2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * near_copies and far_copies must be at least one, and their product is at most
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
66 static int max_queued_requests
= 1024;
68 static void allow_barrier(struct r10conf
*conf
);
69 static void lower_barrier(struct r10conf
*conf
);
70 static int enough(struct r10conf
*conf
, int ignore
);
72 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
74 struct r10conf
*conf
= data
;
75 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
77 /* allocate a r10bio with room for raid_disks entries in the
79 return kzalloc(size
, gfp_flags
);
82 static void r10bio_pool_free(void *r10_bio
, void *data
)
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
102 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
104 struct r10conf
*conf
= data
;
106 struct r10bio
*r10_bio
;
111 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
115 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
116 nalloc
= conf
->copies
; /* resync */
118 nalloc
= 2; /* recovery */
123 for (j
= nalloc
; j
-- ; ) {
124 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
127 r10_bio
->devs
[j
].bio
= bio
;
128 if (!conf
->have_replacement
)
130 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
133 r10_bio
->devs
[j
].repl_bio
= bio
;
136 * Allocate RESYNC_PAGES data pages and attach them
139 for (j
= 0 ; j
< nalloc
; j
++) {
140 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
141 bio
= r10_bio
->devs
[j
].bio
;
142 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
143 if (j
== 1 && !test_bit(MD_RECOVERY_SYNC
,
144 &conf
->mddev
->recovery
)) {
145 /* we can share bv_page's during recovery */
146 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
147 page
= rbio
->bi_io_vec
[i
].bv_page
;
150 page
= alloc_page(gfp_flags
);
154 bio
->bi_io_vec
[i
].bv_page
= page
;
156 rbio
->bi_io_vec
[i
].bv_page
= page
;
164 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
166 for (i
= 0; i
< RESYNC_PAGES
; i
++)
167 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
170 while (++j
< nalloc
) {
171 bio_put(r10_bio
->devs
[j
].bio
);
172 if (r10_bio
->devs
[j
].repl_bio
)
173 bio_put(r10_bio
->devs
[j
].repl_bio
);
175 r10bio_pool_free(r10_bio
, conf
);
179 static void r10buf_pool_free(void *__r10_bio
, void *data
)
182 struct r10conf
*conf
= data
;
183 struct r10bio
*r10bio
= __r10_bio
;
186 for (j
=0; j
< conf
->copies
; j
++) {
187 struct bio
*bio
= r10bio
->devs
[j
].bio
;
189 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
190 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
191 bio
->bi_io_vec
[i
].bv_page
= NULL
;
195 bio
= r10bio
->devs
[j
].repl_bio
;
199 r10bio_pool_free(r10bio
, conf
);
202 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
206 for (i
= 0; i
< conf
->copies
; i
++) {
207 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
208 if (!BIO_SPECIAL(*bio
))
211 bio
= &r10_bio
->devs
[i
].repl_bio
;
212 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
218 static void free_r10bio(struct r10bio
*r10_bio
)
220 struct r10conf
*conf
= r10_bio
->mddev
->private;
222 put_all_bios(conf
, r10_bio
);
223 mempool_free(r10_bio
, conf
->r10bio_pool
);
226 static void put_buf(struct r10bio
*r10_bio
)
228 struct r10conf
*conf
= r10_bio
->mddev
->private;
230 mempool_free(r10_bio
, conf
->r10buf_pool
);
235 static void reschedule_retry(struct r10bio
*r10_bio
)
238 struct mddev
*mddev
= r10_bio
->mddev
;
239 struct r10conf
*conf
= mddev
->private;
241 spin_lock_irqsave(&conf
->device_lock
, flags
);
242 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
244 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
246 /* wake up frozen array... */
247 wake_up(&conf
->wait_barrier
);
249 md_wakeup_thread(mddev
->thread
);
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
257 static void raid_end_bio_io(struct r10bio
*r10_bio
)
259 struct bio
*bio
= r10_bio
->master_bio
;
261 struct r10conf
*conf
= r10_bio
->mddev
->private;
263 if (bio
->bi_phys_segments
) {
265 spin_lock_irqsave(&conf
->device_lock
, flags
);
266 bio
->bi_phys_segments
--;
267 done
= (bio
->bi_phys_segments
== 0);
268 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
271 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
272 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
276 * Wake up any possible resync thread that waits for the device
281 free_r10bio(r10_bio
);
285 * Update disk head position estimator based on IRQ completion info.
287 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
289 struct r10conf
*conf
= r10_bio
->mddev
->private;
291 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
292 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
296 * Find the disk number which triggered given bio
298 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
299 struct bio
*bio
, int *slotp
, int *replp
)
304 for (slot
= 0; slot
< conf
->copies
; slot
++) {
305 if (r10_bio
->devs
[slot
].bio
== bio
)
307 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
313 BUG_ON(slot
== conf
->copies
);
314 update_head_pos(slot
, r10_bio
);
320 return r10_bio
->devs
[slot
].devnum
;
323 static void raid10_end_read_request(struct bio
*bio
, int error
)
325 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
326 struct r10bio
*r10_bio
= bio
->bi_private
;
328 struct md_rdev
*rdev
;
329 struct r10conf
*conf
= r10_bio
->mddev
->private;
332 slot
= r10_bio
->read_slot
;
333 dev
= r10_bio
->devs
[slot
].devnum
;
334 rdev
= r10_bio
->devs
[slot
].rdev
;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(slot
, r10_bio
);
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
350 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
358 spin_lock_irqsave(&conf
->device_lock
, flags
);
359 if (!enough(conf
, rdev
->raid_disk
))
361 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
364 raid_end_bio_io(r10_bio
);
365 rdev_dec_pending(rdev
, conf
->mddev
);
368 * oops, read error - keep the refcount on the rdev
370 char b
[BDEVNAME_SIZE
];
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
374 bdevname(rdev
->bdev
, b
),
375 (unsigned long long)r10_bio
->sector
);
376 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
377 reschedule_retry(r10_bio
);
381 static void close_write(struct r10bio
*r10_bio
)
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
386 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
388 md_write_end(r10_bio
->mddev
);
391 static void one_write_done(struct r10bio
*r10_bio
)
393 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
394 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
395 reschedule_retry(r10_bio
);
397 close_write(r10_bio
);
398 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
399 reschedule_retry(r10_bio
);
401 raid_end_bio_io(r10_bio
);
406 static void raid10_end_write_request(struct bio
*bio
, int error
)
408 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
409 struct r10bio
*r10_bio
= bio
->bi_private
;
412 struct r10conf
*conf
= r10_bio
->mddev
->private;
414 struct md_rdev
*rdev
= NULL
;
416 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
419 rdev
= conf
->mirrors
[dev
].replacement
;
423 rdev
= conf
->mirrors
[dev
].rdev
;
426 * this branch is our 'one mirror IO has finished' event handler:
430 /* Never record new bad blocks to replacement,
433 md_error(rdev
->mddev
, rdev
);
435 set_bit(WriteErrorSeen
, &rdev
->flags
);
436 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
437 set_bit(MD_RECOVERY_NEEDED
,
438 &rdev
->mddev
->recovery
);
439 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
456 * Do not set R10BIO_Uptodate if the current device is
457 * rebuilding or Faulty. This is because we cannot use
458 * such device for properly reading the data back (we could
459 * potentially use it, if the current write would have felt
460 * before rdev->recovery_offset, but for simplicity we don't
463 if (test_bit(In_sync
, &rdev
->flags
) &&
464 !test_bit(Faulty
, &rdev
->flags
))
465 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
467 /* Maybe we can clear some bad blocks. */
468 if (is_badblock(rdev
,
469 r10_bio
->devs
[slot
].addr
,
471 &first_bad
, &bad_sectors
)) {
474 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
476 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
478 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
484 * Let's see if all mirrored write operations have finished
487 one_write_done(r10_bio
);
489 rdev_dec_pending(rdev
, conf
->mddev
);
493 * RAID10 layout manager
494 * As well as the chunksize and raid_disks count, there are two
495 * parameters: near_copies and far_copies.
496 * near_copies * far_copies must be <= raid_disks.
497 * Normally one of these will be 1.
498 * If both are 1, we get raid0.
499 * If near_copies == raid_disks, we get raid1.
501 * Chunks are laid out in raid0 style with near_copies copies of the
502 * first chunk, followed by near_copies copies of the next chunk and
504 * If far_copies > 1, then after 1/far_copies of the array has been assigned
505 * as described above, we start again with a device offset of near_copies.
506 * So we effectively have another copy of the whole array further down all
507 * the drives, but with blocks on different drives.
508 * With this layout, and block is never stored twice on the one device.
510 * raid10_find_phys finds the sector offset of a given virtual sector
511 * on each device that it is on.
513 * raid10_find_virt does the reverse mapping, from a device and a
514 * sector offset to a virtual address
517 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
527 /* now calculate first sector/dev */
528 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
529 sector
= r10bio
->sector
& conf
->chunk_mask
;
531 chunk
*= conf
->near_copies
;
533 dev
= sector_div(stripe
, conf
->raid_disks
);
534 if (conf
->far_offset
)
535 stripe
*= conf
->far_copies
;
537 sector
+= stripe
<< conf
->chunk_shift
;
539 /* and calculate all the others */
540 for (n
=0; n
< conf
->near_copies
; n
++) {
543 r10bio
->devs
[slot
].addr
= sector
;
544 r10bio
->devs
[slot
].devnum
= d
;
547 for (f
= 1; f
< conf
->far_copies
; f
++) {
548 d
+= conf
->near_copies
;
549 if (d
>= conf
->raid_disks
)
550 d
-= conf
->raid_disks
;
552 r10bio
->devs
[slot
].devnum
= d
;
553 r10bio
->devs
[slot
].addr
= s
;
557 if (dev
>= conf
->raid_disks
) {
559 sector
+= (conf
->chunk_mask
+ 1);
562 BUG_ON(slot
!= conf
->copies
);
565 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
567 sector_t offset
, chunk
, vchunk
;
569 offset
= sector
& conf
->chunk_mask
;
570 if (conf
->far_offset
) {
572 chunk
= sector
>> conf
->chunk_shift
;
573 fc
= sector_div(chunk
, conf
->far_copies
);
574 dev
-= fc
* conf
->near_copies
;
576 dev
+= conf
->raid_disks
;
578 while (sector
>= conf
->stride
) {
579 sector
-= conf
->stride
;
580 if (dev
< conf
->near_copies
)
581 dev
+= conf
->raid_disks
- conf
->near_copies
;
583 dev
-= conf
->near_copies
;
585 chunk
= sector
>> conf
->chunk_shift
;
587 vchunk
= chunk
* conf
->raid_disks
+ dev
;
588 sector_div(vchunk
, conf
->near_copies
);
589 return (vchunk
<< conf
->chunk_shift
) + offset
;
593 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
595 * @bvm: properties of new bio
596 * @biovec: the request that could be merged to it.
598 * Return amount of bytes we can accept at this offset
599 * This requires checking for end-of-chunk if near_copies != raid_disks,
600 * and for subordinate merge_bvec_fns if merge_check_needed.
602 static int raid10_mergeable_bvec(struct request_queue
*q
,
603 struct bvec_merge_data
*bvm
,
604 struct bio_vec
*biovec
)
606 struct mddev
*mddev
= q
->queuedata
;
607 struct r10conf
*conf
= mddev
->private;
608 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
610 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
611 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
613 if (conf
->near_copies
< conf
->raid_disks
) {
614 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1))
615 + bio_sectors
)) << 9;
617 /* bio_add cannot handle a negative return */
619 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
620 return biovec
->bv_len
;
622 max
= biovec
->bv_len
;
624 if (mddev
->merge_check_needed
) {
626 struct r10bio r10_bio
;
627 struct r10dev devs
[conf
->copies
];
629 struct r10bio
*r10_bio
= &on_stack
.r10_bio
;
631 r10_bio
->sector
= sector
;
632 raid10_find_phys(conf
, r10_bio
);
634 for (s
= 0; s
< conf
->copies
; s
++) {
635 int disk
= r10_bio
->devs
[s
].devnum
;
636 struct md_rdev
*rdev
= rcu_dereference(
637 conf
->mirrors
[disk
].rdev
);
638 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
639 struct request_queue
*q
=
640 bdev_get_queue(rdev
->bdev
);
641 if (q
->merge_bvec_fn
) {
642 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
644 bvm
->bi_bdev
= rdev
->bdev
;
645 max
= min(max
, q
->merge_bvec_fn(
649 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
650 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
651 struct request_queue
*q
=
652 bdev_get_queue(rdev
->bdev
);
653 if (q
->merge_bvec_fn
) {
654 bvm
->bi_sector
= r10_bio
->devs
[s
].addr
656 bvm
->bi_bdev
= rdev
->bdev
;
657 max
= min(max
, q
->merge_bvec_fn(
668 * This routine returns the disk from which the requested read should
669 * be done. There is a per-array 'next expected sequential IO' sector
670 * number - if this matches on the next IO then we use the last disk.
671 * There is also a per-disk 'last know head position' sector that is
672 * maintained from IRQ contexts, both the normal and the resync IO
673 * completion handlers update this position correctly. If there is no
674 * perfect sequential match then we pick the disk whose head is closest.
676 * If there are 2 mirrors in the same 2 devices, performance degrades
677 * because position is mirror, not device based.
679 * The rdev for the device selected will have nr_pending incremented.
683 * FIXME: possibly should rethink readbalancing and do it differently
684 * depending on near_copies / far_copies geometry.
686 static struct md_rdev
*read_balance(struct r10conf
*conf
,
687 struct r10bio
*r10_bio
,
690 const sector_t this_sector
= r10_bio
->sector
;
692 int sectors
= r10_bio
->sectors
;
693 int best_good_sectors
;
694 sector_t new_distance
, best_dist
;
695 struct md_rdev
*rdev
, *best_rdev
;
699 raid10_find_phys(conf
, r10_bio
);
702 sectors
= r10_bio
->sectors
;
705 best_dist
= MaxSector
;
706 best_good_sectors
= 0;
709 * Check if we can balance. We can balance on the whole
710 * device if no resync is going on (recovery is ok), or below
711 * the resync window. We take the first readable disk when
712 * above the resync window.
714 if (conf
->mddev
->recovery_cp
< MaxSector
715 && (this_sector
+ sectors
>= conf
->next_resync
))
718 for (slot
= 0; slot
< conf
->copies
; slot
++) {
723 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
725 disk
= r10_bio
->devs
[slot
].devnum
;
726 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
727 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
728 test_bit(Unmerged
, &rdev
->flags
) ||
729 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
730 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
732 test_bit(Faulty
, &rdev
->flags
) ||
733 test_bit(Unmerged
, &rdev
->flags
))
735 if (!test_bit(In_sync
, &rdev
->flags
) &&
736 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
739 dev_sector
= r10_bio
->devs
[slot
].addr
;
740 if (is_badblock(rdev
, dev_sector
, sectors
,
741 &first_bad
, &bad_sectors
)) {
742 if (best_dist
< MaxSector
)
743 /* Already have a better slot */
745 if (first_bad
<= dev_sector
) {
746 /* Cannot read here. If this is the
747 * 'primary' device, then we must not read
748 * beyond 'bad_sectors' from another device.
750 bad_sectors
-= (dev_sector
- first_bad
);
751 if (!do_balance
&& sectors
> bad_sectors
)
752 sectors
= bad_sectors
;
753 if (best_good_sectors
> sectors
)
754 best_good_sectors
= sectors
;
756 sector_t good_sectors
=
757 first_bad
- dev_sector
;
758 if (good_sectors
> best_good_sectors
) {
759 best_good_sectors
= good_sectors
;
764 /* Must read from here */
769 best_good_sectors
= sectors
;
774 /* This optimisation is debatable, and completely destroys
775 * sequential read speed for 'far copies' arrays. So only
776 * keep it for 'near' arrays, and review those later.
778 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
781 /* for far > 1 always use the lowest address */
782 if (conf
->far_copies
> 1)
783 new_distance
= r10_bio
->devs
[slot
].addr
;
785 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
786 conf
->mirrors
[disk
].head_position
);
787 if (new_distance
< best_dist
) {
788 best_dist
= new_distance
;
793 if (slot
>= conf
->copies
) {
799 atomic_inc(&rdev
->nr_pending
);
800 if (test_bit(Faulty
, &rdev
->flags
)) {
801 /* Cannot risk returning a device that failed
802 * before we inc'ed nr_pending
804 rdev_dec_pending(rdev
, conf
->mddev
);
807 r10_bio
->read_slot
= slot
;
811 *max_sectors
= best_good_sectors
;
816 static int raid10_congested(void *data
, int bits
)
818 struct mddev
*mddev
= data
;
819 struct r10conf
*conf
= mddev
->private;
822 if ((bits
& (1 << BDI_async_congested
)) &&
823 conf
->pending_count
>= max_queued_requests
)
826 if (mddev_congested(mddev
, bits
))
829 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
830 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
831 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
832 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
834 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
841 static void flush_pending_writes(struct r10conf
*conf
)
843 /* Any writes that have been queued but are awaiting
844 * bitmap updates get flushed here.
846 spin_lock_irq(&conf
->device_lock
);
848 if (conf
->pending_bio_list
.head
) {
850 bio
= bio_list_get(&conf
->pending_bio_list
);
851 conf
->pending_count
= 0;
852 spin_unlock_irq(&conf
->device_lock
);
853 /* flush any pending bitmap writes to disk
854 * before proceeding w/ I/O */
855 bitmap_unplug(conf
->mddev
->bitmap
);
856 wake_up(&conf
->wait_barrier
);
858 while (bio
) { /* submit pending writes */
859 struct bio
*next
= bio
->bi_next
;
861 generic_make_request(bio
);
865 spin_unlock_irq(&conf
->device_lock
);
869 * Sometimes we need to suspend IO while we do something else,
870 * either some resync/recovery, or reconfigure the array.
871 * To do this we raise a 'barrier'.
872 * The 'barrier' is a counter that can be raised multiple times
873 * to count how many activities are happening which preclude
875 * We can only raise the barrier if there is no pending IO.
876 * i.e. if nr_pending == 0.
877 * We choose only to raise the barrier if no-one is waiting for the
878 * barrier to go down. This means that as soon as an IO request
879 * is ready, no other operations which require a barrier will start
880 * until the IO request has had a chance.
882 * So: regular IO calls 'wait_barrier'. When that returns there
883 * is no backgroup IO happening, It must arrange to call
884 * allow_barrier when it has finished its IO.
885 * backgroup IO calls must call raise_barrier. Once that returns
886 * there is no normal IO happeing. It must arrange to call
887 * lower_barrier when the particular background IO completes.
890 static void raise_barrier(struct r10conf
*conf
, int force
)
892 BUG_ON(force
&& !conf
->barrier
);
893 spin_lock_irq(&conf
->resync_lock
);
895 /* Wait until no block IO is waiting (unless 'force') */
896 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
897 conf
->resync_lock
, );
899 /* block any new IO from starting */
902 /* Now wait for all pending IO to complete */
903 wait_event_lock_irq(conf
->wait_barrier
,
904 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
905 conf
->resync_lock
, );
907 spin_unlock_irq(&conf
->resync_lock
);
910 static void lower_barrier(struct r10conf
*conf
)
913 spin_lock_irqsave(&conf
->resync_lock
, flags
);
915 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
916 wake_up(&conf
->wait_barrier
);
919 static void wait_barrier(struct r10conf
*conf
)
921 spin_lock_irq(&conf
->resync_lock
);
924 /* Wait for the barrier to drop.
925 * However if there are already pending
926 * requests (preventing the barrier from
927 * rising completely), and the
928 * pre-process bio queue isn't empty,
929 * then don't wait, as we need to empty
930 * that queue to get the nr_pending
933 wait_event_lock_irq(conf
->wait_barrier
,
937 !bio_list_empty(current
->bio_list
)),
943 spin_unlock_irq(&conf
->resync_lock
);
946 static void allow_barrier(struct r10conf
*conf
)
949 spin_lock_irqsave(&conf
->resync_lock
, flags
);
951 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
952 wake_up(&conf
->wait_barrier
);
955 static void freeze_array(struct r10conf
*conf
, int extra
)
957 /* stop syncio and normal IO and wait for everything to
959 * We increment barrier and nr_waiting, and then
960 * wait until nr_pending match nr_queued+extra
961 * This is called in the context of one normal IO request
962 * that has failed. Thus any sync request that might be pending
963 * will be blocked by nr_pending, and we need to wait for
964 * pending IO requests to complete or be queued for re-try.
965 * Thus the number queued (nr_queued) plus this request (extra)
966 * must match the number of pending IOs (nr_pending) before
969 spin_lock_irq(&conf
->resync_lock
);
972 wait_event_lock_irq(conf
->wait_barrier
,
973 conf
->nr_pending
== conf
->nr_queued
+extra
,
975 flush_pending_writes(conf
));
977 spin_unlock_irq(&conf
->resync_lock
);
980 static void unfreeze_array(struct r10conf
*conf
)
982 /* reverse the effect of the freeze */
983 spin_lock_irq(&conf
->resync_lock
);
986 wake_up(&conf
->wait_barrier
);
987 spin_unlock_irq(&conf
->resync_lock
);
990 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
992 struct r10conf
*conf
= mddev
->private;
993 struct r10bio
*r10_bio
;
994 struct bio
*read_bio
;
996 int chunk_sects
= conf
->chunk_mask
+ 1;
997 const int rw
= bio_data_dir(bio
);
998 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
999 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
1000 unsigned long flags
;
1001 struct md_rdev
*blocked_rdev
;
1003 int sectors_handled
;
1006 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
1007 md_flush_request(mddev
, bio
);
1011 /* If this request crosses a chunk boundary, we need to
1012 * split it. This will only happen for 1 PAGE (or less) requests.
1014 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
1016 conf
->near_copies
< conf
->raid_disks
)) {
1017 struct bio_pair
*bp
;
1018 /* Sanity check -- queue functions should prevent this happening */
1019 if (bio
->bi_vcnt
!= 1 ||
1022 /* This is a one page bio that upper layers
1023 * refuse to split for us, so we need to split it.
1026 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
1028 /* Each of these 'make_request' calls will call 'wait_barrier'.
1029 * If the first succeeds but the second blocks due to the resync
1030 * thread raising the barrier, we will deadlock because the
1031 * IO to the underlying device will be queued in generic_make_request
1032 * and will never complete, so will never reduce nr_pending.
1033 * So increment nr_waiting here so no new raise_barriers will
1034 * succeed, and so the second wait_barrier cannot block.
1036 spin_lock_irq(&conf
->resync_lock
);
1038 spin_unlock_irq(&conf
->resync_lock
);
1040 make_request(mddev
, &bp
->bio1
);
1041 make_request(mddev
, &bp
->bio2
);
1043 spin_lock_irq(&conf
->resync_lock
);
1045 wake_up(&conf
->wait_barrier
);
1046 spin_unlock_irq(&conf
->resync_lock
);
1048 bio_pair_release(bp
);
1051 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1052 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
1053 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
1059 md_write_start(mddev
, bio
);
1062 * Register the new request and wait if the reconstruction
1063 * thread has put up a bar for new requests.
1064 * Continue immediately if no resync is active currently.
1068 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1070 r10_bio
->master_bio
= bio
;
1071 r10_bio
->sectors
= bio
->bi_size
>> 9;
1073 r10_bio
->mddev
= mddev
;
1074 r10_bio
->sector
= bio
->bi_sector
;
1077 /* We might need to issue multiple reads to different
1078 * devices if there are bad blocks around, so we keep
1079 * track of the number of reads in bio->bi_phys_segments.
1080 * If this is 0, there is only one r10_bio and no locking
1081 * will be needed when the request completes. If it is
1082 * non-zero, then it is the number of not-completed requests.
1084 bio
->bi_phys_segments
= 0;
1085 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1089 * read balancing logic:
1091 struct md_rdev
*rdev
;
1095 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1097 raid_end_bio_io(r10_bio
);
1100 slot
= r10_bio
->read_slot
;
1102 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1103 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1106 r10_bio
->devs
[slot
].bio
= read_bio
;
1107 r10_bio
->devs
[slot
].rdev
= rdev
;
1109 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1111 read_bio
->bi_bdev
= rdev
->bdev
;
1112 read_bio
->bi_end_io
= raid10_end_read_request
;
1113 read_bio
->bi_rw
= READ
| do_sync
;
1114 read_bio
->bi_private
= r10_bio
;
1116 if (max_sectors
< r10_bio
->sectors
) {
1117 /* Could not read all from this device, so we will
1118 * need another r10_bio.
1120 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1122 r10_bio
->sectors
= max_sectors
;
1123 spin_lock_irq(&conf
->device_lock
);
1124 if (bio
->bi_phys_segments
== 0)
1125 bio
->bi_phys_segments
= 2;
1127 bio
->bi_phys_segments
++;
1128 spin_unlock(&conf
->device_lock
);
1129 /* Cannot call generic_make_request directly
1130 * as that will be queued in __generic_make_request
1131 * and subsequent mempool_alloc might block
1132 * waiting for it. so hand bio over to raid10d.
1134 reschedule_retry(r10_bio
);
1136 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1138 r10_bio
->master_bio
= bio
;
1139 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1142 r10_bio
->mddev
= mddev
;
1143 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1146 generic_make_request(read_bio
);
1153 if (conf
->pending_count
>= max_queued_requests
) {
1154 md_wakeup_thread(mddev
->thread
);
1155 wait_event(conf
->wait_barrier
,
1156 conf
->pending_count
< max_queued_requests
);
1158 /* first select target devices under rcu_lock and
1159 * inc refcount on their rdev. Record them by setting
1161 * If there are known/acknowledged bad blocks on any device
1162 * on which we have seen a write error, we want to avoid
1163 * writing to those blocks. This potentially requires several
1164 * writes to write around the bad blocks. Each set of writes
1165 * gets its own r10_bio with a set of bios attached. The number
1166 * of r10_bios is recored in bio->bi_phys_segments just as with
1169 plugged
= mddev_check_plugged(mddev
);
1171 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1172 raid10_find_phys(conf
, r10_bio
);
1174 blocked_rdev
= NULL
;
1176 max_sectors
= r10_bio
->sectors
;
1178 for (i
= 0; i
< conf
->copies
; i
++) {
1179 int d
= r10_bio
->devs
[i
].devnum
;
1180 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1181 struct md_rdev
*rrdev
= rcu_dereference(
1182 conf
->mirrors
[d
].replacement
);
1185 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1186 atomic_inc(&rdev
->nr_pending
);
1187 blocked_rdev
= rdev
;
1190 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1191 atomic_inc(&rrdev
->nr_pending
);
1192 blocked_rdev
= rrdev
;
1195 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)
1196 || test_bit(Unmerged
, &rdev
->flags
)))
1198 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)
1199 || test_bit(Unmerged
, &rrdev
->flags
)))
1202 r10_bio
->devs
[i
].bio
= NULL
;
1203 r10_bio
->devs
[i
].repl_bio
= NULL
;
1205 if (!rdev
&& !rrdev
) {
1206 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1209 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1211 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1215 is_bad
= is_badblock(rdev
, dev_sector
,
1217 &first_bad
, &bad_sectors
);
1219 /* Mustn't write here until the bad block
1222 atomic_inc(&rdev
->nr_pending
);
1223 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1224 blocked_rdev
= rdev
;
1227 if (is_bad
&& first_bad
<= dev_sector
) {
1228 /* Cannot write here at all */
1229 bad_sectors
-= (dev_sector
- first_bad
);
1230 if (bad_sectors
< max_sectors
)
1231 /* Mustn't write more than bad_sectors
1232 * to other devices yet
1234 max_sectors
= bad_sectors
;
1235 /* We don't set R10BIO_Degraded as that
1236 * only applies if the disk is missing,
1237 * so it might be re-added, and we want to
1238 * know to recover this chunk.
1239 * In this case the device is here, and the
1240 * fact that this chunk is not in-sync is
1241 * recorded in the bad block log.
1246 int good_sectors
= first_bad
- dev_sector
;
1247 if (good_sectors
< max_sectors
)
1248 max_sectors
= good_sectors
;
1252 r10_bio
->devs
[i
].bio
= bio
;
1253 atomic_inc(&rdev
->nr_pending
);
1256 r10_bio
->devs
[i
].repl_bio
= bio
;
1257 atomic_inc(&rrdev
->nr_pending
);
1262 if (unlikely(blocked_rdev
)) {
1263 /* Have to wait for this device to get unblocked, then retry */
1267 for (j
= 0; j
< i
; j
++) {
1268 if (r10_bio
->devs
[j
].bio
) {
1269 d
= r10_bio
->devs
[j
].devnum
;
1270 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1272 if (r10_bio
->devs
[j
].repl_bio
) {
1273 struct md_rdev
*rdev
;
1274 d
= r10_bio
->devs
[j
].devnum
;
1275 rdev
= conf
->mirrors
[d
].replacement
;
1277 /* Race with remove_disk */
1279 rdev
= conf
->mirrors
[d
].rdev
;
1281 rdev_dec_pending(rdev
, mddev
);
1284 allow_barrier(conf
);
1285 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1290 if (max_sectors
< r10_bio
->sectors
) {
1291 /* We are splitting this into multiple parts, so
1292 * we need to prepare for allocating another r10_bio.
1294 r10_bio
->sectors
= max_sectors
;
1295 spin_lock_irq(&conf
->device_lock
);
1296 if (bio
->bi_phys_segments
== 0)
1297 bio
->bi_phys_segments
= 2;
1299 bio
->bi_phys_segments
++;
1300 spin_unlock_irq(&conf
->device_lock
);
1302 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1304 atomic_set(&r10_bio
->remaining
, 1);
1305 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1307 for (i
= 0; i
< conf
->copies
; i
++) {
1309 int d
= r10_bio
->devs
[i
].devnum
;
1310 if (r10_bio
->devs
[i
].bio
) {
1311 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1312 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1313 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1315 r10_bio
->devs
[i
].bio
= mbio
;
1317 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1319 mbio
->bi_bdev
= rdev
->bdev
;
1320 mbio
->bi_end_io
= raid10_end_write_request
;
1321 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1322 mbio
->bi_private
= r10_bio
;
1324 atomic_inc(&r10_bio
->remaining
);
1325 spin_lock_irqsave(&conf
->device_lock
, flags
);
1326 bio_list_add(&conf
->pending_bio_list
, mbio
);
1327 conf
->pending_count
++;
1328 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1331 if (r10_bio
->devs
[i
].repl_bio
) {
1332 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1334 /* Replacement just got moved to main 'rdev' */
1336 rdev
= conf
->mirrors
[d
].rdev
;
1338 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1339 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1341 r10_bio
->devs
[i
].repl_bio
= mbio
;
1343 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1345 mbio
->bi_bdev
= rdev
->bdev
;
1346 mbio
->bi_end_io
= raid10_end_write_request
;
1347 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1348 mbio
->bi_private
= r10_bio
;
1350 atomic_inc(&r10_bio
->remaining
);
1351 spin_lock_irqsave(&conf
->device_lock
, flags
);
1352 bio_list_add(&conf
->pending_bio_list
, mbio
);
1353 conf
->pending_count
++;
1354 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1358 /* Don't remove the bias on 'remaining' (one_write_done) until
1359 * after checking if we need to go around again.
1362 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1363 one_write_done(r10_bio
);
1364 /* We need another r10_bio. It has already been counted
1365 * in bio->bi_phys_segments.
1367 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1369 r10_bio
->master_bio
= bio
;
1370 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1372 r10_bio
->mddev
= mddev
;
1373 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1377 one_write_done(r10_bio
);
1379 /* In case raid10d snuck in to freeze_array */
1380 wake_up(&conf
->wait_barrier
);
1382 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
1383 md_wakeup_thread(mddev
->thread
);
1386 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1388 struct r10conf
*conf
= mddev
->private;
1391 if (conf
->near_copies
< conf
->raid_disks
)
1392 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1393 if (conf
->near_copies
> 1)
1394 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
1395 if (conf
->far_copies
> 1) {
1396 if (conf
->far_offset
)
1397 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
1399 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1401 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1402 conf
->raid_disks
- mddev
->degraded
);
1403 for (i
= 0; i
< conf
->raid_disks
; i
++)
1404 seq_printf(seq
, "%s",
1405 conf
->mirrors
[i
].rdev
&&
1406 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1407 seq_printf(seq
, "]");
1410 /* check if there are enough drives for
1411 * every block to appear on atleast one.
1412 * Don't consider the device numbered 'ignore'
1413 * as we might be about to remove it.
1415 static int enough(struct r10conf
*conf
, int ignore
)
1420 int n
= conf
->copies
;
1423 if (conf
->mirrors
[first
].rdev
&&
1426 first
= (first
+1) % conf
->raid_disks
;
1430 } while (first
!= 0);
1434 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1436 char b
[BDEVNAME_SIZE
];
1437 struct r10conf
*conf
= mddev
->private;
1440 * If it is not operational, then we have already marked it as dead
1441 * else if it is the last working disks, ignore the error, let the
1442 * next level up know.
1443 * else mark the drive as failed
1445 if (test_bit(In_sync
, &rdev
->flags
)
1446 && !enough(conf
, rdev
->raid_disk
))
1448 * Don't fail the drive, just return an IO error.
1451 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1452 unsigned long flags
;
1453 spin_lock_irqsave(&conf
->device_lock
, flags
);
1455 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1457 * if recovery is running, make sure it aborts.
1459 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1461 set_bit(Blocked
, &rdev
->flags
);
1462 set_bit(Faulty
, &rdev
->flags
);
1463 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1465 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1466 "md/raid10:%s: Operation continuing on %d devices.\n",
1467 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1468 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1471 static void print_conf(struct r10conf
*conf
)
1474 struct mirror_info
*tmp
;
1476 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1478 printk(KERN_DEBUG
"(!conf)\n");
1481 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1484 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1485 char b
[BDEVNAME_SIZE
];
1486 tmp
= conf
->mirrors
+ i
;
1488 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1489 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1490 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1491 bdevname(tmp
->rdev
->bdev
,b
));
1495 static void close_sync(struct r10conf
*conf
)
1498 allow_barrier(conf
);
1500 mempool_destroy(conf
->r10buf_pool
);
1501 conf
->r10buf_pool
= NULL
;
1504 static int raid10_spare_active(struct mddev
*mddev
)
1507 struct r10conf
*conf
= mddev
->private;
1508 struct mirror_info
*tmp
;
1510 unsigned long flags
;
1513 * Find all non-in_sync disks within the RAID10 configuration
1514 * and mark them in_sync
1516 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1517 tmp
= conf
->mirrors
+ i
;
1518 if (tmp
->replacement
1519 && tmp
->replacement
->recovery_offset
== MaxSector
1520 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1521 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1522 /* Replacement has just become active */
1524 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1527 /* Replaced device not technically faulty,
1528 * but we need to be sure it gets removed
1529 * and never re-added.
1531 set_bit(Faulty
, &tmp
->rdev
->flags
);
1532 sysfs_notify_dirent_safe(
1533 tmp
->rdev
->sysfs_state
);
1535 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1536 } else if (tmp
->rdev
1537 && tmp
->rdev
->recovery_offset
== MaxSector
1538 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1539 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1541 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1544 spin_lock_irqsave(&conf
->device_lock
, flags
);
1545 mddev
->degraded
-= count
;
1546 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1553 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1555 struct r10conf
*conf
= mddev
->private;
1559 int last
= conf
->raid_disks
- 1;
1560 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
1562 if (mddev
->recovery_cp
< MaxSector
)
1563 /* only hot-add to in-sync arrays, as recovery is
1564 * very different from resync
1567 if (rdev
->saved_raid_disk
< 0 && !enough(conf
, -1))
1570 if (rdev
->raid_disk
>= 0)
1571 first
= last
= rdev
->raid_disk
;
1573 if (q
->merge_bvec_fn
) {
1574 set_bit(Unmerged
, &rdev
->flags
);
1575 mddev
->merge_check_needed
= 1;
1578 if (rdev
->saved_raid_disk
>= first
&&
1579 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1580 mirror
= rdev
->saved_raid_disk
;
1583 for ( ; mirror
<= last
; mirror
++) {
1584 struct mirror_info
*p
= &conf
->mirrors
[mirror
];
1585 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1588 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1589 p
->replacement
!= NULL
)
1591 clear_bit(In_sync
, &rdev
->flags
);
1592 set_bit(Replacement
, &rdev
->flags
);
1593 rdev
->raid_disk
= mirror
;
1595 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1596 rdev
->data_offset
<< 9);
1598 rcu_assign_pointer(p
->replacement
, rdev
);
1602 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1603 rdev
->data_offset
<< 9);
1605 p
->head_position
= 0;
1606 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1607 rdev
->raid_disk
= mirror
;
1609 if (rdev
->saved_raid_disk
!= mirror
)
1611 rcu_assign_pointer(p
->rdev
, rdev
);
1614 if (err
== 0 && test_bit(Unmerged
, &rdev
->flags
)) {
1615 /* Some requests might not have seen this new
1616 * merge_bvec_fn. We must wait for them to complete
1617 * before merging the device fully.
1618 * First we make sure any code which has tested
1619 * our function has submitted the request, then
1620 * we wait for all outstanding requests to complete.
1622 synchronize_sched();
1623 freeze_array(conf
, 0);
1624 unfreeze_array(conf
);
1625 clear_bit(Unmerged
, &rdev
->flags
);
1627 md_integrity_add_rdev(rdev
, mddev
);
1632 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1634 struct r10conf
*conf
= mddev
->private;
1636 int number
= rdev
->raid_disk
;
1637 struct md_rdev
**rdevp
;
1638 struct mirror_info
*p
= conf
->mirrors
+ number
;
1641 if (rdev
== p
->rdev
)
1643 else if (rdev
== p
->replacement
)
1644 rdevp
= &p
->replacement
;
1648 if (test_bit(In_sync
, &rdev
->flags
) ||
1649 atomic_read(&rdev
->nr_pending
)) {
1653 /* Only remove faulty devices if recovery
1656 if (!test_bit(Faulty
, &rdev
->flags
) &&
1657 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1658 (!p
->replacement
|| p
->replacement
== rdev
) &&
1665 if (atomic_read(&rdev
->nr_pending
)) {
1666 /* lost the race, try later */
1670 } else if (p
->replacement
) {
1671 /* We must have just cleared 'rdev' */
1672 p
->rdev
= p
->replacement
;
1673 clear_bit(Replacement
, &p
->replacement
->flags
);
1674 smp_mb(); /* Make sure other CPUs may see both as identical
1675 * but will never see neither -- if they are careful.
1677 p
->replacement
= NULL
;
1678 clear_bit(WantReplacement
, &rdev
->flags
);
1680 /* We might have just remove the Replacement as faulty
1681 * Clear the flag just in case
1683 clear_bit(WantReplacement
, &rdev
->flags
);
1685 err
= md_integrity_register(mddev
);
1694 static void end_sync_read(struct bio
*bio
, int error
)
1696 struct r10bio
*r10_bio
= bio
->bi_private
;
1697 struct r10conf
*conf
= r10_bio
->mddev
->private;
1700 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1702 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1703 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1705 /* The write handler will notice the lack of
1706 * R10BIO_Uptodate and record any errors etc
1708 atomic_add(r10_bio
->sectors
,
1709 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1711 /* for reconstruct, we always reschedule after a read.
1712 * for resync, only after all reads
1714 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1715 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1716 atomic_dec_and_test(&r10_bio
->remaining
)) {
1717 /* we have read all the blocks,
1718 * do the comparison in process context in raid10d
1720 reschedule_retry(r10_bio
);
1724 static void end_sync_request(struct r10bio
*r10_bio
)
1726 struct mddev
*mddev
= r10_bio
->mddev
;
1728 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1729 if (r10_bio
->master_bio
== NULL
) {
1730 /* the primary of several recovery bios */
1731 sector_t s
= r10_bio
->sectors
;
1732 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1733 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1734 reschedule_retry(r10_bio
);
1737 md_done_sync(mddev
, s
, 1);
1740 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1741 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1742 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1743 reschedule_retry(r10_bio
);
1751 static void end_sync_write(struct bio
*bio
, int error
)
1753 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1754 struct r10bio
*r10_bio
= bio
->bi_private
;
1755 struct mddev
*mddev
= r10_bio
->mddev
;
1756 struct r10conf
*conf
= mddev
->private;
1762 struct md_rdev
*rdev
= NULL
;
1764 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1766 rdev
= conf
->mirrors
[d
].replacement
;
1768 rdev
= conf
->mirrors
[d
].rdev
;
1772 md_error(mddev
, rdev
);
1774 set_bit(WriteErrorSeen
, &rdev
->flags
);
1775 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1776 set_bit(MD_RECOVERY_NEEDED
,
1777 &rdev
->mddev
->recovery
);
1778 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1780 } else if (is_badblock(rdev
,
1781 r10_bio
->devs
[slot
].addr
,
1783 &first_bad
, &bad_sectors
))
1784 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1786 rdev_dec_pending(rdev
, mddev
);
1788 end_sync_request(r10_bio
);
1792 * Note: sync and recover and handled very differently for raid10
1793 * This code is for resync.
1794 * For resync, we read through virtual addresses and read all blocks.
1795 * If there is any error, we schedule a write. The lowest numbered
1796 * drive is authoritative.
1797 * However requests come for physical address, so we need to map.
1798 * For every physical address there are raid_disks/copies virtual addresses,
1799 * which is always are least one, but is not necessarly an integer.
1800 * This means that a physical address can span multiple chunks, so we may
1801 * have to submit multiple io requests for a single sync request.
1804 * We check if all blocks are in-sync and only write to blocks that
1807 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1809 struct r10conf
*conf
= mddev
->private;
1811 struct bio
*tbio
, *fbio
;
1814 atomic_set(&r10_bio
->remaining
, 1);
1816 /* find the first device with a block */
1817 for (i
=0; i
<conf
->copies
; i
++)
1818 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1821 if (i
== conf
->copies
)
1825 fbio
= r10_bio
->devs
[i
].bio
;
1827 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
1828 /* now find blocks with errors */
1829 for (i
=0 ; i
< conf
->copies
; i
++) {
1832 tbio
= r10_bio
->devs
[i
].bio
;
1834 if (tbio
->bi_end_io
!= end_sync_read
)
1838 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1839 /* We know that the bi_io_vec layout is the same for
1840 * both 'first' and 'i', so we just compare them.
1841 * All vec entries are PAGE_SIZE;
1843 for (j
= 0; j
< vcnt
; j
++)
1844 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1845 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1846 fbio
->bi_io_vec
[j
].bv_len
))
1850 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1851 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1852 /* Don't fix anything. */
1855 /* Ok, we need to write this bio, either to correct an
1856 * inconsistency or to correct an unreadable block.
1857 * First we need to fixup bv_offset, bv_len and
1858 * bi_vecs, as the read request might have corrupted these
1860 tbio
->bi_vcnt
= vcnt
;
1861 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1863 tbio
->bi_phys_segments
= 0;
1864 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1865 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1866 tbio
->bi_next
= NULL
;
1867 tbio
->bi_rw
= WRITE
;
1868 tbio
->bi_private
= r10_bio
;
1869 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1871 for (j
=0; j
< vcnt
; j
++) {
1872 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1873 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1875 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1876 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1879 tbio
->bi_end_io
= end_sync_write
;
1881 d
= r10_bio
->devs
[i
].devnum
;
1882 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1883 atomic_inc(&r10_bio
->remaining
);
1884 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1886 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1887 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1888 generic_make_request(tbio
);
1891 /* Now write out to any replacement devices
1894 for (i
= 0; i
< conf
->copies
; i
++) {
1897 tbio
= r10_bio
->devs
[i
].repl_bio
;
1898 if (!tbio
|| !tbio
->bi_end_io
)
1900 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
1901 && r10_bio
->devs
[i
].bio
!= fbio
)
1902 for (j
= 0; j
< vcnt
; j
++)
1903 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1904 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1906 d
= r10_bio
->devs
[i
].devnum
;
1907 atomic_inc(&r10_bio
->remaining
);
1908 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
1909 tbio
->bi_size
>> 9);
1910 generic_make_request(tbio
);
1914 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1915 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1921 * Now for the recovery code.
1922 * Recovery happens across physical sectors.
1923 * We recover all non-is_sync drives by finding the virtual address of
1924 * each, and then choose a working drive that also has that virt address.
1925 * There is a separate r10_bio for each non-in_sync drive.
1926 * Only the first two slots are in use. The first for reading,
1927 * The second for writing.
1930 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
1932 /* We got a read error during recovery.
1933 * We repeat the read in smaller page-sized sections.
1934 * If a read succeeds, write it to the new device or record
1935 * a bad block if we cannot.
1936 * If a read fails, record a bad block on both old and
1939 struct mddev
*mddev
= r10_bio
->mddev
;
1940 struct r10conf
*conf
= mddev
->private;
1941 struct bio
*bio
= r10_bio
->devs
[0].bio
;
1943 int sectors
= r10_bio
->sectors
;
1945 int dr
= r10_bio
->devs
[0].devnum
;
1946 int dw
= r10_bio
->devs
[1].devnum
;
1950 struct md_rdev
*rdev
;
1954 if (s
> (PAGE_SIZE
>>9))
1957 rdev
= conf
->mirrors
[dr
].rdev
;
1958 addr
= r10_bio
->devs
[0].addr
+ sect
,
1959 ok
= sync_page_io(rdev
,
1962 bio
->bi_io_vec
[idx
].bv_page
,
1965 rdev
= conf
->mirrors
[dw
].rdev
;
1966 addr
= r10_bio
->devs
[1].addr
+ sect
;
1967 ok
= sync_page_io(rdev
,
1970 bio
->bi_io_vec
[idx
].bv_page
,
1973 set_bit(WriteErrorSeen
, &rdev
->flags
);
1974 if (!test_and_set_bit(WantReplacement
,
1976 set_bit(MD_RECOVERY_NEEDED
,
1977 &rdev
->mddev
->recovery
);
1981 /* We don't worry if we cannot set a bad block -
1982 * it really is bad so there is no loss in not
1985 rdev_set_badblocks(rdev
, addr
, s
, 0);
1987 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
1988 /* need bad block on destination too */
1989 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
1990 addr
= r10_bio
->devs
[1].addr
+ sect
;
1991 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
1993 /* just abort the recovery */
1995 "md/raid10:%s: recovery aborted"
1996 " due to read error\n",
1999 conf
->mirrors
[dw
].recovery_disabled
2000 = mddev
->recovery_disabled
;
2001 set_bit(MD_RECOVERY_INTR
,
2014 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2016 struct r10conf
*conf
= mddev
->private;
2018 struct bio
*wbio
, *wbio2
;
2020 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2021 fix_recovery_read_error(r10_bio
);
2022 end_sync_request(r10_bio
);
2027 * share the pages with the first bio
2028 * and submit the write request
2030 d
= r10_bio
->devs
[1].devnum
;
2031 wbio
= r10_bio
->devs
[1].bio
;
2032 wbio2
= r10_bio
->devs
[1].repl_bio
;
2033 /* Need to test wbio2->bi_end_io before we call
2034 * generic_make_request as if the former is NULL,
2035 * the latter is free to free wbio2.
2037 if (wbio2
&& !wbio2
->bi_end_io
)
2039 if (wbio
->bi_end_io
) {
2040 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2041 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
2042 generic_make_request(wbio
);
2045 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2046 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2047 wbio2
->bi_size
>> 9);
2048 generic_make_request(wbio2
);
2054 * Used by fix_read_error() to decay the per rdev read_errors.
2055 * We halve the read error count for every hour that has elapsed
2056 * since the last recorded read error.
2059 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2061 struct timespec cur_time_mon
;
2062 unsigned long hours_since_last
;
2063 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2065 ktime_get_ts(&cur_time_mon
);
2067 if (rdev
->last_read_error
.tv_sec
== 0 &&
2068 rdev
->last_read_error
.tv_nsec
== 0) {
2069 /* first time we've seen a read error */
2070 rdev
->last_read_error
= cur_time_mon
;
2074 hours_since_last
= (cur_time_mon
.tv_sec
-
2075 rdev
->last_read_error
.tv_sec
) / 3600;
2077 rdev
->last_read_error
= cur_time_mon
;
2080 * if hours_since_last is > the number of bits in read_errors
2081 * just set read errors to 0. We do this to avoid
2082 * overflowing the shift of read_errors by hours_since_last.
2084 if (hours_since_last
>= 8 * sizeof(read_errors
))
2085 atomic_set(&rdev
->read_errors
, 0);
2087 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2090 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2091 int sectors
, struct page
*page
, int rw
)
2096 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2097 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2099 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2103 set_bit(WriteErrorSeen
, &rdev
->flags
);
2104 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2105 set_bit(MD_RECOVERY_NEEDED
,
2106 &rdev
->mddev
->recovery
);
2108 /* need to record an error - either for the block or the device */
2109 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2110 md_error(rdev
->mddev
, rdev
);
2115 * This is a kernel thread which:
2117 * 1. Retries failed read operations on working mirrors.
2118 * 2. Updates the raid superblock when problems encounter.
2119 * 3. Performs writes following reads for array synchronising.
2122 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2124 int sect
= 0; /* Offset from r10_bio->sector */
2125 int sectors
= r10_bio
->sectors
;
2126 struct md_rdev
*rdev
;
2127 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2128 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2130 /* still own a reference to this rdev, so it cannot
2131 * have been cleared recently.
2133 rdev
= conf
->mirrors
[d
].rdev
;
2135 if (test_bit(Faulty
, &rdev
->flags
))
2136 /* drive has already been failed, just ignore any
2137 more fix_read_error() attempts */
2140 check_decay_read_errors(mddev
, rdev
);
2141 atomic_inc(&rdev
->read_errors
);
2142 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2143 char b
[BDEVNAME_SIZE
];
2144 bdevname(rdev
->bdev
, b
);
2147 "md/raid10:%s: %s: Raid device exceeded "
2148 "read_error threshold [cur %d:max %d]\n",
2150 atomic_read(&rdev
->read_errors
), max_read_errors
);
2152 "md/raid10:%s: %s: Failing raid device\n",
2154 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2155 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2161 int sl
= r10_bio
->read_slot
;
2165 if (s
> (PAGE_SIZE
>>9))
2173 d
= r10_bio
->devs
[sl
].devnum
;
2174 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2176 !test_bit(Unmerged
, &rdev
->flags
) &&
2177 test_bit(In_sync
, &rdev
->flags
) &&
2178 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2179 &first_bad
, &bad_sectors
) == 0) {
2180 atomic_inc(&rdev
->nr_pending
);
2182 success
= sync_page_io(rdev
,
2183 r10_bio
->devs
[sl
].addr
+
2186 conf
->tmppage
, READ
, false);
2187 rdev_dec_pending(rdev
, mddev
);
2193 if (sl
== conf
->copies
)
2195 } while (!success
&& sl
!= r10_bio
->read_slot
);
2199 /* Cannot read from anywhere, just mark the block
2200 * as bad on the first device to discourage future
2203 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2204 rdev
= conf
->mirrors
[dn
].rdev
;
2206 if (!rdev_set_badblocks(
2208 r10_bio
->devs
[r10_bio
->read_slot
].addr
2211 md_error(mddev
, rdev
);
2212 r10_bio
->devs
[r10_bio
->read_slot
].bio
2219 /* write it back and re-read */
2221 while (sl
!= r10_bio
->read_slot
) {
2222 char b
[BDEVNAME_SIZE
];
2227 d
= r10_bio
->devs
[sl
].devnum
;
2228 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2230 test_bit(Unmerged
, &rdev
->flags
) ||
2231 !test_bit(In_sync
, &rdev
->flags
))
2234 atomic_inc(&rdev
->nr_pending
);
2236 if (r10_sync_page_io(rdev
,
2237 r10_bio
->devs
[sl
].addr
+
2239 s
, conf
->tmppage
, WRITE
)
2241 /* Well, this device is dead */
2243 "md/raid10:%s: read correction "
2245 " (%d sectors at %llu on %s)\n",
2247 (unsigned long long)(
2248 sect
+ rdev
->data_offset
),
2249 bdevname(rdev
->bdev
, b
));
2250 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2253 bdevname(rdev
->bdev
, b
));
2255 rdev_dec_pending(rdev
, mddev
);
2259 while (sl
!= r10_bio
->read_slot
) {
2260 char b
[BDEVNAME_SIZE
];
2265 d
= r10_bio
->devs
[sl
].devnum
;
2266 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2268 !test_bit(In_sync
, &rdev
->flags
))
2271 atomic_inc(&rdev
->nr_pending
);
2273 switch (r10_sync_page_io(rdev
,
2274 r10_bio
->devs
[sl
].addr
+
2279 /* Well, this device is dead */
2281 "md/raid10:%s: unable to read back "
2283 " (%d sectors at %llu on %s)\n",
2285 (unsigned long long)(
2286 sect
+ rdev
->data_offset
),
2287 bdevname(rdev
->bdev
, b
));
2288 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2291 bdevname(rdev
->bdev
, b
));
2295 "md/raid10:%s: read error corrected"
2296 " (%d sectors at %llu on %s)\n",
2298 (unsigned long long)(
2299 sect
+ rdev
->data_offset
),
2300 bdevname(rdev
->bdev
, b
));
2301 atomic_add(s
, &rdev
->corrected_errors
);
2304 rdev_dec_pending(rdev
, mddev
);
2314 static void bi_complete(struct bio
*bio
, int error
)
2316 complete((struct completion
*)bio
->bi_private
);
2319 static int submit_bio_wait(int rw
, struct bio
*bio
)
2321 struct completion event
;
2324 init_completion(&event
);
2325 bio
->bi_private
= &event
;
2326 bio
->bi_end_io
= bi_complete
;
2327 submit_bio(rw
, bio
);
2328 wait_for_completion(&event
);
2330 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2333 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2335 struct bio
*bio
= r10_bio
->master_bio
;
2336 struct mddev
*mddev
= r10_bio
->mddev
;
2337 struct r10conf
*conf
= mddev
->private;
2338 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2339 /* bio has the data to be written to slot 'i' where
2340 * we just recently had a write error.
2341 * We repeatedly clone the bio and trim down to one block,
2342 * then try the write. Where the write fails we record
2344 * It is conceivable that the bio doesn't exactly align with
2345 * blocks. We must handle this.
2347 * We currently own a reference to the rdev.
2353 int sect_to_write
= r10_bio
->sectors
;
2356 if (rdev
->badblocks
.shift
< 0)
2359 block_sectors
= 1 << rdev
->badblocks
.shift
;
2360 sector
= r10_bio
->sector
;
2361 sectors
= ((r10_bio
->sector
+ block_sectors
)
2362 & ~(sector_t
)(block_sectors
- 1))
2365 while (sect_to_write
) {
2367 if (sectors
> sect_to_write
)
2368 sectors
= sect_to_write
;
2369 /* Write at 'sector' for 'sectors' */
2370 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2371 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2372 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2374 (sector
- r10_bio
->sector
));
2375 wbio
->bi_bdev
= rdev
->bdev
;
2376 if (submit_bio_wait(WRITE
, wbio
) == 0)
2378 ok
= rdev_set_badblocks(rdev
, sector
,
2383 sect_to_write
-= sectors
;
2385 sectors
= block_sectors
;
2390 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2392 int slot
= r10_bio
->read_slot
;
2394 struct r10conf
*conf
= mddev
->private;
2395 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2396 char b
[BDEVNAME_SIZE
];
2397 unsigned long do_sync
;
2400 /* we got a read error. Maybe the drive is bad. Maybe just
2401 * the block and we can fix it.
2402 * We freeze all other IO, and try reading the block from
2403 * other devices. When we find one, we re-write
2404 * and check it that fixes the read error.
2405 * This is all done synchronously while the array is
2408 bio
= r10_bio
->devs
[slot
].bio
;
2409 bdevname(bio
->bi_bdev
, b
);
2411 r10_bio
->devs
[slot
].bio
= NULL
;
2413 if (mddev
->ro
== 0) {
2414 freeze_array(conf
, 1);
2415 fix_read_error(conf
, mddev
, r10_bio
);
2416 unfreeze_array(conf
);
2418 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2420 rdev_dec_pending(rdev
, mddev
);
2423 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2425 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2426 " read error for block %llu\n",
2428 (unsigned long long)r10_bio
->sector
);
2429 raid_end_bio_io(r10_bio
);
2433 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2434 slot
= r10_bio
->read_slot
;
2437 "md/raid10:%s: %s: redirecting "
2438 "sector %llu to another mirror\n",
2440 bdevname(rdev
->bdev
, b
),
2441 (unsigned long long)r10_bio
->sector
);
2442 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2445 r10_bio
->sector
- bio
->bi_sector
,
2447 r10_bio
->devs
[slot
].bio
= bio
;
2448 r10_bio
->devs
[slot
].rdev
= rdev
;
2449 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2450 + rdev
->data_offset
;
2451 bio
->bi_bdev
= rdev
->bdev
;
2452 bio
->bi_rw
= READ
| do_sync
;
2453 bio
->bi_private
= r10_bio
;
2454 bio
->bi_end_io
= raid10_end_read_request
;
2455 if (max_sectors
< r10_bio
->sectors
) {
2456 /* Drat - have to split this up more */
2457 struct bio
*mbio
= r10_bio
->master_bio
;
2458 int sectors_handled
=
2459 r10_bio
->sector
+ max_sectors
2461 r10_bio
->sectors
= max_sectors
;
2462 spin_lock_irq(&conf
->device_lock
);
2463 if (mbio
->bi_phys_segments
== 0)
2464 mbio
->bi_phys_segments
= 2;
2466 mbio
->bi_phys_segments
++;
2467 spin_unlock_irq(&conf
->device_lock
);
2468 generic_make_request(bio
);
2470 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2472 r10_bio
->master_bio
= mbio
;
2473 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2476 set_bit(R10BIO_ReadError
,
2478 r10_bio
->mddev
= mddev
;
2479 r10_bio
->sector
= mbio
->bi_sector
2484 generic_make_request(bio
);
2487 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2489 /* Some sort of write request has finished and it
2490 * succeeded in writing where we thought there was a
2491 * bad block. So forget the bad block.
2492 * Or possibly if failed and we need to record
2496 struct md_rdev
*rdev
;
2498 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2499 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2500 for (m
= 0; m
< conf
->copies
; m
++) {
2501 int dev
= r10_bio
->devs
[m
].devnum
;
2502 rdev
= conf
->mirrors
[dev
].rdev
;
2503 if (r10_bio
->devs
[m
].bio
== NULL
)
2505 if (test_bit(BIO_UPTODATE
,
2506 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2507 rdev_clear_badblocks(
2509 r10_bio
->devs
[m
].addr
,
2512 if (!rdev_set_badblocks(
2514 r10_bio
->devs
[m
].addr
,
2515 r10_bio
->sectors
, 0))
2516 md_error(conf
->mddev
, rdev
);
2518 rdev
= conf
->mirrors
[dev
].replacement
;
2519 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2521 if (test_bit(BIO_UPTODATE
,
2522 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2523 rdev_clear_badblocks(
2525 r10_bio
->devs
[m
].addr
,
2528 if (!rdev_set_badblocks(
2530 r10_bio
->devs
[m
].addr
,
2531 r10_bio
->sectors
, 0))
2532 md_error(conf
->mddev
, rdev
);
2537 for (m
= 0; m
< conf
->copies
; m
++) {
2538 int dev
= r10_bio
->devs
[m
].devnum
;
2539 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2540 rdev
= conf
->mirrors
[dev
].rdev
;
2541 if (bio
== IO_MADE_GOOD
) {
2542 rdev_clear_badblocks(
2544 r10_bio
->devs
[m
].addr
,
2546 rdev_dec_pending(rdev
, conf
->mddev
);
2547 } else if (bio
!= NULL
&&
2548 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2549 if (!narrow_write_error(r10_bio
, m
)) {
2550 md_error(conf
->mddev
, rdev
);
2551 set_bit(R10BIO_Degraded
,
2554 rdev_dec_pending(rdev
, conf
->mddev
);
2556 bio
= r10_bio
->devs
[m
].repl_bio
;
2557 rdev
= conf
->mirrors
[dev
].replacement
;
2558 if (rdev
&& bio
== IO_MADE_GOOD
) {
2559 rdev_clear_badblocks(
2561 r10_bio
->devs
[m
].addr
,
2563 rdev_dec_pending(rdev
, conf
->mddev
);
2566 if (test_bit(R10BIO_WriteError
,
2568 close_write(r10_bio
);
2569 raid_end_bio_io(r10_bio
);
2573 static void raid10d(struct mddev
*mddev
)
2575 struct r10bio
*r10_bio
;
2576 unsigned long flags
;
2577 struct r10conf
*conf
= mddev
->private;
2578 struct list_head
*head
= &conf
->retry_list
;
2579 struct blk_plug plug
;
2581 md_check_recovery(mddev
);
2583 blk_start_plug(&plug
);
2586 flush_pending_writes(conf
);
2588 spin_lock_irqsave(&conf
->device_lock
, flags
);
2589 if (list_empty(head
)) {
2590 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2593 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2594 list_del(head
->prev
);
2596 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2598 mddev
= r10_bio
->mddev
;
2599 conf
= mddev
->private;
2600 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2601 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2602 handle_write_completed(conf
, r10_bio
);
2603 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2604 sync_request_write(mddev
, r10_bio
);
2605 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2606 recovery_request_write(mddev
, r10_bio
);
2607 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2608 handle_read_error(mddev
, r10_bio
);
2610 /* just a partial read to be scheduled from a
2613 int slot
= r10_bio
->read_slot
;
2614 generic_make_request(r10_bio
->devs
[slot
].bio
);
2618 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2619 md_check_recovery(mddev
);
2621 blk_finish_plug(&plug
);
2625 static int init_resync(struct r10conf
*conf
)
2630 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2631 BUG_ON(conf
->r10buf_pool
);
2632 conf
->have_replacement
= 0;
2633 for (i
= 0; i
< conf
->raid_disks
; i
++)
2634 if (conf
->mirrors
[i
].replacement
)
2635 conf
->have_replacement
= 1;
2636 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2637 if (!conf
->r10buf_pool
)
2639 conf
->next_resync
= 0;
2644 * perform a "sync" on one "block"
2646 * We need to make sure that no normal I/O request - particularly write
2647 * requests - conflict with active sync requests.
2649 * This is achieved by tracking pending requests and a 'barrier' concept
2650 * that can be installed to exclude normal IO requests.
2652 * Resync and recovery are handled very differently.
2653 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2655 * For resync, we iterate over virtual addresses, read all copies,
2656 * and update if there are differences. If only one copy is live,
2658 * For recovery, we iterate over physical addresses, read a good
2659 * value for each non-in_sync drive, and over-write.
2661 * So, for recovery we may have several outstanding complex requests for a
2662 * given address, one for each out-of-sync device. We model this by allocating
2663 * a number of r10_bio structures, one for each out-of-sync device.
2664 * As we setup these structures, we collect all bio's together into a list
2665 * which we then process collectively to add pages, and then process again
2666 * to pass to generic_make_request.
2668 * The r10_bio structures are linked using a borrowed master_bio pointer.
2669 * This link is counted in ->remaining. When the r10_bio that points to NULL
2670 * has its remaining count decremented to 0, the whole complex operation
2675 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2676 int *skipped
, int go_faster
)
2678 struct r10conf
*conf
= mddev
->private;
2679 struct r10bio
*r10_bio
;
2680 struct bio
*biolist
= NULL
, *bio
;
2681 sector_t max_sector
, nr_sectors
;
2684 sector_t sync_blocks
;
2685 sector_t sectors_skipped
= 0;
2686 int chunks_skipped
= 0;
2688 if (!conf
->r10buf_pool
)
2689 if (init_resync(conf
))
2693 max_sector
= mddev
->dev_sectors
;
2694 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2695 max_sector
= mddev
->resync_max_sectors
;
2696 if (sector_nr
>= max_sector
) {
2697 /* If we aborted, we need to abort the
2698 * sync on the 'current' bitmap chucks (there can
2699 * be several when recovering multiple devices).
2700 * as we may have started syncing it but not finished.
2701 * We can find the current address in
2702 * mddev->curr_resync, but for recovery,
2703 * we need to convert that to several
2704 * virtual addresses.
2706 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2707 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2708 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2710 else for (i
=0; i
<conf
->raid_disks
; i
++) {
2712 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2713 bitmap_end_sync(mddev
->bitmap
, sect
,
2717 /* completed sync */
2718 if ((!mddev
->bitmap
|| conf
->fullsync
)
2719 && conf
->have_replacement
2720 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2721 /* Completed a full sync so the replacements
2722 * are now fully recovered.
2724 for (i
= 0; i
< conf
->raid_disks
; i
++)
2725 if (conf
->mirrors
[i
].replacement
)
2726 conf
->mirrors
[i
].replacement
2732 bitmap_close_sync(mddev
->bitmap
);
2735 return sectors_skipped
;
2737 if (chunks_skipped
>= conf
->raid_disks
) {
2738 /* if there has been nothing to do on any drive,
2739 * then there is nothing to do at all..
2742 return (max_sector
- sector_nr
) + sectors_skipped
;
2745 if (max_sector
> mddev
->resync_max
)
2746 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2748 /* make sure whole request will fit in a chunk - if chunks
2751 if (conf
->near_copies
< conf
->raid_disks
&&
2752 max_sector
> (sector_nr
| conf
->chunk_mask
))
2753 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
2755 * If there is non-resync activity waiting for us then
2756 * put in a delay to throttle resync.
2758 if (!go_faster
&& conf
->nr_waiting
)
2759 msleep_interruptible(1000);
2761 /* Again, very different code for resync and recovery.
2762 * Both must result in an r10bio with a list of bios that
2763 * have bi_end_io, bi_sector, bi_bdev set,
2764 * and bi_private set to the r10bio.
2765 * For recovery, we may actually create several r10bios
2766 * with 2 bios in each, that correspond to the bios in the main one.
2767 * In this case, the subordinate r10bios link back through a
2768 * borrowed master_bio pointer, and the counter in the master
2769 * includes a ref from each subordinate.
2771 /* First, we decide what to do and set ->bi_end_io
2772 * To end_sync_read if we want to read, and
2773 * end_sync_write if we will want to write.
2776 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2777 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2778 /* recovery... the complicated one */
2782 for (i
=0 ; i
<conf
->raid_disks
; i
++) {
2788 struct mirror_info
*mirror
= &conf
->mirrors
[i
];
2790 if ((mirror
->rdev
== NULL
||
2791 test_bit(In_sync
, &mirror
->rdev
->flags
))
2793 (mirror
->replacement
== NULL
||
2795 &mirror
->replacement
->flags
)))
2799 /* want to reconstruct this device */
2801 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2802 if (sect
>= mddev
->resync_max_sectors
) {
2803 /* last stripe is not complete - don't
2804 * try to recover this sector.
2808 /* Unless we are doing a full sync, or a replacement
2809 * we only need to recover the block if it is set in
2812 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2814 if (sync_blocks
< max_sync
)
2815 max_sync
= sync_blocks
;
2817 mirror
->replacement
== NULL
&&
2819 /* yep, skip the sync_blocks here, but don't assume
2820 * that there will never be anything to do here
2822 chunks_skipped
= -1;
2826 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2827 raise_barrier(conf
, rb2
!= NULL
);
2828 atomic_set(&r10_bio
->remaining
, 0);
2830 r10_bio
->master_bio
= (struct bio
*)rb2
;
2832 atomic_inc(&rb2
->remaining
);
2833 r10_bio
->mddev
= mddev
;
2834 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2835 r10_bio
->sector
= sect
;
2837 raid10_find_phys(conf
, r10_bio
);
2839 /* Need to check if the array will still be
2842 for (j
=0; j
<conf
->raid_disks
; j
++)
2843 if (conf
->mirrors
[j
].rdev
== NULL
||
2844 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2849 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2850 &sync_blocks
, still_degraded
);
2853 for (j
=0; j
<conf
->copies
;j
++) {
2855 int d
= r10_bio
->devs
[j
].devnum
;
2856 sector_t from_addr
, to_addr
;
2857 struct md_rdev
*rdev
;
2858 sector_t sector
, first_bad
;
2860 if (!conf
->mirrors
[d
].rdev
||
2861 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2863 /* This is where we read from */
2865 rdev
= conf
->mirrors
[d
].rdev
;
2866 sector
= r10_bio
->devs
[j
].addr
;
2868 if (is_badblock(rdev
, sector
, max_sync
,
2869 &first_bad
, &bad_sectors
)) {
2870 if (first_bad
> sector
)
2871 max_sync
= first_bad
- sector
;
2873 bad_sectors
-= (sector
2875 if (max_sync
> bad_sectors
)
2876 max_sync
= bad_sectors
;
2880 bio
= r10_bio
->devs
[0].bio
;
2881 bio
->bi_next
= biolist
;
2883 bio
->bi_private
= r10_bio
;
2884 bio
->bi_end_io
= end_sync_read
;
2886 from_addr
= r10_bio
->devs
[j
].addr
;
2887 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
2888 bio
->bi_bdev
= rdev
->bdev
;
2889 atomic_inc(&rdev
->nr_pending
);
2890 /* and we write to 'i' (if not in_sync) */
2892 for (k
=0; k
<conf
->copies
; k
++)
2893 if (r10_bio
->devs
[k
].devnum
== i
)
2895 BUG_ON(k
== conf
->copies
);
2896 to_addr
= r10_bio
->devs
[k
].addr
;
2897 r10_bio
->devs
[0].devnum
= d
;
2898 r10_bio
->devs
[0].addr
= from_addr
;
2899 r10_bio
->devs
[1].devnum
= i
;
2900 r10_bio
->devs
[1].addr
= to_addr
;
2902 rdev
= mirror
->rdev
;
2903 if (!test_bit(In_sync
, &rdev
->flags
)) {
2904 bio
= r10_bio
->devs
[1].bio
;
2905 bio
->bi_next
= biolist
;
2907 bio
->bi_private
= r10_bio
;
2908 bio
->bi_end_io
= end_sync_write
;
2910 bio
->bi_sector
= to_addr
2911 + rdev
->data_offset
;
2912 bio
->bi_bdev
= rdev
->bdev
;
2913 atomic_inc(&r10_bio
->remaining
);
2915 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
2917 /* and maybe write to replacement */
2918 bio
= r10_bio
->devs
[1].repl_bio
;
2920 bio
->bi_end_io
= NULL
;
2921 rdev
= mirror
->replacement
;
2922 /* Note: if rdev != NULL, then bio
2923 * cannot be NULL as r10buf_pool_alloc will
2924 * have allocated it.
2925 * So the second test here is pointless.
2926 * But it keeps semantic-checkers happy, and
2927 * this comment keeps human reviewers
2930 if (rdev
== NULL
|| bio
== NULL
||
2931 test_bit(Faulty
, &rdev
->flags
))
2933 bio
->bi_next
= biolist
;
2935 bio
->bi_private
= r10_bio
;
2936 bio
->bi_end_io
= end_sync_write
;
2938 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
2939 bio
->bi_bdev
= rdev
->bdev
;
2940 atomic_inc(&r10_bio
->remaining
);
2943 if (j
== conf
->copies
) {
2944 /* Cannot recover, so abort the recovery or
2945 * record a bad block */
2948 atomic_dec(&rb2
->remaining
);
2951 /* problem is that there are bad blocks
2952 * on other device(s)
2955 for (k
= 0; k
< conf
->copies
; k
++)
2956 if (r10_bio
->devs
[k
].devnum
== i
)
2958 if (!test_bit(In_sync
,
2959 &mirror
->rdev
->flags
)
2960 && !rdev_set_badblocks(
2962 r10_bio
->devs
[k
].addr
,
2965 if (mirror
->replacement
&&
2966 !rdev_set_badblocks(
2967 mirror
->replacement
,
2968 r10_bio
->devs
[k
].addr
,
2973 if (!test_and_set_bit(MD_RECOVERY_INTR
,
2975 printk(KERN_INFO
"md/raid10:%s: insufficient "
2976 "working devices for recovery.\n",
2978 mirror
->recovery_disabled
2979 = mddev
->recovery_disabled
;
2984 if (biolist
== NULL
) {
2986 struct r10bio
*rb2
= r10_bio
;
2987 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
2988 rb2
->master_bio
= NULL
;
2994 /* resync. Schedule a read for every block at this virt offset */
2997 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2999 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3000 &sync_blocks
, mddev
->degraded
) &&
3001 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3002 &mddev
->recovery
)) {
3003 /* We can skip this block */
3005 return sync_blocks
+ sectors_skipped
;
3007 if (sync_blocks
< max_sync
)
3008 max_sync
= sync_blocks
;
3009 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3011 r10_bio
->mddev
= mddev
;
3012 atomic_set(&r10_bio
->remaining
, 0);
3013 raise_barrier(conf
, 0);
3014 conf
->next_resync
= sector_nr
;
3016 r10_bio
->master_bio
= NULL
;
3017 r10_bio
->sector
= sector_nr
;
3018 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3019 raid10_find_phys(conf
, r10_bio
);
3020 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
3022 for (i
=0; i
<conf
->copies
; i
++) {
3023 int d
= r10_bio
->devs
[i
].devnum
;
3024 sector_t first_bad
, sector
;
3027 if (r10_bio
->devs
[i
].repl_bio
)
3028 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3030 bio
= r10_bio
->devs
[i
].bio
;
3031 bio
->bi_end_io
= NULL
;
3032 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3033 if (conf
->mirrors
[d
].rdev
== NULL
||
3034 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
3036 sector
= r10_bio
->devs
[i
].addr
;
3037 if (is_badblock(conf
->mirrors
[d
].rdev
,
3039 &first_bad
, &bad_sectors
)) {
3040 if (first_bad
> sector
)
3041 max_sync
= first_bad
- sector
;
3043 bad_sectors
-= (sector
- first_bad
);
3044 if (max_sync
> bad_sectors
)
3045 max_sync
= bad_sectors
;
3049 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3050 atomic_inc(&r10_bio
->remaining
);
3051 bio
->bi_next
= biolist
;
3053 bio
->bi_private
= r10_bio
;
3054 bio
->bi_end_io
= end_sync_read
;
3056 bio
->bi_sector
= sector
+
3057 conf
->mirrors
[d
].rdev
->data_offset
;
3058 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
3061 if (conf
->mirrors
[d
].replacement
== NULL
||
3063 &conf
->mirrors
[d
].replacement
->flags
))
3066 /* Need to set up for writing to the replacement */
3067 bio
= r10_bio
->devs
[i
].repl_bio
;
3068 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
3070 sector
= r10_bio
->devs
[i
].addr
;
3071 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
3072 bio
->bi_next
= biolist
;
3074 bio
->bi_private
= r10_bio
;
3075 bio
->bi_end_io
= end_sync_write
;
3077 bio
->bi_sector
= sector
+
3078 conf
->mirrors
[d
].replacement
->data_offset
;
3079 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
3084 for (i
=0; i
<conf
->copies
; i
++) {
3085 int d
= r10_bio
->devs
[i
].devnum
;
3086 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3087 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3089 if (r10_bio
->devs
[i
].repl_bio
&&
3090 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3092 conf
->mirrors
[d
].replacement
,
3101 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3103 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
3105 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
3108 bio
->bi_phys_segments
= 0;
3113 if (sector_nr
+ max_sync
< max_sector
)
3114 max_sector
= sector_nr
+ max_sync
;
3117 int len
= PAGE_SIZE
;
3118 if (sector_nr
+ (len
>>9) > max_sector
)
3119 len
= (max_sector
- sector_nr
) << 9;
3122 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3124 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3125 if (bio_add_page(bio
, page
, len
, 0))
3129 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3130 for (bio2
= biolist
;
3131 bio2
&& bio2
!= bio
;
3132 bio2
= bio2
->bi_next
) {
3133 /* remove last page from this bio */
3135 bio2
->bi_size
-= len
;
3136 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3140 nr_sectors
+= len
>>9;
3141 sector_nr
+= len
>>9;
3142 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3144 r10_bio
->sectors
= nr_sectors
;
3148 biolist
= biolist
->bi_next
;
3150 bio
->bi_next
= NULL
;
3151 r10_bio
= bio
->bi_private
;
3152 r10_bio
->sectors
= nr_sectors
;
3154 if (bio
->bi_end_io
== end_sync_read
) {
3155 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3156 generic_make_request(bio
);
3160 if (sectors_skipped
)
3161 /* pretend they weren't skipped, it makes
3162 * no important difference in this case
3164 md_done_sync(mddev
, sectors_skipped
, 1);
3166 return sectors_skipped
+ nr_sectors
;
3168 /* There is nowhere to write, so all non-sync
3169 * drives must be failed or in resync, all drives
3170 * have a bad block, so try the next chunk...
3172 if (sector_nr
+ max_sync
< max_sector
)
3173 max_sector
= sector_nr
+ max_sync
;
3175 sectors_skipped
+= (max_sector
- sector_nr
);
3177 sector_nr
= max_sector
;
3182 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3185 struct r10conf
*conf
= mddev
->private;
3188 raid_disks
= conf
->raid_disks
;
3190 sectors
= conf
->dev_sectors
;
3192 size
= sectors
>> conf
->chunk_shift
;
3193 sector_div(size
, conf
->far_copies
);
3194 size
= size
* raid_disks
;
3195 sector_div(size
, conf
->near_copies
);
3197 return size
<< conf
->chunk_shift
;
3200 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3202 /* Calculate the number of sectors-per-device that will
3203 * actually be used, and set conf->dev_sectors and
3207 size
= size
>> conf
->chunk_shift
;
3208 sector_div(size
, conf
->far_copies
);
3209 size
= size
* conf
->raid_disks
;
3210 sector_div(size
, conf
->near_copies
);
3211 /* 'size' is now the number of chunks in the array */
3212 /* calculate "used chunks per device" */
3213 size
= size
* conf
->copies
;
3215 /* We need to round up when dividing by raid_disks to
3216 * get the stride size.
3218 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->raid_disks
);
3220 conf
->dev_sectors
= size
<< conf
->chunk_shift
;
3222 if (conf
->far_offset
)
3223 conf
->stride
= 1 << conf
->chunk_shift
;
3225 sector_div(size
, conf
->far_copies
);
3226 conf
->stride
= size
<< conf
->chunk_shift
;
3230 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3232 struct r10conf
*conf
= NULL
;
3236 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
3237 !is_power_of_2(mddev
->new_chunk_sectors
)) {
3238 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3239 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3240 mdname(mddev
), PAGE_SIZE
);
3244 nc
= mddev
->new_layout
& 255;
3245 fc
= (mddev
->new_layout
>> 8) & 255;
3246 fo
= mddev
->new_layout
& (1<<16);
3248 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
3249 (mddev
->new_layout
>> 17)) {
3250 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3251 mdname(mddev
), mddev
->new_layout
);
3256 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3260 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
3265 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3270 conf
->raid_disks
= mddev
->raid_disks
;
3271 conf
->near_copies
= nc
;
3272 conf
->far_copies
= fc
;
3273 conf
->copies
= nc
*fc
;
3274 conf
->far_offset
= fo
;
3275 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
3276 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
3278 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3279 r10bio_pool_free
, conf
);
3280 if (!conf
->r10bio_pool
)
3283 calc_sectors(conf
, mddev
->dev_sectors
);
3285 spin_lock_init(&conf
->device_lock
);
3286 INIT_LIST_HEAD(&conf
->retry_list
);
3288 spin_lock_init(&conf
->resync_lock
);
3289 init_waitqueue_head(&conf
->wait_barrier
);
3291 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
3295 conf
->mddev
= mddev
;
3299 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3302 if (conf
->r10bio_pool
)
3303 mempool_destroy(conf
->r10bio_pool
);
3304 kfree(conf
->mirrors
);
3305 safe_put_page(conf
->tmppage
);
3308 return ERR_PTR(err
);
3311 static int run(struct mddev
*mddev
)
3313 struct r10conf
*conf
;
3314 int i
, disk_idx
, chunk_size
;
3315 struct mirror_info
*disk
;
3316 struct md_rdev
*rdev
;
3320 * copy the already verified devices into our private RAID10
3321 * bookkeeping area. [whatever we allocate in run(),
3322 * should be freed in stop()]
3325 if (mddev
->private == NULL
) {
3326 conf
= setup_conf(mddev
);
3328 return PTR_ERR(conf
);
3329 mddev
->private = conf
;
3331 conf
= mddev
->private;
3335 mddev
->thread
= conf
->thread
;
3336 conf
->thread
= NULL
;
3338 chunk_size
= mddev
->chunk_sectors
<< 9;
3339 blk_queue_io_min(mddev
->queue
, chunk_size
);
3340 if (conf
->raid_disks
% conf
->near_copies
)
3341 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
3343 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3344 (conf
->raid_disks
/ conf
->near_copies
));
3346 rdev_for_each(rdev
, mddev
) {
3347 struct request_queue
*q
;
3348 disk_idx
= rdev
->raid_disk
;
3349 if (disk_idx
>= conf
->raid_disks
3352 disk
= conf
->mirrors
+ disk_idx
;
3354 if (test_bit(Replacement
, &rdev
->flags
)) {
3355 if (disk
->replacement
)
3357 disk
->replacement
= rdev
;
3363 q
= bdev_get_queue(rdev
->bdev
);
3364 if (q
->merge_bvec_fn
)
3365 mddev
->merge_check_needed
= 1;
3367 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3368 rdev
->data_offset
<< 9);
3370 disk
->head_position
= 0;
3372 /* need to check that every block has at least one working mirror */
3373 if (!enough(conf
, -1)) {
3374 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3379 mddev
->degraded
= 0;
3380 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3382 disk
= conf
->mirrors
+ i
;
3384 if (!disk
->rdev
&& disk
->replacement
) {
3385 /* The replacement is all we have - use it */
3386 disk
->rdev
= disk
->replacement
;
3387 disk
->replacement
= NULL
;
3388 clear_bit(Replacement
, &disk
->rdev
->flags
);
3392 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3393 disk
->head_position
= 0;
3398 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3401 if (mddev
->recovery_cp
!= MaxSector
)
3402 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3403 " -- starting background reconstruction\n",
3406 "md/raid10:%s: active with %d out of %d devices\n",
3407 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
3410 * Ok, everything is just fine now
3412 mddev
->dev_sectors
= conf
->dev_sectors
;
3413 size
= raid10_size(mddev
, 0, 0);
3414 md_set_array_sectors(mddev
, size
);
3415 mddev
->resync_max_sectors
= size
;
3417 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3418 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3420 /* Calculate max read-ahead size.
3421 * We need to readahead at least twice a whole stripe....
3425 int stripe
= conf
->raid_disks
*
3426 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3427 stripe
/= conf
->near_copies
;
3428 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
3429 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
3432 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3434 if (md_integrity_register(mddev
))
3440 md_unregister_thread(&mddev
->thread
);
3441 if (conf
->r10bio_pool
)
3442 mempool_destroy(conf
->r10bio_pool
);
3443 safe_put_page(conf
->tmppage
);
3444 kfree(conf
->mirrors
);
3446 mddev
->private = NULL
;
3451 static int stop(struct mddev
*mddev
)
3453 struct r10conf
*conf
= mddev
->private;
3455 raise_barrier(conf
, 0);
3456 lower_barrier(conf
);
3458 md_unregister_thread(&mddev
->thread
);
3459 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3460 if (conf
->r10bio_pool
)
3461 mempool_destroy(conf
->r10bio_pool
);
3462 kfree(conf
->mirrors
);
3464 mddev
->private = NULL
;
3468 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3470 struct r10conf
*conf
= mddev
->private;
3474 raise_barrier(conf
, 0);
3477 lower_barrier(conf
);
3482 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3484 /* Resize of 'far' arrays is not supported.
3485 * For 'near' and 'offset' arrays we can set the
3486 * number of sectors used to be an appropriate multiple
3487 * of the chunk size.
3488 * For 'offset', this is far_copies*chunksize.
3489 * For 'near' the multiplier is the LCM of
3490 * near_copies and raid_disks.
3491 * So if far_copies > 1 && !far_offset, fail.
3492 * Else find LCM(raid_disks, near_copy)*far_copies and
3493 * multiply by chunk_size. Then round to this number.
3494 * This is mostly done by raid10_size()
3496 struct r10conf
*conf
= mddev
->private;
3497 sector_t oldsize
, size
;
3499 if (conf
->far_copies
> 1 && !conf
->far_offset
)
3502 oldsize
= raid10_size(mddev
, 0, 0);
3503 size
= raid10_size(mddev
, sectors
, 0);
3504 md_set_array_sectors(mddev
, size
);
3505 if (mddev
->array_sectors
> size
)
3507 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3508 revalidate_disk(mddev
->gendisk
);
3509 if (sectors
> mddev
->dev_sectors
&&
3510 mddev
->recovery_cp
> oldsize
) {
3511 mddev
->recovery_cp
= oldsize
;
3512 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3514 calc_sectors(conf
, sectors
);
3515 mddev
->dev_sectors
= conf
->dev_sectors
;
3516 mddev
->resync_max_sectors
= size
;
3520 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3522 struct md_rdev
*rdev
;
3523 struct r10conf
*conf
;
3525 if (mddev
->degraded
> 0) {
3526 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3528 return ERR_PTR(-EINVAL
);
3531 /* Set new parameters */
3532 mddev
->new_level
= 10;
3533 /* new layout: far_copies = 1, near_copies = 2 */
3534 mddev
->new_layout
= (1<<8) + 2;
3535 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3536 mddev
->delta_disks
= mddev
->raid_disks
;
3537 mddev
->raid_disks
*= 2;
3538 /* make sure it will be not marked as dirty */
3539 mddev
->recovery_cp
= MaxSector
;
3541 conf
= setup_conf(mddev
);
3542 if (!IS_ERR(conf
)) {
3543 rdev_for_each(rdev
, mddev
)
3544 if (rdev
->raid_disk
>= 0)
3545 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3552 static void *raid10_takeover(struct mddev
*mddev
)
3554 struct r0conf
*raid0_conf
;
3556 /* raid10 can take over:
3557 * raid0 - providing it has only two drives
3559 if (mddev
->level
== 0) {
3560 /* for raid0 takeover only one zone is supported */
3561 raid0_conf
= mddev
->private;
3562 if (raid0_conf
->nr_strip_zones
> 1) {
3563 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3564 " with more than one zone.\n",
3566 return ERR_PTR(-EINVAL
);
3568 return raid10_takeover_raid0(mddev
);
3570 return ERR_PTR(-EINVAL
);
3573 static struct md_personality raid10_personality
=
3577 .owner
= THIS_MODULE
,
3578 .make_request
= make_request
,
3582 .error_handler
= error
,
3583 .hot_add_disk
= raid10_add_disk
,
3584 .hot_remove_disk
= raid10_remove_disk
,
3585 .spare_active
= raid10_spare_active
,
3586 .sync_request
= sync_request
,
3587 .quiesce
= raid10_quiesce
,
3588 .size
= raid10_size
,
3589 .resize
= raid10_resize
,
3590 .takeover
= raid10_takeover
,
3593 static int __init
raid_init(void)
3595 return register_md_personality(&raid10_personality
);
3598 static void raid_exit(void)
3600 unregister_md_personality(&raid10_personality
);
3603 module_init(raid_init
);
3604 module_exit(raid_exit
);
3605 MODULE_LICENSE("GPL");
3606 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3607 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3608 MODULE_ALIAS("md-raid10");
3609 MODULE_ALIAS("md-level-10");
3611 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);