2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/file.h>
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
73 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
75 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
82 * css_set_lock protects task->cgroups pointer, the list of css_set
83 * objects, and the chain of tasks off each css_set.
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
88 #ifdef CONFIG_PROVE_RCU
89 DEFINE_MUTEX(cgroup_mutex
);
90 DEFINE_SPINLOCK(css_set_lock
);
91 EXPORT_SYMBOL_GPL(cgroup_mutex
);
92 EXPORT_SYMBOL_GPL(css_set_lock
);
94 static DEFINE_MUTEX(cgroup_mutex
);
95 static DEFINE_SPINLOCK(css_set_lock
);
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
102 static DEFINE_SPINLOCK(cgroup_idr_lock
);
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
108 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
114 static DEFINE_SPINLOCK(release_agent_path_lock
);
116 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
118 #define cgroup_assert_mutex_or_rcu_locked() \
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
121 "cgroup_mutex or RCU read lock required");
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
129 static struct workqueue_struct
*cgroup_destroy_wq
;
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
135 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
137 /* generate an array of cgroup subsystem pointers */
138 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
139 static struct cgroup_subsys
*cgroup_subsys
[] = {
140 #include <linux/cgroup_subsys.h>
144 /* array of cgroup subsystem names */
145 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146 static const char *cgroup_subsys_name
[] = {
147 #include <linux/cgroup_subsys.h>
151 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157 #include <linux/cgroup_subsys.h>
160 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
162 #include <linux/cgroup_subsys.h>
166 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
168 #include <linux/cgroup_subsys.h>
173 * The default hierarchy, reserved for the subsystems that are otherwise
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
177 struct cgroup_root cgrp_dfl_root
;
178 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
184 static bool cgrp_dfl_visible
;
186 /* Controllers blocked by the commandline in v1 */
187 static u16 cgroup_no_v1_mask
;
189 /* some controllers are not supported in the default hierarchy */
190 static u16 cgrp_dfl_inhibit_ss_mask
;
192 /* some controllers are implicitly enabled on the default hierarchy */
193 static unsigned long cgrp_dfl_implicit_ss_mask
;
195 /* The list of hierarchy roots */
197 static LIST_HEAD(cgroup_roots
);
198 static int cgroup_root_count
;
200 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
201 static DEFINE_IDR(cgroup_hierarchy_idr
);
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
210 static u64 css_serial_nr_next
= 1;
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
217 static u16 have_fork_callback __read_mostly
;
218 static u16 have_exit_callback __read_mostly
;
219 static u16 have_free_callback __read_mostly
;
221 /* cgroup namespace for init task */
222 struct cgroup_namespace init_cgroup_ns
= {
223 .count
= { .counter
= 2, },
224 .user_ns
= &init_user_ns
,
225 .ns
.ops
= &cgroupns_operations
,
226 .ns
.inum
= PROC_CGROUP_INIT_INO
,
227 .root_cset
= &init_css_set
,
230 /* Ditto for the can_fork callback. */
231 static u16 have_canfork_callback __read_mostly
;
233 static struct file_system_type cgroup2_fs_type
;
234 static struct cftype cgroup_dfl_base_files
[];
235 static struct cftype cgroup_legacy_base_files
[];
237 static int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
);
238 static void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
);
239 static int cgroup_apply_control(struct cgroup
*cgrp
);
240 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
241 static void css_task_iter_advance(struct css_task_iter
*it
);
242 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
243 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
244 struct cgroup_subsys
*ss
);
245 static void css_release(struct percpu_ref
*ref
);
246 static void kill_css(struct cgroup_subsys_state
*css
);
247 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
248 struct cgroup
*cgrp
, struct cftype cfts
[],
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
259 static bool cgroup_ssid_enabled(int ssid
)
261 if (CGROUP_SUBSYS_COUNT
== 0)
264 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
267 static bool cgroup_ssid_no_v1(int ssid
)
269 return cgroup_no_v1_mask
& (1 << ssid
);
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
284 * List of changed behaviors:
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
289 * - When mounting an existing superblock, mount options should match.
291 * - Remount is disallowed.
293 * - rename(2) is disallowed.
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
304 * - "cgroup.clone_children" is removed.
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
321 * - blkcg: blk-throttle becomes properly hierarchical.
323 * - debug: disallowed on the default hierarchy.
325 static bool cgroup_on_dfl(const struct cgroup
*cgrp
)
327 return cgrp
->root
== &cgrp_dfl_root
;
330 /* IDR wrappers which synchronize using cgroup_idr_lock */
331 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
336 idr_preload(gfp_mask
);
337 spin_lock_bh(&cgroup_idr_lock
);
338 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
339 spin_unlock_bh(&cgroup_idr_lock
);
344 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
348 spin_lock_bh(&cgroup_idr_lock
);
349 ret
= idr_replace(idr
, ptr
, id
);
350 spin_unlock_bh(&cgroup_idr_lock
);
354 static void cgroup_idr_remove(struct idr
*idr
, int id
)
356 spin_lock_bh(&cgroup_idr_lock
);
358 spin_unlock_bh(&cgroup_idr_lock
);
361 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
363 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
366 return container_of(parent_css
, struct cgroup
, self
);
370 /* subsystems visibly enabled on a cgroup */
371 static u16
cgroup_control(struct cgroup
*cgrp
)
373 struct cgroup
*parent
= cgroup_parent(cgrp
);
374 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
377 return parent
->subtree_control
;
379 if (cgroup_on_dfl(cgrp
))
380 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
381 cgrp_dfl_implicit_ss_mask
);
385 /* subsystems enabled on a cgroup */
386 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
388 struct cgroup
*parent
= cgroup_parent(cgrp
);
391 return parent
->subtree_ss_mask
;
393 return cgrp
->root
->subsys_mask
;
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
407 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
408 struct cgroup_subsys
*ss
)
411 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
412 lockdep_is_held(&cgroup_mutex
));
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
422 * Similar to cgroup_css() but returns the effective css, which is defined
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
427 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
428 struct cgroup_subsys
*ss
)
430 lockdep_assert_held(&cgroup_mutex
);
436 * This function is used while updating css associations and thus
437 * can't test the csses directly. Test ss_mask.
439 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
440 cgrp
= cgroup_parent(cgrp
);
445 return cgroup_css(cgrp
, ss
);
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
459 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
460 struct cgroup_subsys
*ss
)
462 struct cgroup_subsys_state
*css
;
467 css
= cgroup_css(cgrp
, ss
);
469 if (css
&& css_tryget_online(css
))
471 cgrp
= cgroup_parent(cgrp
);
474 css
= init_css_set
.subsys
[ss
->id
];
481 /* convenient tests for these bits */
482 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
484 return !(cgrp
->self
.flags
& CSS_ONLINE
);
487 static void cgroup_get(struct cgroup
*cgrp
)
489 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
490 css_get(&cgrp
->self
);
493 static bool cgroup_tryget(struct cgroup
*cgrp
)
495 return css_tryget(&cgrp
->self
);
498 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
500 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
501 struct cftype
*cft
= of_cft(of
);
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
512 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
516 EXPORT_SYMBOL_GPL(of_css
);
518 static int notify_on_release(const struct cgroup
*cgrp
)
520 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
529 * Should be called under cgroup_[tree_]mutex.
531 #define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
544 * Should be called under cgroup_[tree_]mutex.
546 #define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
553 * for_each_subsys - iterate all enabled cgroup subsystems
554 * @ss: the iteration cursor
555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
557 #define for_each_subsys(ss, ssid) \
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
565 * @ss_mask: the bitmask
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
570 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
580 #define while_each_subsys_mask() \
585 /* iterate across the hierarchies */
586 #define for_each_root(root) \
587 list_for_each_entry((root), &cgroup_roots, root_list)
589 /* iterate over child cgrps, lock should be held throughout iteration */
590 #define cgroup_for_each_live_child(child, cgrp) \
591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
592 if (({ lockdep_assert_held(&cgroup_mutex); \
593 cgroup_is_dead(child); })) \
597 /* walk live descendants in preorder */
598 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
606 /* walk live descendants in postorder */
607 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
615 static void cgroup_release_agent(struct work_struct
*work
);
616 static void check_for_release(struct cgroup
*cgrp
);
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
626 struct cgrp_cset_link
{
627 /* the cgroup and css_set this link associates */
629 struct css_set
*cset
;
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link
;
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link
;
639 * The default css_set - used by init and its children prior to any
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
645 struct css_set init_css_set
= {
646 .refcount
= ATOMIC_INIT(1),
647 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
648 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
649 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
650 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
651 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
652 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
655 static int css_set_count
= 1; /* 1 for init_css_set */
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
661 static bool css_set_populated(struct css_set
*cset
)
663 lockdep_assert_held(&css_set_lock
);
665 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
684 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
686 lockdep_assert_held(&css_set_lock
);
692 trigger
= !cgrp
->populated_cnt
++;
694 trigger
= !--cgrp
->populated_cnt
;
699 check_for_release(cgrp
);
700 cgroup_file_notify(&cgrp
->events_file
);
702 cgrp
= cgroup_parent(cgrp
);
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
714 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
716 struct cgrp_cset_link
*link
;
718 lockdep_assert_held(&css_set_lock
);
720 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
721 cgroup_update_populated(link
->cgrp
, populated
);
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
739 static void css_set_move_task(struct task_struct
*task
,
740 struct css_set
*from_cset
, struct css_set
*to_cset
,
743 lockdep_assert_held(&css_set_lock
);
745 if (to_cset
&& !css_set_populated(to_cset
))
746 css_set_update_populated(to_cset
, true);
749 struct css_task_iter
*it
, *pos
;
751 WARN_ON_ONCE(list_empty(&task
->cg_list
));
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
760 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
762 if (it
->task_pos
== &task
->cg_list
)
763 css_task_iter_advance(it
);
765 list_del_init(&task
->cg_list
);
766 if (!css_set_populated(from_cset
))
767 css_set_update_populated(from_cset
, false);
769 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
779 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
781 rcu_assign_pointer(task
->cgroups
, to_cset
);
782 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
792 #define CSS_SET_HASH_BITS 7
793 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
795 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
797 unsigned long key
= 0UL;
798 struct cgroup_subsys
*ss
;
801 for_each_subsys(ss
, i
)
802 key
+= (unsigned long)css
[i
];
803 key
= (key
>> 16) ^ key
;
808 static void put_css_set_locked(struct css_set
*cset
)
810 struct cgrp_cset_link
*link
, *tmp_link
;
811 struct cgroup_subsys
*ss
;
814 lockdep_assert_held(&css_set_lock
);
816 if (!atomic_dec_and_test(&cset
->refcount
))
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss
, ssid
) {
821 list_del(&cset
->e_cset_node
[ssid
]);
822 css_put(cset
->subsys
[ssid
]);
824 hash_del(&cset
->hlist
);
827 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
828 list_del(&link
->cset_link
);
829 list_del(&link
->cgrp_link
);
830 if (cgroup_parent(link
->cgrp
))
831 cgroup_put(link
->cgrp
);
835 kfree_rcu(cset
, rcu_head
);
838 static void put_css_set(struct css_set
*cset
)
843 * Ensure that the refcount doesn't hit zero while any readers
844 * can see it. Similar to atomic_dec_and_lock(), but for an
847 if (atomic_add_unless(&cset
->refcount
, -1, 1))
850 spin_lock_irqsave(&css_set_lock
, flags
);
851 put_css_set_locked(cset
);
852 spin_unlock_irqrestore(&css_set_lock
, flags
);
856 * refcounted get/put for css_set objects
858 static inline void get_css_set(struct css_set
*cset
)
860 atomic_inc(&cset
->refcount
);
864 * compare_css_sets - helper function for find_existing_css_set().
865 * @cset: candidate css_set being tested
866 * @old_cset: existing css_set for a task
867 * @new_cgrp: cgroup that's being entered by the task
868 * @template: desired set of css pointers in css_set (pre-calculated)
870 * Returns true if "cset" matches "old_cset" except for the hierarchy
871 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
873 static bool compare_css_sets(struct css_set
*cset
,
874 struct css_set
*old_cset
,
875 struct cgroup
*new_cgrp
,
876 struct cgroup_subsys_state
*template[])
878 struct list_head
*l1
, *l2
;
881 * On the default hierarchy, there can be csets which are
882 * associated with the same set of cgroups but different csses.
883 * Let's first ensure that csses match.
885 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
889 * Compare cgroup pointers in order to distinguish between
890 * different cgroups in hierarchies. As different cgroups may
891 * share the same effective css, this comparison is always
894 l1
= &cset
->cgrp_links
;
895 l2
= &old_cset
->cgrp_links
;
897 struct cgrp_cset_link
*link1
, *link2
;
898 struct cgroup
*cgrp1
, *cgrp2
;
902 /* See if we reached the end - both lists are equal length. */
903 if (l1
== &cset
->cgrp_links
) {
904 BUG_ON(l2
!= &old_cset
->cgrp_links
);
907 BUG_ON(l2
== &old_cset
->cgrp_links
);
909 /* Locate the cgroups associated with these links. */
910 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
911 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
914 /* Hierarchies should be linked in the same order. */
915 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
918 * If this hierarchy is the hierarchy of the cgroup
919 * that's changing, then we need to check that this
920 * css_set points to the new cgroup; if it's any other
921 * hierarchy, then this css_set should point to the
922 * same cgroup as the old css_set.
924 if (cgrp1
->root
== new_cgrp
->root
) {
925 if (cgrp1
!= new_cgrp
)
936 * find_existing_css_set - init css array and find the matching css_set
937 * @old_cset: the css_set that we're using before the cgroup transition
938 * @cgrp: the cgroup that we're moving into
939 * @template: out param for the new set of csses, should be clear on entry
941 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
943 struct cgroup_subsys_state
*template[])
945 struct cgroup_root
*root
= cgrp
->root
;
946 struct cgroup_subsys
*ss
;
947 struct css_set
*cset
;
952 * Build the set of subsystem state objects that we want to see in the
953 * new css_set. while subsystems can change globally, the entries here
954 * won't change, so no need for locking.
956 for_each_subsys(ss
, i
) {
957 if (root
->subsys_mask
& (1UL << i
)) {
959 * @ss is in this hierarchy, so we want the
960 * effective css from @cgrp.
962 template[i
] = cgroup_e_css(cgrp
, ss
);
965 * @ss is not in this hierarchy, so we don't want
968 template[i
] = old_cset
->subsys
[i
];
972 key
= css_set_hash(template);
973 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
974 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
977 /* This css_set matches what we need */
981 /* No existing cgroup group matched */
985 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
987 struct cgrp_cset_link
*link
, *tmp_link
;
989 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
990 list_del(&link
->cset_link
);
996 * allocate_cgrp_cset_links - allocate cgrp_cset_links
997 * @count: the number of links to allocate
998 * @tmp_links: list_head the allocated links are put on
1000 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1001 * through ->cset_link. Returns 0 on success or -errno.
1003 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1005 struct cgrp_cset_link
*link
;
1008 INIT_LIST_HEAD(tmp_links
);
1010 for (i
= 0; i
< count
; i
++) {
1011 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1013 free_cgrp_cset_links(tmp_links
);
1016 list_add(&link
->cset_link
, tmp_links
);
1022 * link_css_set - a helper function to link a css_set to a cgroup
1023 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1024 * @cset: the css_set to be linked
1025 * @cgrp: the destination cgroup
1027 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1028 struct cgroup
*cgrp
)
1030 struct cgrp_cset_link
*link
;
1032 BUG_ON(list_empty(tmp_links
));
1034 if (cgroup_on_dfl(cgrp
))
1035 cset
->dfl_cgrp
= cgrp
;
1037 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1042 * Always add links to the tail of the lists so that the lists are
1043 * in choronological order.
1045 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1046 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1048 if (cgroup_parent(cgrp
))
1053 * find_css_set - return a new css_set with one cgroup updated
1054 * @old_cset: the baseline css_set
1055 * @cgrp: the cgroup to be updated
1057 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1058 * substituted into the appropriate hierarchy.
1060 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1061 struct cgroup
*cgrp
)
1063 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1064 struct css_set
*cset
;
1065 struct list_head tmp_links
;
1066 struct cgrp_cset_link
*link
;
1067 struct cgroup_subsys
*ss
;
1071 lockdep_assert_held(&cgroup_mutex
);
1073 /* First see if we already have a cgroup group that matches
1074 * the desired set */
1075 spin_lock_irq(&css_set_lock
);
1076 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1079 spin_unlock_irq(&css_set_lock
);
1084 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1088 /* Allocate all the cgrp_cset_link objects that we'll need */
1089 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1094 atomic_set(&cset
->refcount
, 1);
1095 INIT_LIST_HEAD(&cset
->cgrp_links
);
1096 INIT_LIST_HEAD(&cset
->tasks
);
1097 INIT_LIST_HEAD(&cset
->mg_tasks
);
1098 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1099 INIT_LIST_HEAD(&cset
->mg_node
);
1100 INIT_LIST_HEAD(&cset
->task_iters
);
1101 INIT_HLIST_NODE(&cset
->hlist
);
1103 /* Copy the set of subsystem state objects generated in
1104 * find_existing_css_set() */
1105 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1107 spin_lock_irq(&css_set_lock
);
1108 /* Add reference counts and links from the new css_set. */
1109 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1110 struct cgroup
*c
= link
->cgrp
;
1112 if (c
->root
== cgrp
->root
)
1114 link_css_set(&tmp_links
, cset
, c
);
1117 BUG_ON(!list_empty(&tmp_links
));
1121 /* Add @cset to the hash table */
1122 key
= css_set_hash(cset
->subsys
);
1123 hash_add(css_set_table
, &cset
->hlist
, key
);
1125 for_each_subsys(ss
, ssid
) {
1126 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1128 list_add_tail(&cset
->e_cset_node
[ssid
],
1129 &css
->cgroup
->e_csets
[ssid
]);
1133 spin_unlock_irq(&css_set_lock
);
1138 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1140 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1142 return root_cgrp
->root
;
1145 static int cgroup_init_root_id(struct cgroup_root
*root
)
1149 lockdep_assert_held(&cgroup_mutex
);
1151 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1155 root
->hierarchy_id
= id
;
1159 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1161 lockdep_assert_held(&cgroup_mutex
);
1163 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1166 static void cgroup_free_root(struct cgroup_root
*root
)
1169 idr_destroy(&root
->cgroup_idr
);
1174 static void cgroup_destroy_root(struct cgroup_root
*root
)
1176 struct cgroup
*cgrp
= &root
->cgrp
;
1177 struct cgrp_cset_link
*link
, *tmp_link
;
1179 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1181 BUG_ON(atomic_read(&root
->nr_cgrps
));
1182 BUG_ON(!list_empty(&cgrp
->self
.children
));
1184 /* Rebind all subsystems back to the default hierarchy */
1185 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1188 * Release all the links from cset_links to this hierarchy's
1191 spin_lock_irq(&css_set_lock
);
1193 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1194 list_del(&link
->cset_link
);
1195 list_del(&link
->cgrp_link
);
1199 spin_unlock_irq(&css_set_lock
);
1201 if (!list_empty(&root
->root_list
)) {
1202 list_del(&root
->root_list
);
1203 cgroup_root_count
--;
1206 cgroup_exit_root_id(root
);
1208 mutex_unlock(&cgroup_mutex
);
1210 kernfs_destroy_root(root
->kf_root
);
1211 cgroup_free_root(root
);
1215 * look up cgroup associated with current task's cgroup namespace on the
1216 * specified hierarchy
1218 static struct cgroup
*
1219 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1221 struct cgroup
*res
= NULL
;
1222 struct css_set
*cset
;
1224 lockdep_assert_held(&css_set_lock
);
1228 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1229 if (cset
== &init_css_set
) {
1232 struct cgrp_cset_link
*link
;
1234 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1235 struct cgroup
*c
= link
->cgrp
;
1237 if (c
->root
== root
) {
1249 /* look up cgroup associated with given css_set on the specified hierarchy */
1250 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1251 struct cgroup_root
*root
)
1253 struct cgroup
*res
= NULL
;
1255 lockdep_assert_held(&cgroup_mutex
);
1256 lockdep_assert_held(&css_set_lock
);
1258 if (cset
== &init_css_set
) {
1261 struct cgrp_cset_link
*link
;
1263 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1264 struct cgroup
*c
= link
->cgrp
;
1266 if (c
->root
== root
) {
1278 * Return the cgroup for "task" from the given hierarchy. Must be
1279 * called with cgroup_mutex and css_set_lock held.
1281 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1282 struct cgroup_root
*root
)
1285 * No need to lock the task - since we hold cgroup_mutex the
1286 * task can't change groups, so the only thing that can happen
1287 * is that it exits and its css is set back to init_css_set.
1289 return cset_cgroup_from_root(task_css_set(task
), root
);
1293 * A task must hold cgroup_mutex to modify cgroups.
1295 * Any task can increment and decrement the count field without lock.
1296 * So in general, code holding cgroup_mutex can't rely on the count
1297 * field not changing. However, if the count goes to zero, then only
1298 * cgroup_attach_task() can increment it again. Because a count of zero
1299 * means that no tasks are currently attached, therefore there is no
1300 * way a task attached to that cgroup can fork (the other way to
1301 * increment the count). So code holding cgroup_mutex can safely
1302 * assume that if the count is zero, it will stay zero. Similarly, if
1303 * a task holds cgroup_mutex on a cgroup with zero count, it
1304 * knows that the cgroup won't be removed, as cgroup_rmdir()
1307 * A cgroup can only be deleted if both its 'count' of using tasks
1308 * is zero, and its list of 'children' cgroups is empty. Since all
1309 * tasks in the system use _some_ cgroup, and since there is always at
1310 * least one task in the system (init, pid == 1), therefore, root cgroup
1311 * always has either children cgroups and/or using tasks. So we don't
1312 * need a special hack to ensure that root cgroup cannot be deleted.
1314 * P.S. One more locking exception. RCU is used to guard the
1315 * update of a tasks cgroup pointer by cgroup_attach_task()
1318 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1319 static const struct file_operations proc_cgroupstats_operations
;
1321 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1324 struct cgroup_subsys
*ss
= cft
->ss
;
1326 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1327 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1328 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1329 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1332 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1337 * cgroup_file_mode - deduce file mode of a control file
1338 * @cft: the control file in question
1340 * S_IRUGO for read, S_IWUSR for write.
1342 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1346 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1349 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1350 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1360 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1361 * @subtree_control: the new subtree_control mask to consider
1362 * @this_ss_mask: available subsystems
1364 * On the default hierarchy, a subsystem may request other subsystems to be
1365 * enabled together through its ->depends_on mask. In such cases, more
1366 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1368 * This function calculates which subsystems need to be enabled if
1369 * @subtree_control is to be applied while restricted to @this_ss_mask.
1371 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1373 u16 cur_ss_mask
= subtree_control
;
1374 struct cgroup_subsys
*ss
;
1377 lockdep_assert_held(&cgroup_mutex
);
1379 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1382 u16 new_ss_mask
= cur_ss_mask
;
1384 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1385 new_ss_mask
|= ss
->depends_on
;
1386 } while_each_subsys_mask();
1389 * Mask out subsystems which aren't available. This can
1390 * happen only if some depended-upon subsystems were bound
1391 * to non-default hierarchies.
1393 new_ss_mask
&= this_ss_mask
;
1395 if (new_ss_mask
== cur_ss_mask
)
1397 cur_ss_mask
= new_ss_mask
;
1404 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1405 * @kn: the kernfs_node being serviced
1407 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1408 * the method finishes if locking succeeded. Note that once this function
1409 * returns the cgroup returned by cgroup_kn_lock_live() may become
1410 * inaccessible any time. If the caller intends to continue to access the
1411 * cgroup, it should pin it before invoking this function.
1413 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1415 struct cgroup
*cgrp
;
1417 if (kernfs_type(kn
) == KERNFS_DIR
)
1420 cgrp
= kn
->parent
->priv
;
1422 mutex_unlock(&cgroup_mutex
);
1424 kernfs_unbreak_active_protection(kn
);
1429 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1430 * @kn: the kernfs_node being serviced
1431 * @drain_offline: perform offline draining on the cgroup
1433 * This helper is to be used by a cgroup kernfs method currently servicing
1434 * @kn. It breaks the active protection, performs cgroup locking and
1435 * verifies that the associated cgroup is alive. Returns the cgroup if
1436 * alive; otherwise, %NULL. A successful return should be undone by a
1437 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1438 * cgroup is drained of offlining csses before return.
1440 * Any cgroup kernfs method implementation which requires locking the
1441 * associated cgroup should use this helper. It avoids nesting cgroup
1442 * locking under kernfs active protection and allows all kernfs operations
1443 * including self-removal.
1445 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
,
1448 struct cgroup
*cgrp
;
1450 if (kernfs_type(kn
) == KERNFS_DIR
)
1453 cgrp
= kn
->parent
->priv
;
1456 * We're gonna grab cgroup_mutex which nests outside kernfs
1457 * active_ref. cgroup liveliness check alone provides enough
1458 * protection against removal. Ensure @cgrp stays accessible and
1459 * break the active_ref protection.
1461 if (!cgroup_tryget(cgrp
))
1463 kernfs_break_active_protection(kn
);
1466 cgroup_lock_and_drain_offline(cgrp
);
1468 mutex_lock(&cgroup_mutex
);
1470 if (!cgroup_is_dead(cgrp
))
1473 cgroup_kn_unlock(kn
);
1477 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1479 char name
[CGROUP_FILE_NAME_MAX
];
1481 lockdep_assert_held(&cgroup_mutex
);
1483 if (cft
->file_offset
) {
1484 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1485 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1487 spin_lock_irq(&cgroup_file_kn_lock
);
1489 spin_unlock_irq(&cgroup_file_kn_lock
);
1492 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1496 * css_clear_dir - remove subsys files in a cgroup directory
1499 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1501 struct cgroup
*cgrp
= css
->cgroup
;
1502 struct cftype
*cfts
;
1504 if (!(css
->flags
& CSS_VISIBLE
))
1507 css
->flags
&= ~CSS_VISIBLE
;
1509 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1510 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1514 * css_populate_dir - create subsys files in a cgroup directory
1517 * On failure, no file is added.
1519 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1521 struct cgroup
*cgrp
= css
->cgroup
;
1522 struct cftype
*cfts
, *failed_cfts
;
1525 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1529 if (cgroup_on_dfl(cgrp
))
1530 cfts
= cgroup_dfl_base_files
;
1532 cfts
= cgroup_legacy_base_files
;
1534 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1537 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1538 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1545 css
->flags
|= CSS_VISIBLE
;
1549 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1550 if (cfts
== failed_cfts
)
1552 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1557 static int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1559 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1560 struct cgroup_subsys
*ss
;
1563 lockdep_assert_held(&cgroup_mutex
);
1565 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1567 * If @ss has non-root csses attached to it, can't move.
1568 * If @ss is an implicit controller, it is exempt from this
1569 * rule and can be stolen.
1571 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1572 !ss
->implicit_on_dfl
)
1575 /* can't move between two non-dummy roots either */
1576 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1578 } while_each_subsys_mask();
1580 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1581 struct cgroup_root
*src_root
= ss
->root
;
1582 struct cgroup
*scgrp
= &src_root
->cgrp
;
1583 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1584 struct css_set
*cset
;
1586 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1588 /* disable from the source */
1589 src_root
->subsys_mask
&= ~(1 << ssid
);
1590 WARN_ON(cgroup_apply_control(scgrp
));
1591 cgroup_finalize_control(scgrp
, 0);
1594 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1595 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1596 ss
->root
= dst_root
;
1597 css
->cgroup
= dcgrp
;
1599 spin_lock_irq(&css_set_lock
);
1600 hash_for_each(css_set_table
, i
, cset
, hlist
)
1601 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1602 &dcgrp
->e_csets
[ss
->id
]);
1603 spin_unlock_irq(&css_set_lock
);
1605 /* default hierarchy doesn't enable controllers by default */
1606 dst_root
->subsys_mask
|= 1 << ssid
;
1607 if (dst_root
== &cgrp_dfl_root
) {
1608 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1610 dcgrp
->subtree_control
|= 1 << ssid
;
1611 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1614 ret
= cgroup_apply_control(dcgrp
);
1616 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1621 } while_each_subsys_mask();
1623 kernfs_activate(dcgrp
->kn
);
1627 static int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1628 struct kernfs_root
*kf_root
)
1632 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1633 struct cgroup
*ns_cgroup
;
1635 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1639 spin_lock_irq(&css_set_lock
);
1640 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1641 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1642 spin_unlock_irq(&css_set_lock
);
1644 if (len
>= PATH_MAX
)
1647 seq_escape(sf
, buf
, " \t\n\\");
1654 static int cgroup_show_options(struct seq_file
*seq
,
1655 struct kernfs_root
*kf_root
)
1657 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1658 struct cgroup_subsys
*ss
;
1661 if (root
!= &cgrp_dfl_root
)
1662 for_each_subsys(ss
, ssid
)
1663 if (root
->subsys_mask
& (1 << ssid
))
1664 seq_show_option(seq
, ss
->legacy_name
, NULL
);
1665 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1666 seq_puts(seq
, ",noprefix");
1667 if (root
->flags
& CGRP_ROOT_XATTR
)
1668 seq_puts(seq
, ",xattr");
1670 spin_lock(&release_agent_path_lock
);
1671 if (strlen(root
->release_agent_path
))
1672 seq_show_option(seq
, "release_agent",
1673 root
->release_agent_path
);
1674 spin_unlock(&release_agent_path_lock
);
1676 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1677 seq_puts(seq
, ",clone_children");
1678 if (strlen(root
->name
))
1679 seq_show_option(seq
, "name", root
->name
);
1683 struct cgroup_sb_opts
{
1686 char *release_agent
;
1687 bool cpuset_clone_children
;
1689 /* User explicitly requested empty subsystem */
1693 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1695 char *token
, *o
= data
;
1696 bool all_ss
= false, one_ss
= false;
1698 struct cgroup_subsys
*ss
;
1702 #ifdef CONFIG_CPUSETS
1703 mask
= ~((u16
)1 << cpuset_cgrp_id
);
1706 memset(opts
, 0, sizeof(*opts
));
1708 while ((token
= strsep(&o
, ",")) != NULL
) {
1713 if (!strcmp(token
, "none")) {
1714 /* Explicitly have no subsystems */
1718 if (!strcmp(token
, "all")) {
1719 /* Mutually exclusive option 'all' + subsystem name */
1725 if (!strcmp(token
, "noprefix")) {
1726 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1729 if (!strcmp(token
, "clone_children")) {
1730 opts
->cpuset_clone_children
= true;
1733 if (!strcmp(token
, "xattr")) {
1734 opts
->flags
|= CGRP_ROOT_XATTR
;
1737 if (!strncmp(token
, "release_agent=", 14)) {
1738 /* Specifying two release agents is forbidden */
1739 if (opts
->release_agent
)
1741 opts
->release_agent
=
1742 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1743 if (!opts
->release_agent
)
1747 if (!strncmp(token
, "name=", 5)) {
1748 const char *name
= token
+ 5;
1749 /* Can't specify an empty name */
1752 /* Must match [\w.-]+ */
1753 for (i
= 0; i
< strlen(name
); i
++) {
1757 if ((c
== '.') || (c
== '-') || (c
== '_'))
1761 /* Specifying two names is forbidden */
1764 opts
->name
= kstrndup(name
,
1765 MAX_CGROUP_ROOT_NAMELEN
- 1,
1773 for_each_subsys(ss
, i
) {
1774 if (strcmp(token
, ss
->legacy_name
))
1776 if (!cgroup_ssid_enabled(i
))
1778 if (cgroup_ssid_no_v1(i
))
1781 /* Mutually exclusive option 'all' + subsystem name */
1784 opts
->subsys_mask
|= (1 << i
);
1789 if (i
== CGROUP_SUBSYS_COUNT
)
1794 * If the 'all' option was specified select all the subsystems,
1795 * otherwise if 'none', 'name=' and a subsystem name options were
1796 * not specified, let's default to 'all'
1798 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1799 for_each_subsys(ss
, i
)
1800 if (cgroup_ssid_enabled(i
) && !cgroup_ssid_no_v1(i
))
1801 opts
->subsys_mask
|= (1 << i
);
1804 * We either have to specify by name or by subsystems. (So all
1805 * empty hierarchies must have a name).
1807 if (!opts
->subsys_mask
&& !opts
->name
)
1811 * Option noprefix was introduced just for backward compatibility
1812 * with the old cpuset, so we allow noprefix only if mounting just
1813 * the cpuset subsystem.
1815 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1818 /* Can't specify "none" and some subsystems */
1819 if (opts
->subsys_mask
&& opts
->none
)
1825 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1828 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1829 struct cgroup_sb_opts opts
;
1830 u16 added_mask
, removed_mask
;
1832 if (root
== &cgrp_dfl_root
) {
1833 pr_err("remount is not allowed\n");
1837 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1839 /* See what subsystems are wanted */
1840 ret
= parse_cgroupfs_options(data
, &opts
);
1844 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1845 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1846 task_tgid_nr(current
), current
->comm
);
1848 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1849 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1851 /* Don't allow flags or name to change at remount */
1852 if ((opts
.flags
^ root
->flags
) ||
1853 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1854 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1855 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1860 /* remounting is not allowed for populated hierarchies */
1861 if (!list_empty(&root
->cgrp
.self
.children
)) {
1866 ret
= rebind_subsystems(root
, added_mask
);
1870 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, removed_mask
));
1872 if (opts
.release_agent
) {
1873 spin_lock(&release_agent_path_lock
);
1874 strcpy(root
->release_agent_path
, opts
.release_agent
);
1875 spin_unlock(&release_agent_path_lock
);
1878 kfree(opts
.release_agent
);
1880 mutex_unlock(&cgroup_mutex
);
1885 * To reduce the fork() overhead for systems that are not actually using
1886 * their cgroups capability, we don't maintain the lists running through
1887 * each css_set to its tasks until we see the list actually used - in other
1888 * words after the first mount.
1890 static bool use_task_css_set_links __read_mostly
;
1892 static void cgroup_enable_task_cg_lists(void)
1894 struct task_struct
*p
, *g
;
1896 spin_lock_irq(&css_set_lock
);
1898 if (use_task_css_set_links
)
1901 use_task_css_set_links
= true;
1904 * We need tasklist_lock because RCU is not safe against
1905 * while_each_thread(). Besides, a forking task that has passed
1906 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1907 * is not guaranteed to have its child immediately visible in the
1908 * tasklist if we walk through it with RCU.
1910 read_lock(&tasklist_lock
);
1911 do_each_thread(g
, p
) {
1912 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1913 task_css_set(p
) != &init_css_set
);
1916 * We should check if the process is exiting, otherwise
1917 * it will race with cgroup_exit() in that the list
1918 * entry won't be deleted though the process has exited.
1919 * Do it while holding siglock so that we don't end up
1920 * racing against cgroup_exit().
1922 * Interrupts were already disabled while acquiring
1923 * the css_set_lock, so we do not need to disable it
1924 * again when acquiring the sighand->siglock here.
1926 spin_lock(&p
->sighand
->siglock
);
1927 if (!(p
->flags
& PF_EXITING
)) {
1928 struct css_set
*cset
= task_css_set(p
);
1930 if (!css_set_populated(cset
))
1931 css_set_update_populated(cset
, true);
1932 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1935 spin_unlock(&p
->sighand
->siglock
);
1936 } while_each_thread(g
, p
);
1937 read_unlock(&tasklist_lock
);
1939 spin_unlock_irq(&css_set_lock
);
1942 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1944 struct cgroup_subsys
*ss
;
1947 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1948 INIT_LIST_HEAD(&cgrp
->self
.children
);
1949 INIT_LIST_HEAD(&cgrp
->cset_links
);
1950 INIT_LIST_HEAD(&cgrp
->pidlists
);
1951 mutex_init(&cgrp
->pidlist_mutex
);
1952 cgrp
->self
.cgroup
= cgrp
;
1953 cgrp
->self
.flags
|= CSS_ONLINE
;
1955 for_each_subsys(ss
, ssid
)
1956 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1958 init_waitqueue_head(&cgrp
->offline_waitq
);
1959 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1962 static void init_cgroup_root(struct cgroup_root
*root
,
1963 struct cgroup_sb_opts
*opts
)
1965 struct cgroup
*cgrp
= &root
->cgrp
;
1967 INIT_LIST_HEAD(&root
->root_list
);
1968 atomic_set(&root
->nr_cgrps
, 1);
1970 init_cgroup_housekeeping(cgrp
);
1971 idr_init(&root
->cgroup_idr
);
1973 root
->flags
= opts
->flags
;
1974 if (opts
->release_agent
)
1975 strcpy(root
->release_agent_path
, opts
->release_agent
);
1977 strcpy(root
->name
, opts
->name
);
1978 if (opts
->cpuset_clone_children
)
1979 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1982 static int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
)
1984 LIST_HEAD(tmp_links
);
1985 struct cgroup
*root_cgrp
= &root
->cgrp
;
1986 struct css_set
*cset
;
1989 lockdep_assert_held(&cgroup_mutex
);
1991 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1994 root_cgrp
->id
= ret
;
1995 root_cgrp
->ancestor_ids
[0] = ret
;
1997 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
2003 * We're accessing css_set_count without locking css_set_lock here,
2004 * but that's OK - it can only be increased by someone holding
2005 * cgroup_lock, and that's us. Later rebinding may disable
2006 * controllers on the default hierarchy and thus create new csets,
2007 * which can't be more than the existing ones. Allocate 2x.
2009 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
2013 ret
= cgroup_init_root_id(root
);
2017 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
2018 KERNFS_ROOT_CREATE_DEACTIVATED
,
2020 if (IS_ERR(root
->kf_root
)) {
2021 ret
= PTR_ERR(root
->kf_root
);
2024 root_cgrp
->kn
= root
->kf_root
->kn
;
2026 ret
= css_populate_dir(&root_cgrp
->self
);
2030 ret
= rebind_subsystems(root
, ss_mask
);
2035 * There must be no failure case after here, since rebinding takes
2036 * care of subsystems' refcounts, which are explicitly dropped in
2037 * the failure exit path.
2039 list_add(&root
->root_list
, &cgroup_roots
);
2040 cgroup_root_count
++;
2043 * Link the root cgroup in this hierarchy into all the css_set
2046 spin_lock_irq(&css_set_lock
);
2047 hash_for_each(css_set_table
, i
, cset
, hlist
) {
2048 link_css_set(&tmp_links
, cset
, root_cgrp
);
2049 if (css_set_populated(cset
))
2050 cgroup_update_populated(root_cgrp
, true);
2052 spin_unlock_irq(&css_set_lock
);
2054 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
2055 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
2057 kernfs_activate(root_cgrp
->kn
);
2062 kernfs_destroy_root(root
->kf_root
);
2063 root
->kf_root
= NULL
;
2065 cgroup_exit_root_id(root
);
2067 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2069 free_cgrp_cset_links(&tmp_links
);
2073 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2074 int flags
, const char *unused_dev_name
,
2077 bool is_v2
= fs_type
== &cgroup2_fs_type
;
2078 struct super_block
*pinned_sb
= NULL
;
2079 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
2080 struct cgroup_subsys
*ss
;
2081 struct cgroup_root
*root
;
2082 struct cgroup_sb_opts opts
;
2083 struct dentry
*dentry
;
2090 /* Check if the caller has permission to mount. */
2091 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
)) {
2093 return ERR_PTR(-EPERM
);
2097 * The first time anyone tries to mount a cgroup, enable the list
2098 * linking each css_set to its tasks and fix up all existing tasks.
2100 if (!use_task_css_set_links
)
2101 cgroup_enable_task_cg_lists();
2105 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data
);
2107 return ERR_PTR(-EINVAL
);
2109 cgrp_dfl_visible
= true;
2110 root
= &cgrp_dfl_root
;
2111 cgroup_get(&root
->cgrp
);
2115 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
2117 /* First find the desired set of subsystems */
2118 ret
= parse_cgroupfs_options(data
, &opts
);
2123 * Destruction of cgroup root is asynchronous, so subsystems may
2124 * still be dying after the previous unmount. Let's drain the
2125 * dying subsystems. We just need to ensure that the ones
2126 * unmounted previously finish dying and don't care about new ones
2127 * starting. Testing ref liveliness is good enough.
2129 for_each_subsys(ss
, i
) {
2130 if (!(opts
.subsys_mask
& (1 << i
)) ||
2131 ss
->root
== &cgrp_dfl_root
)
2134 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
2135 mutex_unlock(&cgroup_mutex
);
2137 ret
= restart_syscall();
2140 cgroup_put(&ss
->root
->cgrp
);
2143 for_each_root(root
) {
2144 bool name_match
= false;
2146 if (root
== &cgrp_dfl_root
)
2150 * If we asked for a name then it must match. Also, if
2151 * name matches but sybsys_mask doesn't, we should fail.
2152 * Remember whether name matched.
2155 if (strcmp(opts
.name
, root
->name
))
2161 * If we asked for subsystems (or explicitly for no
2162 * subsystems) then they must match.
2164 if ((opts
.subsys_mask
|| opts
.none
) &&
2165 (opts
.subsys_mask
!= root
->subsys_mask
)) {
2172 if (root
->flags
^ opts
.flags
)
2173 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2176 * We want to reuse @root whose lifetime is governed by its
2177 * ->cgrp. Let's check whether @root is alive and keep it
2178 * that way. As cgroup_kill_sb() can happen anytime, we
2179 * want to block it by pinning the sb so that @root doesn't
2180 * get killed before mount is complete.
2182 * With the sb pinned, tryget_live can reliably indicate
2183 * whether @root can be reused. If it's being killed,
2184 * drain it. We can use wait_queue for the wait but this
2185 * path is super cold. Let's just sleep a bit and retry.
2187 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
2188 if (IS_ERR(pinned_sb
) ||
2189 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
2190 mutex_unlock(&cgroup_mutex
);
2191 if (!IS_ERR_OR_NULL(pinned_sb
))
2192 deactivate_super(pinned_sb
);
2194 ret
= restart_syscall();
2203 * No such thing, create a new one. name= matching without subsys
2204 * specification is allowed for already existing hierarchies but we
2205 * can't create new one without subsys specification.
2207 if (!opts
.subsys_mask
&& !opts
.none
) {
2212 /* Hierarchies may only be created in the initial cgroup namespace. */
2213 if (ns
!= &init_cgroup_ns
) {
2218 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
2224 init_cgroup_root(root
, &opts
);
2226 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
2228 cgroup_free_root(root
);
2231 mutex_unlock(&cgroup_mutex
);
2233 kfree(opts
.release_agent
);
2238 return ERR_PTR(ret
);
2241 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
2242 is_v2
? CGROUP2_SUPER_MAGIC
: CGROUP_SUPER_MAGIC
,
2246 * In non-init cgroup namespace, instead of root cgroup's
2247 * dentry, we return the dentry corresponding to the
2248 * cgroupns->root_cgrp.
2250 if (!IS_ERR(dentry
) && ns
!= &init_cgroup_ns
) {
2251 struct dentry
*nsdentry
;
2252 struct cgroup
*cgrp
;
2254 mutex_lock(&cgroup_mutex
);
2255 spin_lock_irq(&css_set_lock
);
2257 cgrp
= cset_cgroup_from_root(ns
->root_cset
, root
);
2259 spin_unlock_irq(&css_set_lock
);
2260 mutex_unlock(&cgroup_mutex
);
2262 nsdentry
= kernfs_node_dentry(cgrp
->kn
, dentry
->d_sb
);
2267 if (IS_ERR(dentry
) || !new_sb
)
2268 cgroup_put(&root
->cgrp
);
2271 * If @pinned_sb, we're reusing an existing root and holding an
2272 * extra ref on its sb. Mount is complete. Put the extra ref.
2276 deactivate_super(pinned_sb
);
2283 static void cgroup_kill_sb(struct super_block
*sb
)
2285 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2286 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2289 * If @root doesn't have any mounts or children, start killing it.
2290 * This prevents new mounts by disabling percpu_ref_tryget_live().
2291 * cgroup_mount() may wait for @root's release.
2293 * And don't kill the default root.
2295 if (!list_empty(&root
->cgrp
.self
.children
) ||
2296 root
== &cgrp_dfl_root
)
2297 cgroup_put(&root
->cgrp
);
2299 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2304 static struct file_system_type cgroup_fs_type
= {
2306 .mount
= cgroup_mount
,
2307 .kill_sb
= cgroup_kill_sb
,
2308 .fs_flags
= FS_USERNS_MOUNT
,
2311 static struct file_system_type cgroup2_fs_type
= {
2313 .mount
= cgroup_mount
,
2314 .kill_sb
= cgroup_kill_sb
,
2315 .fs_flags
= FS_USERNS_MOUNT
,
2318 static char *cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2319 struct cgroup_namespace
*ns
)
2321 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2324 ret
= kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2325 if (ret
< 0 || ret
>= buflen
)
2330 char *cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2331 struct cgroup_namespace
*ns
)
2335 mutex_lock(&cgroup_mutex
);
2336 spin_lock_irq(&css_set_lock
);
2338 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2340 spin_unlock_irq(&css_set_lock
);
2341 mutex_unlock(&cgroup_mutex
);
2345 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2348 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2349 * @task: target task
2350 * @buf: the buffer to write the path into
2351 * @buflen: the length of the buffer
2353 * Determine @task's cgroup on the first (the one with the lowest non-zero
2354 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2355 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2356 * cgroup controller callbacks.
2358 * Return value is the same as kernfs_path().
2360 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2362 struct cgroup_root
*root
;
2363 struct cgroup
*cgrp
;
2364 int hierarchy_id
= 1;
2367 mutex_lock(&cgroup_mutex
);
2368 spin_lock_irq(&css_set_lock
);
2370 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2373 cgrp
= task_cgroup_from_root(task
, root
);
2374 path
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2376 /* if no hierarchy exists, everyone is in "/" */
2377 if (strlcpy(buf
, "/", buflen
) < buflen
)
2381 spin_unlock_irq(&css_set_lock
);
2382 mutex_unlock(&cgroup_mutex
);
2385 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2387 /* used to track tasks and other necessary states during migration */
2388 struct cgroup_taskset
{
2389 /* the src and dst cset list running through cset->mg_node */
2390 struct list_head src_csets
;
2391 struct list_head dst_csets
;
2393 /* the subsys currently being processed */
2397 * Fields for cgroup_taskset_*() iteration.
2399 * Before migration is committed, the target migration tasks are on
2400 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2401 * the csets on ->dst_csets. ->csets point to either ->src_csets
2402 * or ->dst_csets depending on whether migration is committed.
2404 * ->cur_csets and ->cur_task point to the current task position
2407 struct list_head
*csets
;
2408 struct css_set
*cur_cset
;
2409 struct task_struct
*cur_task
;
2412 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2413 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2414 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2415 .csets = &tset.src_csets, \
2419 * cgroup_taskset_add - try to add a migration target task to a taskset
2420 * @task: target task
2421 * @tset: target taskset
2423 * Add @task, which is a migration target, to @tset. This function becomes
2424 * noop if @task doesn't need to be migrated. @task's css_set should have
2425 * been added as a migration source and @task->cg_list will be moved from
2426 * the css_set's tasks list to mg_tasks one.
2428 static void cgroup_taskset_add(struct task_struct
*task
,
2429 struct cgroup_taskset
*tset
)
2431 struct css_set
*cset
;
2433 lockdep_assert_held(&css_set_lock
);
2435 /* @task either already exited or can't exit until the end */
2436 if (task
->flags
& PF_EXITING
)
2439 /* leave @task alone if post_fork() hasn't linked it yet */
2440 if (list_empty(&task
->cg_list
))
2443 cset
= task_css_set(task
);
2444 if (!cset
->mg_src_cgrp
)
2447 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2448 if (list_empty(&cset
->mg_node
))
2449 list_add_tail(&cset
->mg_node
, &tset
->src_csets
);
2450 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2451 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2456 * cgroup_taskset_first - reset taskset and return the first task
2457 * @tset: taskset of interest
2458 * @dst_cssp: output variable for the destination css
2460 * @tset iteration is initialized and the first task is returned.
2462 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2463 struct cgroup_subsys_state
**dst_cssp
)
2465 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2466 tset
->cur_task
= NULL
;
2468 return cgroup_taskset_next(tset
, dst_cssp
);
2472 * cgroup_taskset_next - iterate to the next task in taskset
2473 * @tset: taskset of interest
2474 * @dst_cssp: output variable for the destination css
2476 * Return the next task in @tset. Iteration must have been initialized
2477 * with cgroup_taskset_first().
2479 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2480 struct cgroup_subsys_state
**dst_cssp
)
2482 struct css_set
*cset
= tset
->cur_cset
;
2483 struct task_struct
*task
= tset
->cur_task
;
2485 while (&cset
->mg_node
!= tset
->csets
) {
2487 task
= list_first_entry(&cset
->mg_tasks
,
2488 struct task_struct
, cg_list
);
2490 task
= list_next_entry(task
, cg_list
);
2492 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2493 tset
->cur_cset
= cset
;
2494 tset
->cur_task
= task
;
2497 * This function may be called both before and
2498 * after cgroup_taskset_migrate(). The two cases
2499 * can be distinguished by looking at whether @cset
2500 * has its ->mg_dst_cset set.
2502 if (cset
->mg_dst_cset
)
2503 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2505 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2510 cset
= list_next_entry(cset
, mg_node
);
2518 * cgroup_taskset_migrate - migrate a taskset
2519 * @tset: taget taskset
2520 * @root: cgroup root the migration is taking place on
2522 * Migrate tasks in @tset as setup by migration preparation functions.
2523 * This function fails iff one of the ->can_attach callbacks fails and
2524 * guarantees that either all or none of the tasks in @tset are migrated.
2525 * @tset is consumed regardless of success.
2527 static int cgroup_taskset_migrate(struct cgroup_taskset
*tset
,
2528 struct cgroup_root
*root
)
2530 struct cgroup_subsys
*ss
;
2531 struct task_struct
*task
, *tmp_task
;
2532 struct css_set
*cset
, *tmp_cset
;
2533 int ssid
, failed_ssid
, ret
;
2535 /* methods shouldn't be called if no task is actually migrating */
2536 if (list_empty(&tset
->src_csets
))
2539 /* check that we can legitimately attach to the cgroup */
2540 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2541 if (ss
->can_attach
) {
2543 ret
= ss
->can_attach(tset
);
2546 goto out_cancel_attach
;
2549 } while_each_subsys_mask();
2552 * Now that we're guaranteed success, proceed to move all tasks to
2553 * the new cgroup. There are no failure cases after here, so this
2554 * is the commit point.
2556 spin_lock_irq(&css_set_lock
);
2557 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2558 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2559 struct css_set
*from_cset
= task_css_set(task
);
2560 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2562 get_css_set(to_cset
);
2563 css_set_move_task(task
, from_cset
, to_cset
, true);
2564 put_css_set_locked(from_cset
);
2567 spin_unlock_irq(&css_set_lock
);
2570 * Migration is committed, all target tasks are now on dst_csets.
2571 * Nothing is sensitive to fork() after this point. Notify
2572 * controllers that migration is complete.
2574 tset
->csets
= &tset
->dst_csets
;
2576 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2581 } while_each_subsys_mask();
2584 goto out_release_tset
;
2587 do_each_subsys_mask(ss
, ssid
, root
->subsys_mask
) {
2588 if (ssid
== failed_ssid
)
2590 if (ss
->cancel_attach
) {
2592 ss
->cancel_attach(tset
);
2594 } while_each_subsys_mask();
2596 spin_lock_irq(&css_set_lock
);
2597 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2598 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2599 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2600 list_del_init(&cset
->mg_node
);
2602 spin_unlock_irq(&css_set_lock
);
2607 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2608 * @dst_cgrp: destination cgroup to test
2610 * On the default hierarchy, except for the root, subtree_control must be
2611 * zero for migration destination cgroups with tasks so that child cgroups
2612 * don't compete against tasks.
2614 static bool cgroup_may_migrate_to(struct cgroup
*dst_cgrp
)
2616 return !cgroup_on_dfl(dst_cgrp
) || !cgroup_parent(dst_cgrp
) ||
2617 !dst_cgrp
->subtree_control
;
2621 * cgroup_migrate_finish - cleanup after attach
2622 * @preloaded_csets: list of preloaded css_sets
2624 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2625 * those functions for details.
2627 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2629 struct css_set
*cset
, *tmp_cset
;
2631 lockdep_assert_held(&cgroup_mutex
);
2633 spin_lock_irq(&css_set_lock
);
2634 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2635 cset
->mg_src_cgrp
= NULL
;
2636 cset
->mg_dst_cgrp
= NULL
;
2637 cset
->mg_dst_cset
= NULL
;
2638 list_del_init(&cset
->mg_preload_node
);
2639 put_css_set_locked(cset
);
2641 spin_unlock_irq(&css_set_lock
);
2645 * cgroup_migrate_add_src - add a migration source css_set
2646 * @src_cset: the source css_set to add
2647 * @dst_cgrp: the destination cgroup
2648 * @preloaded_csets: list of preloaded css_sets
2650 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2651 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2652 * up by cgroup_migrate_finish().
2654 * This function may be called without holding cgroup_threadgroup_rwsem
2655 * even if the target is a process. Threads may be created and destroyed
2656 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2657 * into play and the preloaded css_sets are guaranteed to cover all
2660 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2661 struct cgroup
*dst_cgrp
,
2662 struct list_head
*preloaded_csets
)
2664 struct cgroup
*src_cgrp
;
2666 lockdep_assert_held(&cgroup_mutex
);
2667 lockdep_assert_held(&css_set_lock
);
2670 * If ->dead, @src_set is associated with one or more dead cgroups
2671 * and doesn't contain any migratable tasks. Ignore it early so
2672 * that the rest of migration path doesn't get confused by it.
2677 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2679 if (!list_empty(&src_cset
->mg_preload_node
))
2682 WARN_ON(src_cset
->mg_src_cgrp
);
2683 WARN_ON(src_cset
->mg_dst_cgrp
);
2684 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2685 WARN_ON(!list_empty(&src_cset
->mg_node
));
2687 src_cset
->mg_src_cgrp
= src_cgrp
;
2688 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2689 get_css_set(src_cset
);
2690 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2694 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2695 * @preloaded_csets: list of preloaded source css_sets
2697 * Tasks are about to be moved and all the source css_sets have been
2698 * preloaded to @preloaded_csets. This function looks up and pins all
2699 * destination css_sets, links each to its source, and append them to
2702 * This function must be called after cgroup_migrate_add_src() has been
2703 * called on each migration source css_set. After migration is performed
2704 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2707 static int cgroup_migrate_prepare_dst(struct list_head
*preloaded_csets
)
2710 struct css_set
*src_cset
, *tmp_cset
;
2712 lockdep_assert_held(&cgroup_mutex
);
2714 /* look up the dst cset for each src cset and link it to src */
2715 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2716 struct css_set
*dst_cset
;
2718 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2722 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2725 * If src cset equals dst, it's noop. Drop the src.
2726 * cgroup_migrate() will skip the cset too. Note that we
2727 * can't handle src == dst as some nodes are used by both.
2729 if (src_cset
== dst_cset
) {
2730 src_cset
->mg_src_cgrp
= NULL
;
2731 src_cset
->mg_dst_cgrp
= NULL
;
2732 list_del_init(&src_cset
->mg_preload_node
);
2733 put_css_set(src_cset
);
2734 put_css_set(dst_cset
);
2738 src_cset
->mg_dst_cset
= dst_cset
;
2740 if (list_empty(&dst_cset
->mg_preload_node
))
2741 list_add(&dst_cset
->mg_preload_node
, &csets
);
2743 put_css_set(dst_cset
);
2746 list_splice_tail(&csets
, preloaded_csets
);
2749 cgroup_migrate_finish(&csets
);
2754 * cgroup_migrate - migrate a process or task to a cgroup
2755 * @leader: the leader of the process or the task to migrate
2756 * @threadgroup: whether @leader points to the whole process or a single task
2757 * @root: cgroup root migration is taking place on
2759 * Migrate a process or task denoted by @leader. If migrating a process,
2760 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2761 * responsible for invoking cgroup_migrate_add_src() and
2762 * cgroup_migrate_prepare_dst() on the targets before invoking this
2763 * function and following up with cgroup_migrate_finish().
2765 * As long as a controller's ->can_attach() doesn't fail, this function is
2766 * guaranteed to succeed. This means that, excluding ->can_attach()
2767 * failure, when migrating multiple targets, the success or failure can be
2768 * decided for all targets by invoking group_migrate_prepare_dst() before
2769 * actually starting migrating.
2771 static int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2772 struct cgroup_root
*root
)
2774 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2775 struct task_struct
*task
;
2778 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2779 * already PF_EXITING could be freed from underneath us unless we
2780 * take an rcu_read_lock.
2782 spin_lock_irq(&css_set_lock
);
2786 cgroup_taskset_add(task
, &tset
);
2789 } while_each_thread(leader
, task
);
2791 spin_unlock_irq(&css_set_lock
);
2793 return cgroup_taskset_migrate(&tset
, root
);
2797 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2798 * @dst_cgrp: the cgroup to attach to
2799 * @leader: the task or the leader of the threadgroup to be attached
2800 * @threadgroup: attach the whole threadgroup?
2802 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2804 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2805 struct task_struct
*leader
, bool threadgroup
)
2807 LIST_HEAD(preloaded_csets
);
2808 struct task_struct
*task
;
2811 if (!cgroup_may_migrate_to(dst_cgrp
))
2814 /* look up all src csets */
2815 spin_lock_irq(&css_set_lock
);
2819 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2823 } while_each_thread(leader
, task
);
2825 spin_unlock_irq(&css_set_lock
);
2827 /* prepare dst csets and commit */
2828 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
2830 ret
= cgroup_migrate(leader
, threadgroup
, dst_cgrp
->root
);
2832 cgroup_migrate_finish(&preloaded_csets
);
2836 static int cgroup_procs_write_permission(struct task_struct
*task
,
2837 struct cgroup
*dst_cgrp
,
2838 struct kernfs_open_file
*of
)
2840 const struct cred
*cred
= current_cred();
2841 const struct cred
*tcred
= get_task_cred(task
);
2845 * even if we're attaching all tasks in the thread group, we only
2846 * need to check permissions on one of them.
2848 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2849 !uid_eq(cred
->euid
, tcred
->uid
) &&
2850 !uid_eq(cred
->euid
, tcred
->suid
))
2853 if (!ret
&& cgroup_on_dfl(dst_cgrp
)) {
2854 struct super_block
*sb
= of
->file
->f_path
.dentry
->d_sb
;
2855 struct cgroup
*cgrp
;
2856 struct inode
*inode
;
2858 spin_lock_irq(&css_set_lock
);
2859 cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
2860 spin_unlock_irq(&css_set_lock
);
2862 while (!cgroup_is_descendant(dst_cgrp
, cgrp
))
2863 cgrp
= cgroup_parent(cgrp
);
2866 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
2868 ret
= inode_permission(inode
, MAY_WRITE
);
2878 * Find the task_struct of the task to attach by vpid and pass it along to the
2879 * function to attach either it or all tasks in its threadgroup. Will lock
2880 * cgroup_mutex and threadgroup.
2882 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2883 size_t nbytes
, loff_t off
, bool threadgroup
)
2885 struct task_struct
*tsk
;
2886 struct cgroup_subsys
*ss
;
2887 struct cgroup
*cgrp
;
2891 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2894 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
2898 percpu_down_write(&cgroup_threadgroup_rwsem
);
2901 tsk
= find_task_by_vpid(pid
);
2904 goto out_unlock_rcu
;
2911 tsk
= tsk
->group_leader
;
2914 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2915 * trapped in a cpuset, or RT worker may be born in a cgroup
2916 * with no rt_runtime allocated. Just say no.
2918 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2920 goto out_unlock_rcu
;
2923 get_task_struct(tsk
);
2926 ret
= cgroup_procs_write_permission(tsk
, cgrp
, of
);
2928 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2930 put_task_struct(tsk
);
2931 goto out_unlock_threadgroup
;
2935 out_unlock_threadgroup
:
2936 percpu_up_write(&cgroup_threadgroup_rwsem
);
2937 for_each_subsys(ss
, ssid
)
2938 if (ss
->post_attach
)
2940 cgroup_kn_unlock(of
->kn
);
2941 return ret
?: nbytes
;
2945 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2946 * @from: attach to all cgroups of a given task
2947 * @tsk: the task to be attached
2949 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2951 struct cgroup_root
*root
;
2954 mutex_lock(&cgroup_mutex
);
2955 percpu_down_write(&cgroup_threadgroup_rwsem
);
2956 for_each_root(root
) {
2957 struct cgroup
*from_cgrp
;
2959 if (root
== &cgrp_dfl_root
)
2962 spin_lock_irq(&css_set_lock
);
2963 from_cgrp
= task_cgroup_from_root(from
, root
);
2964 spin_unlock_irq(&css_set_lock
);
2966 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2970 percpu_up_write(&cgroup_threadgroup_rwsem
);
2971 mutex_unlock(&cgroup_mutex
);
2975 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2977 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2978 char *buf
, size_t nbytes
, loff_t off
)
2980 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2983 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2984 char *buf
, size_t nbytes
, loff_t off
)
2986 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2989 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2990 char *buf
, size_t nbytes
, loff_t off
)
2992 struct cgroup
*cgrp
;
2994 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2996 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
2999 spin_lock(&release_agent_path_lock
);
3000 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
3001 sizeof(cgrp
->root
->release_agent_path
));
3002 spin_unlock(&release_agent_path_lock
);
3003 cgroup_kn_unlock(of
->kn
);
3007 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
3009 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3011 spin_lock(&release_agent_path_lock
);
3012 seq_puts(seq
, cgrp
->root
->release_agent_path
);
3013 spin_unlock(&release_agent_path_lock
);
3014 seq_putc(seq
, '\n');
3018 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
3020 seq_puts(seq
, "0\n");
3024 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
3026 struct cgroup_subsys
*ss
;
3027 bool printed
= false;
3030 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
3033 seq_printf(seq
, "%s", ss
->name
);
3035 } while_each_subsys_mask();
3037 seq_putc(seq
, '\n');
3040 /* show controllers which are enabled from the parent */
3041 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
3043 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3045 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
3049 /* show controllers which are enabled for a given cgroup's children */
3050 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
3052 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3054 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
3059 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3060 * @cgrp: root of the subtree to update csses for
3062 * @cgrp's control masks have changed and its subtree's css associations
3063 * need to be updated accordingly. This function looks up all css_sets
3064 * which are attached to the subtree, creates the matching updated css_sets
3065 * and migrates the tasks to the new ones.
3067 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
3069 LIST_HEAD(preloaded_csets
);
3070 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
3071 struct cgroup_subsys_state
*d_css
;
3072 struct cgroup
*dsct
;
3073 struct css_set
*src_cset
;
3076 lockdep_assert_held(&cgroup_mutex
);
3078 percpu_down_write(&cgroup_threadgroup_rwsem
);
3080 /* look up all csses currently attached to @cgrp's subtree */
3081 spin_lock_irq(&css_set_lock
);
3082 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3083 struct cgrp_cset_link
*link
;
3085 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
3086 cgroup_migrate_add_src(link
->cset
, dsct
,
3089 spin_unlock_irq(&css_set_lock
);
3091 /* NULL dst indicates self on default hierarchy */
3092 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
3096 spin_lock_irq(&css_set_lock
);
3097 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
3098 struct task_struct
*task
, *ntask
;
3100 /* src_csets precede dst_csets, break on the first dst_cset */
3101 if (!src_cset
->mg_src_cgrp
)
3104 /* all tasks in src_csets need to be migrated */
3105 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
3106 cgroup_taskset_add(task
, &tset
);
3108 spin_unlock_irq(&css_set_lock
);
3110 ret
= cgroup_taskset_migrate(&tset
, cgrp
->root
);
3112 cgroup_migrate_finish(&preloaded_csets
);
3113 percpu_up_write(&cgroup_threadgroup_rwsem
);
3118 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3119 * @cgrp: root of the target subtree
3121 * Because css offlining is asynchronous, userland may try to re-enable a
3122 * controller while the previous css is still around. This function grabs
3123 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3125 static void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
3126 __acquires(&cgroup_mutex
)
3128 struct cgroup
*dsct
;
3129 struct cgroup_subsys_state
*d_css
;
3130 struct cgroup_subsys
*ss
;
3134 mutex_lock(&cgroup_mutex
);
3136 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3137 for_each_subsys(ss
, ssid
) {
3138 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3141 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
3145 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
3146 TASK_UNINTERRUPTIBLE
);
3148 mutex_unlock(&cgroup_mutex
);
3150 finish_wait(&dsct
->offline_waitq
, &wait
);
3159 * cgroup_save_control - save control masks of a subtree
3160 * @cgrp: root of the target subtree
3162 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3163 * prefixed fields for @cgrp's subtree including @cgrp itself.
3165 static void cgroup_save_control(struct cgroup
*cgrp
)
3167 struct cgroup
*dsct
;
3168 struct cgroup_subsys_state
*d_css
;
3170 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3171 dsct
->old_subtree_control
= dsct
->subtree_control
;
3172 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
3177 * cgroup_propagate_control - refresh control masks of a subtree
3178 * @cgrp: root of the target subtree
3180 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3181 * ->subtree_control and propagate controller availability through the
3182 * subtree so that descendants don't have unavailable controllers enabled.
3184 static void cgroup_propagate_control(struct cgroup
*cgrp
)
3186 struct cgroup
*dsct
;
3187 struct cgroup_subsys_state
*d_css
;
3189 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3190 dsct
->subtree_control
&= cgroup_control(dsct
);
3191 dsct
->subtree_ss_mask
=
3192 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
3193 cgroup_ss_mask(dsct
));
3198 * cgroup_restore_control - restore control masks of a subtree
3199 * @cgrp: root of the target subtree
3201 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3202 * prefixed fields for @cgrp's subtree including @cgrp itself.
3204 static void cgroup_restore_control(struct cgroup
*cgrp
)
3206 struct cgroup
*dsct
;
3207 struct cgroup_subsys_state
*d_css
;
3209 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3210 dsct
->subtree_control
= dsct
->old_subtree_control
;
3211 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
3215 static bool css_visible(struct cgroup_subsys_state
*css
)
3217 struct cgroup_subsys
*ss
= css
->ss
;
3218 struct cgroup
*cgrp
= css
->cgroup
;
3220 if (cgroup_control(cgrp
) & (1 << ss
->id
))
3222 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
3224 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
3228 * cgroup_apply_control_enable - enable or show csses according to control
3229 * @cgrp: root of the target subtree
3231 * Walk @cgrp's subtree and create new csses or make the existing ones
3232 * visible. A css is created invisible if it's being implicitly enabled
3233 * through dependency. An invisible css is made visible when the userland
3234 * explicitly enables it.
3236 * Returns 0 on success, -errno on failure. On failure, csses which have
3237 * been processed already aren't cleaned up. The caller is responsible for
3238 * cleaning up with cgroup_apply_control_disble().
3240 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
3242 struct cgroup
*dsct
;
3243 struct cgroup_subsys_state
*d_css
;
3244 struct cgroup_subsys
*ss
;
3247 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3248 for_each_subsys(ss
, ssid
) {
3249 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3251 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3253 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
3257 css
= css_create(dsct
, ss
);
3259 return PTR_ERR(css
);
3262 if (css_visible(css
)) {
3263 ret
= css_populate_dir(css
);
3274 * cgroup_apply_control_disable - kill or hide csses according to control
3275 * @cgrp: root of the target subtree
3277 * Walk @cgrp's subtree and kill and hide csses so that they match
3278 * cgroup_ss_mask() and cgroup_visible_mask().
3280 * A css is hidden when the userland requests it to be disabled while other
3281 * subsystems are still depending on it. The css must not actively control
3282 * resources and be in the vanilla state if it's made visible again later.
3283 * Controllers which may be depended upon should provide ->css_reset() for
3286 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
3288 struct cgroup
*dsct
;
3289 struct cgroup_subsys_state
*d_css
;
3290 struct cgroup_subsys
*ss
;
3293 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3294 for_each_subsys(ss
, ssid
) {
3295 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3297 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3303 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
3305 } else if (!css_visible(css
)) {
3315 * cgroup_apply_control - apply control mask updates to the subtree
3316 * @cgrp: root of the target subtree
3318 * subsystems can be enabled and disabled in a subtree using the following
3321 * 1. Call cgroup_save_control() to stash the current state.
3322 * 2. Update ->subtree_control masks in the subtree as desired.
3323 * 3. Call cgroup_apply_control() to apply the changes.
3324 * 4. Optionally perform other related operations.
3325 * 5. Call cgroup_finalize_control() to finish up.
3327 * This function implements step 3 and propagates the mask changes
3328 * throughout @cgrp's subtree, updates csses accordingly and perform
3329 * process migrations.
3331 static int cgroup_apply_control(struct cgroup
*cgrp
)
3335 cgroup_propagate_control(cgrp
);
3337 ret
= cgroup_apply_control_enable(cgrp
);
3342 * At this point, cgroup_e_css() results reflect the new csses
3343 * making the following cgroup_update_dfl_csses() properly update
3344 * css associations of all tasks in the subtree.
3346 ret
= cgroup_update_dfl_csses(cgrp
);
3354 * cgroup_finalize_control - finalize control mask update
3355 * @cgrp: root of the target subtree
3356 * @ret: the result of the update
3358 * Finalize control mask update. See cgroup_apply_control() for more info.
3360 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3363 cgroup_restore_control(cgrp
);
3364 cgroup_propagate_control(cgrp
);
3367 cgroup_apply_control_disable(cgrp
);
3370 /* change the enabled child controllers for a cgroup in the default hierarchy */
3371 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3372 char *buf
, size_t nbytes
,
3375 u16 enable
= 0, disable
= 0;
3376 struct cgroup
*cgrp
, *child
;
3377 struct cgroup_subsys
*ss
;
3382 * Parse input - space separated list of subsystem names prefixed
3383 * with either + or -.
3385 buf
= strstrip(buf
);
3386 while ((tok
= strsep(&buf
, " "))) {
3389 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3390 if (!cgroup_ssid_enabled(ssid
) ||
3391 strcmp(tok
+ 1, ss
->name
))
3395 enable
|= 1 << ssid
;
3396 disable
&= ~(1 << ssid
);
3397 } else if (*tok
== '-') {
3398 disable
|= 1 << ssid
;
3399 enable
&= ~(1 << ssid
);
3404 } while_each_subsys_mask();
3405 if (ssid
== CGROUP_SUBSYS_COUNT
)
3409 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3413 for_each_subsys(ss
, ssid
) {
3414 if (enable
& (1 << ssid
)) {
3415 if (cgrp
->subtree_control
& (1 << ssid
)) {
3416 enable
&= ~(1 << ssid
);
3420 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3424 } else if (disable
& (1 << ssid
)) {
3425 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3426 disable
&= ~(1 << ssid
);
3430 /* a child has it enabled? */
3431 cgroup_for_each_live_child(child
, cgrp
) {
3432 if (child
->subtree_control
& (1 << ssid
)) {
3440 if (!enable
&& !disable
) {
3446 * Except for the root, subtree_control must be zero for a cgroup
3447 * with tasks so that child cgroups don't compete against tasks.
3449 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
3454 /* save and update control masks and prepare csses */
3455 cgroup_save_control(cgrp
);
3457 cgrp
->subtree_control
|= enable
;
3458 cgrp
->subtree_control
&= ~disable
;
3460 ret
= cgroup_apply_control(cgrp
);
3462 cgroup_finalize_control(cgrp
, ret
);
3464 kernfs_activate(cgrp
->kn
);
3467 cgroup_kn_unlock(of
->kn
);
3468 return ret
?: nbytes
;
3471 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3473 seq_printf(seq
, "populated %d\n",
3474 cgroup_is_populated(seq_css(seq
)->cgroup
));
3478 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3479 size_t nbytes
, loff_t off
)
3481 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3482 struct cftype
*cft
= of
->kn
->priv
;
3483 struct cgroup_subsys_state
*css
;
3487 return cft
->write(of
, buf
, nbytes
, off
);
3490 * kernfs guarantees that a file isn't deleted with operations in
3491 * flight, which means that the matching css is and stays alive and
3492 * doesn't need to be pinned. The RCU locking is not necessary
3493 * either. It's just for the convenience of using cgroup_css().
3496 css
= cgroup_css(cgrp
, cft
->ss
);
3499 if (cft
->write_u64
) {
3500 unsigned long long v
;
3501 ret
= kstrtoull(buf
, 0, &v
);
3503 ret
= cft
->write_u64(css
, cft
, v
);
3504 } else if (cft
->write_s64
) {
3506 ret
= kstrtoll(buf
, 0, &v
);
3508 ret
= cft
->write_s64(css
, cft
, v
);
3513 return ret
?: nbytes
;
3516 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3518 return seq_cft(seq
)->seq_start(seq
, ppos
);
3521 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3523 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3526 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3528 seq_cft(seq
)->seq_stop(seq
, v
);
3531 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3533 struct cftype
*cft
= seq_cft(m
);
3534 struct cgroup_subsys_state
*css
= seq_css(m
);
3537 return cft
->seq_show(m
, arg
);
3540 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3541 else if (cft
->read_s64
)
3542 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3548 static struct kernfs_ops cgroup_kf_single_ops
= {
3549 .atomic_write_len
= PAGE_SIZE
,
3550 .write
= cgroup_file_write
,
3551 .seq_show
= cgroup_seqfile_show
,
3554 static struct kernfs_ops cgroup_kf_ops
= {
3555 .atomic_write_len
= PAGE_SIZE
,
3556 .write
= cgroup_file_write
,
3557 .seq_start
= cgroup_seqfile_start
,
3558 .seq_next
= cgroup_seqfile_next
,
3559 .seq_stop
= cgroup_seqfile_stop
,
3560 .seq_show
= cgroup_seqfile_show
,
3564 * cgroup_rename - Only allow simple rename of directories in place.
3566 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3567 const char *new_name_str
)
3569 struct cgroup
*cgrp
= kn
->priv
;
3572 if (kernfs_type(kn
) != KERNFS_DIR
)
3574 if (kn
->parent
!= new_parent
)
3578 * This isn't a proper migration and its usefulness is very
3579 * limited. Disallow on the default hierarchy.
3581 if (cgroup_on_dfl(cgrp
))
3585 * We're gonna grab cgroup_mutex which nests outside kernfs
3586 * active_ref. kernfs_rename() doesn't require active_ref
3587 * protection. Break them before grabbing cgroup_mutex.
3589 kernfs_break_active_protection(new_parent
);
3590 kernfs_break_active_protection(kn
);
3592 mutex_lock(&cgroup_mutex
);
3594 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3596 mutex_unlock(&cgroup_mutex
);
3598 kernfs_unbreak_active_protection(kn
);
3599 kernfs_unbreak_active_protection(new_parent
);
3603 /* set uid and gid of cgroup dirs and files to that of the creator */
3604 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3606 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3607 .ia_uid
= current_fsuid(),
3608 .ia_gid
= current_fsgid(), };
3610 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3611 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3614 return kernfs_setattr(kn
, &iattr
);
3617 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3620 char name
[CGROUP_FILE_NAME_MAX
];
3621 struct kernfs_node
*kn
;
3622 struct lock_class_key
*key
= NULL
;
3625 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3626 key
= &cft
->lockdep_key
;
3628 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3629 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3634 ret
= cgroup_kn_set_ugid(kn
);
3640 if (cft
->file_offset
) {
3641 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3643 spin_lock_irq(&cgroup_file_kn_lock
);
3645 spin_unlock_irq(&cgroup_file_kn_lock
);
3652 * cgroup_addrm_files - add or remove files to a cgroup directory
3653 * @css: the target css
3654 * @cgrp: the target cgroup (usually css->cgroup)
3655 * @cfts: array of cftypes to be added
3656 * @is_add: whether to add or remove
3658 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3659 * For removals, this function never fails.
3661 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3662 struct cgroup
*cgrp
, struct cftype cfts
[],
3665 struct cftype
*cft
, *cft_end
= NULL
;
3668 lockdep_assert_held(&cgroup_mutex
);
3671 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3672 /* does cft->flags tell us to skip this file on @cgrp? */
3673 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3675 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3677 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3679 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3683 ret
= cgroup_add_file(css
, cgrp
, cft
);
3685 pr_warn("%s: failed to add %s, err=%d\n",
3686 __func__
, cft
->name
, ret
);
3692 cgroup_rm_file(cgrp
, cft
);
3698 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3701 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3702 struct cgroup
*root
= &ss
->root
->cgrp
;
3703 struct cgroup_subsys_state
*css
;
3706 lockdep_assert_held(&cgroup_mutex
);
3708 /* add/rm files for all cgroups created before */
3709 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3710 struct cgroup
*cgrp
= css
->cgroup
;
3712 if (!(css
->flags
& CSS_VISIBLE
))
3715 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3721 kernfs_activate(root
->kn
);
3725 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3729 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3730 /* free copy for custom atomic_write_len, see init_cftypes() */
3731 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3736 /* revert flags set by cgroup core while adding @cfts */
3737 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3741 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3745 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3746 struct kernfs_ops
*kf_ops
;
3748 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3751 kf_ops
= &cgroup_kf_ops
;
3753 kf_ops
= &cgroup_kf_single_ops
;
3756 * Ugh... if @cft wants a custom max_write_len, we need to
3757 * make a copy of kf_ops to set its atomic_write_len.
3759 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3760 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3762 cgroup_exit_cftypes(cfts
);
3765 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3768 cft
->kf_ops
= kf_ops
;
3775 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3777 lockdep_assert_held(&cgroup_mutex
);
3779 if (!cfts
|| !cfts
[0].ss
)
3782 list_del(&cfts
->node
);
3783 cgroup_apply_cftypes(cfts
, false);
3784 cgroup_exit_cftypes(cfts
);
3789 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3790 * @cfts: zero-length name terminated array of cftypes
3792 * Unregister @cfts. Files described by @cfts are removed from all
3793 * existing cgroups and all future cgroups won't have them either. This
3794 * function can be called anytime whether @cfts' subsys is attached or not.
3796 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3799 int cgroup_rm_cftypes(struct cftype
*cfts
)
3803 mutex_lock(&cgroup_mutex
);
3804 ret
= cgroup_rm_cftypes_locked(cfts
);
3805 mutex_unlock(&cgroup_mutex
);
3810 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3811 * @ss: target cgroup subsystem
3812 * @cfts: zero-length name terminated array of cftypes
3814 * Register @cfts to @ss. Files described by @cfts are created for all
3815 * existing cgroups to which @ss is attached and all future cgroups will
3816 * have them too. This function can be called anytime whether @ss is
3819 * Returns 0 on successful registration, -errno on failure. Note that this
3820 * function currently returns 0 as long as @cfts registration is successful
3821 * even if some file creation attempts on existing cgroups fail.
3823 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3827 if (!cgroup_ssid_enabled(ss
->id
))
3830 if (!cfts
|| cfts
[0].name
[0] == '\0')
3833 ret
= cgroup_init_cftypes(ss
, cfts
);
3837 mutex_lock(&cgroup_mutex
);
3839 list_add_tail(&cfts
->node
, &ss
->cfts
);
3840 ret
= cgroup_apply_cftypes(cfts
, true);
3842 cgroup_rm_cftypes_locked(cfts
);
3844 mutex_unlock(&cgroup_mutex
);
3849 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3850 * @ss: target cgroup subsystem
3851 * @cfts: zero-length name terminated array of cftypes
3853 * Similar to cgroup_add_cftypes() but the added files are only used for
3854 * the default hierarchy.
3856 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3860 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3861 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3862 return cgroup_add_cftypes(ss
, cfts
);
3866 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3867 * @ss: target cgroup subsystem
3868 * @cfts: zero-length name terminated array of cftypes
3870 * Similar to cgroup_add_cftypes() but the added files are only used for
3871 * the legacy hierarchies.
3873 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3877 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3878 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3879 return cgroup_add_cftypes(ss
, cfts
);
3883 * cgroup_file_notify - generate a file modified event for a cgroup_file
3884 * @cfile: target cgroup_file
3886 * @cfile must have been obtained by setting cftype->file_offset.
3888 void cgroup_file_notify(struct cgroup_file
*cfile
)
3890 unsigned long flags
;
3892 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3894 kernfs_notify(cfile
->kn
);
3895 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3899 * cgroup_task_count - count the number of tasks in a cgroup.
3900 * @cgrp: the cgroup in question
3902 * Return the number of tasks in the cgroup.
3904 static int cgroup_task_count(const struct cgroup
*cgrp
)
3907 struct cgrp_cset_link
*link
;
3909 spin_lock_irq(&css_set_lock
);
3910 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3911 count
+= atomic_read(&link
->cset
->refcount
);
3912 spin_unlock_irq(&css_set_lock
);
3917 * css_next_child - find the next child of a given css
3918 * @pos: the current position (%NULL to initiate traversal)
3919 * @parent: css whose children to walk
3921 * This function returns the next child of @parent and should be called
3922 * under either cgroup_mutex or RCU read lock. The only requirement is
3923 * that @parent and @pos are accessible. The next sibling is guaranteed to
3924 * be returned regardless of their states.
3926 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3927 * css which finished ->css_online() is guaranteed to be visible in the
3928 * future iterations and will stay visible until the last reference is put.
3929 * A css which hasn't finished ->css_online() or already finished
3930 * ->css_offline() may show up during traversal. It's each subsystem's
3931 * responsibility to synchronize against on/offlining.
3933 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3934 struct cgroup_subsys_state
*parent
)
3936 struct cgroup_subsys_state
*next
;
3938 cgroup_assert_mutex_or_rcu_locked();
3941 * @pos could already have been unlinked from the sibling list.
3942 * Once a cgroup is removed, its ->sibling.next is no longer
3943 * updated when its next sibling changes. CSS_RELEASED is set when
3944 * @pos is taken off list, at which time its next pointer is valid,
3945 * and, as releases are serialized, the one pointed to by the next
3946 * pointer is guaranteed to not have started release yet. This
3947 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3948 * critical section, the one pointed to by its next pointer is
3949 * guaranteed to not have finished its RCU grace period even if we
3950 * have dropped rcu_read_lock() inbetween iterations.
3952 * If @pos has CSS_RELEASED set, its next pointer can't be
3953 * dereferenced; however, as each css is given a monotonically
3954 * increasing unique serial number and always appended to the
3955 * sibling list, the next one can be found by walking the parent's
3956 * children until the first css with higher serial number than
3957 * @pos's. While this path can be slower, it happens iff iteration
3958 * races against release and the race window is very small.
3961 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3962 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3963 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3965 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3966 if (next
->serial_nr
> pos
->serial_nr
)
3971 * @next, if not pointing to the head, can be dereferenced and is
3974 if (&next
->sibling
!= &parent
->children
)
3980 * css_next_descendant_pre - find the next descendant for pre-order walk
3981 * @pos: the current position (%NULL to initiate traversal)
3982 * @root: css whose descendants to walk
3984 * To be used by css_for_each_descendant_pre(). Find the next descendant
3985 * to visit for pre-order traversal of @root's descendants. @root is
3986 * included in the iteration and the first node to be visited.
3988 * While this function requires cgroup_mutex or RCU read locking, it
3989 * doesn't require the whole traversal to be contained in a single critical
3990 * section. This function will return the correct next descendant as long
3991 * as both @pos and @root are accessible and @pos is a descendant of @root.
3993 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3994 * css which finished ->css_online() is guaranteed to be visible in the
3995 * future iterations and will stay visible until the last reference is put.
3996 * A css which hasn't finished ->css_online() or already finished
3997 * ->css_offline() may show up during traversal. It's each subsystem's
3998 * responsibility to synchronize against on/offlining.
4000 struct cgroup_subsys_state
*
4001 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
4002 struct cgroup_subsys_state
*root
)
4004 struct cgroup_subsys_state
*next
;
4006 cgroup_assert_mutex_or_rcu_locked();
4008 /* if first iteration, visit @root */
4012 /* visit the first child if exists */
4013 next
= css_next_child(NULL
, pos
);
4017 /* no child, visit my or the closest ancestor's next sibling */
4018 while (pos
!= root
) {
4019 next
= css_next_child(pos
, pos
->parent
);
4029 * css_rightmost_descendant - return the rightmost descendant of a css
4030 * @pos: css of interest
4032 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4033 * is returned. This can be used during pre-order traversal to skip
4036 * While this function requires cgroup_mutex or RCU read locking, it
4037 * doesn't require the whole traversal to be contained in a single critical
4038 * section. This function will return the correct rightmost descendant as
4039 * long as @pos is accessible.
4041 struct cgroup_subsys_state
*
4042 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
4044 struct cgroup_subsys_state
*last
, *tmp
;
4046 cgroup_assert_mutex_or_rcu_locked();
4050 /* ->prev isn't RCU safe, walk ->next till the end */
4052 css_for_each_child(tmp
, last
)
4059 static struct cgroup_subsys_state
*
4060 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
4062 struct cgroup_subsys_state
*last
;
4066 pos
= css_next_child(NULL
, pos
);
4073 * css_next_descendant_post - find the next descendant for post-order walk
4074 * @pos: the current position (%NULL to initiate traversal)
4075 * @root: css whose descendants to walk
4077 * To be used by css_for_each_descendant_post(). Find the next descendant
4078 * to visit for post-order traversal of @root's descendants. @root is
4079 * included in the iteration and the last node to be visited.
4081 * While this function requires cgroup_mutex or RCU read locking, it
4082 * doesn't require the whole traversal to be contained in a single critical
4083 * section. This function will return the correct next descendant as long
4084 * as both @pos and @cgroup are accessible and @pos is a descendant of
4087 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4088 * css which finished ->css_online() is guaranteed to be visible in the
4089 * future iterations and will stay visible until the last reference is put.
4090 * A css which hasn't finished ->css_online() or already finished
4091 * ->css_offline() may show up during traversal. It's each subsystem's
4092 * responsibility to synchronize against on/offlining.
4094 struct cgroup_subsys_state
*
4095 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4096 struct cgroup_subsys_state
*root
)
4098 struct cgroup_subsys_state
*next
;
4100 cgroup_assert_mutex_or_rcu_locked();
4102 /* if first iteration, visit leftmost descendant which may be @root */
4104 return css_leftmost_descendant(root
);
4106 /* if we visited @root, we're done */
4110 /* if there's an unvisited sibling, visit its leftmost descendant */
4111 next
= css_next_child(pos
, pos
->parent
);
4113 return css_leftmost_descendant(next
);
4115 /* no sibling left, visit parent */
4120 * css_has_online_children - does a css have online children
4121 * @css: the target css
4123 * Returns %true if @css has any online children; otherwise, %false. This
4124 * function can be called from any context but the caller is responsible
4125 * for synchronizing against on/offlining as necessary.
4127 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4129 struct cgroup_subsys_state
*child
;
4133 css_for_each_child(child
, css
) {
4134 if (child
->flags
& CSS_ONLINE
) {
4144 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4145 * @it: the iterator to advance
4147 * Advance @it to the next css_set to walk.
4149 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4151 struct list_head
*l
= it
->cset_pos
;
4152 struct cgrp_cset_link
*link
;
4153 struct css_set
*cset
;
4155 lockdep_assert_held(&css_set_lock
);
4157 /* Advance to the next non-empty css_set */
4160 if (l
== it
->cset_head
) {
4161 it
->cset_pos
= NULL
;
4162 it
->task_pos
= NULL
;
4167 cset
= container_of(l
, struct css_set
,
4168 e_cset_node
[it
->ss
->id
]);
4170 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4173 } while (!css_set_populated(cset
));
4177 if (!list_empty(&cset
->tasks
))
4178 it
->task_pos
= cset
->tasks
.next
;
4180 it
->task_pos
= cset
->mg_tasks
.next
;
4182 it
->tasks_head
= &cset
->tasks
;
4183 it
->mg_tasks_head
= &cset
->mg_tasks
;
4186 * We don't keep css_sets locked across iteration steps and thus
4187 * need to take steps to ensure that iteration can be resumed after
4188 * the lock is re-acquired. Iteration is performed at two levels -
4189 * css_sets and tasks in them.
4191 * Once created, a css_set never leaves its cgroup lists, so a
4192 * pinned css_set is guaranteed to stay put and we can resume
4193 * iteration afterwards.
4195 * Tasks may leave @cset across iteration steps. This is resolved
4196 * by registering each iterator with the css_set currently being
4197 * walked and making css_set_move_task() advance iterators whose
4198 * next task is leaving.
4201 list_del(&it
->iters_node
);
4202 put_css_set_locked(it
->cur_cset
);
4205 it
->cur_cset
= cset
;
4206 list_add(&it
->iters_node
, &cset
->task_iters
);
4209 static void css_task_iter_advance(struct css_task_iter
*it
)
4211 struct list_head
*l
= it
->task_pos
;
4213 lockdep_assert_held(&css_set_lock
);
4217 * Advance iterator to find next entry. cset->tasks is consumed
4218 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4223 if (l
== it
->tasks_head
)
4224 l
= it
->mg_tasks_head
->next
;
4226 if (l
== it
->mg_tasks_head
)
4227 css_task_iter_advance_css_set(it
);
4233 * css_task_iter_start - initiate task iteration
4234 * @css: the css to walk tasks of
4235 * @it: the task iterator to use
4237 * Initiate iteration through the tasks of @css. The caller can call
4238 * css_task_iter_next() to walk through the tasks until the function
4239 * returns NULL. On completion of iteration, css_task_iter_end() must be
4242 void css_task_iter_start(struct cgroup_subsys_state
*css
,
4243 struct css_task_iter
*it
)
4245 /* no one should try to iterate before mounting cgroups */
4246 WARN_ON_ONCE(!use_task_css_set_links
);
4248 memset(it
, 0, sizeof(*it
));
4250 spin_lock_irq(&css_set_lock
);
4255 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4257 it
->cset_pos
= &css
->cgroup
->cset_links
;
4259 it
->cset_head
= it
->cset_pos
;
4261 css_task_iter_advance_css_set(it
);
4263 spin_unlock_irq(&css_set_lock
);
4267 * css_task_iter_next - return the next task for the iterator
4268 * @it: the task iterator being iterated
4270 * The "next" function for task iteration. @it should have been
4271 * initialized via css_task_iter_start(). Returns NULL when the iteration
4274 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4277 put_task_struct(it
->cur_task
);
4278 it
->cur_task
= NULL
;
4281 spin_lock_irq(&css_set_lock
);
4284 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4286 get_task_struct(it
->cur_task
);
4287 css_task_iter_advance(it
);
4290 spin_unlock_irq(&css_set_lock
);
4292 return it
->cur_task
;
4296 * css_task_iter_end - finish task iteration
4297 * @it: the task iterator to finish
4299 * Finish task iteration started by css_task_iter_start().
4301 void css_task_iter_end(struct css_task_iter
*it
)
4304 spin_lock_irq(&css_set_lock
);
4305 list_del(&it
->iters_node
);
4306 put_css_set_locked(it
->cur_cset
);
4307 spin_unlock_irq(&css_set_lock
);
4311 put_task_struct(it
->cur_task
);
4315 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4316 * @to: cgroup to which the tasks will be moved
4317 * @from: cgroup in which the tasks currently reside
4319 * Locking rules between cgroup_post_fork() and the migration path
4320 * guarantee that, if a task is forking while being migrated, the new child
4321 * is guaranteed to be either visible in the source cgroup after the
4322 * parent's migration is complete or put into the target cgroup. No task
4323 * can slip out of migration through forking.
4325 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
4327 LIST_HEAD(preloaded_csets
);
4328 struct cgrp_cset_link
*link
;
4329 struct css_task_iter it
;
4330 struct task_struct
*task
;
4333 if (!cgroup_may_migrate_to(to
))
4336 mutex_lock(&cgroup_mutex
);
4338 percpu_down_write(&cgroup_threadgroup_rwsem
);
4340 /* all tasks in @from are being moved, all csets are source */
4341 spin_lock_irq(&css_set_lock
);
4342 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
4343 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
4344 spin_unlock_irq(&css_set_lock
);
4346 ret
= cgroup_migrate_prepare_dst(&preloaded_csets
);
4351 * Migrate tasks one-by-one until @from is empty. This fails iff
4352 * ->can_attach() fails.
4355 css_task_iter_start(&from
->self
, &it
);
4356 task
= css_task_iter_next(&it
);
4358 get_task_struct(task
);
4359 css_task_iter_end(&it
);
4362 ret
= cgroup_migrate(task
, false, to
->root
);
4363 put_task_struct(task
);
4365 } while (task
&& !ret
);
4367 cgroup_migrate_finish(&preloaded_csets
);
4368 percpu_up_write(&cgroup_threadgroup_rwsem
);
4369 mutex_unlock(&cgroup_mutex
);
4374 * Stuff for reading the 'tasks'/'procs' files.
4376 * Reading this file can return large amounts of data if a cgroup has
4377 * *lots* of attached tasks. So it may need several calls to read(),
4378 * but we cannot guarantee that the information we produce is correct
4379 * unless we produce it entirely atomically.
4383 /* which pidlist file are we talking about? */
4384 enum cgroup_filetype
{
4390 * A pidlist is a list of pids that virtually represents the contents of one
4391 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4392 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4395 struct cgroup_pidlist
{
4397 * used to find which pidlist is wanted. doesn't change as long as
4398 * this particular list stays in the list.
4400 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
4403 /* how many elements the above list has */
4405 /* each of these stored in a list by its cgroup */
4406 struct list_head links
;
4407 /* pointer to the cgroup we belong to, for list removal purposes */
4408 struct cgroup
*owner
;
4409 /* for delayed destruction */
4410 struct delayed_work destroy_dwork
;
4414 * The following two functions "fix" the issue where there are more pids
4415 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4416 * TODO: replace with a kernel-wide solution to this problem
4418 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4419 static void *pidlist_allocate(int count
)
4421 if (PIDLIST_TOO_LARGE(count
))
4422 return vmalloc(count
* sizeof(pid_t
));
4424 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
4427 static void pidlist_free(void *p
)
4433 * Used to destroy all pidlists lingering waiting for destroy timer. None
4434 * should be left afterwards.
4436 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
4438 struct cgroup_pidlist
*l
, *tmp_l
;
4440 mutex_lock(&cgrp
->pidlist_mutex
);
4441 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
4442 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
4443 mutex_unlock(&cgrp
->pidlist_mutex
);
4445 flush_workqueue(cgroup_pidlist_destroy_wq
);
4446 BUG_ON(!list_empty(&cgrp
->pidlists
));
4449 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
4451 struct delayed_work
*dwork
= to_delayed_work(work
);
4452 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
4454 struct cgroup_pidlist
*tofree
= NULL
;
4456 mutex_lock(&l
->owner
->pidlist_mutex
);
4459 * Destroy iff we didn't get queued again. The state won't change
4460 * as destroy_dwork can only be queued while locked.
4462 if (!delayed_work_pending(dwork
)) {
4463 list_del(&l
->links
);
4464 pidlist_free(l
->list
);
4465 put_pid_ns(l
->key
.ns
);
4469 mutex_unlock(&l
->owner
->pidlist_mutex
);
4474 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4475 * Returns the number of unique elements.
4477 static int pidlist_uniq(pid_t
*list
, int length
)
4482 * we presume the 0th element is unique, so i starts at 1. trivial
4483 * edge cases first; no work needs to be done for either
4485 if (length
== 0 || length
== 1)
4487 /* src and dest walk down the list; dest counts unique elements */
4488 for (src
= 1; src
< length
; src
++) {
4489 /* find next unique element */
4490 while (list
[src
] == list
[src
-1]) {
4495 /* dest always points to where the next unique element goes */
4496 list
[dest
] = list
[src
];
4504 * The two pid files - task and cgroup.procs - guaranteed that the result
4505 * is sorted, which forced this whole pidlist fiasco. As pid order is
4506 * different per namespace, each namespace needs differently sorted list,
4507 * making it impossible to use, for example, single rbtree of member tasks
4508 * sorted by task pointer. As pidlists can be fairly large, allocating one
4509 * per open file is dangerous, so cgroup had to implement shared pool of
4510 * pidlists keyed by cgroup and namespace.
4512 * All this extra complexity was caused by the original implementation
4513 * committing to an entirely unnecessary property. In the long term, we
4514 * want to do away with it. Explicitly scramble sort order if on the
4515 * default hierarchy so that no such expectation exists in the new
4518 * Scrambling is done by swapping every two consecutive bits, which is
4519 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4521 static pid_t
pid_fry(pid_t pid
)
4523 unsigned a
= pid
& 0x55555555;
4524 unsigned b
= pid
& 0xAAAAAAAA;
4526 return (a
<< 1) | (b
>> 1);
4529 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
4531 if (cgroup_on_dfl(cgrp
))
4532 return pid_fry(pid
);
4537 static int cmppid(const void *a
, const void *b
)
4539 return *(pid_t
*)a
- *(pid_t
*)b
;
4542 static int fried_cmppid(const void *a
, const void *b
)
4544 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
4547 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
4548 enum cgroup_filetype type
)
4550 struct cgroup_pidlist
*l
;
4551 /* don't need task_nsproxy() if we're looking at ourself */
4552 struct pid_namespace
*ns
= task_active_pid_ns(current
);
4554 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4556 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
4557 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
4563 * find the appropriate pidlist for our purpose (given procs vs tasks)
4564 * returns with the lock on that pidlist already held, and takes care
4565 * of the use count, or returns NULL with no locks held if we're out of
4568 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
4569 enum cgroup_filetype type
)
4571 struct cgroup_pidlist
*l
;
4573 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4575 l
= cgroup_pidlist_find(cgrp
, type
);
4579 /* entry not found; create a new one */
4580 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
4584 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
4586 /* don't need task_nsproxy() if we're looking at ourself */
4587 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
4589 list_add(&l
->links
, &cgrp
->pidlists
);
4594 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4596 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
4597 struct cgroup_pidlist
**lp
)
4601 int pid
, n
= 0; /* used for populating the array */
4602 struct css_task_iter it
;
4603 struct task_struct
*tsk
;
4604 struct cgroup_pidlist
*l
;
4606 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4609 * If cgroup gets more users after we read count, we won't have
4610 * enough space - tough. This race is indistinguishable to the
4611 * caller from the case that the additional cgroup users didn't
4612 * show up until sometime later on.
4614 length
= cgroup_task_count(cgrp
);
4615 array
= pidlist_allocate(length
);
4618 /* now, populate the array */
4619 css_task_iter_start(&cgrp
->self
, &it
);
4620 while ((tsk
= css_task_iter_next(&it
))) {
4621 if (unlikely(n
== length
))
4623 /* get tgid or pid for procs or tasks file respectively */
4624 if (type
== CGROUP_FILE_PROCS
)
4625 pid
= task_tgid_vnr(tsk
);
4627 pid
= task_pid_vnr(tsk
);
4628 if (pid
> 0) /* make sure to only use valid results */
4631 css_task_iter_end(&it
);
4633 /* now sort & (if procs) strip out duplicates */
4634 if (cgroup_on_dfl(cgrp
))
4635 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4637 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4638 if (type
== CGROUP_FILE_PROCS
)
4639 length
= pidlist_uniq(array
, length
);
4641 l
= cgroup_pidlist_find_create(cgrp
, type
);
4643 pidlist_free(array
);
4647 /* store array, freeing old if necessary */
4648 pidlist_free(l
->list
);
4656 * cgroupstats_build - build and fill cgroupstats
4657 * @stats: cgroupstats to fill information into
4658 * @dentry: A dentry entry belonging to the cgroup for which stats have
4661 * Build and fill cgroupstats so that taskstats can export it to user
4664 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4666 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4667 struct cgroup
*cgrp
;
4668 struct css_task_iter it
;
4669 struct task_struct
*tsk
;
4671 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4672 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4673 kernfs_type(kn
) != KERNFS_DIR
)
4676 mutex_lock(&cgroup_mutex
);
4679 * We aren't being called from kernfs and there's no guarantee on
4680 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4681 * @kn->priv is RCU safe. Let's do the RCU dancing.
4684 cgrp
= rcu_dereference(kn
->priv
);
4685 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4687 mutex_unlock(&cgroup_mutex
);
4692 css_task_iter_start(&cgrp
->self
, &it
);
4693 while ((tsk
= css_task_iter_next(&it
))) {
4694 switch (tsk
->state
) {
4696 stats
->nr_running
++;
4698 case TASK_INTERRUPTIBLE
:
4699 stats
->nr_sleeping
++;
4701 case TASK_UNINTERRUPTIBLE
:
4702 stats
->nr_uninterruptible
++;
4705 stats
->nr_stopped
++;
4708 if (delayacct_is_task_waiting_on_io(tsk
))
4709 stats
->nr_io_wait
++;
4713 css_task_iter_end(&it
);
4715 mutex_unlock(&cgroup_mutex
);
4721 * seq_file methods for the tasks/procs files. The seq_file position is the
4722 * next pid to display; the seq_file iterator is a pointer to the pid
4723 * in the cgroup->l->list array.
4726 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4729 * Initially we receive a position value that corresponds to
4730 * one more than the last pid shown (or 0 on the first call or
4731 * after a seek to the start). Use a binary-search to find the
4732 * next pid to display, if any
4734 struct kernfs_open_file
*of
= s
->private;
4735 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4736 struct cgroup_pidlist
*l
;
4737 enum cgroup_filetype type
= seq_cft(s
)->private;
4738 int index
= 0, pid
= *pos
;
4741 mutex_lock(&cgrp
->pidlist_mutex
);
4744 * !NULL @of->priv indicates that this isn't the first start()
4745 * after open. If the matching pidlist is around, we can use that.
4746 * Look for it. Note that @of->priv can't be used directly. It
4747 * could already have been destroyed.
4750 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4753 * Either this is the first start() after open or the matching
4754 * pidlist has been destroyed inbetween. Create a new one.
4757 ret
= pidlist_array_load(cgrp
, type
,
4758 (struct cgroup_pidlist
**)&of
->priv
);
4760 return ERR_PTR(ret
);
4765 int end
= l
->length
;
4767 while (index
< end
) {
4768 int mid
= (index
+ end
) / 2;
4769 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4772 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4778 /* If we're off the end of the array, we're done */
4779 if (index
>= l
->length
)
4781 /* Update the abstract position to be the actual pid that we found */
4782 iter
= l
->list
+ index
;
4783 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4787 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4789 struct kernfs_open_file
*of
= s
->private;
4790 struct cgroup_pidlist
*l
= of
->priv
;
4793 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4794 CGROUP_PIDLIST_DESTROY_DELAY
);
4795 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4798 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4800 struct kernfs_open_file
*of
= s
->private;
4801 struct cgroup_pidlist
*l
= of
->priv
;
4803 pid_t
*end
= l
->list
+ l
->length
;
4805 * Advance to the next pid in the array. If this goes off the
4812 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4817 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4819 seq_printf(s
, "%d\n", *(int *)v
);
4824 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4827 return notify_on_release(css
->cgroup
);
4830 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4831 struct cftype
*cft
, u64 val
)
4834 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4836 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4840 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4843 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4846 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4847 struct cftype
*cft
, u64 val
)
4850 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4852 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4856 /* cgroup core interface files for the default hierarchy */
4857 static struct cftype cgroup_dfl_base_files
[] = {
4859 .name
= "cgroup.procs",
4860 .file_offset
= offsetof(struct cgroup
, procs_file
),
4861 .seq_start
= cgroup_pidlist_start
,
4862 .seq_next
= cgroup_pidlist_next
,
4863 .seq_stop
= cgroup_pidlist_stop
,
4864 .seq_show
= cgroup_pidlist_show
,
4865 .private = CGROUP_FILE_PROCS
,
4866 .write
= cgroup_procs_write
,
4869 .name
= "cgroup.controllers",
4870 .seq_show
= cgroup_controllers_show
,
4873 .name
= "cgroup.subtree_control",
4874 .seq_show
= cgroup_subtree_control_show
,
4875 .write
= cgroup_subtree_control_write
,
4878 .name
= "cgroup.events",
4879 .flags
= CFTYPE_NOT_ON_ROOT
,
4880 .file_offset
= offsetof(struct cgroup
, events_file
),
4881 .seq_show
= cgroup_events_show
,
4886 /* cgroup core interface files for the legacy hierarchies */
4887 static struct cftype cgroup_legacy_base_files
[] = {
4889 .name
= "cgroup.procs",
4890 .seq_start
= cgroup_pidlist_start
,
4891 .seq_next
= cgroup_pidlist_next
,
4892 .seq_stop
= cgroup_pidlist_stop
,
4893 .seq_show
= cgroup_pidlist_show
,
4894 .private = CGROUP_FILE_PROCS
,
4895 .write
= cgroup_procs_write
,
4898 .name
= "cgroup.clone_children",
4899 .read_u64
= cgroup_clone_children_read
,
4900 .write_u64
= cgroup_clone_children_write
,
4903 .name
= "cgroup.sane_behavior",
4904 .flags
= CFTYPE_ONLY_ON_ROOT
,
4905 .seq_show
= cgroup_sane_behavior_show
,
4909 .seq_start
= cgroup_pidlist_start
,
4910 .seq_next
= cgroup_pidlist_next
,
4911 .seq_stop
= cgroup_pidlist_stop
,
4912 .seq_show
= cgroup_pidlist_show
,
4913 .private = CGROUP_FILE_TASKS
,
4914 .write
= cgroup_tasks_write
,
4917 .name
= "notify_on_release",
4918 .read_u64
= cgroup_read_notify_on_release
,
4919 .write_u64
= cgroup_write_notify_on_release
,
4922 .name
= "release_agent",
4923 .flags
= CFTYPE_ONLY_ON_ROOT
,
4924 .seq_show
= cgroup_release_agent_show
,
4925 .write
= cgroup_release_agent_write
,
4926 .max_write_len
= PATH_MAX
- 1,
4932 * css destruction is four-stage process.
4934 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4935 * Implemented in kill_css().
4937 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4938 * and thus css_tryget_online() is guaranteed to fail, the css can be
4939 * offlined by invoking offline_css(). After offlining, the base ref is
4940 * put. Implemented in css_killed_work_fn().
4942 * 3. When the percpu_ref reaches zero, the only possible remaining
4943 * accessors are inside RCU read sections. css_release() schedules the
4946 * 4. After the grace period, the css can be freed. Implemented in
4947 * css_free_work_fn().
4949 * It is actually hairier because both step 2 and 4 require process context
4950 * and thus involve punting to css->destroy_work adding two additional
4951 * steps to the already complex sequence.
4953 static void css_free_work_fn(struct work_struct
*work
)
4955 struct cgroup_subsys_state
*css
=
4956 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4957 struct cgroup_subsys
*ss
= css
->ss
;
4958 struct cgroup
*cgrp
= css
->cgroup
;
4960 percpu_ref_exit(&css
->refcnt
);
4964 struct cgroup_subsys_state
*parent
= css
->parent
;
4968 cgroup_idr_remove(&ss
->css_idr
, id
);
4974 /* cgroup free path */
4975 atomic_dec(&cgrp
->root
->nr_cgrps
);
4976 cgroup_pidlist_destroy_all(cgrp
);
4977 cancel_work_sync(&cgrp
->release_agent_work
);
4979 if (cgroup_parent(cgrp
)) {
4981 * We get a ref to the parent, and put the ref when
4982 * this cgroup is being freed, so it's guaranteed
4983 * that the parent won't be destroyed before its
4986 cgroup_put(cgroup_parent(cgrp
));
4987 kernfs_put(cgrp
->kn
);
4991 * This is root cgroup's refcnt reaching zero,
4992 * which indicates that the root should be
4995 cgroup_destroy_root(cgrp
->root
);
5000 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
5002 struct cgroup_subsys_state
*css
=
5003 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
5005 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
5006 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5009 static void css_release_work_fn(struct work_struct
*work
)
5011 struct cgroup_subsys_state
*css
=
5012 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5013 struct cgroup_subsys
*ss
= css
->ss
;
5014 struct cgroup
*cgrp
= css
->cgroup
;
5016 mutex_lock(&cgroup_mutex
);
5018 css
->flags
|= CSS_RELEASED
;
5019 list_del_rcu(&css
->sibling
);
5022 /* css release path */
5023 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
5024 if (ss
->css_released
)
5025 ss
->css_released(css
);
5027 /* cgroup release path */
5028 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
5032 * There are two control paths which try to determine
5033 * cgroup from dentry without going through kernfs -
5034 * cgroupstats_build() and css_tryget_online_from_dir().
5035 * Those are supported by RCU protecting clearing of
5036 * cgrp->kn->priv backpointer.
5039 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
5043 mutex_unlock(&cgroup_mutex
);
5045 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
5048 static void css_release(struct percpu_ref
*ref
)
5050 struct cgroup_subsys_state
*css
=
5051 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5053 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
5054 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5057 static void init_and_link_css(struct cgroup_subsys_state
*css
,
5058 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
5060 lockdep_assert_held(&cgroup_mutex
);
5064 memset(css
, 0, sizeof(*css
));
5068 INIT_LIST_HEAD(&css
->sibling
);
5069 INIT_LIST_HEAD(&css
->children
);
5070 css
->serial_nr
= css_serial_nr_next
++;
5071 atomic_set(&css
->online_cnt
, 0);
5073 if (cgroup_parent(cgrp
)) {
5074 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
5075 css_get(css
->parent
);
5078 BUG_ON(cgroup_css(cgrp
, ss
));
5081 /* invoke ->css_online() on a new CSS and mark it online if successful */
5082 static int online_css(struct cgroup_subsys_state
*css
)
5084 struct cgroup_subsys
*ss
= css
->ss
;
5087 lockdep_assert_held(&cgroup_mutex
);
5090 ret
= ss
->css_online(css
);
5092 css
->flags
|= CSS_ONLINE
;
5093 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
5095 atomic_inc(&css
->online_cnt
);
5097 atomic_inc(&css
->parent
->online_cnt
);
5102 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5103 static void offline_css(struct cgroup_subsys_state
*css
)
5105 struct cgroup_subsys
*ss
= css
->ss
;
5107 lockdep_assert_held(&cgroup_mutex
);
5109 if (!(css
->flags
& CSS_ONLINE
))
5115 if (ss
->css_offline
)
5116 ss
->css_offline(css
);
5118 css
->flags
&= ~CSS_ONLINE
;
5119 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
5121 wake_up_all(&css
->cgroup
->offline_waitq
);
5125 * css_create - create a cgroup_subsys_state
5126 * @cgrp: the cgroup new css will be associated with
5127 * @ss: the subsys of new css
5129 * Create a new css associated with @cgrp - @ss pair. On success, the new
5130 * css is online and installed in @cgrp. This function doesn't create the
5131 * interface files. Returns 0 on success, -errno on failure.
5133 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
5134 struct cgroup_subsys
*ss
)
5136 struct cgroup
*parent
= cgroup_parent(cgrp
);
5137 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
5138 struct cgroup_subsys_state
*css
;
5141 lockdep_assert_held(&cgroup_mutex
);
5143 css
= ss
->css_alloc(parent_css
);
5145 css
= ERR_PTR(-ENOMEM
);
5149 init_and_link_css(css
, ss
, cgrp
);
5151 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
5155 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
5160 /* @css is ready to be brought online now, make it visible */
5161 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
5162 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
5164 err
= online_css(css
);
5168 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
5169 cgroup_parent(parent
)) {
5170 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5171 current
->comm
, current
->pid
, ss
->name
);
5172 if (!strcmp(ss
->name
, "memory"))
5173 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5174 ss
->warned_broken_hierarchy
= true;
5180 list_del_rcu(&css
->sibling
);
5182 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
5183 return ERR_PTR(err
);
5186 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
5188 struct cgroup_root
*root
= parent
->root
;
5189 struct cgroup
*cgrp
, *tcgrp
;
5190 int level
= parent
->level
+ 1;
5193 /* allocate the cgroup and its ID, 0 is reserved for the root */
5194 cgrp
= kzalloc(sizeof(*cgrp
) +
5195 sizeof(cgrp
->ancestor_ids
[0]) * (level
+ 1), GFP_KERNEL
);
5197 return ERR_PTR(-ENOMEM
);
5199 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
5204 * Temporarily set the pointer to NULL, so idr_find() won't return
5205 * a half-baked cgroup.
5207 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
5210 goto out_cancel_ref
;
5213 init_cgroup_housekeeping(cgrp
);
5215 cgrp
->self
.parent
= &parent
->self
;
5217 cgrp
->level
= level
;
5219 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
))
5220 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
5222 if (notify_on_release(parent
))
5223 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
5225 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
5226 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
5228 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5230 /* allocation complete, commit to creation */
5231 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5232 atomic_inc(&root
->nr_cgrps
);
5236 * @cgrp is now fully operational. If something fails after this
5237 * point, it'll be released via the normal destruction path.
5239 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
5242 * On the default hierarchy, a child doesn't automatically inherit
5243 * subtree_control from the parent. Each is configured manually.
5245 if (!cgroup_on_dfl(cgrp
))
5246 cgrp
->subtree_control
= cgroup_control(cgrp
);
5248 cgroup_propagate_control(cgrp
);
5250 /* @cgrp doesn't have dir yet so the following will only create csses */
5251 ret
= cgroup_apply_control_enable(cgrp
);
5258 percpu_ref_exit(&cgrp
->self
.refcnt
);
5261 return ERR_PTR(ret
);
5263 cgroup_destroy_locked(cgrp
);
5264 return ERR_PTR(ret
);
5267 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
5270 struct cgroup
*parent
, *cgrp
;
5271 struct kernfs_node
*kn
;
5274 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5275 if (strchr(name
, '\n'))
5278 parent
= cgroup_kn_lock_live(parent_kn
, false);
5282 cgrp
= cgroup_create(parent
);
5284 ret
= PTR_ERR(cgrp
);
5288 /* create the directory */
5289 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
5297 * This extra ref will be put in cgroup_free_fn() and guarantees
5298 * that @cgrp->kn is always accessible.
5302 ret
= cgroup_kn_set_ugid(kn
);
5306 ret
= css_populate_dir(&cgrp
->self
);
5310 ret
= cgroup_apply_control_enable(cgrp
);
5314 /* let's create and online css's */
5315 kernfs_activate(kn
);
5321 cgroup_destroy_locked(cgrp
);
5323 cgroup_kn_unlock(parent_kn
);
5328 * This is called when the refcnt of a css is confirmed to be killed.
5329 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5330 * initate destruction and put the css ref from kill_css().
5332 static void css_killed_work_fn(struct work_struct
*work
)
5334 struct cgroup_subsys_state
*css
=
5335 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5337 mutex_lock(&cgroup_mutex
);
5342 /* @css can't go away while we're holding cgroup_mutex */
5344 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5346 mutex_unlock(&cgroup_mutex
);
5349 /* css kill confirmation processing requires process context, bounce */
5350 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5352 struct cgroup_subsys_state
*css
=
5353 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5355 if (atomic_dec_and_test(&css
->online_cnt
)) {
5356 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5357 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5362 * kill_css - destroy a css
5363 * @css: css to destroy
5365 * This function initiates destruction of @css by removing cgroup interface
5366 * files and putting its base reference. ->css_offline() will be invoked
5367 * asynchronously once css_tryget_online() is guaranteed to fail and when
5368 * the reference count reaches zero, @css will be released.
5370 static void kill_css(struct cgroup_subsys_state
*css
)
5372 lockdep_assert_held(&cgroup_mutex
);
5375 * This must happen before css is disassociated with its cgroup.
5376 * See seq_css() for details.
5381 * Killing would put the base ref, but we need to keep it alive
5382 * until after ->css_offline().
5387 * cgroup core guarantees that, by the time ->css_offline() is
5388 * invoked, no new css reference will be given out via
5389 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5390 * proceed to offlining css's because percpu_ref_kill() doesn't
5391 * guarantee that the ref is seen as killed on all CPUs on return.
5393 * Use percpu_ref_kill_and_confirm() to get notifications as each
5394 * css is confirmed to be seen as killed on all CPUs.
5396 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5400 * cgroup_destroy_locked - the first stage of cgroup destruction
5401 * @cgrp: cgroup to be destroyed
5403 * css's make use of percpu refcnts whose killing latency shouldn't be
5404 * exposed to userland and are RCU protected. Also, cgroup core needs to
5405 * guarantee that css_tryget_online() won't succeed by the time
5406 * ->css_offline() is invoked. To satisfy all the requirements,
5407 * destruction is implemented in the following two steps.
5409 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5410 * userland visible parts and start killing the percpu refcnts of
5411 * css's. Set up so that the next stage will be kicked off once all
5412 * the percpu refcnts are confirmed to be killed.
5414 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5415 * rest of destruction. Once all cgroup references are gone, the
5416 * cgroup is RCU-freed.
5418 * This function implements s1. After this step, @cgrp is gone as far as
5419 * the userland is concerned and a new cgroup with the same name may be
5420 * created. As cgroup doesn't care about the names internally, this
5421 * doesn't cause any problem.
5423 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5424 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5426 struct cgroup_subsys_state
*css
;
5427 struct cgrp_cset_link
*link
;
5430 lockdep_assert_held(&cgroup_mutex
);
5433 * Only migration can raise populated from zero and we're already
5434 * holding cgroup_mutex.
5436 if (cgroup_is_populated(cgrp
))
5440 * Make sure there's no live children. We can't test emptiness of
5441 * ->self.children as dead children linger on it while being
5442 * drained; otherwise, "rmdir parent/child parent" may fail.
5444 if (css_has_online_children(&cgrp
->self
))
5448 * Mark @cgrp and the associated csets dead. The former prevents
5449 * further task migration and child creation by disabling
5450 * cgroup_lock_live_group(). The latter makes the csets ignored by
5451 * the migration path.
5453 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5455 spin_lock_irq(&css_set_lock
);
5456 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5457 link
->cset
->dead
= true;
5458 spin_unlock_irq(&css_set_lock
);
5460 /* initiate massacre of all css's */
5461 for_each_css(css
, ssid
, cgrp
)
5465 * Remove @cgrp directory along with the base files. @cgrp has an
5466 * extra ref on its kn.
5468 kernfs_remove(cgrp
->kn
);
5470 check_for_release(cgroup_parent(cgrp
));
5472 /* put the base reference */
5473 percpu_ref_kill(&cgrp
->self
.refcnt
);
5478 static int cgroup_rmdir(struct kernfs_node
*kn
)
5480 struct cgroup
*cgrp
;
5483 cgrp
= cgroup_kn_lock_live(kn
, false);
5487 ret
= cgroup_destroy_locked(cgrp
);
5489 cgroup_kn_unlock(kn
);
5493 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5494 .remount_fs
= cgroup_remount
,
5495 .show_options
= cgroup_show_options
,
5496 .mkdir
= cgroup_mkdir
,
5497 .rmdir
= cgroup_rmdir
,
5498 .rename
= cgroup_rename
,
5499 .show_path
= cgroup_show_path
,
5502 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5504 struct cgroup_subsys_state
*css
;
5506 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5508 mutex_lock(&cgroup_mutex
);
5510 idr_init(&ss
->css_idr
);
5511 INIT_LIST_HEAD(&ss
->cfts
);
5513 /* Create the root cgroup state for this subsystem */
5514 ss
->root
= &cgrp_dfl_root
;
5515 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5516 /* We don't handle early failures gracefully */
5517 BUG_ON(IS_ERR(css
));
5518 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5521 * Root csses are never destroyed and we can't initialize
5522 * percpu_ref during early init. Disable refcnting.
5524 css
->flags
|= CSS_NO_REF
;
5527 /* allocation can't be done safely during early init */
5530 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5531 BUG_ON(css
->id
< 0);
5534 /* Update the init_css_set to contain a subsys
5535 * pointer to this state - since the subsystem is
5536 * newly registered, all tasks and hence the
5537 * init_css_set is in the subsystem's root cgroup. */
5538 init_css_set
.subsys
[ss
->id
] = css
;
5540 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5541 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5542 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5543 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5545 /* At system boot, before all subsystems have been
5546 * registered, no tasks have been forked, so we don't
5547 * need to invoke fork callbacks here. */
5548 BUG_ON(!list_empty(&init_task
.tasks
));
5550 BUG_ON(online_css(css
));
5552 mutex_unlock(&cgroup_mutex
);
5556 * cgroup_init_early - cgroup initialization at system boot
5558 * Initialize cgroups at system boot, and initialize any
5559 * subsystems that request early init.
5561 int __init
cgroup_init_early(void)
5563 static struct cgroup_sb_opts __initdata opts
;
5564 struct cgroup_subsys
*ss
;
5567 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5568 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5570 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5572 for_each_subsys(ss
, i
) {
5573 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5574 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5575 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5577 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5578 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5581 ss
->name
= cgroup_subsys_name
[i
];
5582 if (!ss
->legacy_name
)
5583 ss
->legacy_name
= cgroup_subsys_name
[i
];
5586 cgroup_init_subsys(ss
, true);
5591 static u16 cgroup_disable_mask __initdata
;
5594 * cgroup_init - cgroup initialization
5596 * Register cgroup filesystem and /proc file, and initialize
5597 * any subsystems that didn't request early init.
5599 int __init
cgroup_init(void)
5601 struct cgroup_subsys
*ss
;
5604 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5605 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5606 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
5607 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
5609 get_user_ns(init_cgroup_ns
.user_ns
);
5611 mutex_lock(&cgroup_mutex
);
5614 * Add init_css_set to the hash table so that dfl_root can link to
5617 hash_add(css_set_table
, &init_css_set
.hlist
,
5618 css_set_hash(init_css_set
.subsys
));
5620 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5622 mutex_unlock(&cgroup_mutex
);
5624 for_each_subsys(ss
, ssid
) {
5625 if (ss
->early_init
) {
5626 struct cgroup_subsys_state
*css
=
5627 init_css_set
.subsys
[ss
->id
];
5629 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5631 BUG_ON(css
->id
< 0);
5633 cgroup_init_subsys(ss
, false);
5636 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5637 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5640 * Setting dfl_root subsys_mask needs to consider the
5641 * disabled flag and cftype registration needs kmalloc,
5642 * both of which aren't available during early_init.
5644 if (cgroup_disable_mask
& (1 << ssid
)) {
5645 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5646 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5651 if (cgroup_ssid_no_v1(ssid
))
5652 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5655 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5657 if (ss
->implicit_on_dfl
)
5658 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5659 else if (!ss
->dfl_cftypes
)
5660 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5662 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5663 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5665 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5666 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5670 ss
->bind(init_css_set
.subsys
[ssid
]);
5673 /* init_css_set.subsys[] has been updated, re-hash */
5674 hash_del(&init_css_set
.hlist
);
5675 hash_add(css_set_table
, &init_css_set
.hlist
,
5676 css_set_hash(init_css_set
.subsys
));
5678 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5679 WARN_ON(register_filesystem(&cgroup_fs_type
));
5680 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5681 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5686 static int __init
cgroup_wq_init(void)
5689 * There isn't much point in executing destruction path in
5690 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5691 * Use 1 for @max_active.
5693 * We would prefer to do this in cgroup_init() above, but that
5694 * is called before init_workqueues(): so leave this until after.
5696 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5697 BUG_ON(!cgroup_destroy_wq
);
5700 * Used to destroy pidlists and separate to serve as flush domain.
5701 * Cap @max_active to 1 too.
5703 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5705 BUG_ON(!cgroup_pidlist_destroy_wq
);
5709 core_initcall(cgroup_wq_init
);
5712 * proc_cgroup_show()
5713 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5714 * - Used for /proc/<pid>/cgroup.
5716 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5717 struct pid
*pid
, struct task_struct
*tsk
)
5721 struct cgroup_root
*root
;
5724 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5728 mutex_lock(&cgroup_mutex
);
5729 spin_lock_irq(&css_set_lock
);
5731 for_each_root(root
) {
5732 struct cgroup_subsys
*ss
;
5733 struct cgroup
*cgrp
;
5734 int ssid
, count
= 0;
5736 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5739 seq_printf(m
, "%d:", root
->hierarchy_id
);
5740 if (root
!= &cgrp_dfl_root
)
5741 for_each_subsys(ss
, ssid
)
5742 if (root
->subsys_mask
& (1 << ssid
))
5743 seq_printf(m
, "%s%s", count
++ ? "," : "",
5745 if (strlen(root
->name
))
5746 seq_printf(m
, "%sname=%s", count
? "," : "",
5750 cgrp
= task_cgroup_from_root(tsk
, root
);
5753 * On traditional hierarchies, all zombie tasks show up as
5754 * belonging to the root cgroup. On the default hierarchy,
5755 * while a zombie doesn't show up in "cgroup.procs" and
5756 * thus can't be migrated, its /proc/PID/cgroup keeps
5757 * reporting the cgroup it belonged to before exiting. If
5758 * the cgroup is removed before the zombie is reaped,
5759 * " (deleted)" is appended to the cgroup path.
5761 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5762 path
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5763 current
->nsproxy
->cgroup_ns
);
5765 retval
= -ENAMETOOLONG
;
5774 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5775 seq_puts(m
, " (deleted)\n");
5782 spin_unlock_irq(&css_set_lock
);
5783 mutex_unlock(&cgroup_mutex
);
5789 /* Display information about each subsystem and each hierarchy */
5790 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5792 struct cgroup_subsys
*ss
;
5795 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5797 * ideally we don't want subsystems moving around while we do this.
5798 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5799 * subsys/hierarchy state.
5801 mutex_lock(&cgroup_mutex
);
5803 for_each_subsys(ss
, i
)
5804 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5805 ss
->legacy_name
, ss
->root
->hierarchy_id
,
5806 atomic_read(&ss
->root
->nr_cgrps
),
5807 cgroup_ssid_enabled(i
));
5809 mutex_unlock(&cgroup_mutex
);
5813 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5815 return single_open(file
, proc_cgroupstats_show
, NULL
);
5818 static const struct file_operations proc_cgroupstats_operations
= {
5819 .open
= cgroupstats_open
,
5821 .llseek
= seq_lseek
,
5822 .release
= single_release
,
5826 * cgroup_fork - initialize cgroup related fields during copy_process()
5827 * @child: pointer to task_struct of forking parent process.
5829 * A task is associated with the init_css_set until cgroup_post_fork()
5830 * attaches it to the parent's css_set. Empty cg_list indicates that
5831 * @child isn't holding reference to its css_set.
5833 void cgroup_fork(struct task_struct
*child
)
5835 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5836 INIT_LIST_HEAD(&child
->cg_list
);
5840 * cgroup_can_fork - called on a new task before the process is exposed
5841 * @child: the task in question.
5843 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5844 * returns an error, the fork aborts with that error code. This allows for
5845 * a cgroup subsystem to conditionally allow or deny new forks.
5847 int cgroup_can_fork(struct task_struct
*child
)
5849 struct cgroup_subsys
*ss
;
5852 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5853 ret
= ss
->can_fork(child
);
5856 } while_each_subsys_mask();
5861 for_each_subsys(ss
, j
) {
5864 if (ss
->cancel_fork
)
5865 ss
->cancel_fork(child
);
5872 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5873 * @child: the task in question
5875 * This calls the cancel_fork() callbacks if a fork failed *after*
5876 * cgroup_can_fork() succeded.
5878 void cgroup_cancel_fork(struct task_struct
*child
)
5880 struct cgroup_subsys
*ss
;
5883 for_each_subsys(ss
, i
)
5884 if (ss
->cancel_fork
)
5885 ss
->cancel_fork(child
);
5889 * cgroup_post_fork - called on a new task after adding it to the task list
5890 * @child: the task in question
5892 * Adds the task to the list running through its css_set if necessary and
5893 * call the subsystem fork() callbacks. Has to be after the task is
5894 * visible on the task list in case we race with the first call to
5895 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5898 void cgroup_post_fork(struct task_struct
*child
)
5900 struct cgroup_subsys
*ss
;
5904 * This may race against cgroup_enable_task_cg_lists(). As that
5905 * function sets use_task_css_set_links before grabbing
5906 * tasklist_lock and we just went through tasklist_lock to add
5907 * @child, it's guaranteed that either we see the set
5908 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5909 * @child during its iteration.
5911 * If we won the race, @child is associated with %current's
5912 * css_set. Grabbing css_set_lock guarantees both that the
5913 * association is stable, and, on completion of the parent's
5914 * migration, @child is visible in the source of migration or
5915 * already in the destination cgroup. This guarantee is necessary
5916 * when implementing operations which need to migrate all tasks of
5917 * a cgroup to another.
5919 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5920 * will remain in init_css_set. This is safe because all tasks are
5921 * in the init_css_set before cg_links is enabled and there's no
5922 * operation which transfers all tasks out of init_css_set.
5924 if (use_task_css_set_links
) {
5925 struct css_set
*cset
;
5927 spin_lock_irq(&css_set_lock
);
5928 cset
= task_css_set(current
);
5929 if (list_empty(&child
->cg_list
)) {
5931 css_set_move_task(child
, NULL
, cset
, false);
5933 spin_unlock_irq(&css_set_lock
);
5937 * Call ss->fork(). This must happen after @child is linked on
5938 * css_set; otherwise, @child might change state between ->fork()
5939 * and addition to css_set.
5941 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
5943 } while_each_subsys_mask();
5947 * cgroup_exit - detach cgroup from exiting task
5948 * @tsk: pointer to task_struct of exiting process
5950 * Description: Detach cgroup from @tsk and release it.
5952 * Note that cgroups marked notify_on_release force every task in
5953 * them to take the global cgroup_mutex mutex when exiting.
5954 * This could impact scaling on very large systems. Be reluctant to
5955 * use notify_on_release cgroups where very high task exit scaling
5956 * is required on large systems.
5958 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5959 * call cgroup_exit() while the task is still competent to handle
5960 * notify_on_release(), then leave the task attached to the root cgroup in
5961 * each hierarchy for the remainder of its exit. No need to bother with
5962 * init_css_set refcnting. init_css_set never goes away and we can't race
5963 * with migration path - PF_EXITING is visible to migration path.
5965 void cgroup_exit(struct task_struct
*tsk
)
5967 struct cgroup_subsys
*ss
;
5968 struct css_set
*cset
;
5972 * Unlink from @tsk from its css_set. As migration path can't race
5973 * with us, we can check css_set and cg_list without synchronization.
5975 cset
= task_css_set(tsk
);
5977 if (!list_empty(&tsk
->cg_list
)) {
5978 spin_lock_irq(&css_set_lock
);
5979 css_set_move_task(tsk
, cset
, NULL
, false);
5980 spin_unlock_irq(&css_set_lock
);
5985 /* see cgroup_post_fork() for details */
5986 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
5988 } while_each_subsys_mask();
5991 void cgroup_free(struct task_struct
*task
)
5993 struct css_set
*cset
= task_css_set(task
);
5994 struct cgroup_subsys
*ss
;
5997 do_each_subsys_mask(ss
, ssid
, have_free_callback
) {
5999 } while_each_subsys_mask();
6004 static void check_for_release(struct cgroup
*cgrp
)
6006 if (notify_on_release(cgrp
) && !cgroup_is_populated(cgrp
) &&
6007 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
6008 schedule_work(&cgrp
->release_agent_work
);
6012 * Notify userspace when a cgroup is released, by running the
6013 * configured release agent with the name of the cgroup (path
6014 * relative to the root of cgroup file system) as the argument.
6016 * Most likely, this user command will try to rmdir this cgroup.
6018 * This races with the possibility that some other task will be
6019 * attached to this cgroup before it is removed, or that some other
6020 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6021 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6022 * unused, and this cgroup will be reprieved from its death sentence,
6023 * to continue to serve a useful existence. Next time it's released,
6024 * we will get notified again, if it still has 'notify_on_release' set.
6026 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6027 * means only wait until the task is successfully execve()'d. The
6028 * separate release agent task is forked by call_usermodehelper(),
6029 * then control in this thread returns here, without waiting for the
6030 * release agent task. We don't bother to wait because the caller of
6031 * this routine has no use for the exit status of the release agent
6032 * task, so no sense holding our caller up for that.
6034 static void cgroup_release_agent(struct work_struct
*work
)
6036 struct cgroup
*cgrp
=
6037 container_of(work
, struct cgroup
, release_agent_work
);
6038 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
6039 char *argv
[3], *envp
[3];
6041 mutex_lock(&cgroup_mutex
);
6043 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
6044 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
6045 if (!pathbuf
|| !agentbuf
)
6048 spin_lock_irq(&css_set_lock
);
6049 path
= cgroup_path_ns_locked(cgrp
, pathbuf
, PATH_MAX
, &init_cgroup_ns
);
6050 spin_unlock_irq(&css_set_lock
);
6058 /* minimal command environment */
6060 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6063 mutex_unlock(&cgroup_mutex
);
6064 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
6067 mutex_unlock(&cgroup_mutex
);
6073 static int __init
cgroup_disable(char *str
)
6075 struct cgroup_subsys
*ss
;
6079 while ((token
= strsep(&str
, ",")) != NULL
) {
6083 for_each_subsys(ss
, i
) {
6084 if (strcmp(token
, ss
->name
) &&
6085 strcmp(token
, ss
->legacy_name
))
6087 cgroup_disable_mask
|= 1 << i
;
6092 __setup("cgroup_disable=", cgroup_disable
);
6094 static int __init
cgroup_no_v1(char *str
)
6096 struct cgroup_subsys
*ss
;
6100 while ((token
= strsep(&str
, ",")) != NULL
) {
6104 if (!strcmp(token
, "all")) {
6105 cgroup_no_v1_mask
= U16_MAX
;
6109 for_each_subsys(ss
, i
) {
6110 if (strcmp(token
, ss
->name
) &&
6111 strcmp(token
, ss
->legacy_name
))
6114 cgroup_no_v1_mask
|= 1 << i
;
6119 __setup("cgroup_no_v1=", cgroup_no_v1
);
6122 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6123 * @dentry: directory dentry of interest
6124 * @ss: subsystem of interest
6126 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6127 * to get the corresponding css and return it. If such css doesn't exist
6128 * or can't be pinned, an ERR_PTR value is returned.
6130 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
6131 struct cgroup_subsys
*ss
)
6133 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
6134 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
6135 struct cgroup_subsys_state
*css
= NULL
;
6136 struct cgroup
*cgrp
;
6138 /* is @dentry a cgroup dir? */
6139 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
6140 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
6141 return ERR_PTR(-EBADF
);
6146 * This path doesn't originate from kernfs and @kn could already
6147 * have been or be removed at any point. @kn->priv is RCU
6148 * protected for this access. See css_release_work_fn() for details.
6150 cgrp
= rcu_dereference(kn
->priv
);
6152 css
= cgroup_css(cgrp
, ss
);
6154 if (!css
|| !css_tryget_online(css
))
6155 css
= ERR_PTR(-ENOENT
);
6162 * css_from_id - lookup css by id
6163 * @id: the cgroup id
6164 * @ss: cgroup subsys to be looked into
6166 * Returns the css if there's valid one with @id, otherwise returns NULL.
6167 * Should be called under rcu_read_lock().
6169 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
6171 WARN_ON_ONCE(!rcu_read_lock_held());
6172 return idr_find(&ss
->css_idr
, id
);
6176 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6177 * @path: path on the default hierarchy
6179 * Find the cgroup at @path on the default hierarchy, increment its
6180 * reference count and return it. Returns pointer to the found cgroup on
6181 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6182 * if @path points to a non-directory.
6184 struct cgroup
*cgroup_get_from_path(const char *path
)
6186 struct kernfs_node
*kn
;
6187 struct cgroup
*cgrp
;
6189 mutex_lock(&cgroup_mutex
);
6191 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
6193 if (kernfs_type(kn
) == KERNFS_DIR
) {
6197 cgrp
= ERR_PTR(-ENOTDIR
);
6201 cgrp
= ERR_PTR(-ENOENT
);
6204 mutex_unlock(&cgroup_mutex
);
6207 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
6210 * cgroup_get_from_fd - get a cgroup pointer from a fd
6211 * @fd: fd obtained by open(cgroup2_dir)
6213 * Find the cgroup from a fd which should be obtained
6214 * by opening a cgroup directory. Returns a pointer to the
6215 * cgroup on success. ERR_PTR is returned if the cgroup
6218 struct cgroup
*cgroup_get_from_fd(int fd
)
6220 struct cgroup_subsys_state
*css
;
6221 struct cgroup
*cgrp
;
6226 return ERR_PTR(-EBADF
);
6228 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
6231 return ERR_CAST(css
);
6234 if (!cgroup_on_dfl(cgrp
)) {
6236 return ERR_PTR(-EBADF
);
6241 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
6244 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6245 * definition in cgroup-defs.h.
6247 #ifdef CONFIG_SOCK_CGROUP_DATA
6249 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6251 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
6252 static bool cgroup_sk_alloc_disabled __read_mostly
;
6254 void cgroup_sk_alloc_disable(void)
6256 if (cgroup_sk_alloc_disabled
)
6258 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6259 cgroup_sk_alloc_disabled
= true;
6264 #define cgroup_sk_alloc_disabled false
6268 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
6270 if (cgroup_sk_alloc_disabled
)
6276 struct css_set
*cset
;
6278 cset
= task_css_set(current
);
6279 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
6280 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
6289 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
6291 cgroup_put(sock_cgroup_ptr(skcd
));
6294 #endif /* CONFIG_SOCK_CGROUP_DATA */
6296 /* cgroup namespaces */
6298 static struct cgroup_namespace
*alloc_cgroup_ns(void)
6300 struct cgroup_namespace
*new_ns
;
6303 new_ns
= kzalloc(sizeof(struct cgroup_namespace
), GFP_KERNEL
);
6305 return ERR_PTR(-ENOMEM
);
6306 ret
= ns_alloc_inum(&new_ns
->ns
);
6309 return ERR_PTR(ret
);
6311 atomic_set(&new_ns
->count
, 1);
6312 new_ns
->ns
.ops
= &cgroupns_operations
;
6316 void free_cgroup_ns(struct cgroup_namespace
*ns
)
6318 put_css_set(ns
->root_cset
);
6319 put_user_ns(ns
->user_ns
);
6320 ns_free_inum(&ns
->ns
);
6323 EXPORT_SYMBOL(free_cgroup_ns
);
6325 struct cgroup_namespace
*copy_cgroup_ns(unsigned long flags
,
6326 struct user_namespace
*user_ns
,
6327 struct cgroup_namespace
*old_ns
)
6329 struct cgroup_namespace
*new_ns
;
6330 struct css_set
*cset
;
6334 if (!(flags
& CLONE_NEWCGROUP
)) {
6335 get_cgroup_ns(old_ns
);
6339 /* Allow only sysadmin to create cgroup namespace. */
6340 if (!ns_capable(user_ns
, CAP_SYS_ADMIN
))
6341 return ERR_PTR(-EPERM
);
6343 /* It is not safe to take cgroup_mutex here */
6344 spin_lock_irq(&css_set_lock
);
6345 cset
= task_css_set(current
);
6347 spin_unlock_irq(&css_set_lock
);
6349 new_ns
= alloc_cgroup_ns();
6350 if (IS_ERR(new_ns
)) {
6355 new_ns
->user_ns
= get_user_ns(user_ns
);
6356 new_ns
->root_cset
= cset
;
6361 static inline struct cgroup_namespace
*to_cg_ns(struct ns_common
*ns
)
6363 return container_of(ns
, struct cgroup_namespace
, ns
);
6366 static int cgroupns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
6368 struct cgroup_namespace
*cgroup_ns
= to_cg_ns(ns
);
6370 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
) ||
6371 !ns_capable(cgroup_ns
->user_ns
, CAP_SYS_ADMIN
))
6374 /* Don't need to do anything if we are attaching to our own cgroupns. */
6375 if (cgroup_ns
== nsproxy
->cgroup_ns
)
6378 get_cgroup_ns(cgroup_ns
);
6379 put_cgroup_ns(nsproxy
->cgroup_ns
);
6380 nsproxy
->cgroup_ns
= cgroup_ns
;
6385 static struct ns_common
*cgroupns_get(struct task_struct
*task
)
6387 struct cgroup_namespace
*ns
= NULL
;
6388 struct nsproxy
*nsproxy
;
6391 nsproxy
= task
->nsproxy
;
6393 ns
= nsproxy
->cgroup_ns
;
6398 return ns
? &ns
->ns
: NULL
;
6401 static void cgroupns_put(struct ns_common
*ns
)
6403 put_cgroup_ns(to_cg_ns(ns
));
6406 const struct proc_ns_operations cgroupns_operations
= {
6408 .type
= CLONE_NEWCGROUP
,
6409 .get
= cgroupns_get
,
6410 .put
= cgroupns_put
,
6411 .install
= cgroupns_install
,
6414 static __init
int cgroup_namespaces_init(void)
6418 subsys_initcall(cgroup_namespaces_init
);
6420 #ifdef CONFIG_CGROUP_DEBUG
6421 static struct cgroup_subsys_state
*
6422 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
6424 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
6427 return ERR_PTR(-ENOMEM
);
6432 static void debug_css_free(struct cgroup_subsys_state
*css
)
6437 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
6440 return cgroup_task_count(css
->cgroup
);
6443 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
6446 return (u64
)(unsigned long)current
->cgroups
;
6449 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
6455 count
= atomic_read(&task_css_set(current
)->refcount
);
6460 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
6462 struct cgrp_cset_link
*link
;
6463 struct css_set
*cset
;
6466 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
6470 spin_lock_irq(&css_set_lock
);
6472 cset
= rcu_dereference(current
->cgroups
);
6473 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
6474 struct cgroup
*c
= link
->cgrp
;
6476 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
6477 seq_printf(seq
, "Root %d group %s\n",
6478 c
->root
->hierarchy_id
, name_buf
);
6481 spin_unlock_irq(&css_set_lock
);
6486 #define MAX_TASKS_SHOWN_PER_CSS 25
6487 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
6489 struct cgroup_subsys_state
*css
= seq_css(seq
);
6490 struct cgrp_cset_link
*link
;
6492 spin_lock_irq(&css_set_lock
);
6493 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
6494 struct css_set
*cset
= link
->cset
;
6495 struct task_struct
*task
;
6498 seq_printf(seq
, "css_set %p\n", cset
);
6500 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
6501 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
6503 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
6506 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
6507 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
6509 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
6513 seq_puts(seq
, " ...\n");
6515 spin_unlock_irq(&css_set_lock
);
6519 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
6521 return (!cgroup_is_populated(css
->cgroup
) &&
6522 !css_has_online_children(&css
->cgroup
->self
));
6525 static struct cftype debug_files
[] = {
6527 .name
= "taskcount",
6528 .read_u64
= debug_taskcount_read
,
6532 .name
= "current_css_set",
6533 .read_u64
= current_css_set_read
,
6537 .name
= "current_css_set_refcount",
6538 .read_u64
= current_css_set_refcount_read
,
6542 .name
= "current_css_set_cg_links",
6543 .seq_show
= current_css_set_cg_links_read
,
6547 .name
= "cgroup_css_links",
6548 .seq_show
= cgroup_css_links_read
,
6552 .name
= "releasable",
6553 .read_u64
= releasable_read
,
6559 struct cgroup_subsys debug_cgrp_subsys
= {
6560 .css_alloc
= debug_css_alloc
,
6561 .css_free
= debug_css_free
,
6562 .legacy_cftypes
= debug_files
,
6564 #endif /* CONFIG_CGROUP_DEBUG */