Linux 3.4.71
[linux/fpc-iii.git] / drivers / md / md.c
blob7b45b5e1b31eb19184e26c5cbcea072078f56bda
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static void md_print_devices(void);
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
104 static inline int speed_max(struct mddev *mddev)
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
110 static struct ctl_table_header *raid_table_header;
112 static ctl_table raid_table[] = {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
130 static ctl_table raid_dir_table[] = {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
140 static ctl_table raid_root_table[] = {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
150 static const struct block_device_operations md_fops;
152 static int start_readonly;
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
158 static void mddev_bio_destructor(struct bio *bio)
160 struct mddev *mddev, **mddevp;
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
165 bio_free(bio, mddev->bio_set);
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
171 struct bio *b;
172 struct mddev **mddevp;
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
191 struct bio *b;
192 struct mddev **mddevp;
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
216 return b;
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220 void md_trim_bio(struct bio *bio, int offset, int size)
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
264 sofar += bvec->bv_len;
267 EXPORT_SYMBOL_GPL(md_trim_bio);
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
286 EXPORT_SYMBOL_GPL(md_new_event);
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
291 static void md_new_event_inintr(struct mddev *mddev)
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
312 #define for_each_mddev(_mddev,_tmp) \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 static void md_make_request(struct request_queue *q, struct bio *bio)
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
347 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
348 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
349 return;
351 smp_rmb(); /* Ensure implications of 'active' are visible */
352 rcu_read_lock();
353 if (mddev->suspended) {
354 DEFINE_WAIT(__wait);
355 for (;;) {
356 prepare_to_wait(&mddev->sb_wait, &__wait,
357 TASK_UNINTERRUPTIBLE);
358 if (!mddev->suspended)
359 break;
360 rcu_read_unlock();
361 schedule();
362 rcu_read_lock();
364 finish_wait(&mddev->sb_wait, &__wait);
366 atomic_inc(&mddev->active_io);
367 rcu_read_unlock();
370 * save the sectors now since our bio can
371 * go away inside make_request
373 sectors = bio_sectors(bio);
374 mddev->pers->make_request(mddev, bio);
376 cpu = part_stat_lock();
377 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
378 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
379 part_stat_unlock();
381 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
382 wake_up(&mddev->sb_wait);
385 /* mddev_suspend makes sure no new requests are submitted
386 * to the device, and that any requests that have been submitted
387 * are completely handled.
388 * Once ->stop is called and completes, the module will be completely
389 * unused.
391 void mddev_suspend(struct mddev *mddev)
393 BUG_ON(mddev->suspended);
394 mddev->suspended = 1;
395 synchronize_rcu();
396 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
397 mddev->pers->quiesce(mddev, 1);
399 del_timer_sync(&mddev->safemode_timer);
401 EXPORT_SYMBOL_GPL(mddev_suspend);
403 void mddev_resume(struct mddev *mddev)
405 mddev->suspended = 0;
406 wake_up(&mddev->sb_wait);
407 mddev->pers->quiesce(mddev, 0);
409 md_wakeup_thread(mddev->thread);
410 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
412 EXPORT_SYMBOL_GPL(mddev_resume);
414 int mddev_congested(struct mddev *mddev, int bits)
416 return mddev->suspended;
418 EXPORT_SYMBOL(mddev_congested);
421 * Generic flush handling for md
424 static void md_end_flush(struct bio *bio, int err)
426 struct md_rdev *rdev = bio->bi_private;
427 struct mddev *mddev = rdev->mddev;
429 rdev_dec_pending(rdev, mddev);
431 if (atomic_dec_and_test(&mddev->flush_pending)) {
432 /* The pre-request flush has finished */
433 queue_work(md_wq, &mddev->flush_work);
435 bio_put(bio);
438 static void md_submit_flush_data(struct work_struct *ws);
440 static void submit_flushes(struct work_struct *ws)
442 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
443 struct md_rdev *rdev;
445 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
446 atomic_set(&mddev->flush_pending, 1);
447 rcu_read_lock();
448 rdev_for_each_rcu(rdev, mddev)
449 if (rdev->raid_disk >= 0 &&
450 !test_bit(Faulty, &rdev->flags)) {
451 /* Take two references, one is dropped
452 * when request finishes, one after
453 * we reclaim rcu_read_lock
455 struct bio *bi;
456 atomic_inc(&rdev->nr_pending);
457 atomic_inc(&rdev->nr_pending);
458 rcu_read_unlock();
459 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
460 bi->bi_end_io = md_end_flush;
461 bi->bi_private = rdev;
462 bi->bi_bdev = rdev->bdev;
463 atomic_inc(&mddev->flush_pending);
464 submit_bio(WRITE_FLUSH, bi);
465 rcu_read_lock();
466 rdev_dec_pending(rdev, mddev);
468 rcu_read_unlock();
469 if (atomic_dec_and_test(&mddev->flush_pending))
470 queue_work(md_wq, &mddev->flush_work);
473 static void md_submit_flush_data(struct work_struct *ws)
475 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
476 struct bio *bio = mddev->flush_bio;
478 if (bio->bi_size == 0)
479 /* an empty barrier - all done */
480 bio_endio(bio, 0);
481 else {
482 bio->bi_rw &= ~REQ_FLUSH;
483 mddev->pers->make_request(mddev, bio);
486 mddev->flush_bio = NULL;
487 wake_up(&mddev->sb_wait);
490 void md_flush_request(struct mddev *mddev, struct bio *bio)
492 spin_lock_irq(&mddev->write_lock);
493 wait_event_lock_irq(mddev->sb_wait,
494 !mddev->flush_bio,
495 mddev->write_lock, /*nothing*/);
496 mddev->flush_bio = bio;
497 spin_unlock_irq(&mddev->write_lock);
499 INIT_WORK(&mddev->flush_work, submit_flushes);
500 queue_work(md_wq, &mddev->flush_work);
502 EXPORT_SYMBOL(md_flush_request);
504 /* Support for plugging.
505 * This mirrors the plugging support in request_queue, but does not
506 * require having a whole queue or request structures.
507 * We allocate an md_plug_cb for each md device and each thread it gets
508 * plugged on. This links tot the private plug_handle structure in the
509 * personality data where we keep a count of the number of outstanding
510 * plugs so other code can see if a plug is active.
512 struct md_plug_cb {
513 struct blk_plug_cb cb;
514 struct mddev *mddev;
517 static void plugger_unplug(struct blk_plug_cb *cb)
519 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
520 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
521 md_wakeup_thread(mdcb->mddev->thread);
522 kfree(mdcb);
525 /* Check that an unplug wakeup will come shortly.
526 * If not, wakeup the md thread immediately
528 int mddev_check_plugged(struct mddev *mddev)
530 struct blk_plug *plug = current->plug;
531 struct md_plug_cb *mdcb;
533 if (!plug)
534 return 0;
536 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
537 if (mdcb->cb.callback == plugger_unplug &&
538 mdcb->mddev == mddev) {
539 /* Already on the list, move to top */
540 if (mdcb != list_first_entry(&plug->cb_list,
541 struct md_plug_cb,
542 cb.list))
543 list_move(&mdcb->cb.list, &plug->cb_list);
544 return 1;
547 /* Not currently on the callback list */
548 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
549 if (!mdcb)
550 return 0;
552 mdcb->mddev = mddev;
553 mdcb->cb.callback = plugger_unplug;
554 atomic_inc(&mddev->plug_cnt);
555 list_add(&mdcb->cb.list, &plug->cb_list);
556 return 1;
558 EXPORT_SYMBOL_GPL(mddev_check_plugged);
560 static inline struct mddev *mddev_get(struct mddev *mddev)
562 atomic_inc(&mddev->active);
563 return mddev;
566 static void mddev_delayed_delete(struct work_struct *ws);
568 static void mddev_put(struct mddev *mddev)
570 struct bio_set *bs = NULL;
572 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
573 return;
574 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
575 mddev->ctime == 0 && !mddev->hold_active) {
576 /* Array is not configured at all, and not held active,
577 * so destroy it */
578 list_del_init(&mddev->all_mddevs);
579 bs = mddev->bio_set;
580 mddev->bio_set = NULL;
581 if (mddev->gendisk) {
582 /* We did a probe so need to clean up. Call
583 * queue_work inside the spinlock so that
584 * flush_workqueue() after mddev_find will
585 * succeed in waiting for the work to be done.
587 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
588 queue_work(md_misc_wq, &mddev->del_work);
589 } else
590 kfree(mddev);
592 spin_unlock(&all_mddevs_lock);
593 if (bs)
594 bioset_free(bs);
597 void mddev_init(struct mddev *mddev)
599 mutex_init(&mddev->open_mutex);
600 mutex_init(&mddev->reconfig_mutex);
601 mutex_init(&mddev->bitmap_info.mutex);
602 INIT_LIST_HEAD(&mddev->disks);
603 INIT_LIST_HEAD(&mddev->all_mddevs);
604 init_timer(&mddev->safemode_timer);
605 atomic_set(&mddev->active, 1);
606 atomic_set(&mddev->openers, 0);
607 atomic_set(&mddev->active_io, 0);
608 atomic_set(&mddev->plug_cnt, 0);
609 spin_lock_init(&mddev->write_lock);
610 atomic_set(&mddev->flush_pending, 0);
611 init_waitqueue_head(&mddev->sb_wait);
612 init_waitqueue_head(&mddev->recovery_wait);
613 mddev->reshape_position = MaxSector;
614 mddev->resync_min = 0;
615 mddev->resync_max = MaxSector;
616 mddev->level = LEVEL_NONE;
618 EXPORT_SYMBOL_GPL(mddev_init);
620 static struct mddev * mddev_find(dev_t unit)
622 struct mddev *mddev, *new = NULL;
624 if (unit && MAJOR(unit) != MD_MAJOR)
625 unit &= ~((1<<MdpMinorShift)-1);
627 retry:
628 spin_lock(&all_mddevs_lock);
630 if (unit) {
631 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
632 if (mddev->unit == unit) {
633 mddev_get(mddev);
634 spin_unlock(&all_mddevs_lock);
635 kfree(new);
636 return mddev;
639 if (new) {
640 list_add(&new->all_mddevs, &all_mddevs);
641 spin_unlock(&all_mddevs_lock);
642 new->hold_active = UNTIL_IOCTL;
643 return new;
645 } else if (new) {
646 /* find an unused unit number */
647 static int next_minor = 512;
648 int start = next_minor;
649 int is_free = 0;
650 int dev = 0;
651 while (!is_free) {
652 dev = MKDEV(MD_MAJOR, next_minor);
653 next_minor++;
654 if (next_minor > MINORMASK)
655 next_minor = 0;
656 if (next_minor == start) {
657 /* Oh dear, all in use. */
658 spin_unlock(&all_mddevs_lock);
659 kfree(new);
660 return NULL;
663 is_free = 1;
664 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
665 if (mddev->unit == dev) {
666 is_free = 0;
667 break;
670 new->unit = dev;
671 new->md_minor = MINOR(dev);
672 new->hold_active = UNTIL_STOP;
673 list_add(&new->all_mddevs, &all_mddevs);
674 spin_unlock(&all_mddevs_lock);
675 return new;
677 spin_unlock(&all_mddevs_lock);
679 new = kzalloc(sizeof(*new), GFP_KERNEL);
680 if (!new)
681 return NULL;
683 new->unit = unit;
684 if (MAJOR(unit) == MD_MAJOR)
685 new->md_minor = MINOR(unit);
686 else
687 new->md_minor = MINOR(unit) >> MdpMinorShift;
689 mddev_init(new);
691 goto retry;
694 static inline int mddev_lock(struct mddev * mddev)
696 return mutex_lock_interruptible(&mddev->reconfig_mutex);
699 static inline int mddev_is_locked(struct mddev *mddev)
701 return mutex_is_locked(&mddev->reconfig_mutex);
704 static inline int mddev_trylock(struct mddev * mddev)
706 return mutex_trylock(&mddev->reconfig_mutex);
709 static struct attribute_group md_redundancy_group;
711 static void mddev_unlock(struct mddev * mddev)
713 if (mddev->to_remove) {
714 /* These cannot be removed under reconfig_mutex as
715 * an access to the files will try to take reconfig_mutex
716 * while holding the file unremovable, which leads to
717 * a deadlock.
718 * So hold set sysfs_active while the remove in happeing,
719 * and anything else which might set ->to_remove or my
720 * otherwise change the sysfs namespace will fail with
721 * -EBUSY if sysfs_active is still set.
722 * We set sysfs_active under reconfig_mutex and elsewhere
723 * test it under the same mutex to ensure its correct value
724 * is seen.
726 struct attribute_group *to_remove = mddev->to_remove;
727 mddev->to_remove = NULL;
728 mddev->sysfs_active = 1;
729 mutex_unlock(&mddev->reconfig_mutex);
731 if (mddev->kobj.sd) {
732 if (to_remove != &md_redundancy_group)
733 sysfs_remove_group(&mddev->kobj, to_remove);
734 if (mddev->pers == NULL ||
735 mddev->pers->sync_request == NULL) {
736 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
737 if (mddev->sysfs_action)
738 sysfs_put(mddev->sysfs_action);
739 mddev->sysfs_action = NULL;
742 mddev->sysfs_active = 0;
743 } else
744 mutex_unlock(&mddev->reconfig_mutex);
746 /* As we've dropped the mutex we need a spinlock to
747 * make sure the thread doesn't disappear
749 spin_lock(&pers_lock);
750 md_wakeup_thread(mddev->thread);
751 spin_unlock(&pers_lock);
754 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
756 struct md_rdev *rdev;
758 rdev_for_each(rdev, mddev)
759 if (rdev->desc_nr == nr)
760 return rdev;
762 return NULL;
765 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
767 struct md_rdev *rdev;
769 rdev_for_each(rdev, mddev)
770 if (rdev->bdev->bd_dev == dev)
771 return rdev;
773 return NULL;
776 static struct md_personality *find_pers(int level, char *clevel)
778 struct md_personality *pers;
779 list_for_each_entry(pers, &pers_list, list) {
780 if (level != LEVEL_NONE && pers->level == level)
781 return pers;
782 if (strcmp(pers->name, clevel)==0)
783 return pers;
785 return NULL;
788 /* return the offset of the super block in 512byte sectors */
789 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
791 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
792 return MD_NEW_SIZE_SECTORS(num_sectors);
795 static int alloc_disk_sb(struct md_rdev * rdev)
797 if (rdev->sb_page)
798 MD_BUG();
800 rdev->sb_page = alloc_page(GFP_KERNEL);
801 if (!rdev->sb_page) {
802 printk(KERN_ALERT "md: out of memory.\n");
803 return -ENOMEM;
806 return 0;
809 static void free_disk_sb(struct md_rdev * rdev)
811 if (rdev->sb_page) {
812 put_page(rdev->sb_page);
813 rdev->sb_loaded = 0;
814 rdev->sb_page = NULL;
815 rdev->sb_start = 0;
816 rdev->sectors = 0;
818 if (rdev->bb_page) {
819 put_page(rdev->bb_page);
820 rdev->bb_page = NULL;
825 static void super_written(struct bio *bio, int error)
827 struct md_rdev *rdev = bio->bi_private;
828 struct mddev *mddev = rdev->mddev;
830 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
831 printk("md: super_written gets error=%d, uptodate=%d\n",
832 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
833 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
834 md_error(mddev, rdev);
837 if (atomic_dec_and_test(&mddev->pending_writes))
838 wake_up(&mddev->sb_wait);
839 bio_put(bio);
842 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
843 sector_t sector, int size, struct page *page)
845 /* write first size bytes of page to sector of rdev
846 * Increment mddev->pending_writes before returning
847 * and decrement it on completion, waking up sb_wait
848 * if zero is reached.
849 * If an error occurred, call md_error
851 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
853 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
854 bio->bi_sector = sector;
855 bio_add_page(bio, page, size, 0);
856 bio->bi_private = rdev;
857 bio->bi_end_io = super_written;
859 atomic_inc(&mddev->pending_writes);
860 submit_bio(WRITE_FLUSH_FUA, bio);
863 void md_super_wait(struct mddev *mddev)
865 /* wait for all superblock writes that were scheduled to complete */
866 DEFINE_WAIT(wq);
867 for(;;) {
868 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
869 if (atomic_read(&mddev->pending_writes)==0)
870 break;
871 schedule();
873 finish_wait(&mddev->sb_wait, &wq);
876 static void bi_complete(struct bio *bio, int error)
878 complete((struct completion*)bio->bi_private);
881 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
882 struct page *page, int rw, bool metadata_op)
884 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
885 struct completion event;
886 int ret;
888 rw |= REQ_SYNC;
890 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
891 rdev->meta_bdev : rdev->bdev;
892 if (metadata_op)
893 bio->bi_sector = sector + rdev->sb_start;
894 else
895 bio->bi_sector = sector + rdev->data_offset;
896 bio_add_page(bio, page, size, 0);
897 init_completion(&event);
898 bio->bi_private = &event;
899 bio->bi_end_io = bi_complete;
900 submit_bio(rw, bio);
901 wait_for_completion(&event);
903 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
904 bio_put(bio);
905 return ret;
907 EXPORT_SYMBOL_GPL(sync_page_io);
909 static int read_disk_sb(struct md_rdev * rdev, int size)
911 char b[BDEVNAME_SIZE];
912 if (!rdev->sb_page) {
913 MD_BUG();
914 return -EINVAL;
916 if (rdev->sb_loaded)
917 return 0;
920 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
921 goto fail;
922 rdev->sb_loaded = 1;
923 return 0;
925 fail:
926 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
927 bdevname(rdev->bdev,b));
928 return -EINVAL;
931 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
933 return sb1->set_uuid0 == sb2->set_uuid0 &&
934 sb1->set_uuid1 == sb2->set_uuid1 &&
935 sb1->set_uuid2 == sb2->set_uuid2 &&
936 sb1->set_uuid3 == sb2->set_uuid3;
939 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
941 int ret;
942 mdp_super_t *tmp1, *tmp2;
944 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
945 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
947 if (!tmp1 || !tmp2) {
948 ret = 0;
949 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
950 goto abort;
953 *tmp1 = *sb1;
954 *tmp2 = *sb2;
957 * nr_disks is not constant
959 tmp1->nr_disks = 0;
960 tmp2->nr_disks = 0;
962 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
963 abort:
964 kfree(tmp1);
965 kfree(tmp2);
966 return ret;
970 static u32 md_csum_fold(u32 csum)
972 csum = (csum & 0xffff) + (csum >> 16);
973 return (csum & 0xffff) + (csum >> 16);
976 static unsigned int calc_sb_csum(mdp_super_t * sb)
978 u64 newcsum = 0;
979 u32 *sb32 = (u32*)sb;
980 int i;
981 unsigned int disk_csum, csum;
983 disk_csum = sb->sb_csum;
984 sb->sb_csum = 0;
986 for (i = 0; i < MD_SB_BYTES/4 ; i++)
987 newcsum += sb32[i];
988 csum = (newcsum & 0xffffffff) + (newcsum>>32);
991 #ifdef CONFIG_ALPHA
992 /* This used to use csum_partial, which was wrong for several
993 * reasons including that different results are returned on
994 * different architectures. It isn't critical that we get exactly
995 * the same return value as before (we always csum_fold before
996 * testing, and that removes any differences). However as we
997 * know that csum_partial always returned a 16bit value on
998 * alphas, do a fold to maximise conformity to previous behaviour.
1000 sb->sb_csum = md_csum_fold(disk_csum);
1001 #else
1002 sb->sb_csum = disk_csum;
1003 #endif
1004 return csum;
1009 * Handle superblock details.
1010 * We want to be able to handle multiple superblock formats
1011 * so we have a common interface to them all, and an array of
1012 * different handlers.
1013 * We rely on user-space to write the initial superblock, and support
1014 * reading and updating of superblocks.
1015 * Interface methods are:
1016 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1017 * loads and validates a superblock on dev.
1018 * if refdev != NULL, compare superblocks on both devices
1019 * Return:
1020 * 0 - dev has a superblock that is compatible with refdev
1021 * 1 - dev has a superblock that is compatible and newer than refdev
1022 * so dev should be used as the refdev in future
1023 * -EINVAL superblock incompatible or invalid
1024 * -othererror e.g. -EIO
1026 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1027 * Verify that dev is acceptable into mddev.
1028 * The first time, mddev->raid_disks will be 0, and data from
1029 * dev should be merged in. Subsequent calls check that dev
1030 * is new enough. Return 0 or -EINVAL
1032 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1033 * Update the superblock for rdev with data in mddev
1034 * This does not write to disc.
1038 struct super_type {
1039 char *name;
1040 struct module *owner;
1041 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1042 int minor_version);
1043 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1044 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1045 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1046 sector_t num_sectors);
1050 * Check that the given mddev has no bitmap.
1052 * This function is called from the run method of all personalities that do not
1053 * support bitmaps. It prints an error message and returns non-zero if mddev
1054 * has a bitmap. Otherwise, it returns 0.
1057 int md_check_no_bitmap(struct mddev *mddev)
1059 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1060 return 0;
1061 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1062 mdname(mddev), mddev->pers->name);
1063 return 1;
1065 EXPORT_SYMBOL(md_check_no_bitmap);
1068 * load_super for 0.90.0
1070 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1072 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1073 mdp_super_t *sb;
1074 int ret;
1077 * Calculate the position of the superblock (512byte sectors),
1078 * it's at the end of the disk.
1080 * It also happens to be a multiple of 4Kb.
1082 rdev->sb_start = calc_dev_sboffset(rdev);
1084 ret = read_disk_sb(rdev, MD_SB_BYTES);
1085 if (ret) return ret;
1087 ret = -EINVAL;
1089 bdevname(rdev->bdev, b);
1090 sb = page_address(rdev->sb_page);
1092 if (sb->md_magic != MD_SB_MAGIC) {
1093 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1095 goto abort;
1098 if (sb->major_version != 0 ||
1099 sb->minor_version < 90 ||
1100 sb->minor_version > 91) {
1101 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1102 sb->major_version, sb->minor_version,
1104 goto abort;
1107 if (sb->raid_disks <= 0)
1108 goto abort;
1110 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1111 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1113 goto abort;
1116 rdev->preferred_minor = sb->md_minor;
1117 rdev->data_offset = 0;
1118 rdev->sb_size = MD_SB_BYTES;
1119 rdev->badblocks.shift = -1;
1121 if (sb->level == LEVEL_MULTIPATH)
1122 rdev->desc_nr = -1;
1123 else
1124 rdev->desc_nr = sb->this_disk.number;
1126 if (!refdev) {
1127 ret = 1;
1128 } else {
1129 __u64 ev1, ev2;
1130 mdp_super_t *refsb = page_address(refdev->sb_page);
1131 if (!uuid_equal(refsb, sb)) {
1132 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1133 b, bdevname(refdev->bdev,b2));
1134 goto abort;
1136 if (!sb_equal(refsb, sb)) {
1137 printk(KERN_WARNING "md: %s has same UUID"
1138 " but different superblock to %s\n",
1139 b, bdevname(refdev->bdev, b2));
1140 goto abort;
1142 ev1 = md_event(sb);
1143 ev2 = md_event(refsb);
1144 if (ev1 > ev2)
1145 ret = 1;
1146 else
1147 ret = 0;
1149 rdev->sectors = rdev->sb_start;
1150 /* Limit to 4TB as metadata cannot record more than that.
1151 * (not needed for Linear and RAID0 as metadata doesn't
1152 * record this size)
1154 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1155 rdev->sectors = (2ULL << 32) - 2;
1157 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1158 /* "this cannot possibly happen" ... */
1159 ret = -EINVAL;
1161 abort:
1162 return ret;
1166 * validate_super for 0.90.0
1168 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1170 mdp_disk_t *desc;
1171 mdp_super_t *sb = page_address(rdev->sb_page);
1172 __u64 ev1 = md_event(sb);
1174 rdev->raid_disk = -1;
1175 clear_bit(Faulty, &rdev->flags);
1176 clear_bit(In_sync, &rdev->flags);
1177 clear_bit(WriteMostly, &rdev->flags);
1179 if (mddev->raid_disks == 0) {
1180 mddev->major_version = 0;
1181 mddev->minor_version = sb->minor_version;
1182 mddev->patch_version = sb->patch_version;
1183 mddev->external = 0;
1184 mddev->chunk_sectors = sb->chunk_size >> 9;
1185 mddev->ctime = sb->ctime;
1186 mddev->utime = sb->utime;
1187 mddev->level = sb->level;
1188 mddev->clevel[0] = 0;
1189 mddev->layout = sb->layout;
1190 mddev->raid_disks = sb->raid_disks;
1191 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1192 mddev->events = ev1;
1193 mddev->bitmap_info.offset = 0;
1194 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1196 if (mddev->minor_version >= 91) {
1197 mddev->reshape_position = sb->reshape_position;
1198 mddev->delta_disks = sb->delta_disks;
1199 mddev->new_level = sb->new_level;
1200 mddev->new_layout = sb->new_layout;
1201 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1202 } else {
1203 mddev->reshape_position = MaxSector;
1204 mddev->delta_disks = 0;
1205 mddev->new_level = mddev->level;
1206 mddev->new_layout = mddev->layout;
1207 mddev->new_chunk_sectors = mddev->chunk_sectors;
1210 if (sb->state & (1<<MD_SB_CLEAN))
1211 mddev->recovery_cp = MaxSector;
1212 else {
1213 if (sb->events_hi == sb->cp_events_hi &&
1214 sb->events_lo == sb->cp_events_lo) {
1215 mddev->recovery_cp = sb->recovery_cp;
1216 } else
1217 mddev->recovery_cp = 0;
1220 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1221 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1222 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1223 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1225 mddev->max_disks = MD_SB_DISKS;
1227 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1228 mddev->bitmap_info.file == NULL)
1229 mddev->bitmap_info.offset =
1230 mddev->bitmap_info.default_offset;
1232 } else if (mddev->pers == NULL) {
1233 /* Insist on good event counter while assembling, except
1234 * for spares (which don't need an event count) */
1235 ++ev1;
1236 if (sb->disks[rdev->desc_nr].state & (
1237 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1238 if (ev1 < mddev->events)
1239 return -EINVAL;
1240 } else if (mddev->bitmap) {
1241 /* if adding to array with a bitmap, then we can accept an
1242 * older device ... but not too old.
1244 if (ev1 < mddev->bitmap->events_cleared)
1245 return 0;
1246 } else {
1247 if (ev1 < mddev->events)
1248 /* just a hot-add of a new device, leave raid_disk at -1 */
1249 return 0;
1252 if (mddev->level != LEVEL_MULTIPATH) {
1253 desc = sb->disks + rdev->desc_nr;
1255 if (desc->state & (1<<MD_DISK_FAULTY))
1256 set_bit(Faulty, &rdev->flags);
1257 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1258 desc->raid_disk < mddev->raid_disks */) {
1259 set_bit(In_sync, &rdev->flags);
1260 rdev->raid_disk = desc->raid_disk;
1261 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1262 /* active but not in sync implies recovery up to
1263 * reshape position. We don't know exactly where
1264 * that is, so set to zero for now */
1265 if (mddev->minor_version >= 91) {
1266 rdev->recovery_offset = 0;
1267 rdev->raid_disk = desc->raid_disk;
1270 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1271 set_bit(WriteMostly, &rdev->flags);
1272 } else /* MULTIPATH are always insync */
1273 set_bit(In_sync, &rdev->flags);
1274 return 0;
1278 * sync_super for 0.90.0
1280 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1282 mdp_super_t *sb;
1283 struct md_rdev *rdev2;
1284 int next_spare = mddev->raid_disks;
1287 /* make rdev->sb match mddev data..
1289 * 1/ zero out disks
1290 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1291 * 3/ any empty disks < next_spare become removed
1293 * disks[0] gets initialised to REMOVED because
1294 * we cannot be sure from other fields if it has
1295 * been initialised or not.
1297 int i;
1298 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1300 rdev->sb_size = MD_SB_BYTES;
1302 sb = page_address(rdev->sb_page);
1304 memset(sb, 0, sizeof(*sb));
1306 sb->md_magic = MD_SB_MAGIC;
1307 sb->major_version = mddev->major_version;
1308 sb->patch_version = mddev->patch_version;
1309 sb->gvalid_words = 0; /* ignored */
1310 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1311 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1312 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1313 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1315 sb->ctime = mddev->ctime;
1316 sb->level = mddev->level;
1317 sb->size = mddev->dev_sectors / 2;
1318 sb->raid_disks = mddev->raid_disks;
1319 sb->md_minor = mddev->md_minor;
1320 sb->not_persistent = 0;
1321 sb->utime = mddev->utime;
1322 sb->state = 0;
1323 sb->events_hi = (mddev->events>>32);
1324 sb->events_lo = (u32)mddev->events;
1326 if (mddev->reshape_position == MaxSector)
1327 sb->minor_version = 90;
1328 else {
1329 sb->minor_version = 91;
1330 sb->reshape_position = mddev->reshape_position;
1331 sb->new_level = mddev->new_level;
1332 sb->delta_disks = mddev->delta_disks;
1333 sb->new_layout = mddev->new_layout;
1334 sb->new_chunk = mddev->new_chunk_sectors << 9;
1336 mddev->minor_version = sb->minor_version;
1337 if (mddev->in_sync)
1339 sb->recovery_cp = mddev->recovery_cp;
1340 sb->cp_events_hi = (mddev->events>>32);
1341 sb->cp_events_lo = (u32)mddev->events;
1342 if (mddev->recovery_cp == MaxSector)
1343 sb->state = (1<< MD_SB_CLEAN);
1344 } else
1345 sb->recovery_cp = 0;
1347 sb->layout = mddev->layout;
1348 sb->chunk_size = mddev->chunk_sectors << 9;
1350 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1351 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1353 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1354 rdev_for_each(rdev2, mddev) {
1355 mdp_disk_t *d;
1356 int desc_nr;
1357 int is_active = test_bit(In_sync, &rdev2->flags);
1359 if (rdev2->raid_disk >= 0 &&
1360 sb->minor_version >= 91)
1361 /* we have nowhere to store the recovery_offset,
1362 * but if it is not below the reshape_position,
1363 * we can piggy-back on that.
1365 is_active = 1;
1366 if (rdev2->raid_disk < 0 ||
1367 test_bit(Faulty, &rdev2->flags))
1368 is_active = 0;
1369 if (is_active)
1370 desc_nr = rdev2->raid_disk;
1371 else
1372 desc_nr = next_spare++;
1373 rdev2->desc_nr = desc_nr;
1374 d = &sb->disks[rdev2->desc_nr];
1375 nr_disks++;
1376 d->number = rdev2->desc_nr;
1377 d->major = MAJOR(rdev2->bdev->bd_dev);
1378 d->minor = MINOR(rdev2->bdev->bd_dev);
1379 if (is_active)
1380 d->raid_disk = rdev2->raid_disk;
1381 else
1382 d->raid_disk = rdev2->desc_nr; /* compatibility */
1383 if (test_bit(Faulty, &rdev2->flags))
1384 d->state = (1<<MD_DISK_FAULTY);
1385 else if (is_active) {
1386 d->state = (1<<MD_DISK_ACTIVE);
1387 if (test_bit(In_sync, &rdev2->flags))
1388 d->state |= (1<<MD_DISK_SYNC);
1389 active++;
1390 working++;
1391 } else {
1392 d->state = 0;
1393 spare++;
1394 working++;
1396 if (test_bit(WriteMostly, &rdev2->flags))
1397 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1399 /* now set the "removed" and "faulty" bits on any missing devices */
1400 for (i=0 ; i < mddev->raid_disks ; i++) {
1401 mdp_disk_t *d = &sb->disks[i];
1402 if (d->state == 0 && d->number == 0) {
1403 d->number = i;
1404 d->raid_disk = i;
1405 d->state = (1<<MD_DISK_REMOVED);
1406 d->state |= (1<<MD_DISK_FAULTY);
1407 failed++;
1410 sb->nr_disks = nr_disks;
1411 sb->active_disks = active;
1412 sb->working_disks = working;
1413 sb->failed_disks = failed;
1414 sb->spare_disks = spare;
1416 sb->this_disk = sb->disks[rdev->desc_nr];
1417 sb->sb_csum = calc_sb_csum(sb);
1421 * rdev_size_change for 0.90.0
1423 static unsigned long long
1424 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1426 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1427 return 0; /* component must fit device */
1428 if (rdev->mddev->bitmap_info.offset)
1429 return 0; /* can't move bitmap */
1430 rdev->sb_start = calc_dev_sboffset(rdev);
1431 if (!num_sectors || num_sectors > rdev->sb_start)
1432 num_sectors = rdev->sb_start;
1433 /* Limit to 4TB as metadata cannot record more than that.
1434 * 4TB == 2^32 KB, or 2*2^32 sectors.
1436 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1437 num_sectors = (2ULL << 32) - 2;
1438 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1439 rdev->sb_page);
1440 md_super_wait(rdev->mddev);
1441 return num_sectors;
1446 * version 1 superblock
1449 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1451 __le32 disk_csum;
1452 u32 csum;
1453 unsigned long long newcsum;
1454 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1455 __le32 *isuper = (__le32*)sb;
1456 int i;
1458 disk_csum = sb->sb_csum;
1459 sb->sb_csum = 0;
1460 newcsum = 0;
1461 for (i=0; size>=4; size -= 4 )
1462 newcsum += le32_to_cpu(*isuper++);
1464 if (size == 2)
1465 newcsum += le16_to_cpu(*(__le16*) isuper);
1467 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1468 sb->sb_csum = disk_csum;
1469 return cpu_to_le32(csum);
1472 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1473 int acknowledged);
1474 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1476 struct mdp_superblock_1 *sb;
1477 int ret;
1478 sector_t sb_start;
1479 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1480 int bmask;
1483 * Calculate the position of the superblock in 512byte sectors.
1484 * It is always aligned to a 4K boundary and
1485 * depeding on minor_version, it can be:
1486 * 0: At least 8K, but less than 12K, from end of device
1487 * 1: At start of device
1488 * 2: 4K from start of device.
1490 switch(minor_version) {
1491 case 0:
1492 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1493 sb_start -= 8*2;
1494 sb_start &= ~(sector_t)(4*2-1);
1495 break;
1496 case 1:
1497 sb_start = 0;
1498 break;
1499 case 2:
1500 sb_start = 8;
1501 break;
1502 default:
1503 return -EINVAL;
1505 rdev->sb_start = sb_start;
1507 /* superblock is rarely larger than 1K, but it can be larger,
1508 * and it is safe to read 4k, so we do that
1510 ret = read_disk_sb(rdev, 4096);
1511 if (ret) return ret;
1514 sb = page_address(rdev->sb_page);
1516 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1517 sb->major_version != cpu_to_le32(1) ||
1518 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1519 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1520 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1521 return -EINVAL;
1523 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1524 printk("md: invalid superblock checksum on %s\n",
1525 bdevname(rdev->bdev,b));
1526 return -EINVAL;
1528 if (le64_to_cpu(sb->data_size) < 10) {
1529 printk("md: data_size too small on %s\n",
1530 bdevname(rdev->bdev,b));
1531 return -EINVAL;
1534 rdev->preferred_minor = 0xffff;
1535 rdev->data_offset = le64_to_cpu(sb->data_offset);
1536 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1538 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1539 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1540 if (rdev->sb_size & bmask)
1541 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1543 if (minor_version
1544 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1545 return -EINVAL;
1547 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1548 rdev->desc_nr = -1;
1549 else
1550 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1552 if (!rdev->bb_page) {
1553 rdev->bb_page = alloc_page(GFP_KERNEL);
1554 if (!rdev->bb_page)
1555 return -ENOMEM;
1557 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1558 rdev->badblocks.count == 0) {
1559 /* need to load the bad block list.
1560 * Currently we limit it to one page.
1562 s32 offset;
1563 sector_t bb_sector;
1564 u64 *bbp;
1565 int i;
1566 int sectors = le16_to_cpu(sb->bblog_size);
1567 if (sectors > (PAGE_SIZE / 512))
1568 return -EINVAL;
1569 offset = le32_to_cpu(sb->bblog_offset);
1570 if (offset == 0)
1571 return -EINVAL;
1572 bb_sector = (long long)offset;
1573 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1574 rdev->bb_page, READ, true))
1575 return -EIO;
1576 bbp = (u64 *)page_address(rdev->bb_page);
1577 rdev->badblocks.shift = sb->bblog_shift;
1578 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1579 u64 bb = le64_to_cpu(*bbp);
1580 int count = bb & (0x3ff);
1581 u64 sector = bb >> 10;
1582 sector <<= sb->bblog_shift;
1583 count <<= sb->bblog_shift;
1584 if (bb + 1 == 0)
1585 break;
1586 if (md_set_badblocks(&rdev->badblocks,
1587 sector, count, 1) == 0)
1588 return -EINVAL;
1590 } else if (sb->bblog_offset != 0)
1591 rdev->badblocks.shift = 0;
1593 if (!refdev) {
1594 ret = 1;
1595 } else {
1596 __u64 ev1, ev2;
1597 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1599 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1600 sb->level != refsb->level ||
1601 sb->layout != refsb->layout ||
1602 sb->chunksize != refsb->chunksize) {
1603 printk(KERN_WARNING "md: %s has strangely different"
1604 " superblock to %s\n",
1605 bdevname(rdev->bdev,b),
1606 bdevname(refdev->bdev,b2));
1607 return -EINVAL;
1609 ev1 = le64_to_cpu(sb->events);
1610 ev2 = le64_to_cpu(refsb->events);
1612 if (ev1 > ev2)
1613 ret = 1;
1614 else
1615 ret = 0;
1617 if (minor_version)
1618 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1619 le64_to_cpu(sb->data_offset);
1620 else
1621 rdev->sectors = rdev->sb_start;
1622 if (rdev->sectors < le64_to_cpu(sb->data_size))
1623 return -EINVAL;
1624 rdev->sectors = le64_to_cpu(sb->data_size);
1625 if (le64_to_cpu(sb->size) > rdev->sectors)
1626 return -EINVAL;
1627 return ret;
1630 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1632 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1633 __u64 ev1 = le64_to_cpu(sb->events);
1635 rdev->raid_disk = -1;
1636 clear_bit(Faulty, &rdev->flags);
1637 clear_bit(In_sync, &rdev->flags);
1638 clear_bit(WriteMostly, &rdev->flags);
1640 if (mddev->raid_disks == 0) {
1641 mddev->major_version = 1;
1642 mddev->patch_version = 0;
1643 mddev->external = 0;
1644 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1645 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1646 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1647 mddev->level = le32_to_cpu(sb->level);
1648 mddev->clevel[0] = 0;
1649 mddev->layout = le32_to_cpu(sb->layout);
1650 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1651 mddev->dev_sectors = le64_to_cpu(sb->size);
1652 mddev->events = ev1;
1653 mddev->bitmap_info.offset = 0;
1654 mddev->bitmap_info.default_offset = 1024 >> 9;
1656 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1657 memcpy(mddev->uuid, sb->set_uuid, 16);
1659 mddev->max_disks = (4096-256)/2;
1661 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1662 mddev->bitmap_info.file == NULL )
1663 mddev->bitmap_info.offset =
1664 (__s32)le32_to_cpu(sb->bitmap_offset);
1666 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1667 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1668 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1669 mddev->new_level = le32_to_cpu(sb->new_level);
1670 mddev->new_layout = le32_to_cpu(sb->new_layout);
1671 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1672 } else {
1673 mddev->reshape_position = MaxSector;
1674 mddev->delta_disks = 0;
1675 mddev->new_level = mddev->level;
1676 mddev->new_layout = mddev->layout;
1677 mddev->new_chunk_sectors = mddev->chunk_sectors;
1680 } else if (mddev->pers == NULL) {
1681 /* Insist of good event counter while assembling, except for
1682 * spares (which don't need an event count) */
1683 ++ev1;
1684 if (rdev->desc_nr >= 0 &&
1685 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1686 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1687 if (ev1 < mddev->events)
1688 return -EINVAL;
1689 } else if (mddev->bitmap) {
1690 /* If adding to array with a bitmap, then we can accept an
1691 * older device, but not too old.
1693 if (ev1 < mddev->bitmap->events_cleared)
1694 return 0;
1695 } else {
1696 if (ev1 < mddev->events)
1697 /* just a hot-add of a new device, leave raid_disk at -1 */
1698 return 0;
1700 if (mddev->level != LEVEL_MULTIPATH) {
1701 int role;
1702 if (rdev->desc_nr < 0 ||
1703 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1704 role = 0xffff;
1705 rdev->desc_nr = -1;
1706 } else
1707 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1708 switch(role) {
1709 case 0xffff: /* spare */
1710 break;
1711 case 0xfffe: /* faulty */
1712 set_bit(Faulty, &rdev->flags);
1713 break;
1714 default:
1715 if ((le32_to_cpu(sb->feature_map) &
1716 MD_FEATURE_RECOVERY_OFFSET))
1717 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1718 else
1719 set_bit(In_sync, &rdev->flags);
1720 rdev->raid_disk = role;
1721 break;
1723 if (sb->devflags & WriteMostly1)
1724 set_bit(WriteMostly, &rdev->flags);
1725 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1726 set_bit(Replacement, &rdev->flags);
1727 } else /* MULTIPATH are always insync */
1728 set_bit(In_sync, &rdev->flags);
1730 return 0;
1733 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1735 struct mdp_superblock_1 *sb;
1736 struct md_rdev *rdev2;
1737 int max_dev, i;
1738 /* make rdev->sb match mddev and rdev data. */
1740 sb = page_address(rdev->sb_page);
1742 sb->feature_map = 0;
1743 sb->pad0 = 0;
1744 sb->recovery_offset = cpu_to_le64(0);
1745 memset(sb->pad1, 0, sizeof(sb->pad1));
1746 memset(sb->pad3, 0, sizeof(sb->pad3));
1748 sb->utime = cpu_to_le64((__u64)mddev->utime);
1749 sb->events = cpu_to_le64(mddev->events);
1750 if (mddev->in_sync)
1751 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1752 else
1753 sb->resync_offset = cpu_to_le64(0);
1755 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1757 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1758 sb->size = cpu_to_le64(mddev->dev_sectors);
1759 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1760 sb->level = cpu_to_le32(mddev->level);
1761 sb->layout = cpu_to_le32(mddev->layout);
1763 if (test_bit(WriteMostly, &rdev->flags))
1764 sb->devflags |= WriteMostly1;
1765 else
1766 sb->devflags &= ~WriteMostly1;
1768 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1769 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1770 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1773 if (rdev->raid_disk >= 0 &&
1774 !test_bit(In_sync, &rdev->flags)) {
1775 sb->feature_map |=
1776 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1777 sb->recovery_offset =
1778 cpu_to_le64(rdev->recovery_offset);
1780 if (test_bit(Replacement, &rdev->flags))
1781 sb->feature_map |=
1782 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1784 if (mddev->reshape_position != MaxSector) {
1785 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1786 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1787 sb->new_layout = cpu_to_le32(mddev->new_layout);
1788 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1789 sb->new_level = cpu_to_le32(mddev->new_level);
1790 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1793 if (rdev->badblocks.count == 0)
1794 /* Nothing to do for bad blocks*/ ;
1795 else if (sb->bblog_offset == 0)
1796 /* Cannot record bad blocks on this device */
1797 md_error(mddev, rdev);
1798 else {
1799 struct badblocks *bb = &rdev->badblocks;
1800 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1801 u64 *p = bb->page;
1802 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1803 if (bb->changed) {
1804 unsigned seq;
1806 retry:
1807 seq = read_seqbegin(&bb->lock);
1809 memset(bbp, 0xff, PAGE_SIZE);
1811 for (i = 0 ; i < bb->count ; i++) {
1812 u64 internal_bb = p[i];
1813 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1814 | BB_LEN(internal_bb));
1815 bbp[i] = cpu_to_le64(store_bb);
1817 bb->changed = 0;
1818 if (read_seqretry(&bb->lock, seq))
1819 goto retry;
1821 bb->sector = (rdev->sb_start +
1822 (int)le32_to_cpu(sb->bblog_offset));
1823 bb->size = le16_to_cpu(sb->bblog_size);
1827 max_dev = 0;
1828 rdev_for_each(rdev2, mddev)
1829 if (rdev2->desc_nr+1 > max_dev)
1830 max_dev = rdev2->desc_nr+1;
1832 if (max_dev > le32_to_cpu(sb->max_dev)) {
1833 int bmask;
1834 sb->max_dev = cpu_to_le32(max_dev);
1835 rdev->sb_size = max_dev * 2 + 256;
1836 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1837 if (rdev->sb_size & bmask)
1838 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1839 } else
1840 max_dev = le32_to_cpu(sb->max_dev);
1842 for (i=0; i<max_dev;i++)
1843 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1845 rdev_for_each(rdev2, mddev) {
1846 i = rdev2->desc_nr;
1847 if (test_bit(Faulty, &rdev2->flags))
1848 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1849 else if (test_bit(In_sync, &rdev2->flags))
1850 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1851 else if (rdev2->raid_disk >= 0)
1852 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1853 else
1854 sb->dev_roles[i] = cpu_to_le16(0xffff);
1857 sb->sb_csum = calc_sb_1_csum(sb);
1860 static unsigned long long
1861 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1863 struct mdp_superblock_1 *sb;
1864 sector_t max_sectors;
1865 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1866 return 0; /* component must fit device */
1867 if (rdev->sb_start < rdev->data_offset) {
1868 /* minor versions 1 and 2; superblock before data */
1869 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1870 max_sectors -= rdev->data_offset;
1871 if (!num_sectors || num_sectors > max_sectors)
1872 num_sectors = max_sectors;
1873 } else if (rdev->mddev->bitmap_info.offset) {
1874 /* minor version 0 with bitmap we can't move */
1875 return 0;
1876 } else {
1877 /* minor version 0; superblock after data */
1878 sector_t sb_start;
1879 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1880 sb_start &= ~(sector_t)(4*2 - 1);
1881 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1882 if (!num_sectors || num_sectors > max_sectors)
1883 num_sectors = max_sectors;
1884 rdev->sb_start = sb_start;
1886 sb = page_address(rdev->sb_page);
1887 sb->data_size = cpu_to_le64(num_sectors);
1888 sb->super_offset = rdev->sb_start;
1889 sb->sb_csum = calc_sb_1_csum(sb);
1890 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1891 rdev->sb_page);
1892 md_super_wait(rdev->mddev);
1893 return num_sectors;
1896 static struct super_type super_types[] = {
1897 [0] = {
1898 .name = "0.90.0",
1899 .owner = THIS_MODULE,
1900 .load_super = super_90_load,
1901 .validate_super = super_90_validate,
1902 .sync_super = super_90_sync,
1903 .rdev_size_change = super_90_rdev_size_change,
1905 [1] = {
1906 .name = "md-1",
1907 .owner = THIS_MODULE,
1908 .load_super = super_1_load,
1909 .validate_super = super_1_validate,
1910 .sync_super = super_1_sync,
1911 .rdev_size_change = super_1_rdev_size_change,
1915 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 if (mddev->sync_super) {
1918 mddev->sync_super(mddev, rdev);
1919 return;
1922 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924 super_types[mddev->major_version].sync_super(mddev, rdev);
1927 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 struct md_rdev *rdev, *rdev2;
1931 rcu_read_lock();
1932 rdev_for_each_rcu(rdev, mddev1)
1933 rdev_for_each_rcu(rdev2, mddev2)
1934 if (rdev->bdev->bd_contains ==
1935 rdev2->bdev->bd_contains) {
1936 rcu_read_unlock();
1937 return 1;
1939 rcu_read_unlock();
1940 return 0;
1943 static LIST_HEAD(pending_raid_disks);
1946 * Try to register data integrity profile for an mddev
1948 * This is called when an array is started and after a disk has been kicked
1949 * from the array. It only succeeds if all working and active component devices
1950 * are integrity capable with matching profiles.
1952 int md_integrity_register(struct mddev *mddev)
1954 struct md_rdev *rdev, *reference = NULL;
1956 if (list_empty(&mddev->disks))
1957 return 0; /* nothing to do */
1958 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1959 return 0; /* shouldn't register, or already is */
1960 rdev_for_each(rdev, mddev) {
1961 /* skip spares and non-functional disks */
1962 if (test_bit(Faulty, &rdev->flags))
1963 continue;
1964 if (rdev->raid_disk < 0)
1965 continue;
1966 if (!reference) {
1967 /* Use the first rdev as the reference */
1968 reference = rdev;
1969 continue;
1971 /* does this rdev's profile match the reference profile? */
1972 if (blk_integrity_compare(reference->bdev->bd_disk,
1973 rdev->bdev->bd_disk) < 0)
1974 return -EINVAL;
1976 if (!reference || !bdev_get_integrity(reference->bdev))
1977 return 0;
1979 * All component devices are integrity capable and have matching
1980 * profiles, register the common profile for the md device.
1982 if (blk_integrity_register(mddev->gendisk,
1983 bdev_get_integrity(reference->bdev)) != 0) {
1984 printk(KERN_ERR "md: failed to register integrity for %s\n",
1985 mdname(mddev));
1986 return -EINVAL;
1988 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1989 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1990 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1991 mdname(mddev));
1992 return -EINVAL;
1994 return 0;
1996 EXPORT_SYMBOL(md_integrity_register);
1998 /* Disable data integrity if non-capable/non-matching disk is being added */
1999 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2002 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2004 if (!bi_mddev) /* nothing to do */
2005 return;
2006 if (rdev->raid_disk < 0) /* skip spares */
2007 return;
2008 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2009 rdev->bdev->bd_disk) >= 0)
2010 return;
2011 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2012 blk_integrity_unregister(mddev->gendisk);
2014 EXPORT_SYMBOL(md_integrity_add_rdev);
2016 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2018 char b[BDEVNAME_SIZE];
2019 struct kobject *ko;
2020 char *s;
2021 int err;
2023 if (rdev->mddev) {
2024 MD_BUG();
2025 return -EINVAL;
2028 /* prevent duplicates */
2029 if (find_rdev(mddev, rdev->bdev->bd_dev))
2030 return -EEXIST;
2032 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2033 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2034 rdev->sectors < mddev->dev_sectors)) {
2035 if (mddev->pers) {
2036 /* Cannot change size, so fail
2037 * If mddev->level <= 0, then we don't care
2038 * about aligning sizes (e.g. linear)
2040 if (mddev->level > 0)
2041 return -ENOSPC;
2042 } else
2043 mddev->dev_sectors = rdev->sectors;
2046 /* Verify rdev->desc_nr is unique.
2047 * If it is -1, assign a free number, else
2048 * check number is not in use
2050 if (rdev->desc_nr < 0) {
2051 int choice = 0;
2052 if (mddev->pers) choice = mddev->raid_disks;
2053 while (find_rdev_nr(mddev, choice))
2054 choice++;
2055 rdev->desc_nr = choice;
2056 } else {
2057 if (find_rdev_nr(mddev, rdev->desc_nr))
2058 return -EBUSY;
2060 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2061 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2062 mdname(mddev), mddev->max_disks);
2063 return -EBUSY;
2065 bdevname(rdev->bdev,b);
2066 while ( (s=strchr(b, '/')) != NULL)
2067 *s = '!';
2069 rdev->mddev = mddev;
2070 printk(KERN_INFO "md: bind<%s>\n", b);
2072 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2073 goto fail;
2075 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2076 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2077 /* failure here is OK */;
2078 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2080 list_add_rcu(&rdev->same_set, &mddev->disks);
2081 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2083 /* May as well allow recovery to be retried once */
2084 mddev->recovery_disabled++;
2086 return 0;
2088 fail:
2089 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2090 b, mdname(mddev));
2091 return err;
2094 static void md_delayed_delete(struct work_struct *ws)
2096 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2097 kobject_del(&rdev->kobj);
2098 kobject_put(&rdev->kobj);
2101 static void unbind_rdev_from_array(struct md_rdev * rdev)
2103 char b[BDEVNAME_SIZE];
2104 if (!rdev->mddev) {
2105 MD_BUG();
2106 return;
2108 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2109 list_del_rcu(&rdev->same_set);
2110 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2111 rdev->mddev = NULL;
2112 sysfs_remove_link(&rdev->kobj, "block");
2113 sysfs_put(rdev->sysfs_state);
2114 rdev->sysfs_state = NULL;
2115 kfree(rdev->badblocks.page);
2116 rdev->badblocks.count = 0;
2117 rdev->badblocks.page = NULL;
2118 /* We need to delay this, otherwise we can deadlock when
2119 * writing to 'remove' to "dev/state". We also need
2120 * to delay it due to rcu usage.
2122 synchronize_rcu();
2123 INIT_WORK(&rdev->del_work, md_delayed_delete);
2124 kobject_get(&rdev->kobj);
2125 queue_work(md_misc_wq, &rdev->del_work);
2129 * prevent the device from being mounted, repartitioned or
2130 * otherwise reused by a RAID array (or any other kernel
2131 * subsystem), by bd_claiming the device.
2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2135 int err = 0;
2136 struct block_device *bdev;
2137 char b[BDEVNAME_SIZE];
2139 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140 shared ? (struct md_rdev *)lock_rdev : rdev);
2141 if (IS_ERR(bdev)) {
2142 printk(KERN_ERR "md: could not open %s.\n",
2143 __bdevname(dev, b));
2144 return PTR_ERR(bdev);
2146 rdev->bdev = bdev;
2147 return err;
2150 static void unlock_rdev(struct md_rdev *rdev)
2152 struct block_device *bdev = rdev->bdev;
2153 rdev->bdev = NULL;
2154 if (!bdev)
2155 MD_BUG();
2156 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2159 void md_autodetect_dev(dev_t dev);
2161 static void export_rdev(struct md_rdev * rdev)
2163 char b[BDEVNAME_SIZE];
2164 printk(KERN_INFO "md: export_rdev(%s)\n",
2165 bdevname(rdev->bdev,b));
2166 if (rdev->mddev)
2167 MD_BUG();
2168 free_disk_sb(rdev);
2169 #ifndef MODULE
2170 if (test_bit(AutoDetected, &rdev->flags))
2171 md_autodetect_dev(rdev->bdev->bd_dev);
2172 #endif
2173 unlock_rdev(rdev);
2174 kobject_put(&rdev->kobj);
2177 static void kick_rdev_from_array(struct md_rdev * rdev)
2179 unbind_rdev_from_array(rdev);
2180 export_rdev(rdev);
2183 static void export_array(struct mddev *mddev)
2185 struct md_rdev *rdev, *tmp;
2187 rdev_for_each_safe(rdev, tmp, mddev) {
2188 if (!rdev->mddev) {
2189 MD_BUG();
2190 continue;
2192 kick_rdev_from_array(rdev);
2194 if (!list_empty(&mddev->disks))
2195 MD_BUG();
2196 mddev->raid_disks = 0;
2197 mddev->major_version = 0;
2200 static void print_desc(mdp_disk_t *desc)
2202 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2203 desc->major,desc->minor,desc->raid_disk,desc->state);
2206 static void print_sb_90(mdp_super_t *sb)
2208 int i;
2210 printk(KERN_INFO
2211 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2212 sb->major_version, sb->minor_version, sb->patch_version,
2213 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2214 sb->ctime);
2215 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2216 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2217 sb->md_minor, sb->layout, sb->chunk_size);
2218 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2219 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2220 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2221 sb->failed_disks, sb->spare_disks,
2222 sb->sb_csum, (unsigned long)sb->events_lo);
2224 printk(KERN_INFO);
2225 for (i = 0; i < MD_SB_DISKS; i++) {
2226 mdp_disk_t *desc;
2228 desc = sb->disks + i;
2229 if (desc->number || desc->major || desc->minor ||
2230 desc->raid_disk || (desc->state && (desc->state != 4))) {
2231 printk(" D %2d: ", i);
2232 print_desc(desc);
2235 printk(KERN_INFO "md: THIS: ");
2236 print_desc(&sb->this_disk);
2239 static void print_sb_1(struct mdp_superblock_1 *sb)
2241 __u8 *uuid;
2243 uuid = sb->set_uuid;
2244 printk(KERN_INFO
2245 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2246 "md: Name: \"%s\" CT:%llu\n",
2247 le32_to_cpu(sb->major_version),
2248 le32_to_cpu(sb->feature_map),
2249 uuid,
2250 sb->set_name,
2251 (unsigned long long)le64_to_cpu(sb->ctime)
2252 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2254 uuid = sb->device_uuid;
2255 printk(KERN_INFO
2256 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2257 " RO:%llu\n"
2258 "md: Dev:%08x UUID: %pU\n"
2259 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2260 "md: (MaxDev:%u) \n",
2261 le32_to_cpu(sb->level),
2262 (unsigned long long)le64_to_cpu(sb->size),
2263 le32_to_cpu(sb->raid_disks),
2264 le32_to_cpu(sb->layout),
2265 le32_to_cpu(sb->chunksize),
2266 (unsigned long long)le64_to_cpu(sb->data_offset),
2267 (unsigned long long)le64_to_cpu(sb->data_size),
2268 (unsigned long long)le64_to_cpu(sb->super_offset),
2269 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2270 le32_to_cpu(sb->dev_number),
2271 uuid,
2272 sb->devflags,
2273 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2274 (unsigned long long)le64_to_cpu(sb->events),
2275 (unsigned long long)le64_to_cpu(sb->resync_offset),
2276 le32_to_cpu(sb->sb_csum),
2277 le32_to_cpu(sb->max_dev)
2281 static void print_rdev(struct md_rdev *rdev, int major_version)
2283 char b[BDEVNAME_SIZE];
2284 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2285 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2286 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2287 rdev->desc_nr);
2288 if (rdev->sb_loaded) {
2289 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2290 switch (major_version) {
2291 case 0:
2292 print_sb_90(page_address(rdev->sb_page));
2293 break;
2294 case 1:
2295 print_sb_1(page_address(rdev->sb_page));
2296 break;
2298 } else
2299 printk(KERN_INFO "md: no rdev superblock!\n");
2302 static void md_print_devices(void)
2304 struct list_head *tmp;
2305 struct md_rdev *rdev;
2306 struct mddev *mddev;
2307 char b[BDEVNAME_SIZE];
2309 printk("\n");
2310 printk("md: **********************************\n");
2311 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2312 printk("md: **********************************\n");
2313 for_each_mddev(mddev, tmp) {
2315 if (mddev->bitmap)
2316 bitmap_print_sb(mddev->bitmap);
2317 else
2318 printk("%s: ", mdname(mddev));
2319 rdev_for_each(rdev, mddev)
2320 printk("<%s>", bdevname(rdev->bdev,b));
2321 printk("\n");
2323 rdev_for_each(rdev, mddev)
2324 print_rdev(rdev, mddev->major_version);
2326 printk("md: **********************************\n");
2327 printk("\n");
2331 static void sync_sbs(struct mddev * mddev, int nospares)
2333 /* Update each superblock (in-memory image), but
2334 * if we are allowed to, skip spares which already
2335 * have the right event counter, or have one earlier
2336 * (which would mean they aren't being marked as dirty
2337 * with the rest of the array)
2339 struct md_rdev *rdev;
2340 rdev_for_each(rdev, mddev) {
2341 if (rdev->sb_events == mddev->events ||
2342 (nospares &&
2343 rdev->raid_disk < 0 &&
2344 rdev->sb_events+1 == mddev->events)) {
2345 /* Don't update this superblock */
2346 rdev->sb_loaded = 2;
2347 } else {
2348 sync_super(mddev, rdev);
2349 rdev->sb_loaded = 1;
2354 static void md_update_sb(struct mddev * mddev, int force_change)
2356 struct md_rdev *rdev;
2357 int sync_req;
2358 int nospares = 0;
2359 int any_badblocks_changed = 0;
2361 repeat:
2362 /* First make sure individual recovery_offsets are correct */
2363 rdev_for_each(rdev, mddev) {
2364 if (rdev->raid_disk >= 0 &&
2365 mddev->delta_disks >= 0 &&
2366 !test_bit(In_sync, &rdev->flags) &&
2367 mddev->curr_resync_completed > rdev->recovery_offset)
2368 rdev->recovery_offset = mddev->curr_resync_completed;
2371 if (!mddev->persistent) {
2372 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2373 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2374 if (!mddev->external) {
2375 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2376 rdev_for_each(rdev, mddev) {
2377 if (rdev->badblocks.changed) {
2378 rdev->badblocks.changed = 0;
2379 md_ack_all_badblocks(&rdev->badblocks);
2380 md_error(mddev, rdev);
2382 clear_bit(Blocked, &rdev->flags);
2383 clear_bit(BlockedBadBlocks, &rdev->flags);
2384 wake_up(&rdev->blocked_wait);
2387 wake_up(&mddev->sb_wait);
2388 return;
2391 spin_lock_irq(&mddev->write_lock);
2393 mddev->utime = get_seconds();
2395 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2396 force_change = 1;
2397 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2398 /* just a clean<-> dirty transition, possibly leave spares alone,
2399 * though if events isn't the right even/odd, we will have to do
2400 * spares after all
2402 nospares = 1;
2403 if (force_change)
2404 nospares = 0;
2405 if (mddev->degraded)
2406 /* If the array is degraded, then skipping spares is both
2407 * dangerous and fairly pointless.
2408 * Dangerous because a device that was removed from the array
2409 * might have a event_count that still looks up-to-date,
2410 * so it can be re-added without a resync.
2411 * Pointless because if there are any spares to skip,
2412 * then a recovery will happen and soon that array won't
2413 * be degraded any more and the spare can go back to sleep then.
2415 nospares = 0;
2417 sync_req = mddev->in_sync;
2419 /* If this is just a dirty<->clean transition, and the array is clean
2420 * and 'events' is odd, we can roll back to the previous clean state */
2421 if (nospares
2422 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2423 && mddev->can_decrease_events
2424 && mddev->events != 1) {
2425 mddev->events--;
2426 mddev->can_decrease_events = 0;
2427 } else {
2428 /* otherwise we have to go forward and ... */
2429 mddev->events ++;
2430 mddev->can_decrease_events = nospares;
2433 if (!mddev->events) {
2435 * oops, this 64-bit counter should never wrap.
2436 * Either we are in around ~1 trillion A.C., assuming
2437 * 1 reboot per second, or we have a bug:
2439 MD_BUG();
2440 mddev->events --;
2443 rdev_for_each(rdev, mddev) {
2444 if (rdev->badblocks.changed)
2445 any_badblocks_changed++;
2446 if (test_bit(Faulty, &rdev->flags))
2447 set_bit(FaultRecorded, &rdev->flags);
2450 sync_sbs(mddev, nospares);
2451 spin_unlock_irq(&mddev->write_lock);
2453 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2454 mdname(mddev), mddev->in_sync);
2456 bitmap_update_sb(mddev->bitmap);
2457 rdev_for_each(rdev, mddev) {
2458 char b[BDEVNAME_SIZE];
2460 if (rdev->sb_loaded != 1)
2461 continue; /* no noise on spare devices */
2463 if (!test_bit(Faulty, &rdev->flags) &&
2464 rdev->saved_raid_disk == -1) {
2465 md_super_write(mddev,rdev,
2466 rdev->sb_start, rdev->sb_size,
2467 rdev->sb_page);
2468 pr_debug("md: (write) %s's sb offset: %llu\n",
2469 bdevname(rdev->bdev, b),
2470 (unsigned long long)rdev->sb_start);
2471 rdev->sb_events = mddev->events;
2472 if (rdev->badblocks.size) {
2473 md_super_write(mddev, rdev,
2474 rdev->badblocks.sector,
2475 rdev->badblocks.size << 9,
2476 rdev->bb_page);
2477 rdev->badblocks.size = 0;
2480 } else if (test_bit(Faulty, &rdev->flags))
2481 pr_debug("md: %s (skipping faulty)\n",
2482 bdevname(rdev->bdev, b));
2483 else
2484 pr_debug("(skipping incremental s/r ");
2486 if (mddev->level == LEVEL_MULTIPATH)
2487 /* only need to write one superblock... */
2488 break;
2490 md_super_wait(mddev);
2491 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2493 spin_lock_irq(&mddev->write_lock);
2494 if (mddev->in_sync != sync_req ||
2495 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2496 /* have to write it out again */
2497 spin_unlock_irq(&mddev->write_lock);
2498 goto repeat;
2500 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2501 spin_unlock_irq(&mddev->write_lock);
2502 wake_up(&mddev->sb_wait);
2503 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2504 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2506 rdev_for_each(rdev, mddev) {
2507 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2508 clear_bit(Blocked, &rdev->flags);
2510 if (any_badblocks_changed)
2511 md_ack_all_badblocks(&rdev->badblocks);
2512 clear_bit(BlockedBadBlocks, &rdev->flags);
2513 wake_up(&rdev->blocked_wait);
2517 /* words written to sysfs files may, or may not, be \n terminated.
2518 * We want to accept with case. For this we use cmd_match.
2520 static int cmd_match(const char *cmd, const char *str)
2522 /* See if cmd, written into a sysfs file, matches
2523 * str. They must either be the same, or cmd can
2524 * have a trailing newline
2526 while (*cmd && *str && *cmd == *str) {
2527 cmd++;
2528 str++;
2530 if (*cmd == '\n')
2531 cmd++;
2532 if (*str || *cmd)
2533 return 0;
2534 return 1;
2537 struct rdev_sysfs_entry {
2538 struct attribute attr;
2539 ssize_t (*show)(struct md_rdev *, char *);
2540 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2543 static ssize_t
2544 state_show(struct md_rdev *rdev, char *page)
2546 char *sep = "";
2547 size_t len = 0;
2549 if (test_bit(Faulty, &rdev->flags) ||
2550 rdev->badblocks.unacked_exist) {
2551 len+= sprintf(page+len, "%sfaulty",sep);
2552 sep = ",";
2554 if (test_bit(In_sync, &rdev->flags)) {
2555 len += sprintf(page+len, "%sin_sync",sep);
2556 sep = ",";
2558 if (test_bit(WriteMostly, &rdev->flags)) {
2559 len += sprintf(page+len, "%swrite_mostly",sep);
2560 sep = ",";
2562 if (test_bit(Blocked, &rdev->flags) ||
2563 (rdev->badblocks.unacked_exist
2564 && !test_bit(Faulty, &rdev->flags))) {
2565 len += sprintf(page+len, "%sblocked", sep);
2566 sep = ",";
2568 if (!test_bit(Faulty, &rdev->flags) &&
2569 !test_bit(In_sync, &rdev->flags)) {
2570 len += sprintf(page+len, "%sspare", sep);
2571 sep = ",";
2573 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2574 len += sprintf(page+len, "%swrite_error", sep);
2575 sep = ",";
2577 if (test_bit(WantReplacement, &rdev->flags)) {
2578 len += sprintf(page+len, "%swant_replacement", sep);
2579 sep = ",";
2581 if (test_bit(Replacement, &rdev->flags)) {
2582 len += sprintf(page+len, "%sreplacement", sep);
2583 sep = ",";
2586 return len+sprintf(page+len, "\n");
2589 static ssize_t
2590 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2592 /* can write
2593 * faulty - simulates an error
2594 * remove - disconnects the device
2595 * writemostly - sets write_mostly
2596 * -writemostly - clears write_mostly
2597 * blocked - sets the Blocked flags
2598 * -blocked - clears the Blocked and possibly simulates an error
2599 * insync - sets Insync providing device isn't active
2600 * write_error - sets WriteErrorSeen
2601 * -write_error - clears WriteErrorSeen
2603 int err = -EINVAL;
2604 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2605 md_error(rdev->mddev, rdev);
2606 if (test_bit(Faulty, &rdev->flags))
2607 err = 0;
2608 else
2609 err = -EBUSY;
2610 } else if (cmd_match(buf, "remove")) {
2611 if (rdev->raid_disk >= 0)
2612 err = -EBUSY;
2613 else {
2614 struct mddev *mddev = rdev->mddev;
2615 kick_rdev_from_array(rdev);
2616 if (mddev->pers)
2617 md_update_sb(mddev, 1);
2618 md_new_event(mddev);
2619 err = 0;
2621 } else if (cmd_match(buf, "writemostly")) {
2622 set_bit(WriteMostly, &rdev->flags);
2623 err = 0;
2624 } else if (cmd_match(buf, "-writemostly")) {
2625 clear_bit(WriteMostly, &rdev->flags);
2626 err = 0;
2627 } else if (cmd_match(buf, "blocked")) {
2628 set_bit(Blocked, &rdev->flags);
2629 err = 0;
2630 } else if (cmd_match(buf, "-blocked")) {
2631 if (!test_bit(Faulty, &rdev->flags) &&
2632 rdev->badblocks.unacked_exist) {
2633 /* metadata handler doesn't understand badblocks,
2634 * so we need to fail the device
2636 md_error(rdev->mddev, rdev);
2638 clear_bit(Blocked, &rdev->flags);
2639 clear_bit(BlockedBadBlocks, &rdev->flags);
2640 wake_up(&rdev->blocked_wait);
2641 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2642 md_wakeup_thread(rdev->mddev->thread);
2644 err = 0;
2645 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2646 set_bit(In_sync, &rdev->flags);
2647 err = 0;
2648 } else if (cmd_match(buf, "write_error")) {
2649 set_bit(WriteErrorSeen, &rdev->flags);
2650 err = 0;
2651 } else if (cmd_match(buf, "-write_error")) {
2652 clear_bit(WriteErrorSeen, &rdev->flags);
2653 err = 0;
2654 } else if (cmd_match(buf, "want_replacement")) {
2655 /* Any non-spare device that is not a replacement can
2656 * become want_replacement at any time, but we then need to
2657 * check if recovery is needed.
2659 if (rdev->raid_disk >= 0 &&
2660 !test_bit(Replacement, &rdev->flags))
2661 set_bit(WantReplacement, &rdev->flags);
2662 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2663 md_wakeup_thread(rdev->mddev->thread);
2664 err = 0;
2665 } else if (cmd_match(buf, "-want_replacement")) {
2666 /* Clearing 'want_replacement' is always allowed.
2667 * Once replacements starts it is too late though.
2669 err = 0;
2670 clear_bit(WantReplacement, &rdev->flags);
2671 } else if (cmd_match(buf, "replacement")) {
2672 /* Can only set a device as a replacement when array has not
2673 * yet been started. Once running, replacement is automatic
2674 * from spares, or by assigning 'slot'.
2676 if (rdev->mddev->pers)
2677 err = -EBUSY;
2678 else {
2679 set_bit(Replacement, &rdev->flags);
2680 err = 0;
2682 } else if (cmd_match(buf, "-replacement")) {
2683 /* Similarly, can only clear Replacement before start */
2684 if (rdev->mddev->pers)
2685 err = -EBUSY;
2686 else {
2687 clear_bit(Replacement, &rdev->flags);
2688 err = 0;
2691 if (!err)
2692 sysfs_notify_dirent_safe(rdev->sysfs_state);
2693 return err ? err : len;
2695 static struct rdev_sysfs_entry rdev_state =
2696 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2698 static ssize_t
2699 errors_show(struct md_rdev *rdev, char *page)
2701 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2704 static ssize_t
2705 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2707 char *e;
2708 unsigned long n = simple_strtoul(buf, &e, 10);
2709 if (*buf && (*e == 0 || *e == '\n')) {
2710 atomic_set(&rdev->corrected_errors, n);
2711 return len;
2713 return -EINVAL;
2715 static struct rdev_sysfs_entry rdev_errors =
2716 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2718 static ssize_t
2719 slot_show(struct md_rdev *rdev, char *page)
2721 if (rdev->raid_disk < 0)
2722 return sprintf(page, "none\n");
2723 else
2724 return sprintf(page, "%d\n", rdev->raid_disk);
2727 static ssize_t
2728 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2730 char *e;
2731 int err;
2732 int slot = simple_strtoul(buf, &e, 10);
2733 if (strncmp(buf, "none", 4)==0)
2734 slot = -1;
2735 else if (e==buf || (*e && *e!= '\n'))
2736 return -EINVAL;
2737 if (rdev->mddev->pers && slot == -1) {
2738 /* Setting 'slot' on an active array requires also
2739 * updating the 'rd%d' link, and communicating
2740 * with the personality with ->hot_*_disk.
2741 * For now we only support removing
2742 * failed/spare devices. This normally happens automatically,
2743 * but not when the metadata is externally managed.
2745 if (rdev->raid_disk == -1)
2746 return -EEXIST;
2747 /* personality does all needed checks */
2748 if (rdev->mddev->pers->hot_remove_disk == NULL)
2749 return -EINVAL;
2750 err = rdev->mddev->pers->
2751 hot_remove_disk(rdev->mddev, rdev);
2752 if (err)
2753 return err;
2754 sysfs_unlink_rdev(rdev->mddev, rdev);
2755 rdev->raid_disk = -1;
2756 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2757 md_wakeup_thread(rdev->mddev->thread);
2758 } else if (rdev->mddev->pers) {
2759 /* Activating a spare .. or possibly reactivating
2760 * if we ever get bitmaps working here.
2763 if (rdev->raid_disk != -1)
2764 return -EBUSY;
2766 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2767 return -EBUSY;
2769 if (rdev->mddev->pers->hot_add_disk == NULL)
2770 return -EINVAL;
2772 if (slot >= rdev->mddev->raid_disks &&
2773 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2774 return -ENOSPC;
2776 rdev->raid_disk = slot;
2777 if (test_bit(In_sync, &rdev->flags))
2778 rdev->saved_raid_disk = slot;
2779 else
2780 rdev->saved_raid_disk = -1;
2781 clear_bit(In_sync, &rdev->flags);
2782 err = rdev->mddev->pers->
2783 hot_add_disk(rdev->mddev, rdev);
2784 if (err) {
2785 rdev->raid_disk = -1;
2786 return err;
2787 } else
2788 sysfs_notify_dirent_safe(rdev->sysfs_state);
2789 if (sysfs_link_rdev(rdev->mddev, rdev))
2790 /* failure here is OK */;
2791 /* don't wakeup anyone, leave that to userspace. */
2792 } else {
2793 if (slot >= rdev->mddev->raid_disks &&
2794 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2795 return -ENOSPC;
2796 rdev->raid_disk = slot;
2797 /* assume it is working */
2798 clear_bit(Faulty, &rdev->flags);
2799 clear_bit(WriteMostly, &rdev->flags);
2800 set_bit(In_sync, &rdev->flags);
2801 sysfs_notify_dirent_safe(rdev->sysfs_state);
2803 return len;
2807 static struct rdev_sysfs_entry rdev_slot =
2808 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2810 static ssize_t
2811 offset_show(struct md_rdev *rdev, char *page)
2813 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2816 static ssize_t
2817 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2819 char *e;
2820 unsigned long long offset = simple_strtoull(buf, &e, 10);
2821 if (e==buf || (*e && *e != '\n'))
2822 return -EINVAL;
2823 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2824 return -EBUSY;
2825 if (rdev->sectors && rdev->mddev->external)
2826 /* Must set offset before size, so overlap checks
2827 * can be sane */
2828 return -EBUSY;
2829 rdev->data_offset = offset;
2830 return len;
2833 static struct rdev_sysfs_entry rdev_offset =
2834 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2836 static ssize_t
2837 rdev_size_show(struct md_rdev *rdev, char *page)
2839 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2842 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2844 /* check if two start/length pairs overlap */
2845 if (s1+l1 <= s2)
2846 return 0;
2847 if (s2+l2 <= s1)
2848 return 0;
2849 return 1;
2852 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2854 unsigned long long blocks;
2855 sector_t new;
2857 if (strict_strtoull(buf, 10, &blocks) < 0)
2858 return -EINVAL;
2860 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2861 return -EINVAL; /* sector conversion overflow */
2863 new = blocks * 2;
2864 if (new != blocks * 2)
2865 return -EINVAL; /* unsigned long long to sector_t overflow */
2867 *sectors = new;
2868 return 0;
2871 static ssize_t
2872 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2874 struct mddev *my_mddev = rdev->mddev;
2875 sector_t oldsectors = rdev->sectors;
2876 sector_t sectors;
2878 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2879 return -EINVAL;
2880 if (my_mddev->pers && rdev->raid_disk >= 0) {
2881 if (my_mddev->persistent) {
2882 sectors = super_types[my_mddev->major_version].
2883 rdev_size_change(rdev, sectors);
2884 if (!sectors)
2885 return -EBUSY;
2886 } else if (!sectors)
2887 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2888 rdev->data_offset;
2889 if (!my_mddev->pers->resize)
2890 /* Cannot change size for RAID0 or Linear etc */
2891 return -EINVAL;
2893 if (sectors < my_mddev->dev_sectors)
2894 return -EINVAL; /* component must fit device */
2896 rdev->sectors = sectors;
2897 if (sectors > oldsectors && my_mddev->external) {
2898 /* need to check that all other rdevs with the same ->bdev
2899 * do not overlap. We need to unlock the mddev to avoid
2900 * a deadlock. We have already changed rdev->sectors, and if
2901 * we have to change it back, we will have the lock again.
2903 struct mddev *mddev;
2904 int overlap = 0;
2905 struct list_head *tmp;
2907 mddev_unlock(my_mddev);
2908 for_each_mddev(mddev, tmp) {
2909 struct md_rdev *rdev2;
2911 mddev_lock(mddev);
2912 rdev_for_each(rdev2, mddev)
2913 if (rdev->bdev == rdev2->bdev &&
2914 rdev != rdev2 &&
2915 overlaps(rdev->data_offset, rdev->sectors,
2916 rdev2->data_offset,
2917 rdev2->sectors)) {
2918 overlap = 1;
2919 break;
2921 mddev_unlock(mddev);
2922 if (overlap) {
2923 mddev_put(mddev);
2924 break;
2927 mddev_lock(my_mddev);
2928 if (overlap) {
2929 /* Someone else could have slipped in a size
2930 * change here, but doing so is just silly.
2931 * We put oldsectors back because we *know* it is
2932 * safe, and trust userspace not to race with
2933 * itself
2935 rdev->sectors = oldsectors;
2936 return -EBUSY;
2939 return len;
2942 static struct rdev_sysfs_entry rdev_size =
2943 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2946 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2948 unsigned long long recovery_start = rdev->recovery_offset;
2950 if (test_bit(In_sync, &rdev->flags) ||
2951 recovery_start == MaxSector)
2952 return sprintf(page, "none\n");
2954 return sprintf(page, "%llu\n", recovery_start);
2957 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2959 unsigned long long recovery_start;
2961 if (cmd_match(buf, "none"))
2962 recovery_start = MaxSector;
2963 else if (strict_strtoull(buf, 10, &recovery_start))
2964 return -EINVAL;
2966 if (rdev->mddev->pers &&
2967 rdev->raid_disk >= 0)
2968 return -EBUSY;
2970 rdev->recovery_offset = recovery_start;
2971 if (recovery_start == MaxSector)
2972 set_bit(In_sync, &rdev->flags);
2973 else
2974 clear_bit(In_sync, &rdev->flags);
2975 return len;
2978 static struct rdev_sysfs_entry rdev_recovery_start =
2979 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2982 static ssize_t
2983 badblocks_show(struct badblocks *bb, char *page, int unack);
2984 static ssize_t
2985 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2987 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2989 return badblocks_show(&rdev->badblocks, page, 0);
2991 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2993 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2994 /* Maybe that ack was all we needed */
2995 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2996 wake_up(&rdev->blocked_wait);
2997 return rv;
2999 static struct rdev_sysfs_entry rdev_bad_blocks =
3000 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3003 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3005 return badblocks_show(&rdev->badblocks, page, 1);
3007 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3009 return badblocks_store(&rdev->badblocks, page, len, 1);
3011 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3012 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3014 static struct attribute *rdev_default_attrs[] = {
3015 &rdev_state.attr,
3016 &rdev_errors.attr,
3017 &rdev_slot.attr,
3018 &rdev_offset.attr,
3019 &rdev_size.attr,
3020 &rdev_recovery_start.attr,
3021 &rdev_bad_blocks.attr,
3022 &rdev_unack_bad_blocks.attr,
3023 NULL,
3025 static ssize_t
3026 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3028 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3029 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3030 struct mddev *mddev = rdev->mddev;
3031 ssize_t rv;
3033 if (!entry->show)
3034 return -EIO;
3036 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3037 if (!rv) {
3038 if (rdev->mddev == NULL)
3039 rv = -EBUSY;
3040 else
3041 rv = entry->show(rdev, page);
3042 mddev_unlock(mddev);
3044 return rv;
3047 static ssize_t
3048 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3049 const char *page, size_t length)
3051 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3052 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3053 ssize_t rv;
3054 struct mddev *mddev = rdev->mddev;
3056 if (!entry->store)
3057 return -EIO;
3058 if (!capable(CAP_SYS_ADMIN))
3059 return -EACCES;
3060 rv = mddev ? mddev_lock(mddev): -EBUSY;
3061 if (!rv) {
3062 if (rdev->mddev == NULL)
3063 rv = -EBUSY;
3064 else
3065 rv = entry->store(rdev, page, length);
3066 mddev_unlock(mddev);
3068 return rv;
3071 static void rdev_free(struct kobject *ko)
3073 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3074 kfree(rdev);
3076 static const struct sysfs_ops rdev_sysfs_ops = {
3077 .show = rdev_attr_show,
3078 .store = rdev_attr_store,
3080 static struct kobj_type rdev_ktype = {
3081 .release = rdev_free,
3082 .sysfs_ops = &rdev_sysfs_ops,
3083 .default_attrs = rdev_default_attrs,
3086 int md_rdev_init(struct md_rdev *rdev)
3088 rdev->desc_nr = -1;
3089 rdev->saved_raid_disk = -1;
3090 rdev->raid_disk = -1;
3091 rdev->flags = 0;
3092 rdev->data_offset = 0;
3093 rdev->sb_events = 0;
3094 rdev->last_read_error.tv_sec = 0;
3095 rdev->last_read_error.tv_nsec = 0;
3096 rdev->sb_loaded = 0;
3097 rdev->bb_page = NULL;
3098 atomic_set(&rdev->nr_pending, 0);
3099 atomic_set(&rdev->read_errors, 0);
3100 atomic_set(&rdev->corrected_errors, 0);
3102 INIT_LIST_HEAD(&rdev->same_set);
3103 init_waitqueue_head(&rdev->blocked_wait);
3105 /* Add space to store bad block list.
3106 * This reserves the space even on arrays where it cannot
3107 * be used - I wonder if that matters
3109 rdev->badblocks.count = 0;
3110 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3111 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3112 seqlock_init(&rdev->badblocks.lock);
3113 if (rdev->badblocks.page == NULL)
3114 return -ENOMEM;
3116 return 0;
3118 EXPORT_SYMBOL_GPL(md_rdev_init);
3120 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3122 * mark the device faulty if:
3124 * - the device is nonexistent (zero size)
3125 * - the device has no valid superblock
3127 * a faulty rdev _never_ has rdev->sb set.
3129 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3131 char b[BDEVNAME_SIZE];
3132 int err;
3133 struct md_rdev *rdev;
3134 sector_t size;
3136 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3137 if (!rdev) {
3138 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3139 return ERR_PTR(-ENOMEM);
3142 err = md_rdev_init(rdev);
3143 if (err)
3144 goto abort_free;
3145 err = alloc_disk_sb(rdev);
3146 if (err)
3147 goto abort_free;
3149 err = lock_rdev(rdev, newdev, super_format == -2);
3150 if (err)
3151 goto abort_free;
3153 kobject_init(&rdev->kobj, &rdev_ktype);
3155 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3156 if (!size) {
3157 printk(KERN_WARNING
3158 "md: %s has zero or unknown size, marking faulty!\n",
3159 bdevname(rdev->bdev,b));
3160 err = -EINVAL;
3161 goto abort_free;
3164 if (super_format >= 0) {
3165 err = super_types[super_format].
3166 load_super(rdev, NULL, super_minor);
3167 if (err == -EINVAL) {
3168 printk(KERN_WARNING
3169 "md: %s does not have a valid v%d.%d "
3170 "superblock, not importing!\n",
3171 bdevname(rdev->bdev,b),
3172 super_format, super_minor);
3173 goto abort_free;
3175 if (err < 0) {
3176 printk(KERN_WARNING
3177 "md: could not read %s's sb, not importing!\n",
3178 bdevname(rdev->bdev,b));
3179 goto abort_free;
3183 return rdev;
3185 abort_free:
3186 if (rdev->bdev)
3187 unlock_rdev(rdev);
3188 free_disk_sb(rdev);
3189 kfree(rdev->badblocks.page);
3190 kfree(rdev);
3191 return ERR_PTR(err);
3195 * Check a full RAID array for plausibility
3199 static void analyze_sbs(struct mddev * mddev)
3201 int i;
3202 struct md_rdev *rdev, *freshest, *tmp;
3203 char b[BDEVNAME_SIZE];
3205 freshest = NULL;
3206 rdev_for_each_safe(rdev, tmp, mddev)
3207 switch (super_types[mddev->major_version].
3208 load_super(rdev, freshest, mddev->minor_version)) {
3209 case 1:
3210 freshest = rdev;
3211 break;
3212 case 0:
3213 break;
3214 default:
3215 printk( KERN_ERR \
3216 "md: fatal superblock inconsistency in %s"
3217 " -- removing from array\n",
3218 bdevname(rdev->bdev,b));
3219 kick_rdev_from_array(rdev);
3223 super_types[mddev->major_version].
3224 validate_super(mddev, freshest);
3226 i = 0;
3227 rdev_for_each_safe(rdev, tmp, mddev) {
3228 if (mddev->max_disks &&
3229 (rdev->desc_nr >= mddev->max_disks ||
3230 i > mddev->max_disks)) {
3231 printk(KERN_WARNING
3232 "md: %s: %s: only %d devices permitted\n",
3233 mdname(mddev), bdevname(rdev->bdev, b),
3234 mddev->max_disks);
3235 kick_rdev_from_array(rdev);
3236 continue;
3238 if (rdev != freshest)
3239 if (super_types[mddev->major_version].
3240 validate_super(mddev, rdev)) {
3241 printk(KERN_WARNING "md: kicking non-fresh %s"
3242 " from array!\n",
3243 bdevname(rdev->bdev,b));
3244 kick_rdev_from_array(rdev);
3245 continue;
3247 if (mddev->level == LEVEL_MULTIPATH) {
3248 rdev->desc_nr = i++;
3249 rdev->raid_disk = rdev->desc_nr;
3250 set_bit(In_sync, &rdev->flags);
3251 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3252 rdev->raid_disk = -1;
3253 clear_bit(In_sync, &rdev->flags);
3258 /* Read a fixed-point number.
3259 * Numbers in sysfs attributes should be in "standard" units where
3260 * possible, so time should be in seconds.
3261 * However we internally use a a much smaller unit such as
3262 * milliseconds or jiffies.
3263 * This function takes a decimal number with a possible fractional
3264 * component, and produces an integer which is the result of
3265 * multiplying that number by 10^'scale'.
3266 * all without any floating-point arithmetic.
3268 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3270 unsigned long result = 0;
3271 long decimals = -1;
3272 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3273 if (*cp == '.')
3274 decimals = 0;
3275 else if (decimals < scale) {
3276 unsigned int value;
3277 value = *cp - '0';
3278 result = result * 10 + value;
3279 if (decimals >= 0)
3280 decimals++;
3282 cp++;
3284 if (*cp == '\n')
3285 cp++;
3286 if (*cp)
3287 return -EINVAL;
3288 if (decimals < 0)
3289 decimals = 0;
3290 while (decimals < scale) {
3291 result *= 10;
3292 decimals ++;
3294 *res = result;
3295 return 0;
3299 static void md_safemode_timeout(unsigned long data);
3301 static ssize_t
3302 safe_delay_show(struct mddev *mddev, char *page)
3304 int msec = (mddev->safemode_delay*1000)/HZ;
3305 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3307 static ssize_t
3308 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3310 unsigned long msec;
3312 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3313 return -EINVAL;
3314 if (msec == 0)
3315 mddev->safemode_delay = 0;
3316 else {
3317 unsigned long old_delay = mddev->safemode_delay;
3318 mddev->safemode_delay = (msec*HZ)/1000;
3319 if (mddev->safemode_delay == 0)
3320 mddev->safemode_delay = 1;
3321 if (mddev->safemode_delay < old_delay)
3322 md_safemode_timeout((unsigned long)mddev);
3324 return len;
3326 static struct md_sysfs_entry md_safe_delay =
3327 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3329 static ssize_t
3330 level_show(struct mddev *mddev, char *page)
3332 struct md_personality *p = mddev->pers;
3333 if (p)
3334 return sprintf(page, "%s\n", p->name);
3335 else if (mddev->clevel[0])
3336 return sprintf(page, "%s\n", mddev->clevel);
3337 else if (mddev->level != LEVEL_NONE)
3338 return sprintf(page, "%d\n", mddev->level);
3339 else
3340 return 0;
3343 static ssize_t
3344 level_store(struct mddev *mddev, const char *buf, size_t len)
3346 char clevel[16];
3347 ssize_t rv = len;
3348 struct md_personality *pers;
3349 long level;
3350 void *priv;
3351 struct md_rdev *rdev;
3353 if (mddev->pers == NULL) {
3354 if (len == 0)
3355 return 0;
3356 if (len >= sizeof(mddev->clevel))
3357 return -ENOSPC;
3358 strncpy(mddev->clevel, buf, len);
3359 if (mddev->clevel[len-1] == '\n')
3360 len--;
3361 mddev->clevel[len] = 0;
3362 mddev->level = LEVEL_NONE;
3363 return rv;
3366 /* request to change the personality. Need to ensure:
3367 * - array is not engaged in resync/recovery/reshape
3368 * - old personality can be suspended
3369 * - new personality will access other array.
3372 if (mddev->sync_thread ||
3373 mddev->reshape_position != MaxSector ||
3374 mddev->sysfs_active)
3375 return -EBUSY;
3377 if (!mddev->pers->quiesce) {
3378 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3379 mdname(mddev), mddev->pers->name);
3380 return -EINVAL;
3383 /* Now find the new personality */
3384 if (len == 0 || len >= sizeof(clevel))
3385 return -EINVAL;
3386 strncpy(clevel, buf, len);
3387 if (clevel[len-1] == '\n')
3388 len--;
3389 clevel[len] = 0;
3390 if (strict_strtol(clevel, 10, &level))
3391 level = LEVEL_NONE;
3393 if (request_module("md-%s", clevel) != 0)
3394 request_module("md-level-%s", clevel);
3395 spin_lock(&pers_lock);
3396 pers = find_pers(level, clevel);
3397 if (!pers || !try_module_get(pers->owner)) {
3398 spin_unlock(&pers_lock);
3399 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3400 return -EINVAL;
3402 spin_unlock(&pers_lock);
3404 if (pers == mddev->pers) {
3405 /* Nothing to do! */
3406 module_put(pers->owner);
3407 return rv;
3409 if (!pers->takeover) {
3410 module_put(pers->owner);
3411 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3412 mdname(mddev), clevel);
3413 return -EINVAL;
3416 rdev_for_each(rdev, mddev)
3417 rdev->new_raid_disk = rdev->raid_disk;
3419 /* ->takeover must set new_* and/or delta_disks
3420 * if it succeeds, and may set them when it fails.
3422 priv = pers->takeover(mddev);
3423 if (IS_ERR(priv)) {
3424 mddev->new_level = mddev->level;
3425 mddev->new_layout = mddev->layout;
3426 mddev->new_chunk_sectors = mddev->chunk_sectors;
3427 mddev->raid_disks -= mddev->delta_disks;
3428 mddev->delta_disks = 0;
3429 module_put(pers->owner);
3430 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431 mdname(mddev), clevel);
3432 return PTR_ERR(priv);
3435 /* Looks like we have a winner */
3436 mddev_suspend(mddev);
3437 mddev->pers->stop(mddev);
3439 if (mddev->pers->sync_request == NULL &&
3440 pers->sync_request != NULL) {
3441 /* need to add the md_redundancy_group */
3442 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3443 printk(KERN_WARNING
3444 "md: cannot register extra attributes for %s\n",
3445 mdname(mddev));
3446 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3448 if (mddev->pers->sync_request != NULL &&
3449 pers->sync_request == NULL) {
3450 /* need to remove the md_redundancy_group */
3451 if (mddev->to_remove == NULL)
3452 mddev->to_remove = &md_redundancy_group;
3455 if (mddev->pers->sync_request == NULL &&
3456 mddev->external) {
3457 /* We are converting from a no-redundancy array
3458 * to a redundancy array and metadata is managed
3459 * externally so we need to be sure that writes
3460 * won't block due to a need to transition
3461 * clean->dirty
3462 * until external management is started.
3464 mddev->in_sync = 0;
3465 mddev->safemode_delay = 0;
3466 mddev->safemode = 0;
3469 rdev_for_each(rdev, mddev) {
3470 if (rdev->raid_disk < 0)
3471 continue;
3472 if (rdev->new_raid_disk >= mddev->raid_disks)
3473 rdev->new_raid_disk = -1;
3474 if (rdev->new_raid_disk == rdev->raid_disk)
3475 continue;
3476 sysfs_unlink_rdev(mddev, rdev);
3478 rdev_for_each(rdev, mddev) {
3479 if (rdev->raid_disk < 0)
3480 continue;
3481 if (rdev->new_raid_disk == rdev->raid_disk)
3482 continue;
3483 rdev->raid_disk = rdev->new_raid_disk;
3484 if (rdev->raid_disk < 0)
3485 clear_bit(In_sync, &rdev->flags);
3486 else {
3487 if (sysfs_link_rdev(mddev, rdev))
3488 printk(KERN_WARNING "md: cannot register rd%d"
3489 " for %s after level change\n",
3490 rdev->raid_disk, mdname(mddev));
3494 module_put(mddev->pers->owner);
3495 mddev->pers = pers;
3496 mddev->private = priv;
3497 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3498 mddev->level = mddev->new_level;
3499 mddev->layout = mddev->new_layout;
3500 mddev->chunk_sectors = mddev->new_chunk_sectors;
3501 mddev->delta_disks = 0;
3502 mddev->degraded = 0;
3503 if (mddev->pers->sync_request == NULL) {
3504 /* this is now an array without redundancy, so
3505 * it must always be in_sync
3507 mddev->in_sync = 1;
3508 del_timer_sync(&mddev->safemode_timer);
3510 pers->run(mddev);
3511 mddev_resume(mddev);
3512 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3514 md_wakeup_thread(mddev->thread);
3515 sysfs_notify(&mddev->kobj, NULL, "level");
3516 md_new_event(mddev);
3517 return rv;
3520 static struct md_sysfs_entry md_level =
3521 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3524 static ssize_t
3525 layout_show(struct mddev *mddev, char *page)
3527 /* just a number, not meaningful for all levels */
3528 if (mddev->reshape_position != MaxSector &&
3529 mddev->layout != mddev->new_layout)
3530 return sprintf(page, "%d (%d)\n",
3531 mddev->new_layout, mddev->layout);
3532 return sprintf(page, "%d\n", mddev->layout);
3535 static ssize_t
3536 layout_store(struct mddev *mddev, const char *buf, size_t len)
3538 char *e;
3539 unsigned long n = simple_strtoul(buf, &e, 10);
3541 if (!*buf || (*e && *e != '\n'))
3542 return -EINVAL;
3544 if (mddev->pers) {
3545 int err;
3546 if (mddev->pers->check_reshape == NULL)
3547 return -EBUSY;
3548 mddev->new_layout = n;
3549 err = mddev->pers->check_reshape(mddev);
3550 if (err) {
3551 mddev->new_layout = mddev->layout;
3552 return err;
3554 } else {
3555 mddev->new_layout = n;
3556 if (mddev->reshape_position == MaxSector)
3557 mddev->layout = n;
3559 return len;
3561 static struct md_sysfs_entry md_layout =
3562 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3565 static ssize_t
3566 raid_disks_show(struct mddev *mddev, char *page)
3568 if (mddev->raid_disks == 0)
3569 return 0;
3570 if (mddev->reshape_position != MaxSector &&
3571 mddev->delta_disks != 0)
3572 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3573 mddev->raid_disks - mddev->delta_disks);
3574 return sprintf(page, "%d\n", mddev->raid_disks);
3577 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3579 static ssize_t
3580 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3582 char *e;
3583 int rv = 0;
3584 unsigned long n = simple_strtoul(buf, &e, 10);
3586 if (!*buf || (*e && *e != '\n'))
3587 return -EINVAL;
3589 if (mddev->pers)
3590 rv = update_raid_disks(mddev, n);
3591 else if (mddev->reshape_position != MaxSector) {
3592 int olddisks = mddev->raid_disks - mddev->delta_disks;
3593 mddev->delta_disks = n - olddisks;
3594 mddev->raid_disks = n;
3595 } else
3596 mddev->raid_disks = n;
3597 return rv ? rv : len;
3599 static struct md_sysfs_entry md_raid_disks =
3600 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3602 static ssize_t
3603 chunk_size_show(struct mddev *mddev, char *page)
3605 if (mddev->reshape_position != MaxSector &&
3606 mddev->chunk_sectors != mddev->new_chunk_sectors)
3607 return sprintf(page, "%d (%d)\n",
3608 mddev->new_chunk_sectors << 9,
3609 mddev->chunk_sectors << 9);
3610 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3613 static ssize_t
3614 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3616 char *e;
3617 unsigned long n = simple_strtoul(buf, &e, 10);
3619 if (!*buf || (*e && *e != '\n'))
3620 return -EINVAL;
3622 if (mddev->pers) {
3623 int err;
3624 if (mddev->pers->check_reshape == NULL)
3625 return -EBUSY;
3626 mddev->new_chunk_sectors = n >> 9;
3627 err = mddev->pers->check_reshape(mddev);
3628 if (err) {
3629 mddev->new_chunk_sectors = mddev->chunk_sectors;
3630 return err;
3632 } else {
3633 mddev->new_chunk_sectors = n >> 9;
3634 if (mddev->reshape_position == MaxSector)
3635 mddev->chunk_sectors = n >> 9;
3637 return len;
3639 static struct md_sysfs_entry md_chunk_size =
3640 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3642 static ssize_t
3643 resync_start_show(struct mddev *mddev, char *page)
3645 if (mddev->recovery_cp == MaxSector)
3646 return sprintf(page, "none\n");
3647 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3650 static ssize_t
3651 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3653 char *e;
3654 unsigned long long n = simple_strtoull(buf, &e, 10);
3656 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3657 return -EBUSY;
3658 if (cmd_match(buf, "none"))
3659 n = MaxSector;
3660 else if (!*buf || (*e && *e != '\n'))
3661 return -EINVAL;
3663 mddev->recovery_cp = n;
3664 return len;
3666 static struct md_sysfs_entry md_resync_start =
3667 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3670 * The array state can be:
3672 * clear
3673 * No devices, no size, no level
3674 * Equivalent to STOP_ARRAY ioctl
3675 * inactive
3676 * May have some settings, but array is not active
3677 * all IO results in error
3678 * When written, doesn't tear down array, but just stops it
3679 * suspended (not supported yet)
3680 * All IO requests will block. The array can be reconfigured.
3681 * Writing this, if accepted, will block until array is quiescent
3682 * readonly
3683 * no resync can happen. no superblocks get written.
3684 * write requests fail
3685 * read-auto
3686 * like readonly, but behaves like 'clean' on a write request.
3688 * clean - no pending writes, but otherwise active.
3689 * When written to inactive array, starts without resync
3690 * If a write request arrives then
3691 * if metadata is known, mark 'dirty' and switch to 'active'.
3692 * if not known, block and switch to write-pending
3693 * If written to an active array that has pending writes, then fails.
3694 * active
3695 * fully active: IO and resync can be happening.
3696 * When written to inactive array, starts with resync
3698 * write-pending
3699 * clean, but writes are blocked waiting for 'active' to be written.
3701 * active-idle
3702 * like active, but no writes have been seen for a while (100msec).
3705 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3706 write_pending, active_idle, bad_word};
3707 static char *array_states[] = {
3708 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3709 "write-pending", "active-idle", NULL };
3711 static int match_word(const char *word, char **list)
3713 int n;
3714 for (n=0; list[n]; n++)
3715 if (cmd_match(word, list[n]))
3716 break;
3717 return n;
3720 static ssize_t
3721 array_state_show(struct mddev *mddev, char *page)
3723 enum array_state st = inactive;
3725 if (mddev->pers)
3726 switch(mddev->ro) {
3727 case 1:
3728 st = readonly;
3729 break;
3730 case 2:
3731 st = read_auto;
3732 break;
3733 case 0:
3734 if (mddev->in_sync)
3735 st = clean;
3736 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3737 st = write_pending;
3738 else if (mddev->safemode)
3739 st = active_idle;
3740 else
3741 st = active;
3743 else {
3744 if (list_empty(&mddev->disks) &&
3745 mddev->raid_disks == 0 &&
3746 mddev->dev_sectors == 0)
3747 st = clear;
3748 else
3749 st = inactive;
3751 return sprintf(page, "%s\n", array_states[st]);
3754 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3755 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3756 static int do_md_run(struct mddev * mddev);
3757 static int restart_array(struct mddev *mddev);
3759 static ssize_t
3760 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3762 int err = -EINVAL;
3763 enum array_state st = match_word(buf, array_states);
3764 switch(st) {
3765 case bad_word:
3766 break;
3767 case clear:
3768 /* stopping an active array */
3769 if (atomic_read(&mddev->openers) > 0)
3770 return -EBUSY;
3771 err = do_md_stop(mddev, 0, NULL);
3772 break;
3773 case inactive:
3774 /* stopping an active array */
3775 if (mddev->pers) {
3776 if (atomic_read(&mddev->openers) > 0)
3777 return -EBUSY;
3778 err = do_md_stop(mddev, 2, NULL);
3779 } else
3780 err = 0; /* already inactive */
3781 break;
3782 case suspended:
3783 break; /* not supported yet */
3784 case readonly:
3785 if (mddev->pers)
3786 err = md_set_readonly(mddev, NULL);
3787 else {
3788 mddev->ro = 1;
3789 set_disk_ro(mddev->gendisk, 1);
3790 err = do_md_run(mddev);
3792 break;
3793 case read_auto:
3794 if (mddev->pers) {
3795 if (mddev->ro == 0)
3796 err = md_set_readonly(mddev, NULL);
3797 else if (mddev->ro == 1)
3798 err = restart_array(mddev);
3799 if (err == 0) {
3800 mddev->ro = 2;
3801 set_disk_ro(mddev->gendisk, 0);
3803 } else {
3804 mddev->ro = 2;
3805 err = do_md_run(mddev);
3807 break;
3808 case clean:
3809 if (mddev->pers) {
3810 restart_array(mddev);
3811 spin_lock_irq(&mddev->write_lock);
3812 if (atomic_read(&mddev->writes_pending) == 0) {
3813 if (mddev->in_sync == 0) {
3814 mddev->in_sync = 1;
3815 if (mddev->safemode == 1)
3816 mddev->safemode = 0;
3817 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3819 err = 0;
3820 } else
3821 err = -EBUSY;
3822 spin_unlock_irq(&mddev->write_lock);
3823 } else
3824 err = -EINVAL;
3825 break;
3826 case active:
3827 if (mddev->pers) {
3828 restart_array(mddev);
3829 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3830 wake_up(&mddev->sb_wait);
3831 err = 0;
3832 } else {
3833 mddev->ro = 0;
3834 set_disk_ro(mddev->gendisk, 0);
3835 err = do_md_run(mddev);
3837 break;
3838 case write_pending:
3839 case active_idle:
3840 /* these cannot be set */
3841 break;
3843 if (err)
3844 return err;
3845 else {
3846 if (mddev->hold_active == UNTIL_IOCTL)
3847 mddev->hold_active = 0;
3848 sysfs_notify_dirent_safe(mddev->sysfs_state);
3849 return len;
3852 static struct md_sysfs_entry md_array_state =
3853 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3855 static ssize_t
3856 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3857 return sprintf(page, "%d\n",
3858 atomic_read(&mddev->max_corr_read_errors));
3861 static ssize_t
3862 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3864 char *e;
3865 unsigned long n = simple_strtoul(buf, &e, 10);
3867 if (*buf && (*e == 0 || *e == '\n')) {
3868 atomic_set(&mddev->max_corr_read_errors, n);
3869 return len;
3871 return -EINVAL;
3874 static struct md_sysfs_entry max_corr_read_errors =
3875 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3876 max_corrected_read_errors_store);
3878 static ssize_t
3879 null_show(struct mddev *mddev, char *page)
3881 return -EINVAL;
3884 static ssize_t
3885 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3887 /* buf must be %d:%d\n? giving major and minor numbers */
3888 /* The new device is added to the array.
3889 * If the array has a persistent superblock, we read the
3890 * superblock to initialise info and check validity.
3891 * Otherwise, only checking done is that in bind_rdev_to_array,
3892 * which mainly checks size.
3894 char *e;
3895 int major = simple_strtoul(buf, &e, 10);
3896 int minor;
3897 dev_t dev;
3898 struct md_rdev *rdev;
3899 int err;
3901 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3902 return -EINVAL;
3903 minor = simple_strtoul(e+1, &e, 10);
3904 if (*e && *e != '\n')
3905 return -EINVAL;
3906 dev = MKDEV(major, minor);
3907 if (major != MAJOR(dev) ||
3908 minor != MINOR(dev))
3909 return -EOVERFLOW;
3912 if (mddev->persistent) {
3913 rdev = md_import_device(dev, mddev->major_version,
3914 mddev->minor_version);
3915 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3916 struct md_rdev *rdev0
3917 = list_entry(mddev->disks.next,
3918 struct md_rdev, same_set);
3919 err = super_types[mddev->major_version]
3920 .load_super(rdev, rdev0, mddev->minor_version);
3921 if (err < 0)
3922 goto out;
3924 } else if (mddev->external)
3925 rdev = md_import_device(dev, -2, -1);
3926 else
3927 rdev = md_import_device(dev, -1, -1);
3929 if (IS_ERR(rdev))
3930 return PTR_ERR(rdev);
3931 err = bind_rdev_to_array(rdev, mddev);
3932 out:
3933 if (err)
3934 export_rdev(rdev);
3935 return err ? err : len;
3938 static struct md_sysfs_entry md_new_device =
3939 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3941 static ssize_t
3942 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3944 char *end;
3945 unsigned long chunk, end_chunk;
3947 if (!mddev->bitmap)
3948 goto out;
3949 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3950 while (*buf) {
3951 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3952 if (buf == end) break;
3953 if (*end == '-') { /* range */
3954 buf = end + 1;
3955 end_chunk = simple_strtoul(buf, &end, 0);
3956 if (buf == end) break;
3958 if (*end && !isspace(*end)) break;
3959 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3960 buf = skip_spaces(end);
3962 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3963 out:
3964 return len;
3967 static struct md_sysfs_entry md_bitmap =
3968 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3970 static ssize_t
3971 size_show(struct mddev *mddev, char *page)
3973 return sprintf(page, "%llu\n",
3974 (unsigned long long)mddev->dev_sectors / 2);
3977 static int update_size(struct mddev *mddev, sector_t num_sectors);
3979 static ssize_t
3980 size_store(struct mddev *mddev, const char *buf, size_t len)
3982 /* If array is inactive, we can reduce the component size, but
3983 * not increase it (except from 0).
3984 * If array is active, we can try an on-line resize
3986 sector_t sectors;
3987 int err = strict_blocks_to_sectors(buf, &sectors);
3989 if (err < 0)
3990 return err;
3991 if (mddev->pers) {
3992 err = update_size(mddev, sectors);
3993 md_update_sb(mddev, 1);
3994 } else {
3995 if (mddev->dev_sectors == 0 ||
3996 mddev->dev_sectors > sectors)
3997 mddev->dev_sectors = sectors;
3998 else
3999 err = -ENOSPC;
4001 return err ? err : len;
4004 static struct md_sysfs_entry md_size =
4005 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4008 /* Metdata version.
4009 * This is one of
4010 * 'none' for arrays with no metadata (good luck...)
4011 * 'external' for arrays with externally managed metadata,
4012 * or N.M for internally known formats
4014 static ssize_t
4015 metadata_show(struct mddev *mddev, char *page)
4017 if (mddev->persistent)
4018 return sprintf(page, "%d.%d\n",
4019 mddev->major_version, mddev->minor_version);
4020 else if (mddev->external)
4021 return sprintf(page, "external:%s\n", mddev->metadata_type);
4022 else
4023 return sprintf(page, "none\n");
4026 static ssize_t
4027 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4029 int major, minor;
4030 char *e;
4031 /* Changing the details of 'external' metadata is
4032 * always permitted. Otherwise there must be
4033 * no devices attached to the array.
4035 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4037 else if (!list_empty(&mddev->disks))
4038 return -EBUSY;
4040 if (cmd_match(buf, "none")) {
4041 mddev->persistent = 0;
4042 mddev->external = 0;
4043 mddev->major_version = 0;
4044 mddev->minor_version = 90;
4045 return len;
4047 if (strncmp(buf, "external:", 9) == 0) {
4048 size_t namelen = len-9;
4049 if (namelen >= sizeof(mddev->metadata_type))
4050 namelen = sizeof(mddev->metadata_type)-1;
4051 strncpy(mddev->metadata_type, buf+9, namelen);
4052 mddev->metadata_type[namelen] = 0;
4053 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4054 mddev->metadata_type[--namelen] = 0;
4055 mddev->persistent = 0;
4056 mddev->external = 1;
4057 mddev->major_version = 0;
4058 mddev->minor_version = 90;
4059 return len;
4061 major = simple_strtoul(buf, &e, 10);
4062 if (e==buf || *e != '.')
4063 return -EINVAL;
4064 buf = e+1;
4065 minor = simple_strtoul(buf, &e, 10);
4066 if (e==buf || (*e && *e != '\n') )
4067 return -EINVAL;
4068 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4069 return -ENOENT;
4070 mddev->major_version = major;
4071 mddev->minor_version = minor;
4072 mddev->persistent = 1;
4073 mddev->external = 0;
4074 return len;
4077 static struct md_sysfs_entry md_metadata =
4078 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4080 static ssize_t
4081 action_show(struct mddev *mddev, char *page)
4083 char *type = "idle";
4084 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4085 type = "frozen";
4086 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4087 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4088 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4089 type = "reshape";
4090 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4091 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4092 type = "resync";
4093 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4094 type = "check";
4095 else
4096 type = "repair";
4097 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4098 type = "recover";
4100 return sprintf(page, "%s\n", type);
4103 static void reap_sync_thread(struct mddev *mddev);
4105 static ssize_t
4106 action_store(struct mddev *mddev, const char *page, size_t len)
4108 if (!mddev->pers || !mddev->pers->sync_request)
4109 return -EINVAL;
4111 if (cmd_match(page, "frozen"))
4112 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4113 else
4114 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4116 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4117 if (mddev->sync_thread) {
4118 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4119 reap_sync_thread(mddev);
4121 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4122 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4123 return -EBUSY;
4124 else if (cmd_match(page, "resync"))
4125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4126 else if (cmd_match(page, "recover")) {
4127 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4128 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4129 } else if (cmd_match(page, "reshape")) {
4130 int err;
4131 if (mddev->pers->start_reshape == NULL)
4132 return -EINVAL;
4133 err = mddev->pers->start_reshape(mddev);
4134 if (err)
4135 return err;
4136 sysfs_notify(&mddev->kobj, NULL, "degraded");
4137 } else {
4138 if (cmd_match(page, "check"))
4139 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4140 else if (!cmd_match(page, "repair"))
4141 return -EINVAL;
4142 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4143 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4146 md_wakeup_thread(mddev->thread);
4147 sysfs_notify_dirent_safe(mddev->sysfs_action);
4148 return len;
4151 static ssize_t
4152 mismatch_cnt_show(struct mddev *mddev, char *page)
4154 return sprintf(page, "%llu\n",
4155 (unsigned long long) mddev->resync_mismatches);
4158 static struct md_sysfs_entry md_scan_mode =
4159 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4162 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4164 static ssize_t
4165 sync_min_show(struct mddev *mddev, char *page)
4167 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4168 mddev->sync_speed_min ? "local": "system");
4171 static ssize_t
4172 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4174 int min;
4175 char *e;
4176 if (strncmp(buf, "system", 6)==0) {
4177 mddev->sync_speed_min = 0;
4178 return len;
4180 min = simple_strtoul(buf, &e, 10);
4181 if (buf == e || (*e && *e != '\n') || min <= 0)
4182 return -EINVAL;
4183 mddev->sync_speed_min = min;
4184 return len;
4187 static struct md_sysfs_entry md_sync_min =
4188 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4190 static ssize_t
4191 sync_max_show(struct mddev *mddev, char *page)
4193 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4194 mddev->sync_speed_max ? "local": "system");
4197 static ssize_t
4198 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4200 int max;
4201 char *e;
4202 if (strncmp(buf, "system", 6)==0) {
4203 mddev->sync_speed_max = 0;
4204 return len;
4206 max = simple_strtoul(buf, &e, 10);
4207 if (buf == e || (*e && *e != '\n') || max <= 0)
4208 return -EINVAL;
4209 mddev->sync_speed_max = max;
4210 return len;
4213 static struct md_sysfs_entry md_sync_max =
4214 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4216 static ssize_t
4217 degraded_show(struct mddev *mddev, char *page)
4219 return sprintf(page, "%d\n", mddev->degraded);
4221 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4223 static ssize_t
4224 sync_force_parallel_show(struct mddev *mddev, char *page)
4226 return sprintf(page, "%d\n", mddev->parallel_resync);
4229 static ssize_t
4230 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4232 long n;
4234 if (strict_strtol(buf, 10, &n))
4235 return -EINVAL;
4237 if (n != 0 && n != 1)
4238 return -EINVAL;
4240 mddev->parallel_resync = n;
4242 if (mddev->sync_thread)
4243 wake_up(&resync_wait);
4245 return len;
4248 /* force parallel resync, even with shared block devices */
4249 static struct md_sysfs_entry md_sync_force_parallel =
4250 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4251 sync_force_parallel_show, sync_force_parallel_store);
4253 static ssize_t
4254 sync_speed_show(struct mddev *mddev, char *page)
4256 unsigned long resync, dt, db;
4257 if (mddev->curr_resync == 0)
4258 return sprintf(page, "none\n");
4259 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4260 dt = (jiffies - mddev->resync_mark) / HZ;
4261 if (!dt) dt++;
4262 db = resync - mddev->resync_mark_cnt;
4263 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4266 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4268 static ssize_t
4269 sync_completed_show(struct mddev *mddev, char *page)
4271 unsigned long long max_sectors, resync;
4273 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4274 return sprintf(page, "none\n");
4276 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4277 max_sectors = mddev->resync_max_sectors;
4278 else
4279 max_sectors = mddev->dev_sectors;
4281 resync = mddev->curr_resync_completed;
4282 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4285 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4287 static ssize_t
4288 min_sync_show(struct mddev *mddev, char *page)
4290 return sprintf(page, "%llu\n",
4291 (unsigned long long)mddev->resync_min);
4293 static ssize_t
4294 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4296 unsigned long long min;
4297 if (strict_strtoull(buf, 10, &min))
4298 return -EINVAL;
4299 if (min > mddev->resync_max)
4300 return -EINVAL;
4301 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4302 return -EBUSY;
4304 /* Must be a multiple of chunk_size */
4305 if (mddev->chunk_sectors) {
4306 sector_t temp = min;
4307 if (sector_div(temp, mddev->chunk_sectors))
4308 return -EINVAL;
4310 mddev->resync_min = min;
4312 return len;
4315 static struct md_sysfs_entry md_min_sync =
4316 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4318 static ssize_t
4319 max_sync_show(struct mddev *mddev, char *page)
4321 if (mddev->resync_max == MaxSector)
4322 return sprintf(page, "max\n");
4323 else
4324 return sprintf(page, "%llu\n",
4325 (unsigned long long)mddev->resync_max);
4327 static ssize_t
4328 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4330 if (strncmp(buf, "max", 3) == 0)
4331 mddev->resync_max = MaxSector;
4332 else {
4333 unsigned long long max;
4334 if (strict_strtoull(buf, 10, &max))
4335 return -EINVAL;
4336 if (max < mddev->resync_min)
4337 return -EINVAL;
4338 if (max < mddev->resync_max &&
4339 mddev->ro == 0 &&
4340 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4341 return -EBUSY;
4343 /* Must be a multiple of chunk_size */
4344 if (mddev->chunk_sectors) {
4345 sector_t temp = max;
4346 if (sector_div(temp, mddev->chunk_sectors))
4347 return -EINVAL;
4349 mddev->resync_max = max;
4351 wake_up(&mddev->recovery_wait);
4352 return len;
4355 static struct md_sysfs_entry md_max_sync =
4356 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4358 static ssize_t
4359 suspend_lo_show(struct mddev *mddev, char *page)
4361 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4364 static ssize_t
4365 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4367 char *e;
4368 unsigned long long new = simple_strtoull(buf, &e, 10);
4369 unsigned long long old = mddev->suspend_lo;
4371 if (mddev->pers == NULL ||
4372 mddev->pers->quiesce == NULL)
4373 return -EINVAL;
4374 if (buf == e || (*e && *e != '\n'))
4375 return -EINVAL;
4377 mddev->suspend_lo = new;
4378 if (new >= old)
4379 /* Shrinking suspended region */
4380 mddev->pers->quiesce(mddev, 2);
4381 else {
4382 /* Expanding suspended region - need to wait */
4383 mddev->pers->quiesce(mddev, 1);
4384 mddev->pers->quiesce(mddev, 0);
4386 return len;
4388 static struct md_sysfs_entry md_suspend_lo =
4389 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4392 static ssize_t
4393 suspend_hi_show(struct mddev *mddev, char *page)
4395 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4398 static ssize_t
4399 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4401 char *e;
4402 unsigned long long new = simple_strtoull(buf, &e, 10);
4403 unsigned long long old = mddev->suspend_hi;
4405 if (mddev->pers == NULL ||
4406 mddev->pers->quiesce == NULL)
4407 return -EINVAL;
4408 if (buf == e || (*e && *e != '\n'))
4409 return -EINVAL;
4411 mddev->suspend_hi = new;
4412 if (new <= old)
4413 /* Shrinking suspended region */
4414 mddev->pers->quiesce(mddev, 2);
4415 else {
4416 /* Expanding suspended region - need to wait */
4417 mddev->pers->quiesce(mddev, 1);
4418 mddev->pers->quiesce(mddev, 0);
4420 return len;
4422 static struct md_sysfs_entry md_suspend_hi =
4423 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4425 static ssize_t
4426 reshape_position_show(struct mddev *mddev, char *page)
4428 if (mddev->reshape_position != MaxSector)
4429 return sprintf(page, "%llu\n",
4430 (unsigned long long)mddev->reshape_position);
4431 strcpy(page, "none\n");
4432 return 5;
4435 static ssize_t
4436 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4438 char *e;
4439 unsigned long long new = simple_strtoull(buf, &e, 10);
4440 if (mddev->pers)
4441 return -EBUSY;
4442 if (buf == e || (*e && *e != '\n'))
4443 return -EINVAL;
4444 mddev->reshape_position = new;
4445 mddev->delta_disks = 0;
4446 mddev->new_level = mddev->level;
4447 mddev->new_layout = mddev->layout;
4448 mddev->new_chunk_sectors = mddev->chunk_sectors;
4449 return len;
4452 static struct md_sysfs_entry md_reshape_position =
4453 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4454 reshape_position_store);
4456 static ssize_t
4457 array_size_show(struct mddev *mddev, char *page)
4459 if (mddev->external_size)
4460 return sprintf(page, "%llu\n",
4461 (unsigned long long)mddev->array_sectors/2);
4462 else
4463 return sprintf(page, "default\n");
4466 static ssize_t
4467 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4469 sector_t sectors;
4471 if (strncmp(buf, "default", 7) == 0) {
4472 if (mddev->pers)
4473 sectors = mddev->pers->size(mddev, 0, 0);
4474 else
4475 sectors = mddev->array_sectors;
4477 mddev->external_size = 0;
4478 } else {
4479 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4480 return -EINVAL;
4481 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4482 return -E2BIG;
4484 mddev->external_size = 1;
4487 mddev->array_sectors = sectors;
4488 if (mddev->pers) {
4489 set_capacity(mddev->gendisk, mddev->array_sectors);
4490 revalidate_disk(mddev->gendisk);
4492 return len;
4495 static struct md_sysfs_entry md_array_size =
4496 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4497 array_size_store);
4499 static struct attribute *md_default_attrs[] = {
4500 &md_level.attr,
4501 &md_layout.attr,
4502 &md_raid_disks.attr,
4503 &md_chunk_size.attr,
4504 &md_size.attr,
4505 &md_resync_start.attr,
4506 &md_metadata.attr,
4507 &md_new_device.attr,
4508 &md_safe_delay.attr,
4509 &md_array_state.attr,
4510 &md_reshape_position.attr,
4511 &md_array_size.attr,
4512 &max_corr_read_errors.attr,
4513 NULL,
4516 static struct attribute *md_redundancy_attrs[] = {
4517 &md_scan_mode.attr,
4518 &md_mismatches.attr,
4519 &md_sync_min.attr,
4520 &md_sync_max.attr,
4521 &md_sync_speed.attr,
4522 &md_sync_force_parallel.attr,
4523 &md_sync_completed.attr,
4524 &md_min_sync.attr,
4525 &md_max_sync.attr,
4526 &md_suspend_lo.attr,
4527 &md_suspend_hi.attr,
4528 &md_bitmap.attr,
4529 &md_degraded.attr,
4530 NULL,
4532 static struct attribute_group md_redundancy_group = {
4533 .name = NULL,
4534 .attrs = md_redundancy_attrs,
4538 static ssize_t
4539 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4541 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4542 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4543 ssize_t rv;
4545 if (!entry->show)
4546 return -EIO;
4547 spin_lock(&all_mddevs_lock);
4548 if (list_empty(&mddev->all_mddevs)) {
4549 spin_unlock(&all_mddevs_lock);
4550 return -EBUSY;
4552 mddev_get(mddev);
4553 spin_unlock(&all_mddevs_lock);
4555 rv = mddev_lock(mddev);
4556 if (!rv) {
4557 rv = entry->show(mddev, page);
4558 mddev_unlock(mddev);
4560 mddev_put(mddev);
4561 return rv;
4564 static ssize_t
4565 md_attr_store(struct kobject *kobj, struct attribute *attr,
4566 const char *page, size_t length)
4568 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4569 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4570 ssize_t rv;
4572 if (!entry->store)
4573 return -EIO;
4574 if (!capable(CAP_SYS_ADMIN))
4575 return -EACCES;
4576 spin_lock(&all_mddevs_lock);
4577 if (list_empty(&mddev->all_mddevs)) {
4578 spin_unlock(&all_mddevs_lock);
4579 return -EBUSY;
4581 mddev_get(mddev);
4582 spin_unlock(&all_mddevs_lock);
4583 rv = mddev_lock(mddev);
4584 if (!rv) {
4585 rv = entry->store(mddev, page, length);
4586 mddev_unlock(mddev);
4588 mddev_put(mddev);
4589 return rv;
4592 static void md_free(struct kobject *ko)
4594 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4596 if (mddev->sysfs_state)
4597 sysfs_put(mddev->sysfs_state);
4599 if (mddev->gendisk) {
4600 del_gendisk(mddev->gendisk);
4601 put_disk(mddev->gendisk);
4603 if (mddev->queue)
4604 blk_cleanup_queue(mddev->queue);
4606 kfree(mddev);
4609 static const struct sysfs_ops md_sysfs_ops = {
4610 .show = md_attr_show,
4611 .store = md_attr_store,
4613 static struct kobj_type md_ktype = {
4614 .release = md_free,
4615 .sysfs_ops = &md_sysfs_ops,
4616 .default_attrs = md_default_attrs,
4619 int mdp_major = 0;
4621 static void mddev_delayed_delete(struct work_struct *ws)
4623 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4625 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4626 kobject_del(&mddev->kobj);
4627 kobject_put(&mddev->kobj);
4630 static int md_alloc(dev_t dev, char *name)
4632 static DEFINE_MUTEX(disks_mutex);
4633 struct mddev *mddev = mddev_find(dev);
4634 struct gendisk *disk;
4635 int partitioned;
4636 int shift;
4637 int unit;
4638 int error;
4640 if (!mddev)
4641 return -ENODEV;
4643 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4644 shift = partitioned ? MdpMinorShift : 0;
4645 unit = MINOR(mddev->unit) >> shift;
4647 /* wait for any previous instance of this device to be
4648 * completely removed (mddev_delayed_delete).
4650 flush_workqueue(md_misc_wq);
4652 mutex_lock(&disks_mutex);
4653 error = -EEXIST;
4654 if (mddev->gendisk)
4655 goto abort;
4657 if (name) {
4658 /* Need to ensure that 'name' is not a duplicate.
4660 struct mddev *mddev2;
4661 spin_lock(&all_mddevs_lock);
4663 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4664 if (mddev2->gendisk &&
4665 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4666 spin_unlock(&all_mddevs_lock);
4667 goto abort;
4669 spin_unlock(&all_mddevs_lock);
4672 error = -ENOMEM;
4673 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4674 if (!mddev->queue)
4675 goto abort;
4676 mddev->queue->queuedata = mddev;
4678 blk_queue_make_request(mddev->queue, md_make_request);
4679 blk_set_stacking_limits(&mddev->queue->limits);
4681 disk = alloc_disk(1 << shift);
4682 if (!disk) {
4683 blk_cleanup_queue(mddev->queue);
4684 mddev->queue = NULL;
4685 goto abort;
4687 disk->major = MAJOR(mddev->unit);
4688 disk->first_minor = unit << shift;
4689 if (name)
4690 strcpy(disk->disk_name, name);
4691 else if (partitioned)
4692 sprintf(disk->disk_name, "md_d%d", unit);
4693 else
4694 sprintf(disk->disk_name, "md%d", unit);
4695 disk->fops = &md_fops;
4696 disk->private_data = mddev;
4697 disk->queue = mddev->queue;
4698 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4699 /* Allow extended partitions. This makes the
4700 * 'mdp' device redundant, but we can't really
4701 * remove it now.
4703 disk->flags |= GENHD_FL_EXT_DEVT;
4704 mddev->gendisk = disk;
4705 /* As soon as we call add_disk(), another thread could get
4706 * through to md_open, so make sure it doesn't get too far
4708 mutex_lock(&mddev->open_mutex);
4709 add_disk(disk);
4711 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4712 &disk_to_dev(disk)->kobj, "%s", "md");
4713 if (error) {
4714 /* This isn't possible, but as kobject_init_and_add is marked
4715 * __must_check, we must do something with the result
4717 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4718 disk->disk_name);
4719 error = 0;
4721 if (mddev->kobj.sd &&
4722 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4723 printk(KERN_DEBUG "pointless warning\n");
4724 mutex_unlock(&mddev->open_mutex);
4725 abort:
4726 mutex_unlock(&disks_mutex);
4727 if (!error && mddev->kobj.sd) {
4728 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4729 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4731 mddev_put(mddev);
4732 return error;
4735 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4737 md_alloc(dev, NULL);
4738 return NULL;
4741 static int add_named_array(const char *val, struct kernel_param *kp)
4743 /* val must be "md_*" where * is not all digits.
4744 * We allocate an array with a large free minor number, and
4745 * set the name to val. val must not already be an active name.
4747 int len = strlen(val);
4748 char buf[DISK_NAME_LEN];
4750 while (len && val[len-1] == '\n')
4751 len--;
4752 if (len >= DISK_NAME_LEN)
4753 return -E2BIG;
4754 strlcpy(buf, val, len+1);
4755 if (strncmp(buf, "md_", 3) != 0)
4756 return -EINVAL;
4757 return md_alloc(0, buf);
4760 static void md_safemode_timeout(unsigned long data)
4762 struct mddev *mddev = (struct mddev *) data;
4764 if (!atomic_read(&mddev->writes_pending)) {
4765 mddev->safemode = 1;
4766 if (mddev->external)
4767 sysfs_notify_dirent_safe(mddev->sysfs_state);
4769 md_wakeup_thread(mddev->thread);
4772 static int start_dirty_degraded;
4774 int md_run(struct mddev *mddev)
4776 int err;
4777 struct md_rdev *rdev;
4778 struct md_personality *pers;
4780 if (list_empty(&mddev->disks))
4781 /* cannot run an array with no devices.. */
4782 return -EINVAL;
4784 if (mddev->pers)
4785 return -EBUSY;
4786 /* Cannot run until previous stop completes properly */
4787 if (mddev->sysfs_active)
4788 return -EBUSY;
4791 * Analyze all RAID superblock(s)
4793 if (!mddev->raid_disks) {
4794 if (!mddev->persistent)
4795 return -EINVAL;
4796 analyze_sbs(mddev);
4799 if (mddev->level != LEVEL_NONE)
4800 request_module("md-level-%d", mddev->level);
4801 else if (mddev->clevel[0])
4802 request_module("md-%s", mddev->clevel);
4805 * Drop all container device buffers, from now on
4806 * the only valid external interface is through the md
4807 * device.
4809 rdev_for_each(rdev, mddev) {
4810 if (test_bit(Faulty, &rdev->flags))
4811 continue;
4812 sync_blockdev(rdev->bdev);
4813 invalidate_bdev(rdev->bdev);
4815 /* perform some consistency tests on the device.
4816 * We don't want the data to overlap the metadata,
4817 * Internal Bitmap issues have been handled elsewhere.
4819 if (rdev->meta_bdev) {
4820 /* Nothing to check */;
4821 } else if (rdev->data_offset < rdev->sb_start) {
4822 if (mddev->dev_sectors &&
4823 rdev->data_offset + mddev->dev_sectors
4824 > rdev->sb_start) {
4825 printk("md: %s: data overlaps metadata\n",
4826 mdname(mddev));
4827 return -EINVAL;
4829 } else {
4830 if (rdev->sb_start + rdev->sb_size/512
4831 > rdev->data_offset) {
4832 printk("md: %s: metadata overlaps data\n",
4833 mdname(mddev));
4834 return -EINVAL;
4837 sysfs_notify_dirent_safe(rdev->sysfs_state);
4840 if (mddev->bio_set == NULL)
4841 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4842 sizeof(struct mddev *));
4844 spin_lock(&pers_lock);
4845 pers = find_pers(mddev->level, mddev->clevel);
4846 if (!pers || !try_module_get(pers->owner)) {
4847 spin_unlock(&pers_lock);
4848 if (mddev->level != LEVEL_NONE)
4849 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4850 mddev->level);
4851 else
4852 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4853 mddev->clevel);
4854 return -EINVAL;
4856 mddev->pers = pers;
4857 spin_unlock(&pers_lock);
4858 if (mddev->level != pers->level) {
4859 mddev->level = pers->level;
4860 mddev->new_level = pers->level;
4862 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4864 if (mddev->reshape_position != MaxSector &&
4865 pers->start_reshape == NULL) {
4866 /* This personality cannot handle reshaping... */
4867 mddev->pers = NULL;
4868 module_put(pers->owner);
4869 return -EINVAL;
4872 if (pers->sync_request) {
4873 /* Warn if this is a potentially silly
4874 * configuration.
4876 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4877 struct md_rdev *rdev2;
4878 int warned = 0;
4880 rdev_for_each(rdev, mddev)
4881 rdev_for_each(rdev2, mddev) {
4882 if (rdev < rdev2 &&
4883 rdev->bdev->bd_contains ==
4884 rdev2->bdev->bd_contains) {
4885 printk(KERN_WARNING
4886 "%s: WARNING: %s appears to be"
4887 " on the same physical disk as"
4888 " %s.\n",
4889 mdname(mddev),
4890 bdevname(rdev->bdev,b),
4891 bdevname(rdev2->bdev,b2));
4892 warned = 1;
4896 if (warned)
4897 printk(KERN_WARNING
4898 "True protection against single-disk"
4899 " failure might be compromised.\n");
4902 mddev->recovery = 0;
4903 /* may be over-ridden by personality */
4904 mddev->resync_max_sectors = mddev->dev_sectors;
4906 mddev->ok_start_degraded = start_dirty_degraded;
4908 if (start_readonly && mddev->ro == 0)
4909 mddev->ro = 2; /* read-only, but switch on first write */
4911 err = mddev->pers->run(mddev);
4912 if (err)
4913 printk(KERN_ERR "md: pers->run() failed ...\n");
4914 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4915 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4916 " but 'external_size' not in effect?\n", __func__);
4917 printk(KERN_ERR
4918 "md: invalid array_size %llu > default size %llu\n",
4919 (unsigned long long)mddev->array_sectors / 2,
4920 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4921 err = -EINVAL;
4922 mddev->pers->stop(mddev);
4924 if (err == 0 && mddev->pers->sync_request) {
4925 err = bitmap_create(mddev);
4926 if (err) {
4927 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4928 mdname(mddev), err);
4929 mddev->pers->stop(mddev);
4932 if (err) {
4933 module_put(mddev->pers->owner);
4934 mddev->pers = NULL;
4935 bitmap_destroy(mddev);
4936 return err;
4938 if (mddev->pers->sync_request) {
4939 if (mddev->kobj.sd &&
4940 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4941 printk(KERN_WARNING
4942 "md: cannot register extra attributes for %s\n",
4943 mdname(mddev));
4944 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4945 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4946 mddev->ro = 0;
4948 atomic_set(&mddev->writes_pending,0);
4949 atomic_set(&mddev->max_corr_read_errors,
4950 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4951 mddev->safemode = 0;
4952 mddev->safemode_timer.function = md_safemode_timeout;
4953 mddev->safemode_timer.data = (unsigned long) mddev;
4954 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4955 mddev->in_sync = 1;
4956 smp_wmb();
4957 mddev->ready = 1;
4958 rdev_for_each(rdev, mddev)
4959 if (rdev->raid_disk >= 0)
4960 if (sysfs_link_rdev(mddev, rdev))
4961 /* failure here is OK */;
4963 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4965 if (mddev->flags)
4966 md_update_sb(mddev, 0);
4968 md_new_event(mddev);
4969 sysfs_notify_dirent_safe(mddev->sysfs_state);
4970 sysfs_notify_dirent_safe(mddev->sysfs_action);
4971 sysfs_notify(&mddev->kobj, NULL, "degraded");
4972 return 0;
4974 EXPORT_SYMBOL_GPL(md_run);
4976 static int do_md_run(struct mddev *mddev)
4978 int err;
4980 err = md_run(mddev);
4981 if (err)
4982 goto out;
4983 err = bitmap_load(mddev);
4984 if (err) {
4985 bitmap_destroy(mddev);
4986 goto out;
4989 md_wakeup_thread(mddev->thread);
4990 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4992 set_capacity(mddev->gendisk, mddev->array_sectors);
4993 revalidate_disk(mddev->gendisk);
4994 mddev->changed = 1;
4995 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4996 out:
4997 return err;
5000 static int restart_array(struct mddev *mddev)
5002 struct gendisk *disk = mddev->gendisk;
5004 /* Complain if it has no devices */
5005 if (list_empty(&mddev->disks))
5006 return -ENXIO;
5007 if (!mddev->pers)
5008 return -EINVAL;
5009 if (!mddev->ro)
5010 return -EBUSY;
5011 mddev->safemode = 0;
5012 mddev->ro = 0;
5013 set_disk_ro(disk, 0);
5014 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5015 mdname(mddev));
5016 /* Kick recovery or resync if necessary */
5017 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5018 md_wakeup_thread(mddev->thread);
5019 md_wakeup_thread(mddev->sync_thread);
5020 sysfs_notify_dirent_safe(mddev->sysfs_state);
5021 return 0;
5024 /* similar to deny_write_access, but accounts for our holding a reference
5025 * to the file ourselves */
5026 static int deny_bitmap_write_access(struct file * file)
5028 struct inode *inode = file->f_mapping->host;
5030 spin_lock(&inode->i_lock);
5031 if (atomic_read(&inode->i_writecount) > 1) {
5032 spin_unlock(&inode->i_lock);
5033 return -ETXTBSY;
5035 atomic_set(&inode->i_writecount, -1);
5036 spin_unlock(&inode->i_lock);
5038 return 0;
5041 void restore_bitmap_write_access(struct file *file)
5043 struct inode *inode = file->f_mapping->host;
5045 spin_lock(&inode->i_lock);
5046 atomic_set(&inode->i_writecount, 1);
5047 spin_unlock(&inode->i_lock);
5050 static void md_clean(struct mddev *mddev)
5052 mddev->array_sectors = 0;
5053 mddev->external_size = 0;
5054 mddev->dev_sectors = 0;
5055 mddev->raid_disks = 0;
5056 mddev->recovery_cp = 0;
5057 mddev->resync_min = 0;
5058 mddev->resync_max = MaxSector;
5059 mddev->reshape_position = MaxSector;
5060 mddev->external = 0;
5061 mddev->persistent = 0;
5062 mddev->level = LEVEL_NONE;
5063 mddev->clevel[0] = 0;
5064 mddev->flags = 0;
5065 mddev->ro = 0;
5066 mddev->metadata_type[0] = 0;
5067 mddev->chunk_sectors = 0;
5068 mddev->ctime = mddev->utime = 0;
5069 mddev->layout = 0;
5070 mddev->max_disks = 0;
5071 mddev->events = 0;
5072 mddev->can_decrease_events = 0;
5073 mddev->delta_disks = 0;
5074 mddev->new_level = LEVEL_NONE;
5075 mddev->new_layout = 0;
5076 mddev->new_chunk_sectors = 0;
5077 mddev->curr_resync = 0;
5078 mddev->resync_mismatches = 0;
5079 mddev->suspend_lo = mddev->suspend_hi = 0;
5080 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5081 mddev->recovery = 0;
5082 mddev->in_sync = 0;
5083 mddev->changed = 0;
5084 mddev->degraded = 0;
5085 mddev->safemode = 0;
5086 mddev->merge_check_needed = 0;
5087 mddev->bitmap_info.offset = 0;
5088 mddev->bitmap_info.default_offset = 0;
5089 mddev->bitmap_info.chunksize = 0;
5090 mddev->bitmap_info.daemon_sleep = 0;
5091 mddev->bitmap_info.max_write_behind = 0;
5094 static void __md_stop_writes(struct mddev *mddev)
5096 if (mddev->sync_thread) {
5097 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5098 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5099 reap_sync_thread(mddev);
5102 del_timer_sync(&mddev->safemode_timer);
5104 bitmap_flush(mddev);
5105 md_super_wait(mddev);
5107 if (!mddev->in_sync || mddev->flags) {
5108 /* mark array as shutdown cleanly */
5109 mddev->in_sync = 1;
5110 md_update_sb(mddev, 1);
5114 void md_stop_writes(struct mddev *mddev)
5116 mddev_lock(mddev);
5117 __md_stop_writes(mddev);
5118 mddev_unlock(mddev);
5120 EXPORT_SYMBOL_GPL(md_stop_writes);
5122 void md_stop(struct mddev *mddev)
5124 mddev->ready = 0;
5125 mddev->pers->stop(mddev);
5126 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5127 mddev->to_remove = &md_redundancy_group;
5128 module_put(mddev->pers->owner);
5129 mddev->pers = NULL;
5130 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5132 EXPORT_SYMBOL_GPL(md_stop);
5134 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5136 int err = 0;
5137 mutex_lock(&mddev->open_mutex);
5138 if (atomic_read(&mddev->openers) > !!bdev) {
5139 printk("md: %s still in use.\n",mdname(mddev));
5140 err = -EBUSY;
5141 goto out;
5143 if (bdev)
5144 sync_blockdev(bdev);
5145 if (mddev->pers) {
5146 __md_stop_writes(mddev);
5148 err = -ENXIO;
5149 if (mddev->ro==1)
5150 goto out;
5151 mddev->ro = 1;
5152 set_disk_ro(mddev->gendisk, 1);
5153 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5154 sysfs_notify_dirent_safe(mddev->sysfs_state);
5155 err = 0;
5157 out:
5158 mutex_unlock(&mddev->open_mutex);
5159 return err;
5162 /* mode:
5163 * 0 - completely stop and dis-assemble array
5164 * 2 - stop but do not disassemble array
5166 static int do_md_stop(struct mddev * mddev, int mode,
5167 struct block_device *bdev)
5169 struct gendisk *disk = mddev->gendisk;
5170 struct md_rdev *rdev;
5172 mutex_lock(&mddev->open_mutex);
5173 if (atomic_read(&mddev->openers) > !!bdev ||
5174 mddev->sysfs_active) {
5175 printk("md: %s still in use.\n",mdname(mddev));
5176 mutex_unlock(&mddev->open_mutex);
5177 return -EBUSY;
5179 if (bdev)
5180 /* It is possible IO was issued on some other
5181 * open file which was closed before we took ->open_mutex.
5182 * As that was not the last close __blkdev_put will not
5183 * have called sync_blockdev, so we must.
5185 sync_blockdev(bdev);
5187 if (mddev->pers) {
5188 if (mddev->ro)
5189 set_disk_ro(disk, 0);
5191 __md_stop_writes(mddev);
5192 md_stop(mddev);
5193 mddev->queue->merge_bvec_fn = NULL;
5194 mddev->queue->backing_dev_info.congested_fn = NULL;
5196 /* tell userspace to handle 'inactive' */
5197 sysfs_notify_dirent_safe(mddev->sysfs_state);
5199 rdev_for_each(rdev, mddev)
5200 if (rdev->raid_disk >= 0)
5201 sysfs_unlink_rdev(mddev, rdev);
5203 set_capacity(disk, 0);
5204 mutex_unlock(&mddev->open_mutex);
5205 mddev->changed = 1;
5206 revalidate_disk(disk);
5208 if (mddev->ro)
5209 mddev->ro = 0;
5210 } else
5211 mutex_unlock(&mddev->open_mutex);
5213 * Free resources if final stop
5215 if (mode == 0) {
5216 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5218 bitmap_destroy(mddev);
5219 if (mddev->bitmap_info.file) {
5220 restore_bitmap_write_access(mddev->bitmap_info.file);
5221 fput(mddev->bitmap_info.file);
5222 mddev->bitmap_info.file = NULL;
5224 mddev->bitmap_info.offset = 0;
5226 export_array(mddev);
5228 md_clean(mddev);
5229 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5230 if (mddev->hold_active == UNTIL_STOP)
5231 mddev->hold_active = 0;
5233 blk_integrity_unregister(disk);
5234 md_new_event(mddev);
5235 sysfs_notify_dirent_safe(mddev->sysfs_state);
5236 return 0;
5239 #ifndef MODULE
5240 static void autorun_array(struct mddev *mddev)
5242 struct md_rdev *rdev;
5243 int err;
5245 if (list_empty(&mddev->disks))
5246 return;
5248 printk(KERN_INFO "md: running: ");
5250 rdev_for_each(rdev, mddev) {
5251 char b[BDEVNAME_SIZE];
5252 printk("<%s>", bdevname(rdev->bdev,b));
5254 printk("\n");
5256 err = do_md_run(mddev);
5257 if (err) {
5258 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5259 do_md_stop(mddev, 0, NULL);
5264 * lets try to run arrays based on all disks that have arrived
5265 * until now. (those are in pending_raid_disks)
5267 * the method: pick the first pending disk, collect all disks with
5268 * the same UUID, remove all from the pending list and put them into
5269 * the 'same_array' list. Then order this list based on superblock
5270 * update time (freshest comes first), kick out 'old' disks and
5271 * compare superblocks. If everything's fine then run it.
5273 * If "unit" is allocated, then bump its reference count
5275 static void autorun_devices(int part)
5277 struct md_rdev *rdev0, *rdev, *tmp;
5278 struct mddev *mddev;
5279 char b[BDEVNAME_SIZE];
5281 printk(KERN_INFO "md: autorun ...\n");
5282 while (!list_empty(&pending_raid_disks)) {
5283 int unit;
5284 dev_t dev;
5285 LIST_HEAD(candidates);
5286 rdev0 = list_entry(pending_raid_disks.next,
5287 struct md_rdev, same_set);
5289 printk(KERN_INFO "md: considering %s ...\n",
5290 bdevname(rdev0->bdev,b));
5291 INIT_LIST_HEAD(&candidates);
5292 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5293 if (super_90_load(rdev, rdev0, 0) >= 0) {
5294 printk(KERN_INFO "md: adding %s ...\n",
5295 bdevname(rdev->bdev,b));
5296 list_move(&rdev->same_set, &candidates);
5299 * now we have a set of devices, with all of them having
5300 * mostly sane superblocks. It's time to allocate the
5301 * mddev.
5303 if (part) {
5304 dev = MKDEV(mdp_major,
5305 rdev0->preferred_minor << MdpMinorShift);
5306 unit = MINOR(dev) >> MdpMinorShift;
5307 } else {
5308 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5309 unit = MINOR(dev);
5311 if (rdev0->preferred_minor != unit) {
5312 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5313 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5314 break;
5317 md_probe(dev, NULL, NULL);
5318 mddev = mddev_find(dev);
5319 if (!mddev || !mddev->gendisk) {
5320 if (mddev)
5321 mddev_put(mddev);
5322 printk(KERN_ERR
5323 "md: cannot allocate memory for md drive.\n");
5324 break;
5326 if (mddev_lock(mddev))
5327 printk(KERN_WARNING "md: %s locked, cannot run\n",
5328 mdname(mddev));
5329 else if (mddev->raid_disks || mddev->major_version
5330 || !list_empty(&mddev->disks)) {
5331 printk(KERN_WARNING
5332 "md: %s already running, cannot run %s\n",
5333 mdname(mddev), bdevname(rdev0->bdev,b));
5334 mddev_unlock(mddev);
5335 } else {
5336 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5337 mddev->persistent = 1;
5338 rdev_for_each_list(rdev, tmp, &candidates) {
5339 list_del_init(&rdev->same_set);
5340 if (bind_rdev_to_array(rdev, mddev))
5341 export_rdev(rdev);
5343 autorun_array(mddev);
5344 mddev_unlock(mddev);
5346 /* on success, candidates will be empty, on error
5347 * it won't...
5349 rdev_for_each_list(rdev, tmp, &candidates) {
5350 list_del_init(&rdev->same_set);
5351 export_rdev(rdev);
5353 mddev_put(mddev);
5355 printk(KERN_INFO "md: ... autorun DONE.\n");
5357 #endif /* !MODULE */
5359 static int get_version(void __user * arg)
5361 mdu_version_t ver;
5363 ver.major = MD_MAJOR_VERSION;
5364 ver.minor = MD_MINOR_VERSION;
5365 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5367 if (copy_to_user(arg, &ver, sizeof(ver)))
5368 return -EFAULT;
5370 return 0;
5373 static int get_array_info(struct mddev * mddev, void __user * arg)
5375 mdu_array_info_t info;
5376 int nr,working,insync,failed,spare;
5377 struct md_rdev *rdev;
5379 nr=working=insync=failed=spare=0;
5380 rdev_for_each(rdev, mddev) {
5381 nr++;
5382 if (test_bit(Faulty, &rdev->flags))
5383 failed++;
5384 else {
5385 working++;
5386 if (test_bit(In_sync, &rdev->flags))
5387 insync++;
5388 else
5389 spare++;
5393 info.major_version = mddev->major_version;
5394 info.minor_version = mddev->minor_version;
5395 info.patch_version = MD_PATCHLEVEL_VERSION;
5396 info.ctime = mddev->ctime;
5397 info.level = mddev->level;
5398 info.size = mddev->dev_sectors / 2;
5399 if (info.size != mddev->dev_sectors / 2) /* overflow */
5400 info.size = -1;
5401 info.nr_disks = nr;
5402 info.raid_disks = mddev->raid_disks;
5403 info.md_minor = mddev->md_minor;
5404 info.not_persistent= !mddev->persistent;
5406 info.utime = mddev->utime;
5407 info.state = 0;
5408 if (mddev->in_sync)
5409 info.state = (1<<MD_SB_CLEAN);
5410 if (mddev->bitmap && mddev->bitmap_info.offset)
5411 info.state = (1<<MD_SB_BITMAP_PRESENT);
5412 info.active_disks = insync;
5413 info.working_disks = working;
5414 info.failed_disks = failed;
5415 info.spare_disks = spare;
5417 info.layout = mddev->layout;
5418 info.chunk_size = mddev->chunk_sectors << 9;
5420 if (copy_to_user(arg, &info, sizeof(info)))
5421 return -EFAULT;
5423 return 0;
5426 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5428 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5429 char *ptr, *buf = NULL;
5430 int err = -ENOMEM;
5432 if (md_allow_write(mddev))
5433 file = kmalloc(sizeof(*file), GFP_NOIO);
5434 else
5435 file = kmalloc(sizeof(*file), GFP_KERNEL);
5437 if (!file)
5438 goto out;
5440 /* bitmap disabled, zero the first byte and copy out */
5441 if (!mddev->bitmap || !mddev->bitmap->file) {
5442 file->pathname[0] = '\0';
5443 goto copy_out;
5446 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5447 if (!buf)
5448 goto out;
5450 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5451 if (IS_ERR(ptr))
5452 goto out;
5454 strcpy(file->pathname, ptr);
5456 copy_out:
5457 err = 0;
5458 if (copy_to_user(arg, file, sizeof(*file)))
5459 err = -EFAULT;
5460 out:
5461 kfree(buf);
5462 kfree(file);
5463 return err;
5466 static int get_disk_info(struct mddev * mddev, void __user * arg)
5468 mdu_disk_info_t info;
5469 struct md_rdev *rdev;
5471 if (copy_from_user(&info, arg, sizeof(info)))
5472 return -EFAULT;
5474 rdev = find_rdev_nr(mddev, info.number);
5475 if (rdev) {
5476 info.major = MAJOR(rdev->bdev->bd_dev);
5477 info.minor = MINOR(rdev->bdev->bd_dev);
5478 info.raid_disk = rdev->raid_disk;
5479 info.state = 0;
5480 if (test_bit(Faulty, &rdev->flags))
5481 info.state |= (1<<MD_DISK_FAULTY);
5482 else if (test_bit(In_sync, &rdev->flags)) {
5483 info.state |= (1<<MD_DISK_ACTIVE);
5484 info.state |= (1<<MD_DISK_SYNC);
5486 if (test_bit(WriteMostly, &rdev->flags))
5487 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5488 } else {
5489 info.major = info.minor = 0;
5490 info.raid_disk = -1;
5491 info.state = (1<<MD_DISK_REMOVED);
5494 if (copy_to_user(arg, &info, sizeof(info)))
5495 return -EFAULT;
5497 return 0;
5500 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5502 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5503 struct md_rdev *rdev;
5504 dev_t dev = MKDEV(info->major,info->minor);
5506 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5507 return -EOVERFLOW;
5509 if (!mddev->raid_disks) {
5510 int err;
5511 /* expecting a device which has a superblock */
5512 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5513 if (IS_ERR(rdev)) {
5514 printk(KERN_WARNING
5515 "md: md_import_device returned %ld\n",
5516 PTR_ERR(rdev));
5517 return PTR_ERR(rdev);
5519 if (!list_empty(&mddev->disks)) {
5520 struct md_rdev *rdev0
5521 = list_entry(mddev->disks.next,
5522 struct md_rdev, same_set);
5523 err = super_types[mddev->major_version]
5524 .load_super(rdev, rdev0, mddev->minor_version);
5525 if (err < 0) {
5526 printk(KERN_WARNING
5527 "md: %s has different UUID to %s\n",
5528 bdevname(rdev->bdev,b),
5529 bdevname(rdev0->bdev,b2));
5530 export_rdev(rdev);
5531 return -EINVAL;
5534 err = bind_rdev_to_array(rdev, mddev);
5535 if (err)
5536 export_rdev(rdev);
5537 return err;
5541 * add_new_disk can be used once the array is assembled
5542 * to add "hot spares". They must already have a superblock
5543 * written
5545 if (mddev->pers) {
5546 int err;
5547 if (!mddev->pers->hot_add_disk) {
5548 printk(KERN_WARNING
5549 "%s: personality does not support diskops!\n",
5550 mdname(mddev));
5551 return -EINVAL;
5553 if (mddev->persistent)
5554 rdev = md_import_device(dev, mddev->major_version,
5555 mddev->minor_version);
5556 else
5557 rdev = md_import_device(dev, -1, -1);
5558 if (IS_ERR(rdev)) {
5559 printk(KERN_WARNING
5560 "md: md_import_device returned %ld\n",
5561 PTR_ERR(rdev));
5562 return PTR_ERR(rdev);
5564 /* set saved_raid_disk if appropriate */
5565 if (!mddev->persistent) {
5566 if (info->state & (1<<MD_DISK_SYNC) &&
5567 info->raid_disk < mddev->raid_disks) {
5568 rdev->raid_disk = info->raid_disk;
5569 set_bit(In_sync, &rdev->flags);
5570 } else
5571 rdev->raid_disk = -1;
5572 } else
5573 super_types[mddev->major_version].
5574 validate_super(mddev, rdev);
5575 if ((info->state & (1<<MD_DISK_SYNC)) &&
5576 (!test_bit(In_sync, &rdev->flags) ||
5577 rdev->raid_disk != info->raid_disk)) {
5578 /* This was a hot-add request, but events doesn't
5579 * match, so reject it.
5581 export_rdev(rdev);
5582 return -EINVAL;
5585 if (test_bit(In_sync, &rdev->flags))
5586 rdev->saved_raid_disk = rdev->raid_disk;
5587 else
5588 rdev->saved_raid_disk = -1;
5590 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5591 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5592 set_bit(WriteMostly, &rdev->flags);
5593 else
5594 clear_bit(WriteMostly, &rdev->flags);
5596 rdev->raid_disk = -1;
5597 err = bind_rdev_to_array(rdev, mddev);
5598 if (!err && !mddev->pers->hot_remove_disk) {
5599 /* If there is hot_add_disk but no hot_remove_disk
5600 * then added disks for geometry changes,
5601 * and should be added immediately.
5603 super_types[mddev->major_version].
5604 validate_super(mddev, rdev);
5605 err = mddev->pers->hot_add_disk(mddev, rdev);
5606 if (err)
5607 unbind_rdev_from_array(rdev);
5609 if (err)
5610 export_rdev(rdev);
5611 else
5612 sysfs_notify_dirent_safe(rdev->sysfs_state);
5614 md_update_sb(mddev, 1);
5615 if (mddev->degraded)
5616 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5617 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5618 if (!err)
5619 md_new_event(mddev);
5620 md_wakeup_thread(mddev->thread);
5621 return err;
5624 /* otherwise, add_new_disk is only allowed
5625 * for major_version==0 superblocks
5627 if (mddev->major_version != 0) {
5628 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5629 mdname(mddev));
5630 return -EINVAL;
5633 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5634 int err;
5635 rdev = md_import_device(dev, -1, 0);
5636 if (IS_ERR(rdev)) {
5637 printk(KERN_WARNING
5638 "md: error, md_import_device() returned %ld\n",
5639 PTR_ERR(rdev));
5640 return PTR_ERR(rdev);
5642 rdev->desc_nr = info->number;
5643 if (info->raid_disk < mddev->raid_disks)
5644 rdev->raid_disk = info->raid_disk;
5645 else
5646 rdev->raid_disk = -1;
5648 if (rdev->raid_disk < mddev->raid_disks)
5649 if (info->state & (1<<MD_DISK_SYNC))
5650 set_bit(In_sync, &rdev->flags);
5652 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5653 set_bit(WriteMostly, &rdev->flags);
5655 if (!mddev->persistent) {
5656 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5657 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5658 } else
5659 rdev->sb_start = calc_dev_sboffset(rdev);
5660 rdev->sectors = rdev->sb_start;
5662 err = bind_rdev_to_array(rdev, mddev);
5663 if (err) {
5664 export_rdev(rdev);
5665 return err;
5669 return 0;
5672 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5674 char b[BDEVNAME_SIZE];
5675 struct md_rdev *rdev;
5677 rdev = find_rdev(mddev, dev);
5678 if (!rdev)
5679 return -ENXIO;
5681 if (rdev->raid_disk >= 0)
5682 goto busy;
5684 kick_rdev_from_array(rdev);
5685 md_update_sb(mddev, 1);
5686 md_new_event(mddev);
5688 return 0;
5689 busy:
5690 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5691 bdevname(rdev->bdev,b), mdname(mddev));
5692 return -EBUSY;
5695 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5697 char b[BDEVNAME_SIZE];
5698 int err;
5699 struct md_rdev *rdev;
5701 if (!mddev->pers)
5702 return -ENODEV;
5704 if (mddev->major_version != 0) {
5705 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5706 " version-0 superblocks.\n",
5707 mdname(mddev));
5708 return -EINVAL;
5710 if (!mddev->pers->hot_add_disk) {
5711 printk(KERN_WARNING
5712 "%s: personality does not support diskops!\n",
5713 mdname(mddev));
5714 return -EINVAL;
5717 rdev = md_import_device(dev, -1, 0);
5718 if (IS_ERR(rdev)) {
5719 printk(KERN_WARNING
5720 "md: error, md_import_device() returned %ld\n",
5721 PTR_ERR(rdev));
5722 return -EINVAL;
5725 if (mddev->persistent)
5726 rdev->sb_start = calc_dev_sboffset(rdev);
5727 else
5728 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5730 rdev->sectors = rdev->sb_start;
5732 if (test_bit(Faulty, &rdev->flags)) {
5733 printk(KERN_WARNING
5734 "md: can not hot-add faulty %s disk to %s!\n",
5735 bdevname(rdev->bdev,b), mdname(mddev));
5736 err = -EINVAL;
5737 goto abort_export;
5739 clear_bit(In_sync, &rdev->flags);
5740 rdev->desc_nr = -1;
5741 rdev->saved_raid_disk = -1;
5742 err = bind_rdev_to_array(rdev, mddev);
5743 if (err)
5744 goto abort_export;
5747 * The rest should better be atomic, we can have disk failures
5748 * noticed in interrupt contexts ...
5751 rdev->raid_disk = -1;
5753 md_update_sb(mddev, 1);
5756 * Kick recovery, maybe this spare has to be added to the
5757 * array immediately.
5759 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5760 md_wakeup_thread(mddev->thread);
5761 md_new_event(mddev);
5762 return 0;
5764 abort_export:
5765 export_rdev(rdev);
5766 return err;
5769 static int set_bitmap_file(struct mddev *mddev, int fd)
5771 int err;
5773 if (mddev->pers) {
5774 if (!mddev->pers->quiesce)
5775 return -EBUSY;
5776 if (mddev->recovery || mddev->sync_thread)
5777 return -EBUSY;
5778 /* we should be able to change the bitmap.. */
5782 if (fd >= 0) {
5783 if (mddev->bitmap)
5784 return -EEXIST; /* cannot add when bitmap is present */
5785 mddev->bitmap_info.file = fget(fd);
5787 if (mddev->bitmap_info.file == NULL) {
5788 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5789 mdname(mddev));
5790 return -EBADF;
5793 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5794 if (err) {
5795 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5796 mdname(mddev));
5797 fput(mddev->bitmap_info.file);
5798 mddev->bitmap_info.file = NULL;
5799 return err;
5801 mddev->bitmap_info.offset = 0; /* file overrides offset */
5802 } else if (mddev->bitmap == NULL)
5803 return -ENOENT; /* cannot remove what isn't there */
5804 err = 0;
5805 if (mddev->pers) {
5806 mddev->pers->quiesce(mddev, 1);
5807 if (fd >= 0) {
5808 err = bitmap_create(mddev);
5809 if (!err)
5810 err = bitmap_load(mddev);
5812 if (fd < 0 || err) {
5813 bitmap_destroy(mddev);
5814 fd = -1; /* make sure to put the file */
5816 mddev->pers->quiesce(mddev, 0);
5818 if (fd < 0) {
5819 if (mddev->bitmap_info.file) {
5820 restore_bitmap_write_access(mddev->bitmap_info.file);
5821 fput(mddev->bitmap_info.file);
5823 mddev->bitmap_info.file = NULL;
5826 return err;
5830 * set_array_info is used two different ways
5831 * The original usage is when creating a new array.
5832 * In this usage, raid_disks is > 0 and it together with
5833 * level, size, not_persistent,layout,chunksize determine the
5834 * shape of the array.
5835 * This will always create an array with a type-0.90.0 superblock.
5836 * The newer usage is when assembling an array.
5837 * In this case raid_disks will be 0, and the major_version field is
5838 * use to determine which style super-blocks are to be found on the devices.
5839 * The minor and patch _version numbers are also kept incase the
5840 * super_block handler wishes to interpret them.
5842 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5845 if (info->raid_disks == 0) {
5846 /* just setting version number for superblock loading */
5847 if (info->major_version < 0 ||
5848 info->major_version >= ARRAY_SIZE(super_types) ||
5849 super_types[info->major_version].name == NULL) {
5850 /* maybe try to auto-load a module? */
5851 printk(KERN_INFO
5852 "md: superblock version %d not known\n",
5853 info->major_version);
5854 return -EINVAL;
5856 mddev->major_version = info->major_version;
5857 mddev->minor_version = info->minor_version;
5858 mddev->patch_version = info->patch_version;
5859 mddev->persistent = !info->not_persistent;
5860 /* ensure mddev_put doesn't delete this now that there
5861 * is some minimal configuration.
5863 mddev->ctime = get_seconds();
5864 return 0;
5866 mddev->major_version = MD_MAJOR_VERSION;
5867 mddev->minor_version = MD_MINOR_VERSION;
5868 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5869 mddev->ctime = get_seconds();
5871 mddev->level = info->level;
5872 mddev->clevel[0] = 0;
5873 mddev->dev_sectors = 2 * (sector_t)info->size;
5874 mddev->raid_disks = info->raid_disks;
5875 /* don't set md_minor, it is determined by which /dev/md* was
5876 * openned
5878 if (info->state & (1<<MD_SB_CLEAN))
5879 mddev->recovery_cp = MaxSector;
5880 else
5881 mddev->recovery_cp = 0;
5882 mddev->persistent = ! info->not_persistent;
5883 mddev->external = 0;
5885 mddev->layout = info->layout;
5886 mddev->chunk_sectors = info->chunk_size >> 9;
5888 mddev->max_disks = MD_SB_DISKS;
5890 if (mddev->persistent)
5891 mddev->flags = 0;
5892 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5894 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5895 mddev->bitmap_info.offset = 0;
5897 mddev->reshape_position = MaxSector;
5900 * Generate a 128 bit UUID
5902 get_random_bytes(mddev->uuid, 16);
5904 mddev->new_level = mddev->level;
5905 mddev->new_chunk_sectors = mddev->chunk_sectors;
5906 mddev->new_layout = mddev->layout;
5907 mddev->delta_disks = 0;
5909 return 0;
5912 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5914 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5916 if (mddev->external_size)
5917 return;
5919 mddev->array_sectors = array_sectors;
5921 EXPORT_SYMBOL(md_set_array_sectors);
5923 static int update_size(struct mddev *mddev, sector_t num_sectors)
5925 struct md_rdev *rdev;
5926 int rv;
5927 int fit = (num_sectors == 0);
5929 if (mddev->pers->resize == NULL)
5930 return -EINVAL;
5931 /* The "num_sectors" is the number of sectors of each device that
5932 * is used. This can only make sense for arrays with redundancy.
5933 * linear and raid0 always use whatever space is available. We can only
5934 * consider changing this number if no resync or reconstruction is
5935 * happening, and if the new size is acceptable. It must fit before the
5936 * sb_start or, if that is <data_offset, it must fit before the size
5937 * of each device. If num_sectors is zero, we find the largest size
5938 * that fits.
5940 if (mddev->sync_thread)
5941 return -EBUSY;
5942 if (mddev->bitmap)
5943 /* Sorry, cannot grow a bitmap yet, just remove it,
5944 * grow, and re-add.
5946 return -EBUSY;
5947 rdev_for_each(rdev, mddev) {
5948 sector_t avail = rdev->sectors;
5950 if (fit && (num_sectors == 0 || num_sectors > avail))
5951 num_sectors = avail;
5952 if (avail < num_sectors)
5953 return -ENOSPC;
5955 rv = mddev->pers->resize(mddev, num_sectors);
5956 if (!rv)
5957 revalidate_disk(mddev->gendisk);
5958 return rv;
5961 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5963 int rv;
5964 /* change the number of raid disks */
5965 if (mddev->pers->check_reshape == NULL)
5966 return -EINVAL;
5967 if (raid_disks <= 0 ||
5968 (mddev->max_disks && raid_disks >= mddev->max_disks))
5969 return -EINVAL;
5970 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5971 return -EBUSY;
5972 mddev->delta_disks = raid_disks - mddev->raid_disks;
5974 rv = mddev->pers->check_reshape(mddev);
5975 if (rv < 0)
5976 mddev->delta_disks = 0;
5977 return rv;
5982 * update_array_info is used to change the configuration of an
5983 * on-line array.
5984 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5985 * fields in the info are checked against the array.
5986 * Any differences that cannot be handled will cause an error.
5987 * Normally, only one change can be managed at a time.
5989 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5991 int rv = 0;
5992 int cnt = 0;
5993 int state = 0;
5995 /* calculate expected state,ignoring low bits */
5996 if (mddev->bitmap && mddev->bitmap_info.offset)
5997 state |= (1 << MD_SB_BITMAP_PRESENT);
5999 if (mddev->major_version != info->major_version ||
6000 mddev->minor_version != info->minor_version ||
6001 /* mddev->patch_version != info->patch_version || */
6002 mddev->ctime != info->ctime ||
6003 mddev->level != info->level ||
6004 /* mddev->layout != info->layout || */
6005 !mddev->persistent != info->not_persistent||
6006 mddev->chunk_sectors != info->chunk_size >> 9 ||
6007 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6008 ((state^info->state) & 0xfffffe00)
6010 return -EINVAL;
6011 /* Check there is only one change */
6012 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6013 cnt++;
6014 if (mddev->raid_disks != info->raid_disks)
6015 cnt++;
6016 if (mddev->layout != info->layout)
6017 cnt++;
6018 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6019 cnt++;
6020 if (cnt == 0)
6021 return 0;
6022 if (cnt > 1)
6023 return -EINVAL;
6025 if (mddev->layout != info->layout) {
6026 /* Change layout
6027 * we don't need to do anything at the md level, the
6028 * personality will take care of it all.
6030 if (mddev->pers->check_reshape == NULL)
6031 return -EINVAL;
6032 else {
6033 mddev->new_layout = info->layout;
6034 rv = mddev->pers->check_reshape(mddev);
6035 if (rv)
6036 mddev->new_layout = mddev->layout;
6037 return rv;
6040 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6041 rv = update_size(mddev, (sector_t)info->size * 2);
6043 if (mddev->raid_disks != info->raid_disks)
6044 rv = update_raid_disks(mddev, info->raid_disks);
6046 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6047 if (mddev->pers->quiesce == NULL)
6048 return -EINVAL;
6049 if (mddev->recovery || mddev->sync_thread)
6050 return -EBUSY;
6051 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6052 /* add the bitmap */
6053 if (mddev->bitmap)
6054 return -EEXIST;
6055 if (mddev->bitmap_info.default_offset == 0)
6056 return -EINVAL;
6057 mddev->bitmap_info.offset =
6058 mddev->bitmap_info.default_offset;
6059 mddev->pers->quiesce(mddev, 1);
6060 rv = bitmap_create(mddev);
6061 if (!rv)
6062 rv = bitmap_load(mddev);
6063 if (rv)
6064 bitmap_destroy(mddev);
6065 mddev->pers->quiesce(mddev, 0);
6066 } else {
6067 /* remove the bitmap */
6068 if (!mddev->bitmap)
6069 return -ENOENT;
6070 if (mddev->bitmap->file)
6071 return -EINVAL;
6072 mddev->pers->quiesce(mddev, 1);
6073 bitmap_destroy(mddev);
6074 mddev->pers->quiesce(mddev, 0);
6075 mddev->bitmap_info.offset = 0;
6078 md_update_sb(mddev, 1);
6079 return rv;
6082 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6084 struct md_rdev *rdev;
6086 if (mddev->pers == NULL)
6087 return -ENODEV;
6089 rdev = find_rdev(mddev, dev);
6090 if (!rdev)
6091 return -ENODEV;
6093 md_error(mddev, rdev);
6094 if (!test_bit(Faulty, &rdev->flags))
6095 return -EBUSY;
6096 return 0;
6100 * We have a problem here : there is no easy way to give a CHS
6101 * virtual geometry. We currently pretend that we have a 2 heads
6102 * 4 sectors (with a BIG number of cylinders...). This drives
6103 * dosfs just mad... ;-)
6105 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6107 struct mddev *mddev = bdev->bd_disk->private_data;
6109 geo->heads = 2;
6110 geo->sectors = 4;
6111 geo->cylinders = mddev->array_sectors / 8;
6112 return 0;
6115 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6116 unsigned int cmd, unsigned long arg)
6118 int err = 0;
6119 void __user *argp = (void __user *)arg;
6120 struct mddev *mddev = NULL;
6121 int ro;
6123 switch (cmd) {
6124 case RAID_VERSION:
6125 case GET_ARRAY_INFO:
6126 case GET_DISK_INFO:
6127 break;
6128 default:
6129 if (!capable(CAP_SYS_ADMIN))
6130 return -EACCES;
6134 * Commands dealing with the RAID driver but not any
6135 * particular array:
6137 switch (cmd)
6139 case RAID_VERSION:
6140 err = get_version(argp);
6141 goto done;
6143 case PRINT_RAID_DEBUG:
6144 err = 0;
6145 md_print_devices();
6146 goto done;
6148 #ifndef MODULE
6149 case RAID_AUTORUN:
6150 err = 0;
6151 autostart_arrays(arg);
6152 goto done;
6153 #endif
6154 default:;
6158 * Commands creating/starting a new array:
6161 mddev = bdev->bd_disk->private_data;
6163 if (!mddev) {
6164 BUG();
6165 goto abort;
6168 err = mddev_lock(mddev);
6169 if (err) {
6170 printk(KERN_INFO
6171 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6172 err, cmd);
6173 goto abort;
6176 switch (cmd)
6178 case SET_ARRAY_INFO:
6180 mdu_array_info_t info;
6181 if (!arg)
6182 memset(&info, 0, sizeof(info));
6183 else if (copy_from_user(&info, argp, sizeof(info))) {
6184 err = -EFAULT;
6185 goto abort_unlock;
6187 if (mddev->pers) {
6188 err = update_array_info(mddev, &info);
6189 if (err) {
6190 printk(KERN_WARNING "md: couldn't update"
6191 " array info. %d\n", err);
6192 goto abort_unlock;
6194 goto done_unlock;
6196 if (!list_empty(&mddev->disks)) {
6197 printk(KERN_WARNING
6198 "md: array %s already has disks!\n",
6199 mdname(mddev));
6200 err = -EBUSY;
6201 goto abort_unlock;
6203 if (mddev->raid_disks) {
6204 printk(KERN_WARNING
6205 "md: array %s already initialised!\n",
6206 mdname(mddev));
6207 err = -EBUSY;
6208 goto abort_unlock;
6210 err = set_array_info(mddev, &info);
6211 if (err) {
6212 printk(KERN_WARNING "md: couldn't set"
6213 " array info. %d\n", err);
6214 goto abort_unlock;
6217 goto done_unlock;
6219 default:;
6223 * Commands querying/configuring an existing array:
6225 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6226 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6227 if ((!mddev->raid_disks && !mddev->external)
6228 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6229 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6230 && cmd != GET_BITMAP_FILE) {
6231 err = -ENODEV;
6232 goto abort_unlock;
6236 * Commands even a read-only array can execute:
6238 switch (cmd)
6240 case GET_ARRAY_INFO:
6241 err = get_array_info(mddev, argp);
6242 goto done_unlock;
6244 case GET_BITMAP_FILE:
6245 err = get_bitmap_file(mddev, argp);
6246 goto done_unlock;
6248 case GET_DISK_INFO:
6249 err = get_disk_info(mddev, argp);
6250 goto done_unlock;
6252 case RESTART_ARRAY_RW:
6253 err = restart_array(mddev);
6254 goto done_unlock;
6256 case STOP_ARRAY:
6257 err = do_md_stop(mddev, 0, bdev);
6258 goto done_unlock;
6260 case STOP_ARRAY_RO:
6261 err = md_set_readonly(mddev, bdev);
6262 goto done_unlock;
6264 case BLKROSET:
6265 if (get_user(ro, (int __user *)(arg))) {
6266 err = -EFAULT;
6267 goto done_unlock;
6269 err = -EINVAL;
6271 /* if the bdev is going readonly the value of mddev->ro
6272 * does not matter, no writes are coming
6274 if (ro)
6275 goto done_unlock;
6277 /* are we are already prepared for writes? */
6278 if (mddev->ro != 1)
6279 goto done_unlock;
6281 /* transitioning to readauto need only happen for
6282 * arrays that call md_write_start
6284 if (mddev->pers) {
6285 err = restart_array(mddev);
6286 if (err == 0) {
6287 mddev->ro = 2;
6288 set_disk_ro(mddev->gendisk, 0);
6291 goto done_unlock;
6295 * The remaining ioctls are changing the state of the
6296 * superblock, so we do not allow them on read-only arrays.
6297 * However non-MD ioctls (e.g. get-size) will still come through
6298 * here and hit the 'default' below, so only disallow
6299 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6301 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6302 if (mddev->ro == 2) {
6303 mddev->ro = 0;
6304 sysfs_notify_dirent_safe(mddev->sysfs_state);
6305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6306 md_wakeup_thread(mddev->thread);
6307 } else {
6308 err = -EROFS;
6309 goto abort_unlock;
6313 switch (cmd)
6315 case ADD_NEW_DISK:
6317 mdu_disk_info_t info;
6318 if (copy_from_user(&info, argp, sizeof(info)))
6319 err = -EFAULT;
6320 else
6321 err = add_new_disk(mddev, &info);
6322 goto done_unlock;
6325 case HOT_REMOVE_DISK:
6326 err = hot_remove_disk(mddev, new_decode_dev(arg));
6327 goto done_unlock;
6329 case HOT_ADD_DISK:
6330 err = hot_add_disk(mddev, new_decode_dev(arg));
6331 goto done_unlock;
6333 case SET_DISK_FAULTY:
6334 err = set_disk_faulty(mddev, new_decode_dev(arg));
6335 goto done_unlock;
6337 case RUN_ARRAY:
6338 err = do_md_run(mddev);
6339 goto done_unlock;
6341 case SET_BITMAP_FILE:
6342 err = set_bitmap_file(mddev, (int)arg);
6343 goto done_unlock;
6345 default:
6346 err = -EINVAL;
6347 goto abort_unlock;
6350 done_unlock:
6351 abort_unlock:
6352 if (mddev->hold_active == UNTIL_IOCTL &&
6353 err != -EINVAL)
6354 mddev->hold_active = 0;
6355 mddev_unlock(mddev);
6357 return err;
6358 done:
6359 if (err)
6360 MD_BUG();
6361 abort:
6362 return err;
6364 #ifdef CONFIG_COMPAT
6365 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6366 unsigned int cmd, unsigned long arg)
6368 switch (cmd) {
6369 case HOT_REMOVE_DISK:
6370 case HOT_ADD_DISK:
6371 case SET_DISK_FAULTY:
6372 case SET_BITMAP_FILE:
6373 /* These take in integer arg, do not convert */
6374 break;
6375 default:
6376 arg = (unsigned long)compat_ptr(arg);
6377 break;
6380 return md_ioctl(bdev, mode, cmd, arg);
6382 #endif /* CONFIG_COMPAT */
6384 static int md_open(struct block_device *bdev, fmode_t mode)
6387 * Succeed if we can lock the mddev, which confirms that
6388 * it isn't being stopped right now.
6390 struct mddev *mddev = mddev_find(bdev->bd_dev);
6391 int err;
6393 if (mddev->gendisk != bdev->bd_disk) {
6394 /* we are racing with mddev_put which is discarding this
6395 * bd_disk.
6397 mddev_put(mddev);
6398 /* Wait until bdev->bd_disk is definitely gone */
6399 flush_workqueue(md_misc_wq);
6400 /* Then retry the open from the top */
6401 return -ERESTARTSYS;
6403 BUG_ON(mddev != bdev->bd_disk->private_data);
6405 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6406 goto out;
6408 err = 0;
6409 atomic_inc(&mddev->openers);
6410 mutex_unlock(&mddev->open_mutex);
6412 check_disk_change(bdev);
6413 out:
6414 return err;
6417 static int md_release(struct gendisk *disk, fmode_t mode)
6419 struct mddev *mddev = disk->private_data;
6421 BUG_ON(!mddev);
6422 atomic_dec(&mddev->openers);
6423 mddev_put(mddev);
6425 return 0;
6428 static int md_media_changed(struct gendisk *disk)
6430 struct mddev *mddev = disk->private_data;
6432 return mddev->changed;
6435 static int md_revalidate(struct gendisk *disk)
6437 struct mddev *mddev = disk->private_data;
6439 mddev->changed = 0;
6440 return 0;
6442 static const struct block_device_operations md_fops =
6444 .owner = THIS_MODULE,
6445 .open = md_open,
6446 .release = md_release,
6447 .ioctl = md_ioctl,
6448 #ifdef CONFIG_COMPAT
6449 .compat_ioctl = md_compat_ioctl,
6450 #endif
6451 .getgeo = md_getgeo,
6452 .media_changed = md_media_changed,
6453 .revalidate_disk= md_revalidate,
6456 static int md_thread(void * arg)
6458 struct md_thread *thread = arg;
6461 * md_thread is a 'system-thread', it's priority should be very
6462 * high. We avoid resource deadlocks individually in each
6463 * raid personality. (RAID5 does preallocation) We also use RR and
6464 * the very same RT priority as kswapd, thus we will never get
6465 * into a priority inversion deadlock.
6467 * we definitely have to have equal or higher priority than
6468 * bdflush, otherwise bdflush will deadlock if there are too
6469 * many dirty RAID5 blocks.
6472 allow_signal(SIGKILL);
6473 while (!kthread_should_stop()) {
6475 /* We need to wait INTERRUPTIBLE so that
6476 * we don't add to the load-average.
6477 * That means we need to be sure no signals are
6478 * pending
6480 if (signal_pending(current))
6481 flush_signals(current);
6483 wait_event_interruptible_timeout
6484 (thread->wqueue,
6485 test_bit(THREAD_WAKEUP, &thread->flags)
6486 || kthread_should_stop(),
6487 thread->timeout);
6489 clear_bit(THREAD_WAKEUP, &thread->flags);
6490 if (!kthread_should_stop())
6491 thread->run(thread->mddev);
6494 return 0;
6497 void md_wakeup_thread(struct md_thread *thread)
6499 if (thread) {
6500 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6501 set_bit(THREAD_WAKEUP, &thread->flags);
6502 wake_up(&thread->wqueue);
6506 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6507 const char *name)
6509 struct md_thread *thread;
6511 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6512 if (!thread)
6513 return NULL;
6515 init_waitqueue_head(&thread->wqueue);
6517 thread->run = run;
6518 thread->mddev = mddev;
6519 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6520 thread->tsk = kthread_run(md_thread, thread,
6521 "%s_%s",
6522 mdname(thread->mddev),
6523 name ?: mddev->pers->name);
6524 if (IS_ERR(thread->tsk)) {
6525 kfree(thread);
6526 return NULL;
6528 return thread;
6531 void md_unregister_thread(struct md_thread **threadp)
6533 struct md_thread *thread = *threadp;
6534 if (!thread)
6535 return;
6536 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6537 /* Locking ensures that mddev_unlock does not wake_up a
6538 * non-existent thread
6540 spin_lock(&pers_lock);
6541 *threadp = NULL;
6542 spin_unlock(&pers_lock);
6544 kthread_stop(thread->tsk);
6545 kfree(thread);
6548 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6550 if (!mddev) {
6551 MD_BUG();
6552 return;
6555 if (!rdev || test_bit(Faulty, &rdev->flags))
6556 return;
6558 if (!mddev->pers || !mddev->pers->error_handler)
6559 return;
6560 mddev->pers->error_handler(mddev,rdev);
6561 if (mddev->degraded)
6562 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6563 sysfs_notify_dirent_safe(rdev->sysfs_state);
6564 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6565 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6566 md_wakeup_thread(mddev->thread);
6567 if (mddev->event_work.func)
6568 queue_work(md_misc_wq, &mddev->event_work);
6569 md_new_event_inintr(mddev);
6572 /* seq_file implementation /proc/mdstat */
6574 static void status_unused(struct seq_file *seq)
6576 int i = 0;
6577 struct md_rdev *rdev;
6579 seq_printf(seq, "unused devices: ");
6581 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6582 char b[BDEVNAME_SIZE];
6583 i++;
6584 seq_printf(seq, "%s ",
6585 bdevname(rdev->bdev,b));
6587 if (!i)
6588 seq_printf(seq, "<none>");
6590 seq_printf(seq, "\n");
6594 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6596 sector_t max_sectors, resync, res;
6597 unsigned long dt, db;
6598 sector_t rt;
6599 int scale;
6600 unsigned int per_milli;
6602 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6604 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6605 max_sectors = mddev->resync_max_sectors;
6606 else
6607 max_sectors = mddev->dev_sectors;
6610 * Should not happen.
6612 if (!max_sectors) {
6613 MD_BUG();
6614 return;
6616 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6617 * in a sector_t, and (max_sectors>>scale) will fit in a
6618 * u32, as those are the requirements for sector_div.
6619 * Thus 'scale' must be at least 10
6621 scale = 10;
6622 if (sizeof(sector_t) > sizeof(unsigned long)) {
6623 while ( max_sectors/2 > (1ULL<<(scale+32)))
6624 scale++;
6626 res = (resync>>scale)*1000;
6627 sector_div(res, (u32)((max_sectors>>scale)+1));
6629 per_milli = res;
6631 int i, x = per_milli/50, y = 20-x;
6632 seq_printf(seq, "[");
6633 for (i = 0; i < x; i++)
6634 seq_printf(seq, "=");
6635 seq_printf(seq, ">");
6636 for (i = 0; i < y; i++)
6637 seq_printf(seq, ".");
6638 seq_printf(seq, "] ");
6640 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6641 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6642 "reshape" :
6643 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6644 "check" :
6645 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6646 "resync" : "recovery"))),
6647 per_milli/10, per_milli % 10,
6648 (unsigned long long) resync/2,
6649 (unsigned long long) max_sectors/2);
6652 * dt: time from mark until now
6653 * db: blocks written from mark until now
6654 * rt: remaining time
6656 * rt is a sector_t, so could be 32bit or 64bit.
6657 * So we divide before multiply in case it is 32bit and close
6658 * to the limit.
6659 * We scale the divisor (db) by 32 to avoid losing precision
6660 * near the end of resync when the number of remaining sectors
6661 * is close to 'db'.
6662 * We then divide rt by 32 after multiplying by db to compensate.
6663 * The '+1' avoids division by zero if db is very small.
6665 dt = ((jiffies - mddev->resync_mark) / HZ);
6666 if (!dt) dt++;
6667 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6668 - mddev->resync_mark_cnt;
6670 rt = max_sectors - resync; /* number of remaining sectors */
6671 sector_div(rt, db/32+1);
6672 rt *= dt;
6673 rt >>= 5;
6675 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6676 ((unsigned long)rt % 60)/6);
6678 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6681 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6683 struct list_head *tmp;
6684 loff_t l = *pos;
6685 struct mddev *mddev;
6687 if (l >= 0x10000)
6688 return NULL;
6689 if (!l--)
6690 /* header */
6691 return (void*)1;
6693 spin_lock(&all_mddevs_lock);
6694 list_for_each(tmp,&all_mddevs)
6695 if (!l--) {
6696 mddev = list_entry(tmp, struct mddev, all_mddevs);
6697 mddev_get(mddev);
6698 spin_unlock(&all_mddevs_lock);
6699 return mddev;
6701 spin_unlock(&all_mddevs_lock);
6702 if (!l--)
6703 return (void*)2;/* tail */
6704 return NULL;
6707 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6709 struct list_head *tmp;
6710 struct mddev *next_mddev, *mddev = v;
6712 ++*pos;
6713 if (v == (void*)2)
6714 return NULL;
6716 spin_lock(&all_mddevs_lock);
6717 if (v == (void*)1)
6718 tmp = all_mddevs.next;
6719 else
6720 tmp = mddev->all_mddevs.next;
6721 if (tmp != &all_mddevs)
6722 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6723 else {
6724 next_mddev = (void*)2;
6725 *pos = 0x10000;
6727 spin_unlock(&all_mddevs_lock);
6729 if (v != (void*)1)
6730 mddev_put(mddev);
6731 return next_mddev;
6735 static void md_seq_stop(struct seq_file *seq, void *v)
6737 struct mddev *mddev = v;
6739 if (mddev && v != (void*)1 && v != (void*)2)
6740 mddev_put(mddev);
6743 static int md_seq_show(struct seq_file *seq, void *v)
6745 struct mddev *mddev = v;
6746 sector_t sectors;
6747 struct md_rdev *rdev;
6749 if (v == (void*)1) {
6750 struct md_personality *pers;
6751 seq_printf(seq, "Personalities : ");
6752 spin_lock(&pers_lock);
6753 list_for_each_entry(pers, &pers_list, list)
6754 seq_printf(seq, "[%s] ", pers->name);
6756 spin_unlock(&pers_lock);
6757 seq_printf(seq, "\n");
6758 seq->poll_event = atomic_read(&md_event_count);
6759 return 0;
6761 if (v == (void*)2) {
6762 status_unused(seq);
6763 return 0;
6766 if (mddev_lock(mddev) < 0)
6767 return -EINTR;
6769 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6770 seq_printf(seq, "%s : %sactive", mdname(mddev),
6771 mddev->pers ? "" : "in");
6772 if (mddev->pers) {
6773 if (mddev->ro==1)
6774 seq_printf(seq, " (read-only)");
6775 if (mddev->ro==2)
6776 seq_printf(seq, " (auto-read-only)");
6777 seq_printf(seq, " %s", mddev->pers->name);
6780 sectors = 0;
6781 rdev_for_each(rdev, mddev) {
6782 char b[BDEVNAME_SIZE];
6783 seq_printf(seq, " %s[%d]",
6784 bdevname(rdev->bdev,b), rdev->desc_nr);
6785 if (test_bit(WriteMostly, &rdev->flags))
6786 seq_printf(seq, "(W)");
6787 if (test_bit(Faulty, &rdev->flags)) {
6788 seq_printf(seq, "(F)");
6789 continue;
6791 if (rdev->raid_disk < 0)
6792 seq_printf(seq, "(S)"); /* spare */
6793 if (test_bit(Replacement, &rdev->flags))
6794 seq_printf(seq, "(R)");
6795 sectors += rdev->sectors;
6798 if (!list_empty(&mddev->disks)) {
6799 if (mddev->pers)
6800 seq_printf(seq, "\n %llu blocks",
6801 (unsigned long long)
6802 mddev->array_sectors / 2);
6803 else
6804 seq_printf(seq, "\n %llu blocks",
6805 (unsigned long long)sectors / 2);
6807 if (mddev->persistent) {
6808 if (mddev->major_version != 0 ||
6809 mddev->minor_version != 90) {
6810 seq_printf(seq," super %d.%d",
6811 mddev->major_version,
6812 mddev->minor_version);
6814 } else if (mddev->external)
6815 seq_printf(seq, " super external:%s",
6816 mddev->metadata_type);
6817 else
6818 seq_printf(seq, " super non-persistent");
6820 if (mddev->pers) {
6821 mddev->pers->status(seq, mddev);
6822 seq_printf(seq, "\n ");
6823 if (mddev->pers->sync_request) {
6824 if (mddev->curr_resync > 2) {
6825 status_resync(seq, mddev);
6826 seq_printf(seq, "\n ");
6827 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6828 seq_printf(seq, "\tresync=DELAYED\n ");
6829 else if (mddev->recovery_cp < MaxSector)
6830 seq_printf(seq, "\tresync=PENDING\n ");
6832 } else
6833 seq_printf(seq, "\n ");
6835 bitmap_status(seq, mddev->bitmap);
6837 seq_printf(seq, "\n");
6839 mddev_unlock(mddev);
6841 return 0;
6844 static const struct seq_operations md_seq_ops = {
6845 .start = md_seq_start,
6846 .next = md_seq_next,
6847 .stop = md_seq_stop,
6848 .show = md_seq_show,
6851 static int md_seq_open(struct inode *inode, struct file *file)
6853 struct seq_file *seq;
6854 int error;
6856 error = seq_open(file, &md_seq_ops);
6857 if (error)
6858 return error;
6860 seq = file->private_data;
6861 seq->poll_event = atomic_read(&md_event_count);
6862 return error;
6865 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6867 struct seq_file *seq = filp->private_data;
6868 int mask;
6870 poll_wait(filp, &md_event_waiters, wait);
6872 /* always allow read */
6873 mask = POLLIN | POLLRDNORM;
6875 if (seq->poll_event != atomic_read(&md_event_count))
6876 mask |= POLLERR | POLLPRI;
6877 return mask;
6880 static const struct file_operations md_seq_fops = {
6881 .owner = THIS_MODULE,
6882 .open = md_seq_open,
6883 .read = seq_read,
6884 .llseek = seq_lseek,
6885 .release = seq_release_private,
6886 .poll = mdstat_poll,
6889 int register_md_personality(struct md_personality *p)
6891 spin_lock(&pers_lock);
6892 list_add_tail(&p->list, &pers_list);
6893 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6894 spin_unlock(&pers_lock);
6895 return 0;
6898 int unregister_md_personality(struct md_personality *p)
6900 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6901 spin_lock(&pers_lock);
6902 list_del_init(&p->list);
6903 spin_unlock(&pers_lock);
6904 return 0;
6907 static int is_mddev_idle(struct mddev *mddev, int init)
6909 struct md_rdev * rdev;
6910 int idle;
6911 int curr_events;
6913 idle = 1;
6914 rcu_read_lock();
6915 rdev_for_each_rcu(rdev, mddev) {
6916 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6917 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6918 (int)part_stat_read(&disk->part0, sectors[1]) -
6919 atomic_read(&disk->sync_io);
6920 /* sync IO will cause sync_io to increase before the disk_stats
6921 * as sync_io is counted when a request starts, and
6922 * disk_stats is counted when it completes.
6923 * So resync activity will cause curr_events to be smaller than
6924 * when there was no such activity.
6925 * non-sync IO will cause disk_stat to increase without
6926 * increasing sync_io so curr_events will (eventually)
6927 * be larger than it was before. Once it becomes
6928 * substantially larger, the test below will cause
6929 * the array to appear non-idle, and resync will slow
6930 * down.
6931 * If there is a lot of outstanding resync activity when
6932 * we set last_event to curr_events, then all that activity
6933 * completing might cause the array to appear non-idle
6934 * and resync will be slowed down even though there might
6935 * not have been non-resync activity. This will only
6936 * happen once though. 'last_events' will soon reflect
6937 * the state where there is little or no outstanding
6938 * resync requests, and further resync activity will
6939 * always make curr_events less than last_events.
6942 if (init || curr_events - rdev->last_events > 64) {
6943 rdev->last_events = curr_events;
6944 idle = 0;
6947 rcu_read_unlock();
6948 return idle;
6951 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6953 /* another "blocks" (512byte) blocks have been synced */
6954 atomic_sub(blocks, &mddev->recovery_active);
6955 wake_up(&mddev->recovery_wait);
6956 if (!ok) {
6957 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6958 md_wakeup_thread(mddev->thread);
6959 // stop recovery, signal do_sync ....
6964 /* md_write_start(mddev, bi)
6965 * If we need to update some array metadata (e.g. 'active' flag
6966 * in superblock) before writing, schedule a superblock update
6967 * and wait for it to complete.
6969 void md_write_start(struct mddev *mddev, struct bio *bi)
6971 int did_change = 0;
6972 if (bio_data_dir(bi) != WRITE)
6973 return;
6975 BUG_ON(mddev->ro == 1);
6976 if (mddev->ro == 2) {
6977 /* need to switch to read/write */
6978 mddev->ro = 0;
6979 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6980 md_wakeup_thread(mddev->thread);
6981 md_wakeup_thread(mddev->sync_thread);
6982 did_change = 1;
6984 atomic_inc(&mddev->writes_pending);
6985 if (mddev->safemode == 1)
6986 mddev->safemode = 0;
6987 if (mddev->in_sync) {
6988 spin_lock_irq(&mddev->write_lock);
6989 if (mddev->in_sync) {
6990 mddev->in_sync = 0;
6991 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6992 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6993 md_wakeup_thread(mddev->thread);
6994 did_change = 1;
6996 spin_unlock_irq(&mddev->write_lock);
6998 if (did_change)
6999 sysfs_notify_dirent_safe(mddev->sysfs_state);
7000 wait_event(mddev->sb_wait,
7001 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7004 void md_write_end(struct mddev *mddev)
7006 if (atomic_dec_and_test(&mddev->writes_pending)) {
7007 if (mddev->safemode == 2)
7008 md_wakeup_thread(mddev->thread);
7009 else if (mddev->safemode_delay)
7010 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7014 /* md_allow_write(mddev)
7015 * Calling this ensures that the array is marked 'active' so that writes
7016 * may proceed without blocking. It is important to call this before
7017 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7018 * Must be called with mddev_lock held.
7020 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7021 * is dropped, so return -EAGAIN after notifying userspace.
7023 int md_allow_write(struct mddev *mddev)
7025 if (!mddev->pers)
7026 return 0;
7027 if (mddev->ro)
7028 return 0;
7029 if (!mddev->pers->sync_request)
7030 return 0;
7032 spin_lock_irq(&mddev->write_lock);
7033 if (mddev->in_sync) {
7034 mddev->in_sync = 0;
7035 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7036 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7037 if (mddev->safemode_delay &&
7038 mddev->safemode == 0)
7039 mddev->safemode = 1;
7040 spin_unlock_irq(&mddev->write_lock);
7041 md_update_sb(mddev, 0);
7042 sysfs_notify_dirent_safe(mddev->sysfs_state);
7043 } else
7044 spin_unlock_irq(&mddev->write_lock);
7046 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7047 return -EAGAIN;
7048 else
7049 return 0;
7051 EXPORT_SYMBOL_GPL(md_allow_write);
7053 #define SYNC_MARKS 10
7054 #define SYNC_MARK_STEP (3*HZ)
7055 void md_do_sync(struct mddev *mddev)
7057 struct mddev *mddev2;
7058 unsigned int currspeed = 0,
7059 window;
7060 sector_t max_sectors,j, io_sectors;
7061 unsigned long mark[SYNC_MARKS];
7062 sector_t mark_cnt[SYNC_MARKS];
7063 int last_mark,m;
7064 struct list_head *tmp;
7065 sector_t last_check;
7066 int skipped = 0;
7067 struct md_rdev *rdev;
7068 char *desc;
7070 /* just incase thread restarts... */
7071 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7072 return;
7073 if (mddev->ro) /* never try to sync a read-only array */
7074 return;
7076 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7077 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7078 desc = "data-check";
7079 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7080 desc = "requested-resync";
7081 else
7082 desc = "resync";
7083 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7084 desc = "reshape";
7085 else
7086 desc = "recovery";
7088 /* we overload curr_resync somewhat here.
7089 * 0 == not engaged in resync at all
7090 * 2 == checking that there is no conflict with another sync
7091 * 1 == like 2, but have yielded to allow conflicting resync to
7092 * commense
7093 * other == active in resync - this many blocks
7095 * Before starting a resync we must have set curr_resync to
7096 * 2, and then checked that every "conflicting" array has curr_resync
7097 * less than ours. When we find one that is the same or higher
7098 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7099 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7100 * This will mean we have to start checking from the beginning again.
7104 do {
7105 mddev->curr_resync = 2;
7107 try_again:
7108 if (kthread_should_stop())
7109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7111 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7112 goto skip;
7113 for_each_mddev(mddev2, tmp) {
7114 if (mddev2 == mddev)
7115 continue;
7116 if (!mddev->parallel_resync
7117 && mddev2->curr_resync
7118 && match_mddev_units(mddev, mddev2)) {
7119 DEFINE_WAIT(wq);
7120 if (mddev < mddev2 && mddev->curr_resync == 2) {
7121 /* arbitrarily yield */
7122 mddev->curr_resync = 1;
7123 wake_up(&resync_wait);
7125 if (mddev > mddev2 && mddev->curr_resync == 1)
7126 /* no need to wait here, we can wait the next
7127 * time 'round when curr_resync == 2
7129 continue;
7130 /* We need to wait 'interruptible' so as not to
7131 * contribute to the load average, and not to
7132 * be caught by 'softlockup'
7134 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7135 if (!kthread_should_stop() &&
7136 mddev2->curr_resync >= mddev->curr_resync) {
7137 printk(KERN_INFO "md: delaying %s of %s"
7138 " until %s has finished (they"
7139 " share one or more physical units)\n",
7140 desc, mdname(mddev), mdname(mddev2));
7141 mddev_put(mddev2);
7142 if (signal_pending(current))
7143 flush_signals(current);
7144 schedule();
7145 finish_wait(&resync_wait, &wq);
7146 goto try_again;
7148 finish_wait(&resync_wait, &wq);
7151 } while (mddev->curr_resync < 2);
7153 j = 0;
7154 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7155 /* resync follows the size requested by the personality,
7156 * which defaults to physical size, but can be virtual size
7158 max_sectors = mddev->resync_max_sectors;
7159 mddev->resync_mismatches = 0;
7160 /* we don't use the checkpoint if there's a bitmap */
7161 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7162 j = mddev->resync_min;
7163 else if (!mddev->bitmap)
7164 j = mddev->recovery_cp;
7166 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7167 max_sectors = mddev->dev_sectors;
7168 else {
7169 /* recovery follows the physical size of devices */
7170 max_sectors = mddev->dev_sectors;
7171 j = MaxSector;
7172 rcu_read_lock();
7173 rdev_for_each_rcu(rdev, mddev)
7174 if (rdev->raid_disk >= 0 &&
7175 !test_bit(Faulty, &rdev->flags) &&
7176 !test_bit(In_sync, &rdev->flags) &&
7177 rdev->recovery_offset < j)
7178 j = rdev->recovery_offset;
7179 rcu_read_unlock();
7182 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7183 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7184 " %d KB/sec/disk.\n", speed_min(mddev));
7185 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7186 "(but not more than %d KB/sec) for %s.\n",
7187 speed_max(mddev), desc);
7189 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7191 io_sectors = 0;
7192 for (m = 0; m < SYNC_MARKS; m++) {
7193 mark[m] = jiffies;
7194 mark_cnt[m] = io_sectors;
7196 last_mark = 0;
7197 mddev->resync_mark = mark[last_mark];
7198 mddev->resync_mark_cnt = mark_cnt[last_mark];
7201 * Tune reconstruction:
7203 window = 32*(PAGE_SIZE/512);
7204 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7205 window/2, (unsigned long long)max_sectors/2);
7207 atomic_set(&mddev->recovery_active, 0);
7208 last_check = 0;
7210 if (j>2) {
7211 printk(KERN_INFO
7212 "md: resuming %s of %s from checkpoint.\n",
7213 desc, mdname(mddev));
7214 mddev->curr_resync = j;
7216 mddev->curr_resync_completed = j;
7218 while (j < max_sectors) {
7219 sector_t sectors;
7221 skipped = 0;
7223 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7224 ((mddev->curr_resync > mddev->curr_resync_completed &&
7225 (mddev->curr_resync - mddev->curr_resync_completed)
7226 > (max_sectors >> 4)) ||
7227 (j - mddev->curr_resync_completed)*2
7228 >= mddev->resync_max - mddev->curr_resync_completed
7229 )) {
7230 /* time to update curr_resync_completed */
7231 wait_event(mddev->recovery_wait,
7232 atomic_read(&mddev->recovery_active) == 0);
7233 mddev->curr_resync_completed = j;
7234 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7235 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7238 while (j >= mddev->resync_max && !kthread_should_stop()) {
7239 /* As this condition is controlled by user-space,
7240 * we can block indefinitely, so use '_interruptible'
7241 * to avoid triggering warnings.
7243 flush_signals(current); /* just in case */
7244 wait_event_interruptible(mddev->recovery_wait,
7245 mddev->resync_max > j
7246 || kthread_should_stop());
7249 if (kthread_should_stop())
7250 goto interrupted;
7252 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7253 currspeed < speed_min(mddev));
7254 if (sectors == 0) {
7255 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7256 goto out;
7259 if (!skipped) { /* actual IO requested */
7260 io_sectors += sectors;
7261 atomic_add(sectors, &mddev->recovery_active);
7264 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7265 break;
7267 j += sectors;
7268 if (j>1) mddev->curr_resync = j;
7269 mddev->curr_mark_cnt = io_sectors;
7270 if (last_check == 0)
7271 /* this is the earliest that rebuild will be
7272 * visible in /proc/mdstat
7274 md_new_event(mddev);
7276 if (last_check + window > io_sectors || j == max_sectors)
7277 continue;
7279 last_check = io_sectors;
7280 repeat:
7281 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7282 /* step marks */
7283 int next = (last_mark+1) % SYNC_MARKS;
7285 mddev->resync_mark = mark[next];
7286 mddev->resync_mark_cnt = mark_cnt[next];
7287 mark[next] = jiffies;
7288 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7289 last_mark = next;
7293 if (kthread_should_stop())
7294 goto interrupted;
7298 * this loop exits only if either when we are slower than
7299 * the 'hard' speed limit, or the system was IO-idle for
7300 * a jiffy.
7301 * the system might be non-idle CPU-wise, but we only care
7302 * about not overloading the IO subsystem. (things like an
7303 * e2fsck being done on the RAID array should execute fast)
7305 cond_resched();
7307 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7308 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7310 if (currspeed > speed_min(mddev)) {
7311 if ((currspeed > speed_max(mddev)) ||
7312 !is_mddev_idle(mddev, 0)) {
7313 msleep(500);
7314 goto repeat;
7318 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7320 * this also signals 'finished resyncing' to md_stop
7322 out:
7323 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7325 /* tell personality that we are finished */
7326 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7328 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7329 mddev->curr_resync > 2) {
7330 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7331 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7332 if (mddev->curr_resync >= mddev->recovery_cp) {
7333 printk(KERN_INFO
7334 "md: checkpointing %s of %s.\n",
7335 desc, mdname(mddev));
7336 mddev->recovery_cp =
7337 mddev->curr_resync_completed;
7339 } else
7340 mddev->recovery_cp = MaxSector;
7341 } else {
7342 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7343 mddev->curr_resync = MaxSector;
7344 rcu_read_lock();
7345 rdev_for_each_rcu(rdev, mddev)
7346 if (rdev->raid_disk >= 0 &&
7347 mddev->delta_disks >= 0 &&
7348 !test_bit(Faulty, &rdev->flags) &&
7349 !test_bit(In_sync, &rdev->flags) &&
7350 rdev->recovery_offset < mddev->curr_resync)
7351 rdev->recovery_offset = mddev->curr_resync;
7352 rcu_read_unlock();
7355 skip:
7356 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7358 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7359 /* We completed so min/max setting can be forgotten if used. */
7360 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7361 mddev->resync_min = 0;
7362 mddev->resync_max = MaxSector;
7363 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7364 mddev->resync_min = mddev->curr_resync_completed;
7365 mddev->curr_resync = 0;
7366 wake_up(&resync_wait);
7367 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7368 md_wakeup_thread(mddev->thread);
7369 return;
7371 interrupted:
7373 * got a signal, exit.
7375 printk(KERN_INFO
7376 "md: md_do_sync() got signal ... exiting\n");
7377 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7378 goto out;
7381 EXPORT_SYMBOL_GPL(md_do_sync);
7383 static int remove_and_add_spares(struct mddev *mddev)
7385 struct md_rdev *rdev;
7386 int spares = 0;
7387 int removed = 0;
7389 mddev->curr_resync_completed = 0;
7391 rdev_for_each(rdev, mddev)
7392 if (rdev->raid_disk >= 0 &&
7393 !test_bit(Blocked, &rdev->flags) &&
7394 (test_bit(Faulty, &rdev->flags) ||
7395 ! test_bit(In_sync, &rdev->flags)) &&
7396 atomic_read(&rdev->nr_pending)==0) {
7397 if (mddev->pers->hot_remove_disk(
7398 mddev, rdev) == 0) {
7399 sysfs_unlink_rdev(mddev, rdev);
7400 rdev->raid_disk = -1;
7401 removed++;
7404 if (removed)
7405 sysfs_notify(&mddev->kobj, NULL,
7406 "degraded");
7409 rdev_for_each(rdev, mddev) {
7410 if (rdev->raid_disk >= 0 &&
7411 !test_bit(In_sync, &rdev->flags) &&
7412 !test_bit(Faulty, &rdev->flags))
7413 spares++;
7414 if (rdev->raid_disk < 0
7415 && !test_bit(Faulty, &rdev->flags)) {
7416 rdev->recovery_offset = 0;
7417 if (mddev->pers->
7418 hot_add_disk(mddev, rdev) == 0) {
7419 if (sysfs_link_rdev(mddev, rdev))
7420 /* failure here is OK */;
7421 spares++;
7422 md_new_event(mddev);
7423 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7427 if (removed)
7428 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7429 return spares;
7432 static void reap_sync_thread(struct mddev *mddev)
7434 struct md_rdev *rdev;
7436 /* resync has finished, collect result */
7437 md_unregister_thread(&mddev->sync_thread);
7438 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7439 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7440 /* success...*/
7441 /* activate any spares */
7442 if (mddev->pers->spare_active(mddev)) {
7443 sysfs_notify(&mddev->kobj, NULL,
7444 "degraded");
7445 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7448 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7449 mddev->pers->finish_reshape)
7450 mddev->pers->finish_reshape(mddev);
7452 /* If array is no-longer degraded, then any saved_raid_disk
7453 * information must be scrapped. Also if any device is now
7454 * In_sync we must scrape the saved_raid_disk for that device
7455 * do the superblock for an incrementally recovered device
7456 * written out.
7458 rdev_for_each(rdev, mddev)
7459 if (!mddev->degraded ||
7460 test_bit(In_sync, &rdev->flags))
7461 rdev->saved_raid_disk = -1;
7463 md_update_sb(mddev, 1);
7464 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7465 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7466 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7467 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7468 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7469 /* flag recovery needed just to double check */
7470 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7471 sysfs_notify_dirent_safe(mddev->sysfs_action);
7472 md_new_event(mddev);
7473 if (mddev->event_work.func)
7474 queue_work(md_misc_wq, &mddev->event_work);
7478 * This routine is regularly called by all per-raid-array threads to
7479 * deal with generic issues like resync and super-block update.
7480 * Raid personalities that don't have a thread (linear/raid0) do not
7481 * need this as they never do any recovery or update the superblock.
7483 * It does not do any resync itself, but rather "forks" off other threads
7484 * to do that as needed.
7485 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7486 * "->recovery" and create a thread at ->sync_thread.
7487 * When the thread finishes it sets MD_RECOVERY_DONE
7488 * and wakeups up this thread which will reap the thread and finish up.
7489 * This thread also removes any faulty devices (with nr_pending == 0).
7491 * The overall approach is:
7492 * 1/ if the superblock needs updating, update it.
7493 * 2/ If a recovery thread is running, don't do anything else.
7494 * 3/ If recovery has finished, clean up, possibly marking spares active.
7495 * 4/ If there are any faulty devices, remove them.
7496 * 5/ If array is degraded, try to add spares devices
7497 * 6/ If array has spares or is not in-sync, start a resync thread.
7499 void md_check_recovery(struct mddev *mddev)
7501 if (mddev->suspended)
7502 return;
7504 if (mddev->bitmap)
7505 bitmap_daemon_work(mddev);
7507 if (signal_pending(current)) {
7508 if (mddev->pers->sync_request && !mddev->external) {
7509 printk(KERN_INFO "md: %s in immediate safe mode\n",
7510 mdname(mddev));
7511 mddev->safemode = 2;
7513 flush_signals(current);
7516 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7517 return;
7518 if ( ! (
7519 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7520 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7521 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7522 (mddev->external == 0 && mddev->safemode == 1) ||
7523 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7524 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7526 return;
7528 if (mddev_trylock(mddev)) {
7529 int spares = 0;
7531 if (mddev->ro) {
7532 /* Only thing we do on a ro array is remove
7533 * failed devices.
7535 struct md_rdev *rdev;
7536 rdev_for_each(rdev, mddev)
7537 if (rdev->raid_disk >= 0 &&
7538 !test_bit(Blocked, &rdev->flags) &&
7539 test_bit(Faulty, &rdev->flags) &&
7540 atomic_read(&rdev->nr_pending)==0) {
7541 if (mddev->pers->hot_remove_disk(
7542 mddev, rdev) == 0) {
7543 sysfs_unlink_rdev(mddev, rdev);
7544 rdev->raid_disk = -1;
7547 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7548 goto unlock;
7551 if (!mddev->external) {
7552 int did_change = 0;
7553 spin_lock_irq(&mddev->write_lock);
7554 if (mddev->safemode &&
7555 !atomic_read(&mddev->writes_pending) &&
7556 !mddev->in_sync &&
7557 mddev->recovery_cp == MaxSector) {
7558 mddev->in_sync = 1;
7559 did_change = 1;
7560 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7562 if (mddev->safemode == 1)
7563 mddev->safemode = 0;
7564 spin_unlock_irq(&mddev->write_lock);
7565 if (did_change)
7566 sysfs_notify_dirent_safe(mddev->sysfs_state);
7569 if (mddev->flags)
7570 md_update_sb(mddev, 0);
7572 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7573 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7574 /* resync/recovery still happening */
7575 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7576 goto unlock;
7578 if (mddev->sync_thread) {
7579 reap_sync_thread(mddev);
7580 goto unlock;
7582 /* Set RUNNING before clearing NEEDED to avoid
7583 * any transients in the value of "sync_action".
7585 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7586 /* Clear some bits that don't mean anything, but
7587 * might be left set
7589 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7590 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7592 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7593 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7594 goto unlock;
7595 /* no recovery is running.
7596 * remove any failed drives, then
7597 * add spares if possible.
7598 * Spare are also removed and re-added, to allow
7599 * the personality to fail the re-add.
7602 if (mddev->reshape_position != MaxSector) {
7603 if (mddev->pers->check_reshape == NULL ||
7604 mddev->pers->check_reshape(mddev) != 0)
7605 /* Cannot proceed */
7606 goto unlock;
7607 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7608 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7609 } else if ((spares = remove_and_add_spares(mddev))) {
7610 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7611 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7612 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7613 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7614 } else if (mddev->recovery_cp < MaxSector) {
7615 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7616 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7617 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7618 /* nothing to be done ... */
7619 goto unlock;
7621 if (mddev->pers->sync_request) {
7622 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7623 /* We are adding a device or devices to an array
7624 * which has the bitmap stored on all devices.
7625 * So make sure all bitmap pages get written
7627 bitmap_write_all(mddev->bitmap);
7629 mddev->sync_thread = md_register_thread(md_do_sync,
7630 mddev,
7631 "resync");
7632 if (!mddev->sync_thread) {
7633 printk(KERN_ERR "%s: could not start resync"
7634 " thread...\n",
7635 mdname(mddev));
7636 /* leave the spares where they are, it shouldn't hurt */
7637 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7638 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7639 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7640 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7641 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7642 } else
7643 md_wakeup_thread(mddev->sync_thread);
7644 sysfs_notify_dirent_safe(mddev->sysfs_action);
7645 md_new_event(mddev);
7647 unlock:
7648 if (!mddev->sync_thread) {
7649 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7650 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7651 &mddev->recovery))
7652 if (mddev->sysfs_action)
7653 sysfs_notify_dirent_safe(mddev->sysfs_action);
7655 mddev_unlock(mddev);
7659 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7661 sysfs_notify_dirent_safe(rdev->sysfs_state);
7662 wait_event_timeout(rdev->blocked_wait,
7663 !test_bit(Blocked, &rdev->flags) &&
7664 !test_bit(BlockedBadBlocks, &rdev->flags),
7665 msecs_to_jiffies(5000));
7666 rdev_dec_pending(rdev, mddev);
7668 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7671 /* Bad block management.
7672 * We can record which blocks on each device are 'bad' and so just
7673 * fail those blocks, or that stripe, rather than the whole device.
7674 * Entries in the bad-block table are 64bits wide. This comprises:
7675 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7676 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7677 * A 'shift' can be set so that larger blocks are tracked and
7678 * consequently larger devices can be covered.
7679 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7681 * Locking of the bad-block table uses a seqlock so md_is_badblock
7682 * might need to retry if it is very unlucky.
7683 * We will sometimes want to check for bad blocks in a bi_end_io function,
7684 * so we use the write_seqlock_irq variant.
7686 * When looking for a bad block we specify a range and want to
7687 * know if any block in the range is bad. So we binary-search
7688 * to the last range that starts at-or-before the given endpoint,
7689 * (or "before the sector after the target range")
7690 * then see if it ends after the given start.
7691 * We return
7692 * 0 if there are no known bad blocks in the range
7693 * 1 if there are known bad block which are all acknowledged
7694 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7695 * plus the start/length of the first bad section we overlap.
7697 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7698 sector_t *first_bad, int *bad_sectors)
7700 int hi;
7701 int lo;
7702 u64 *p = bb->page;
7703 int rv;
7704 sector_t target = s + sectors;
7705 unsigned seq;
7707 if (bb->shift > 0) {
7708 /* round the start down, and the end up */
7709 s >>= bb->shift;
7710 target += (1<<bb->shift) - 1;
7711 target >>= bb->shift;
7712 sectors = target - s;
7714 /* 'target' is now the first block after the bad range */
7716 retry:
7717 seq = read_seqbegin(&bb->lock);
7718 lo = 0;
7719 rv = 0;
7720 hi = bb->count;
7722 /* Binary search between lo and hi for 'target'
7723 * i.e. for the last range that starts before 'target'
7725 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7726 * are known not to be the last range before target.
7727 * VARIANT: hi-lo is the number of possible
7728 * ranges, and decreases until it reaches 1
7730 while (hi - lo > 1) {
7731 int mid = (lo + hi) / 2;
7732 sector_t a = BB_OFFSET(p[mid]);
7733 if (a < target)
7734 /* This could still be the one, earlier ranges
7735 * could not. */
7736 lo = mid;
7737 else
7738 /* This and later ranges are definitely out. */
7739 hi = mid;
7741 /* 'lo' might be the last that started before target, but 'hi' isn't */
7742 if (hi > lo) {
7743 /* need to check all range that end after 's' to see if
7744 * any are unacknowledged.
7746 while (lo >= 0 &&
7747 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7748 if (BB_OFFSET(p[lo]) < target) {
7749 /* starts before the end, and finishes after
7750 * the start, so they must overlap
7752 if (rv != -1 && BB_ACK(p[lo]))
7753 rv = 1;
7754 else
7755 rv = -1;
7756 *first_bad = BB_OFFSET(p[lo]);
7757 *bad_sectors = BB_LEN(p[lo]);
7759 lo--;
7763 if (read_seqretry(&bb->lock, seq))
7764 goto retry;
7766 return rv;
7768 EXPORT_SYMBOL_GPL(md_is_badblock);
7771 * Add a range of bad blocks to the table.
7772 * This might extend the table, or might contract it
7773 * if two adjacent ranges can be merged.
7774 * We binary-search to find the 'insertion' point, then
7775 * decide how best to handle it.
7777 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7778 int acknowledged)
7780 u64 *p;
7781 int lo, hi;
7782 int rv = 1;
7784 if (bb->shift < 0)
7785 /* badblocks are disabled */
7786 return 0;
7788 if (bb->shift) {
7789 /* round the start down, and the end up */
7790 sector_t next = s + sectors;
7791 s >>= bb->shift;
7792 next += (1<<bb->shift) - 1;
7793 next >>= bb->shift;
7794 sectors = next - s;
7797 write_seqlock_irq(&bb->lock);
7799 p = bb->page;
7800 lo = 0;
7801 hi = bb->count;
7802 /* Find the last range that starts at-or-before 's' */
7803 while (hi - lo > 1) {
7804 int mid = (lo + hi) / 2;
7805 sector_t a = BB_OFFSET(p[mid]);
7806 if (a <= s)
7807 lo = mid;
7808 else
7809 hi = mid;
7811 if (hi > lo && BB_OFFSET(p[lo]) > s)
7812 hi = lo;
7814 if (hi > lo) {
7815 /* we found a range that might merge with the start
7816 * of our new range
7818 sector_t a = BB_OFFSET(p[lo]);
7819 sector_t e = a + BB_LEN(p[lo]);
7820 int ack = BB_ACK(p[lo]);
7821 if (e >= s) {
7822 /* Yes, we can merge with a previous range */
7823 if (s == a && s + sectors >= e)
7824 /* new range covers old */
7825 ack = acknowledged;
7826 else
7827 ack = ack && acknowledged;
7829 if (e < s + sectors)
7830 e = s + sectors;
7831 if (e - a <= BB_MAX_LEN) {
7832 p[lo] = BB_MAKE(a, e-a, ack);
7833 s = e;
7834 } else {
7835 /* does not all fit in one range,
7836 * make p[lo] maximal
7838 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7839 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7840 s = a + BB_MAX_LEN;
7842 sectors = e - s;
7845 if (sectors && hi < bb->count) {
7846 /* 'hi' points to the first range that starts after 's'.
7847 * Maybe we can merge with the start of that range */
7848 sector_t a = BB_OFFSET(p[hi]);
7849 sector_t e = a + BB_LEN(p[hi]);
7850 int ack = BB_ACK(p[hi]);
7851 if (a <= s + sectors) {
7852 /* merging is possible */
7853 if (e <= s + sectors) {
7854 /* full overlap */
7855 e = s + sectors;
7856 ack = acknowledged;
7857 } else
7858 ack = ack && acknowledged;
7860 a = s;
7861 if (e - a <= BB_MAX_LEN) {
7862 p[hi] = BB_MAKE(a, e-a, ack);
7863 s = e;
7864 } else {
7865 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7866 s = a + BB_MAX_LEN;
7868 sectors = e - s;
7869 lo = hi;
7870 hi++;
7873 if (sectors == 0 && hi < bb->count) {
7874 /* we might be able to combine lo and hi */
7875 /* Note: 's' is at the end of 'lo' */
7876 sector_t a = BB_OFFSET(p[hi]);
7877 int lolen = BB_LEN(p[lo]);
7878 int hilen = BB_LEN(p[hi]);
7879 int newlen = lolen + hilen - (s - a);
7880 if (s >= a && newlen < BB_MAX_LEN) {
7881 /* yes, we can combine them */
7882 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7883 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7884 memmove(p + hi, p + hi + 1,
7885 (bb->count - hi - 1) * 8);
7886 bb->count--;
7889 while (sectors) {
7890 /* didn't merge (it all).
7891 * Need to add a range just before 'hi' */
7892 if (bb->count >= MD_MAX_BADBLOCKS) {
7893 /* No room for more */
7894 rv = 0;
7895 break;
7896 } else {
7897 int this_sectors = sectors;
7898 memmove(p + hi + 1, p + hi,
7899 (bb->count - hi) * 8);
7900 bb->count++;
7902 if (this_sectors > BB_MAX_LEN)
7903 this_sectors = BB_MAX_LEN;
7904 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7905 sectors -= this_sectors;
7906 s += this_sectors;
7910 bb->changed = 1;
7911 if (!acknowledged)
7912 bb->unacked_exist = 1;
7913 write_sequnlock_irq(&bb->lock);
7915 return rv;
7918 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7919 int acknowledged)
7921 int rv = md_set_badblocks(&rdev->badblocks,
7922 s + rdev->data_offset, sectors, acknowledged);
7923 if (rv) {
7924 /* Make sure they get written out promptly */
7925 sysfs_notify_dirent_safe(rdev->sysfs_state);
7926 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7927 md_wakeup_thread(rdev->mddev->thread);
7929 return rv;
7931 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7934 * Remove a range of bad blocks from the table.
7935 * This may involve extending the table if we spilt a region,
7936 * but it must not fail. So if the table becomes full, we just
7937 * drop the remove request.
7939 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7941 u64 *p;
7942 int lo, hi;
7943 sector_t target = s + sectors;
7944 int rv = 0;
7946 if (bb->shift > 0) {
7947 /* When clearing we round the start up and the end down.
7948 * This should not matter as the shift should align with
7949 * the block size and no rounding should ever be needed.
7950 * However it is better the think a block is bad when it
7951 * isn't than to think a block is not bad when it is.
7953 s += (1<<bb->shift) - 1;
7954 s >>= bb->shift;
7955 target >>= bb->shift;
7956 sectors = target - s;
7959 write_seqlock_irq(&bb->lock);
7961 p = bb->page;
7962 lo = 0;
7963 hi = bb->count;
7964 /* Find the last range that starts before 'target' */
7965 while (hi - lo > 1) {
7966 int mid = (lo + hi) / 2;
7967 sector_t a = BB_OFFSET(p[mid]);
7968 if (a < target)
7969 lo = mid;
7970 else
7971 hi = mid;
7973 if (hi > lo) {
7974 /* p[lo] is the last range that could overlap the
7975 * current range. Earlier ranges could also overlap,
7976 * but only this one can overlap the end of the range.
7978 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7979 /* Partial overlap, leave the tail of this range */
7980 int ack = BB_ACK(p[lo]);
7981 sector_t a = BB_OFFSET(p[lo]);
7982 sector_t end = a + BB_LEN(p[lo]);
7984 if (a < s) {
7985 /* we need to split this range */
7986 if (bb->count >= MD_MAX_BADBLOCKS) {
7987 rv = 0;
7988 goto out;
7990 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7991 bb->count++;
7992 p[lo] = BB_MAKE(a, s-a, ack);
7993 lo++;
7995 p[lo] = BB_MAKE(target, end - target, ack);
7996 /* there is no longer an overlap */
7997 hi = lo;
7998 lo--;
8000 while (lo >= 0 &&
8001 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8002 /* This range does overlap */
8003 if (BB_OFFSET(p[lo]) < s) {
8004 /* Keep the early parts of this range. */
8005 int ack = BB_ACK(p[lo]);
8006 sector_t start = BB_OFFSET(p[lo]);
8007 p[lo] = BB_MAKE(start, s - start, ack);
8008 /* now low doesn't overlap, so.. */
8009 break;
8011 lo--;
8013 /* 'lo' is strictly before, 'hi' is strictly after,
8014 * anything between needs to be discarded
8016 if (hi - lo > 1) {
8017 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8018 bb->count -= (hi - lo - 1);
8022 bb->changed = 1;
8023 out:
8024 write_sequnlock_irq(&bb->lock);
8025 return rv;
8028 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8030 return md_clear_badblocks(&rdev->badblocks,
8031 s + rdev->data_offset,
8032 sectors);
8034 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8037 * Acknowledge all bad blocks in a list.
8038 * This only succeeds if ->changed is clear. It is used by
8039 * in-kernel metadata updates
8041 void md_ack_all_badblocks(struct badblocks *bb)
8043 if (bb->page == NULL || bb->changed)
8044 /* no point even trying */
8045 return;
8046 write_seqlock_irq(&bb->lock);
8048 if (bb->changed == 0 && bb->unacked_exist) {
8049 u64 *p = bb->page;
8050 int i;
8051 for (i = 0; i < bb->count ; i++) {
8052 if (!BB_ACK(p[i])) {
8053 sector_t start = BB_OFFSET(p[i]);
8054 int len = BB_LEN(p[i]);
8055 p[i] = BB_MAKE(start, len, 1);
8058 bb->unacked_exist = 0;
8060 write_sequnlock_irq(&bb->lock);
8062 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8064 /* sysfs access to bad-blocks list.
8065 * We present two files.
8066 * 'bad-blocks' lists sector numbers and lengths of ranges that
8067 * are recorded as bad. The list is truncated to fit within
8068 * the one-page limit of sysfs.
8069 * Writing "sector length" to this file adds an acknowledged
8070 * bad block list.
8071 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8072 * been acknowledged. Writing to this file adds bad blocks
8073 * without acknowledging them. This is largely for testing.
8076 static ssize_t
8077 badblocks_show(struct badblocks *bb, char *page, int unack)
8079 size_t len;
8080 int i;
8081 u64 *p = bb->page;
8082 unsigned seq;
8084 if (bb->shift < 0)
8085 return 0;
8087 retry:
8088 seq = read_seqbegin(&bb->lock);
8090 len = 0;
8091 i = 0;
8093 while (len < PAGE_SIZE && i < bb->count) {
8094 sector_t s = BB_OFFSET(p[i]);
8095 unsigned int length = BB_LEN(p[i]);
8096 int ack = BB_ACK(p[i]);
8097 i++;
8099 if (unack && ack)
8100 continue;
8102 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8103 (unsigned long long)s << bb->shift,
8104 length << bb->shift);
8106 if (unack && len == 0)
8107 bb->unacked_exist = 0;
8109 if (read_seqretry(&bb->lock, seq))
8110 goto retry;
8112 return len;
8115 #define DO_DEBUG 1
8117 static ssize_t
8118 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8120 unsigned long long sector;
8121 int length;
8122 char newline;
8123 #ifdef DO_DEBUG
8124 /* Allow clearing via sysfs *only* for testing/debugging.
8125 * Normally only a successful write may clear a badblock
8127 int clear = 0;
8128 if (page[0] == '-') {
8129 clear = 1;
8130 page++;
8132 #endif /* DO_DEBUG */
8134 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8135 case 3:
8136 if (newline != '\n')
8137 return -EINVAL;
8138 case 2:
8139 if (length <= 0)
8140 return -EINVAL;
8141 break;
8142 default:
8143 return -EINVAL;
8146 #ifdef DO_DEBUG
8147 if (clear) {
8148 md_clear_badblocks(bb, sector, length);
8149 return len;
8151 #endif /* DO_DEBUG */
8152 if (md_set_badblocks(bb, sector, length, !unack))
8153 return len;
8154 else
8155 return -ENOSPC;
8158 static int md_notify_reboot(struct notifier_block *this,
8159 unsigned long code, void *x)
8161 struct list_head *tmp;
8162 struct mddev *mddev;
8163 int need_delay = 0;
8165 for_each_mddev(mddev, tmp) {
8166 if (mddev_trylock(mddev)) {
8167 if (mddev->pers)
8168 __md_stop_writes(mddev);
8169 mddev->safemode = 2;
8170 mddev_unlock(mddev);
8172 need_delay = 1;
8175 * certain more exotic SCSI devices are known to be
8176 * volatile wrt too early system reboots. While the
8177 * right place to handle this issue is the given
8178 * driver, we do want to have a safe RAID driver ...
8180 if (need_delay)
8181 mdelay(1000*1);
8183 return NOTIFY_DONE;
8186 static struct notifier_block md_notifier = {
8187 .notifier_call = md_notify_reboot,
8188 .next = NULL,
8189 .priority = INT_MAX, /* before any real devices */
8192 static void md_geninit(void)
8194 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8196 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8199 static int __init md_init(void)
8201 int ret = -ENOMEM;
8203 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8204 if (!md_wq)
8205 goto err_wq;
8207 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8208 if (!md_misc_wq)
8209 goto err_misc_wq;
8211 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8212 goto err_md;
8214 if ((ret = register_blkdev(0, "mdp")) < 0)
8215 goto err_mdp;
8216 mdp_major = ret;
8218 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8219 md_probe, NULL, NULL);
8220 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8221 md_probe, NULL, NULL);
8223 register_reboot_notifier(&md_notifier);
8224 raid_table_header = register_sysctl_table(raid_root_table);
8226 md_geninit();
8227 return 0;
8229 err_mdp:
8230 unregister_blkdev(MD_MAJOR, "md");
8231 err_md:
8232 destroy_workqueue(md_misc_wq);
8233 err_misc_wq:
8234 destroy_workqueue(md_wq);
8235 err_wq:
8236 return ret;
8239 #ifndef MODULE
8242 * Searches all registered partitions for autorun RAID arrays
8243 * at boot time.
8246 static LIST_HEAD(all_detected_devices);
8247 struct detected_devices_node {
8248 struct list_head list;
8249 dev_t dev;
8252 void md_autodetect_dev(dev_t dev)
8254 struct detected_devices_node *node_detected_dev;
8256 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8257 if (node_detected_dev) {
8258 node_detected_dev->dev = dev;
8259 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8260 } else {
8261 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8262 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8267 static void autostart_arrays(int part)
8269 struct md_rdev *rdev;
8270 struct detected_devices_node *node_detected_dev;
8271 dev_t dev;
8272 int i_scanned, i_passed;
8274 i_scanned = 0;
8275 i_passed = 0;
8277 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8279 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8280 i_scanned++;
8281 node_detected_dev = list_entry(all_detected_devices.next,
8282 struct detected_devices_node, list);
8283 list_del(&node_detected_dev->list);
8284 dev = node_detected_dev->dev;
8285 kfree(node_detected_dev);
8286 rdev = md_import_device(dev,0, 90);
8287 if (IS_ERR(rdev))
8288 continue;
8290 if (test_bit(Faulty, &rdev->flags)) {
8291 MD_BUG();
8292 continue;
8294 set_bit(AutoDetected, &rdev->flags);
8295 list_add(&rdev->same_set, &pending_raid_disks);
8296 i_passed++;
8299 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8300 i_scanned, i_passed);
8302 autorun_devices(part);
8305 #endif /* !MODULE */
8307 static __exit void md_exit(void)
8309 struct mddev *mddev;
8310 struct list_head *tmp;
8312 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8313 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8315 unregister_blkdev(MD_MAJOR,"md");
8316 unregister_blkdev(mdp_major, "mdp");
8317 unregister_reboot_notifier(&md_notifier);
8318 unregister_sysctl_table(raid_table_header);
8319 remove_proc_entry("mdstat", NULL);
8320 for_each_mddev(mddev, tmp) {
8321 export_array(mddev);
8322 mddev->hold_active = 0;
8324 destroy_workqueue(md_misc_wq);
8325 destroy_workqueue(md_wq);
8328 subsys_initcall(md_init);
8329 module_exit(md_exit)
8331 static int get_ro(char *buffer, struct kernel_param *kp)
8333 return sprintf(buffer, "%d", start_readonly);
8335 static int set_ro(const char *val, struct kernel_param *kp)
8337 char *e;
8338 int num = simple_strtoul(val, &e, 10);
8339 if (*val && (*e == '\0' || *e == '\n')) {
8340 start_readonly = num;
8341 return 0;
8343 return -EINVAL;
8346 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8347 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8349 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8351 EXPORT_SYMBOL(register_md_personality);
8352 EXPORT_SYMBOL(unregister_md_personality);
8353 EXPORT_SYMBOL(md_error);
8354 EXPORT_SYMBOL(md_done_sync);
8355 EXPORT_SYMBOL(md_write_start);
8356 EXPORT_SYMBOL(md_write_end);
8357 EXPORT_SYMBOL(md_register_thread);
8358 EXPORT_SYMBOL(md_unregister_thread);
8359 EXPORT_SYMBOL(md_wakeup_thread);
8360 EXPORT_SYMBOL(md_check_recovery);
8361 MODULE_LICENSE("GPL");
8362 MODULE_DESCRIPTION("MD RAID framework");
8363 MODULE_ALIAS("md");
8364 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);