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1686 dst = NULL;
1687 rcu_read_unlock();
1688 return dst;
1691 static inline void dst_negative_advice(struct sock *sk)
1693 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1695 sk_rethink_txhash(sk);
1697 if (dst && dst->ops->negative_advice) {
1698 ndst = dst->ops->negative_advice(dst);
1700 if (ndst != dst) {
1701 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1702 sk_tx_queue_clear(sk);
1707 static inline void
1708 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1710 struct dst_entry *old_dst;
1712 sk_tx_queue_clear(sk);
1714 * This can be called while sk is owned by the caller only,
1715 * with no state that can be checked in a rcu_dereference_check() cond
1717 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1718 rcu_assign_pointer(sk->sk_dst_cache, dst);
1719 dst_release(old_dst);
1722 static inline void
1723 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1725 struct dst_entry *old_dst;
1727 sk_tx_queue_clear(sk);
1728 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1729 dst_release(old_dst);
1732 static inline void
1733 __sk_dst_reset(struct sock *sk)
1735 __sk_dst_set(sk, NULL);
1738 static inline void
1739 sk_dst_reset(struct sock *sk)
1741 sk_dst_set(sk, NULL);
1744 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1746 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1748 bool sk_mc_loop(struct sock *sk);
1750 static inline bool sk_can_gso(const struct sock *sk)
1752 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1755 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1757 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1759 sk->sk_route_nocaps |= flags;
1760 sk->sk_route_caps &= ~flags;
1763 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1764 struct iov_iter *from, char *to,
1765 int copy, int offset)
1767 if (skb->ip_summed == CHECKSUM_NONE) {
1768 __wsum csum = 0;
1769 if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1770 return -EFAULT;
1771 skb->csum = csum_block_add(skb->csum, csum, offset);
1772 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1773 if (copy_from_iter_nocache(to, copy, from) != copy)
1774 return -EFAULT;
1775 } else if (copy_from_iter(to, copy, from) != copy)
1776 return -EFAULT;
1778 return 0;
1781 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1782 struct iov_iter *from, int copy)
1784 int err, offset = skb->len;
1786 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1787 copy, offset);
1788 if (err)
1789 __skb_trim(skb, offset);
1791 return err;
1794 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1795 struct sk_buff *skb,
1796 struct page *page,
1797 int off, int copy)
1799 int err;
1801 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1802 copy, skb->len);
1803 if (err)
1804 return err;
1806 skb->len += copy;
1807 skb->data_len += copy;
1808 skb->truesize += copy;
1809 sk->sk_wmem_queued += copy;
1810 sk_mem_charge(sk, copy);
1811 return 0;
1815 * sk_wmem_alloc_get - returns write allocations
1816 * @sk: socket
1818 * Returns sk_wmem_alloc minus initial offset of one
1820 static inline int sk_wmem_alloc_get(const struct sock *sk)
1822 return atomic_read(&sk->sk_wmem_alloc) - 1;
1826 * sk_rmem_alloc_get - returns read allocations
1827 * @sk: socket
1829 * Returns sk_rmem_alloc
1831 static inline int sk_rmem_alloc_get(const struct sock *sk)
1833 return atomic_read(&sk->sk_rmem_alloc);
1837 * sk_has_allocations - check if allocations are outstanding
1838 * @sk: socket
1840 * Returns true if socket has write or read allocations
1842 static inline bool sk_has_allocations(const struct sock *sk)
1844 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1848 * wq_has_sleeper - check if there are any waiting processes
1849 * @wq: struct socket_wq
1851 * Returns true if socket_wq has waiting processes
1853 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1854 * barrier call. They were added due to the race found within the tcp code.
1856 * Consider following tcp code paths:
1858 * CPU1 CPU2
1860 * sys_select receive packet
1861 * ... ...
1862 * __add_wait_queue update tp->rcv_nxt
1863 * ... ...
1864 * tp->rcv_nxt check sock_def_readable
1865 * ... {
1866 * schedule rcu_read_lock();
1867 * wq = rcu_dereference(sk->sk_wq);
1868 * if (wq && waitqueue_active(&wq->wait))
1869 * wake_up_interruptible(&wq->wait)
1870 * ...
1873 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1874 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1875 * could then endup calling schedule and sleep forever if there are no more
1876 * data on the socket.
1879 static inline bool wq_has_sleeper(struct socket_wq *wq)
1881 /* We need to be sure we are in sync with the
1882 * add_wait_queue modifications to the wait queue.
1884 * This memory barrier is paired in the sock_poll_wait.
1886 smp_mb();
1887 return wq && waitqueue_active(&wq->wait);
1891 * sock_poll_wait - place memory barrier behind the poll_wait call.
1892 * @filp: file
1893 * @wait_address: socket wait queue
1894 * @p: poll_table
1896 * See the comments in the wq_has_sleeper function.
1898 static inline void sock_poll_wait(struct file *filp,
1899 wait_queue_head_t *wait_address, poll_table *p)
1901 if (!poll_does_not_wait(p) && wait_address) {
1902 poll_wait(filp, wait_address, p);
1903 /* We need to be sure we are in sync with the
1904 * socket flags modification.
1906 * This memory barrier is paired in the wq_has_sleeper.
1908 smp_mb();
1912 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1914 if (sk->sk_txhash) {
1915 skb->l4_hash = 1;
1916 skb->hash = sk->sk_txhash;
1921 * Queue a received datagram if it will fit. Stream and sequenced
1922 * protocols can't normally use this as they need to fit buffers in
1923 * and play with them.
1925 * Inlined as it's very short and called for pretty much every
1926 * packet ever received.
1929 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1931 skb_orphan(skb);
1932 skb->sk = sk;
1933 skb->destructor = sock_wfree;
1934 skb_set_hash_from_sk(skb, sk);
1936 * We used to take a refcount on sk, but following operation
1937 * is enough to guarantee sk_free() wont free this sock until
1938 * all in-flight packets are completed
1940 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1943 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1945 skb_orphan(skb);
1946 skb->sk = sk;
1947 skb->destructor = sock_rfree;
1948 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1949 sk_mem_charge(sk, skb->truesize);
1952 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1953 unsigned long expires);
1955 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1957 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1959 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1960 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1963 * Recover an error report and clear atomically
1966 static inline int sock_error(struct sock *sk)
1968 int err;
1969 if (likely(!sk->sk_err))
1970 return 0;
1971 err = xchg(&sk->sk_err, 0);
1972 return -err;
1975 static inline unsigned long sock_wspace(struct sock *sk)
1977 int amt = 0;
1979 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1980 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1981 if (amt < 0)
1982 amt = 0;
1984 return amt;
1987 static inline void sk_wake_async(struct sock *sk, int how, int band)
1989 if (sock_flag(sk, SOCK_FASYNC))
1990 sock_wake_async(sk->sk_socket, how, band);
1993 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
1994 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
1995 * Note: for send buffers, TCP works better if we can build two skbs at
1996 * minimum.
1998 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2000 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2001 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2003 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2005 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2006 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2007 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2011 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2012 bool force_schedule);
2015 * sk_page_frag - return an appropriate page_frag
2016 * @sk: socket
2018 * If socket allocation mode allows current thread to sleep, it means its
2019 * safe to use the per task page_frag instead of the per socket one.
2021 static inline struct page_frag *sk_page_frag(struct sock *sk)
2023 if (sk->sk_allocation & __GFP_WAIT)
2024 return &current->task_frag;
2026 return &sk->sk_frag;
2029 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2032 * Default write policy as shown to user space via poll/select/SIGIO
2034 static inline bool sock_writeable(const struct sock *sk)
2036 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2039 static inline gfp_t gfp_any(void)
2041 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2044 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2046 return noblock ? 0 : sk->sk_rcvtimeo;
2049 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2051 return noblock ? 0 : sk->sk_sndtimeo;
2054 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2056 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2059 /* Alas, with timeout socket operations are not restartable.
2060 * Compare this to poll().
2062 static inline int sock_intr_errno(long timeo)
2064 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2067 struct sock_skb_cb {
2068 u32 dropcount;
2071 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2072 * using skb->cb[] would keep using it directly and utilize its
2073 * alignement guarantee.
2075 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2076 sizeof(struct sock_skb_cb)))
2078 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2079 SOCK_SKB_CB_OFFSET))
2081 #define sock_skb_cb_check_size(size) \
2082 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2084 static inline void
2085 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2087 SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2090 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2091 struct sk_buff *skb);
2092 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2093 struct sk_buff *skb);
2095 static inline void
2096 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2098 ktime_t kt = skb->tstamp;
2099 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2102 * generate control messages if
2103 * - receive time stamping in software requested
2104 * - software time stamp available and wanted
2105 * - hardware time stamps available and wanted
2107 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2108 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2109 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2110 (hwtstamps->hwtstamp.tv64 &&
2111 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2112 __sock_recv_timestamp(msg, sk, skb);
2113 else
2114 sk->sk_stamp = kt;
2116 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2117 __sock_recv_wifi_status(msg, sk, skb);
2120 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2121 struct sk_buff *skb);
2123 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2124 struct sk_buff *skb)
2126 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2127 (1UL << SOCK_RCVTSTAMP))
2128 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2129 SOF_TIMESTAMPING_RAW_HARDWARE)
2131 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2132 __sock_recv_ts_and_drops(msg, sk, skb);
2133 else
2134 sk->sk_stamp = skb->tstamp;
2137 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2140 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2141 * @sk: socket sending this packet
2142 * @tx_flags: completed with instructions for time stamping
2144 * Note : callers should take care of initial *tx_flags value (usually 0)
2146 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2148 if (unlikely(sk->sk_tsflags))
2149 __sock_tx_timestamp(sk, tx_flags);
2150 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2151 *tx_flags |= SKBTX_WIFI_STATUS;
2155 * sk_eat_skb - Release a skb if it is no longer needed
2156 * @sk: socket to eat this skb from
2157 * @skb: socket buffer to eat
2159 * This routine must be called with interrupts disabled or with the socket
2160 * locked so that the sk_buff queue operation is ok.
2162 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2164 __skb_unlink(skb, &sk->sk_receive_queue);
2165 __kfree_skb(skb);
2168 static inline
2169 struct net *sock_net(const struct sock *sk)
2171 return read_pnet(&sk->sk_net);
2174 static inline
2175 void sock_net_set(struct sock *sk, struct net *net)
2177 write_pnet(&sk->sk_net, net);
2180 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2182 if (skb->sk) {
2183 struct sock *sk = skb->sk;
2185 skb->destructor = NULL;
2186 skb->sk = NULL;
2187 return sk;
2189 return NULL;
2192 /* This helper checks if a socket is a full socket,
2193 * ie _not_ a timewait or request socket.
2195 static inline bool sk_fullsock(const struct sock *sk)
2197 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2200 void sock_enable_timestamp(struct sock *sk, int flag);
2201 int sock_get_timestamp(struct sock *, struct timeval __user *);
2202 int sock_get_timestampns(struct sock *, struct timespec __user *);
2203 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2204 int type);
2206 bool sk_ns_capable(const struct sock *sk,
2207 struct user_namespace *user_ns, int cap);
2208 bool sk_capable(const struct sock *sk, int cap);
2209 bool sk_net_capable(const struct sock *sk, int cap);
2211 extern __u32 sysctl_wmem_max;
2212 extern __u32 sysctl_rmem_max;
2214 extern int sysctl_tstamp_allow_data;
2215 extern int sysctl_optmem_max;
2217 extern __u32 sysctl_wmem_default;
2218 extern __u32 sysctl_rmem_default;
2220 #endif /* _SOCK_H */