Linux 3.4.71
[linux/fpc-iii.git] / drivers / md / raid10.c
blob99a102d186ce36fbbac7f616366e2e452bcde6ac
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
66 static int max_queued_requests = 1024;
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 static int enough(struct r10conf *conf, int ignore);
72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
74 struct r10conf *conf = data;
75 int size = offsetof(struct r10bio, devs[conf->copies]);
77 /* allocate a r10bio with room for raid_disks entries in the
78 * bios array */
79 return kzalloc(size, gfp_flags);
82 static void r10bio_pool_free(void *r10_bio, void *data)
84 kfree(r10_bio);
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
104 struct r10conf *conf = data;
105 struct page *page;
106 struct r10bio *r10_bio;
107 struct bio *bio;
108 int i, j;
109 int nalloc;
111 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
112 if (!r10_bio)
113 return NULL;
115 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116 nalloc = conf->copies; /* resync */
117 else
118 nalloc = 2; /* recovery */
121 * Allocate bios.
123 for (j = nalloc ; j-- ; ) {
124 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
125 if (!bio)
126 goto out_free_bio;
127 r10_bio->devs[j].bio = bio;
128 if (!conf->have_replacement)
129 continue;
130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 if (!bio)
132 goto out_free_bio;
133 r10_bio->devs[j].repl_bio = bio;
136 * Allocate RESYNC_PAGES data pages and attach them
137 * where needed.
139 for (j = 0 ; j < nalloc; j++) {
140 struct bio *rbio = r10_bio->devs[j].repl_bio;
141 bio = r10_bio->devs[j].bio;
142 for (i = 0; i < RESYNC_PAGES; i++) {
143 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144 &conf->mddev->recovery)) {
145 /* we can share bv_page's during recovery */
146 struct bio *rbio = r10_bio->devs[0].bio;
147 page = rbio->bi_io_vec[i].bv_page;
148 get_page(page);
149 } else
150 page = alloc_page(gfp_flags);
151 if (unlikely(!page))
152 goto out_free_pages;
154 bio->bi_io_vec[i].bv_page = page;
155 if (rbio)
156 rbio->bi_io_vec[i].bv_page = page;
160 return r10_bio;
162 out_free_pages:
163 for ( ; i > 0 ; i--)
164 safe_put_page(bio->bi_io_vec[i-1].bv_page);
165 while (j--)
166 for (i = 0; i < RESYNC_PAGES ; i++)
167 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
168 j = -1;
169 out_free_bio:
170 while (++j < nalloc) {
171 bio_put(r10_bio->devs[j].bio);
172 if (r10_bio->devs[j].repl_bio)
173 bio_put(r10_bio->devs[j].repl_bio);
175 r10bio_pool_free(r10_bio, conf);
176 return NULL;
179 static void r10buf_pool_free(void *__r10_bio, void *data)
181 int i;
182 struct r10conf *conf = data;
183 struct r10bio *r10bio = __r10_bio;
184 int j;
186 for (j=0; j < conf->copies; j++) {
187 struct bio *bio = r10bio->devs[j].bio;
188 if (bio) {
189 for (i = 0; i < RESYNC_PAGES; i++) {
190 safe_put_page(bio->bi_io_vec[i].bv_page);
191 bio->bi_io_vec[i].bv_page = NULL;
193 bio_put(bio);
195 bio = r10bio->devs[j].repl_bio;
196 if (bio)
197 bio_put(bio);
199 r10bio_pool_free(r10bio, conf);
202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
204 int i;
206 for (i = 0; i < conf->copies; i++) {
207 struct bio **bio = & r10_bio->devs[i].bio;
208 if (!BIO_SPECIAL(*bio))
209 bio_put(*bio);
210 *bio = NULL;
211 bio = &r10_bio->devs[i].repl_bio;
212 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213 bio_put(*bio);
214 *bio = NULL;
218 static void free_r10bio(struct r10bio *r10_bio)
220 struct r10conf *conf = r10_bio->mddev->private;
222 put_all_bios(conf, r10_bio);
223 mempool_free(r10_bio, conf->r10bio_pool);
226 static void put_buf(struct r10bio *r10_bio)
228 struct r10conf *conf = r10_bio->mddev->private;
230 mempool_free(r10_bio, conf->r10buf_pool);
232 lower_barrier(conf);
235 static void reschedule_retry(struct r10bio *r10_bio)
237 unsigned long flags;
238 struct mddev *mddev = r10_bio->mddev;
239 struct r10conf *conf = mddev->private;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 list_add(&r10_bio->retry_list, &conf->retry_list);
243 conf->nr_queued ++;
244 spin_unlock_irqrestore(&conf->device_lock, flags);
246 /* wake up frozen array... */
247 wake_up(&conf->wait_barrier);
249 md_wakeup_thread(mddev->thread);
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
255 * cache layer.
257 static void raid_end_bio_io(struct r10bio *r10_bio)
259 struct bio *bio = r10_bio->master_bio;
260 int done;
261 struct r10conf *conf = r10_bio->mddev->private;
263 if (bio->bi_phys_segments) {
264 unsigned long flags;
265 spin_lock_irqsave(&conf->device_lock, flags);
266 bio->bi_phys_segments--;
267 done = (bio->bi_phys_segments == 0);
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269 } else
270 done = 1;
271 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272 clear_bit(BIO_UPTODATE, &bio->bi_flags);
273 if (done) {
274 bio_endio(bio, 0);
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
279 allow_barrier(conf);
281 free_r10bio(r10_bio);
285 * Update disk head position estimator based on IRQ completion info.
287 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
289 struct r10conf *conf = r10_bio->mddev->private;
291 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292 r10_bio->devs[slot].addr + (r10_bio->sectors);
296 * Find the disk number which triggered given bio
298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
299 struct bio *bio, int *slotp, int *replp)
301 int slot;
302 int repl = 0;
304 for (slot = 0; slot < conf->copies; slot++) {
305 if (r10_bio->devs[slot].bio == bio)
306 break;
307 if (r10_bio->devs[slot].repl_bio == bio) {
308 repl = 1;
309 break;
313 BUG_ON(slot == conf->copies);
314 update_head_pos(slot, r10_bio);
316 if (slotp)
317 *slotp = slot;
318 if (replp)
319 *replp = repl;
320 return r10_bio->devs[slot].devnum;
323 static void raid10_end_read_request(struct bio *bio, int error)
325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 struct r10bio *r10_bio = bio->bi_private;
327 int slot, dev;
328 struct md_rdev *rdev;
329 struct r10conf *conf = r10_bio->mddev->private;
332 slot = r10_bio->read_slot;
333 dev = r10_bio->devs[slot].devnum;
334 rdev = r10_bio->devs[slot].rdev;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(slot, r10_bio);
340 if (uptodate) {
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
350 set_bit(R10BIO_Uptodate, &r10_bio->state);
351 } else {
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
357 unsigned long flags;
358 spin_lock_irqsave(&conf->device_lock, flags);
359 if (!enough(conf, rdev->raid_disk))
360 uptodate = 1;
361 spin_unlock_irqrestore(&conf->device_lock, flags);
363 if (uptodate) {
364 raid_end_bio_io(r10_bio);
365 rdev_dec_pending(rdev, conf->mddev);
366 } else {
368 * oops, read error - keep the refcount on the rdev
370 char b[BDEVNAME_SIZE];
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
373 mdname(conf->mddev),
374 bdevname(rdev->bdev, b),
375 (unsigned long long)r10_bio->sector);
376 set_bit(R10BIO_ReadError, &r10_bio->state);
377 reschedule_retry(r10_bio);
381 static void close_write(struct r10bio *r10_bio)
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385 r10_bio->sectors,
386 !test_bit(R10BIO_Degraded, &r10_bio->state),
388 md_write_end(r10_bio->mddev);
391 static void one_write_done(struct r10bio *r10_bio)
393 if (atomic_dec_and_test(&r10_bio->remaining)) {
394 if (test_bit(R10BIO_WriteError, &r10_bio->state))
395 reschedule_retry(r10_bio);
396 else {
397 close_write(r10_bio);
398 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399 reschedule_retry(r10_bio);
400 else
401 raid_end_bio_io(r10_bio);
406 static void raid10_end_write_request(struct bio *bio, int error)
408 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
409 struct r10bio *r10_bio = bio->bi_private;
410 int dev;
411 int dec_rdev = 1;
412 struct r10conf *conf = r10_bio->mddev->private;
413 int slot, repl;
414 struct md_rdev *rdev = NULL;
416 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
418 if (repl)
419 rdev = conf->mirrors[dev].replacement;
420 if (!rdev) {
421 smp_rmb();
422 repl = 0;
423 rdev = conf->mirrors[dev].rdev;
426 * this branch is our 'one mirror IO has finished' event handler:
428 if (!uptodate) {
429 if (repl)
430 /* Never record new bad blocks to replacement,
431 * just fail it.
433 md_error(rdev->mddev, rdev);
434 else {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED,
438 &rdev->mddev->recovery);
439 set_bit(R10BIO_WriteError, &r10_bio->state);
440 dec_rdev = 0;
442 } else {
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
452 sector_t first_bad;
453 int bad_sectors;
456 * Do not set R10BIO_Uptodate if the current device is
457 * rebuilding or Faulty. This is because we cannot use
458 * such device for properly reading the data back (we could
459 * potentially use it, if the current write would have felt
460 * before rdev->recovery_offset, but for simplicity we don't
461 * check this here.
463 if (test_bit(In_sync, &rdev->flags) &&
464 !test_bit(Faulty, &rdev->flags))
465 set_bit(R10BIO_Uptodate, &r10_bio->state);
467 /* Maybe we can clear some bad blocks. */
468 if (is_badblock(rdev,
469 r10_bio->devs[slot].addr,
470 r10_bio->sectors,
471 &first_bad, &bad_sectors)) {
472 bio_put(bio);
473 if (repl)
474 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
475 else
476 r10_bio->devs[slot].bio = IO_MADE_GOOD;
477 dec_rdev = 0;
478 set_bit(R10BIO_MadeGood, &r10_bio->state);
484 * Let's see if all mirrored write operations have finished
485 * already.
487 one_write_done(r10_bio);
488 if (dec_rdev)
489 rdev_dec_pending(rdev, conf->mddev);
493 * RAID10 layout manager
494 * As well as the chunksize and raid_disks count, there are two
495 * parameters: near_copies and far_copies.
496 * near_copies * far_copies must be <= raid_disks.
497 * Normally one of these will be 1.
498 * If both are 1, we get raid0.
499 * If near_copies == raid_disks, we get raid1.
501 * Chunks are laid out in raid0 style with near_copies copies of the
502 * first chunk, followed by near_copies copies of the next chunk and
503 * so on.
504 * If far_copies > 1, then after 1/far_copies of the array has been assigned
505 * as described above, we start again with a device offset of near_copies.
506 * So we effectively have another copy of the whole array further down all
507 * the drives, but with blocks on different drives.
508 * With this layout, and block is never stored twice on the one device.
510 * raid10_find_phys finds the sector offset of a given virtual sector
511 * on each device that it is on.
513 * raid10_find_virt does the reverse mapping, from a device and a
514 * sector offset to a virtual address
517 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
519 int n,f;
520 sector_t sector;
521 sector_t chunk;
522 sector_t stripe;
523 int dev;
525 int slot = 0;
527 /* now calculate first sector/dev */
528 chunk = r10bio->sector >> conf->chunk_shift;
529 sector = r10bio->sector & conf->chunk_mask;
531 chunk *= conf->near_copies;
532 stripe = chunk;
533 dev = sector_div(stripe, conf->raid_disks);
534 if (conf->far_offset)
535 stripe *= conf->far_copies;
537 sector += stripe << conf->chunk_shift;
539 /* and calculate all the others */
540 for (n=0; n < conf->near_copies; n++) {
541 int d = dev;
542 sector_t s = sector;
543 r10bio->devs[slot].addr = sector;
544 r10bio->devs[slot].devnum = d;
545 slot++;
547 for (f = 1; f < conf->far_copies; f++) {
548 d += conf->near_copies;
549 if (d >= conf->raid_disks)
550 d -= conf->raid_disks;
551 s += conf->stride;
552 r10bio->devs[slot].devnum = d;
553 r10bio->devs[slot].addr = s;
554 slot++;
556 dev++;
557 if (dev >= conf->raid_disks) {
558 dev = 0;
559 sector += (conf->chunk_mask + 1);
562 BUG_ON(slot != conf->copies);
565 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
567 sector_t offset, chunk, vchunk;
569 offset = sector & conf->chunk_mask;
570 if (conf->far_offset) {
571 int fc;
572 chunk = sector >> conf->chunk_shift;
573 fc = sector_div(chunk, conf->far_copies);
574 dev -= fc * conf->near_copies;
575 if (dev < 0)
576 dev += conf->raid_disks;
577 } else {
578 while (sector >= conf->stride) {
579 sector -= conf->stride;
580 if (dev < conf->near_copies)
581 dev += conf->raid_disks - conf->near_copies;
582 else
583 dev -= conf->near_copies;
585 chunk = sector >> conf->chunk_shift;
587 vchunk = chunk * conf->raid_disks + dev;
588 sector_div(vchunk, conf->near_copies);
589 return (vchunk << conf->chunk_shift) + offset;
593 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
594 * @q: request queue
595 * @bvm: properties of new bio
596 * @biovec: the request that could be merged to it.
598 * Return amount of bytes we can accept at this offset
599 * This requires checking for end-of-chunk if near_copies != raid_disks,
600 * and for subordinate merge_bvec_fns if merge_check_needed.
602 static int raid10_mergeable_bvec(struct request_queue *q,
603 struct bvec_merge_data *bvm,
604 struct bio_vec *biovec)
606 struct mddev *mddev = q->queuedata;
607 struct r10conf *conf = mddev->private;
608 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
609 int max;
610 unsigned int chunk_sectors = mddev->chunk_sectors;
611 unsigned int bio_sectors = bvm->bi_size >> 9;
613 if (conf->near_copies < conf->raid_disks) {
614 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
615 + bio_sectors)) << 9;
616 if (max < 0)
617 /* bio_add cannot handle a negative return */
618 max = 0;
619 if (max <= biovec->bv_len && bio_sectors == 0)
620 return biovec->bv_len;
621 } else
622 max = biovec->bv_len;
624 if (mddev->merge_check_needed) {
625 struct {
626 struct r10bio r10_bio;
627 struct r10dev devs[conf->copies];
628 } on_stack;
629 struct r10bio *r10_bio = &on_stack.r10_bio;
630 int s;
631 r10_bio->sector = sector;
632 raid10_find_phys(conf, r10_bio);
633 rcu_read_lock();
634 for (s = 0; s < conf->copies; s++) {
635 int disk = r10_bio->devs[s].devnum;
636 struct md_rdev *rdev = rcu_dereference(
637 conf->mirrors[disk].rdev);
638 if (rdev && !test_bit(Faulty, &rdev->flags)) {
639 struct request_queue *q =
640 bdev_get_queue(rdev->bdev);
641 if (q->merge_bvec_fn) {
642 bvm->bi_sector = r10_bio->devs[s].addr
643 + rdev->data_offset;
644 bvm->bi_bdev = rdev->bdev;
645 max = min(max, q->merge_bvec_fn(
646 q, bvm, biovec));
649 rdev = rcu_dereference(conf->mirrors[disk].replacement);
650 if (rdev && !test_bit(Faulty, &rdev->flags)) {
651 struct request_queue *q =
652 bdev_get_queue(rdev->bdev);
653 if (q->merge_bvec_fn) {
654 bvm->bi_sector = r10_bio->devs[s].addr
655 + rdev->data_offset;
656 bvm->bi_bdev = rdev->bdev;
657 max = min(max, q->merge_bvec_fn(
658 q, bvm, biovec));
662 rcu_read_unlock();
664 return max;
668 * This routine returns the disk from which the requested read should
669 * be done. There is a per-array 'next expected sequential IO' sector
670 * number - if this matches on the next IO then we use the last disk.
671 * There is also a per-disk 'last know head position' sector that is
672 * maintained from IRQ contexts, both the normal and the resync IO
673 * completion handlers update this position correctly. If there is no
674 * perfect sequential match then we pick the disk whose head is closest.
676 * If there are 2 mirrors in the same 2 devices, performance degrades
677 * because position is mirror, not device based.
679 * The rdev for the device selected will have nr_pending incremented.
683 * FIXME: possibly should rethink readbalancing and do it differently
684 * depending on near_copies / far_copies geometry.
686 static struct md_rdev *read_balance(struct r10conf *conf,
687 struct r10bio *r10_bio,
688 int *max_sectors)
690 const sector_t this_sector = r10_bio->sector;
691 int disk, slot;
692 int sectors = r10_bio->sectors;
693 int best_good_sectors;
694 sector_t new_distance, best_dist;
695 struct md_rdev *rdev, *best_rdev;
696 int do_balance;
697 int best_slot;
699 raid10_find_phys(conf, r10_bio);
700 rcu_read_lock();
701 retry:
702 sectors = r10_bio->sectors;
703 best_slot = -1;
704 best_rdev = NULL;
705 best_dist = MaxSector;
706 best_good_sectors = 0;
707 do_balance = 1;
709 * Check if we can balance. We can balance on the whole
710 * device if no resync is going on (recovery is ok), or below
711 * the resync window. We take the first readable disk when
712 * above the resync window.
714 if (conf->mddev->recovery_cp < MaxSector
715 && (this_sector + sectors >= conf->next_resync))
716 do_balance = 0;
718 for (slot = 0; slot < conf->copies ; slot++) {
719 sector_t first_bad;
720 int bad_sectors;
721 sector_t dev_sector;
723 if (r10_bio->devs[slot].bio == IO_BLOCKED)
724 continue;
725 disk = r10_bio->devs[slot].devnum;
726 rdev = rcu_dereference(conf->mirrors[disk].replacement);
727 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
728 test_bit(Unmerged, &rdev->flags) ||
729 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
730 rdev = rcu_dereference(conf->mirrors[disk].rdev);
731 if (rdev == NULL ||
732 test_bit(Faulty, &rdev->flags) ||
733 test_bit(Unmerged, &rdev->flags))
734 continue;
735 if (!test_bit(In_sync, &rdev->flags) &&
736 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
737 continue;
739 dev_sector = r10_bio->devs[slot].addr;
740 if (is_badblock(rdev, dev_sector, sectors,
741 &first_bad, &bad_sectors)) {
742 if (best_dist < MaxSector)
743 /* Already have a better slot */
744 continue;
745 if (first_bad <= dev_sector) {
746 /* Cannot read here. If this is the
747 * 'primary' device, then we must not read
748 * beyond 'bad_sectors' from another device.
750 bad_sectors -= (dev_sector - first_bad);
751 if (!do_balance && sectors > bad_sectors)
752 sectors = bad_sectors;
753 if (best_good_sectors > sectors)
754 best_good_sectors = sectors;
755 } else {
756 sector_t good_sectors =
757 first_bad - dev_sector;
758 if (good_sectors > best_good_sectors) {
759 best_good_sectors = good_sectors;
760 best_slot = slot;
761 best_rdev = rdev;
763 if (!do_balance)
764 /* Must read from here */
765 break;
767 continue;
768 } else
769 best_good_sectors = sectors;
771 if (!do_balance)
772 break;
774 /* This optimisation is debatable, and completely destroys
775 * sequential read speed for 'far copies' arrays. So only
776 * keep it for 'near' arrays, and review those later.
778 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
779 break;
781 /* for far > 1 always use the lowest address */
782 if (conf->far_copies > 1)
783 new_distance = r10_bio->devs[slot].addr;
784 else
785 new_distance = abs(r10_bio->devs[slot].addr -
786 conf->mirrors[disk].head_position);
787 if (new_distance < best_dist) {
788 best_dist = new_distance;
789 best_slot = slot;
790 best_rdev = rdev;
793 if (slot >= conf->copies) {
794 slot = best_slot;
795 rdev = best_rdev;
798 if (slot >= 0) {
799 atomic_inc(&rdev->nr_pending);
800 if (test_bit(Faulty, &rdev->flags)) {
801 /* Cannot risk returning a device that failed
802 * before we inc'ed nr_pending
804 rdev_dec_pending(rdev, conf->mddev);
805 goto retry;
807 r10_bio->read_slot = slot;
808 } else
809 rdev = NULL;
810 rcu_read_unlock();
811 *max_sectors = best_good_sectors;
813 return rdev;
816 static int raid10_congested(void *data, int bits)
818 struct mddev *mddev = data;
819 struct r10conf *conf = mddev->private;
820 int i, ret = 0;
822 if ((bits & (1 << BDI_async_congested)) &&
823 conf->pending_count >= max_queued_requests)
824 return 1;
826 if (mddev_congested(mddev, bits))
827 return 1;
828 rcu_read_lock();
829 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
830 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
831 if (rdev && !test_bit(Faulty, &rdev->flags)) {
832 struct request_queue *q = bdev_get_queue(rdev->bdev);
834 ret |= bdi_congested(&q->backing_dev_info, bits);
837 rcu_read_unlock();
838 return ret;
841 static void flush_pending_writes(struct r10conf *conf)
843 /* Any writes that have been queued but are awaiting
844 * bitmap updates get flushed here.
846 spin_lock_irq(&conf->device_lock);
848 if (conf->pending_bio_list.head) {
849 struct bio *bio;
850 bio = bio_list_get(&conf->pending_bio_list);
851 conf->pending_count = 0;
852 spin_unlock_irq(&conf->device_lock);
853 /* flush any pending bitmap writes to disk
854 * before proceeding w/ I/O */
855 bitmap_unplug(conf->mddev->bitmap);
856 wake_up(&conf->wait_barrier);
858 while (bio) { /* submit pending writes */
859 struct bio *next = bio->bi_next;
860 bio->bi_next = NULL;
861 generic_make_request(bio);
862 bio = next;
864 } else
865 spin_unlock_irq(&conf->device_lock);
868 /* Barriers....
869 * Sometimes we need to suspend IO while we do something else,
870 * either some resync/recovery, or reconfigure the array.
871 * To do this we raise a 'barrier'.
872 * The 'barrier' is a counter that can be raised multiple times
873 * to count how many activities are happening which preclude
874 * normal IO.
875 * We can only raise the barrier if there is no pending IO.
876 * i.e. if nr_pending == 0.
877 * We choose only to raise the barrier if no-one is waiting for the
878 * barrier to go down. This means that as soon as an IO request
879 * is ready, no other operations which require a barrier will start
880 * until the IO request has had a chance.
882 * So: regular IO calls 'wait_barrier'. When that returns there
883 * is no backgroup IO happening, It must arrange to call
884 * allow_barrier when it has finished its IO.
885 * backgroup IO calls must call raise_barrier. Once that returns
886 * there is no normal IO happeing. It must arrange to call
887 * lower_barrier when the particular background IO completes.
890 static void raise_barrier(struct r10conf *conf, int force)
892 BUG_ON(force && !conf->barrier);
893 spin_lock_irq(&conf->resync_lock);
895 /* Wait until no block IO is waiting (unless 'force') */
896 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
897 conf->resync_lock, );
899 /* block any new IO from starting */
900 conf->barrier++;
902 /* Now wait for all pending IO to complete */
903 wait_event_lock_irq(conf->wait_barrier,
904 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
905 conf->resync_lock, );
907 spin_unlock_irq(&conf->resync_lock);
910 static void lower_barrier(struct r10conf *conf)
912 unsigned long flags;
913 spin_lock_irqsave(&conf->resync_lock, flags);
914 conf->barrier--;
915 spin_unlock_irqrestore(&conf->resync_lock, flags);
916 wake_up(&conf->wait_barrier);
919 static void wait_barrier(struct r10conf *conf)
921 spin_lock_irq(&conf->resync_lock);
922 if (conf->barrier) {
923 conf->nr_waiting++;
924 /* Wait for the barrier to drop.
925 * However if there are already pending
926 * requests (preventing the barrier from
927 * rising completely), and the
928 * pre-process bio queue isn't empty,
929 * then don't wait, as we need to empty
930 * that queue to get the nr_pending
931 * count down.
933 wait_event_lock_irq(conf->wait_barrier,
934 !conf->barrier ||
935 (conf->nr_pending &&
936 current->bio_list &&
937 !bio_list_empty(current->bio_list)),
938 conf->resync_lock,
940 conf->nr_waiting--;
942 conf->nr_pending++;
943 spin_unlock_irq(&conf->resync_lock);
946 static void allow_barrier(struct r10conf *conf)
948 unsigned long flags;
949 spin_lock_irqsave(&conf->resync_lock, flags);
950 conf->nr_pending--;
951 spin_unlock_irqrestore(&conf->resync_lock, flags);
952 wake_up(&conf->wait_barrier);
955 static void freeze_array(struct r10conf *conf, int extra)
957 /* stop syncio and normal IO and wait for everything to
958 * go quiet.
959 * We increment barrier and nr_waiting, and then
960 * wait until nr_pending match nr_queued+extra
961 * This is called in the context of one normal IO request
962 * that has failed. Thus any sync request that might be pending
963 * will be blocked by nr_pending, and we need to wait for
964 * pending IO requests to complete or be queued for re-try.
965 * Thus the number queued (nr_queued) plus this request (extra)
966 * must match the number of pending IOs (nr_pending) before
967 * we continue.
969 spin_lock_irq(&conf->resync_lock);
970 conf->barrier++;
971 conf->nr_waiting++;
972 wait_event_lock_irq(conf->wait_barrier,
973 conf->nr_pending == conf->nr_queued+extra,
974 conf->resync_lock,
975 flush_pending_writes(conf));
977 spin_unlock_irq(&conf->resync_lock);
980 static void unfreeze_array(struct r10conf *conf)
982 /* reverse the effect of the freeze */
983 spin_lock_irq(&conf->resync_lock);
984 conf->barrier--;
985 conf->nr_waiting--;
986 wake_up(&conf->wait_barrier);
987 spin_unlock_irq(&conf->resync_lock);
990 static void make_request(struct mddev *mddev, struct bio * bio)
992 struct r10conf *conf = mddev->private;
993 struct r10bio *r10_bio;
994 struct bio *read_bio;
995 int i;
996 int chunk_sects = conf->chunk_mask + 1;
997 const int rw = bio_data_dir(bio);
998 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
999 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1000 unsigned long flags;
1001 struct md_rdev *blocked_rdev;
1002 int plugged;
1003 int sectors_handled;
1004 int max_sectors;
1006 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1007 md_flush_request(mddev, bio);
1008 return;
1011 /* If this request crosses a chunk boundary, we need to
1012 * split it. This will only happen for 1 PAGE (or less) requests.
1014 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
1015 > chunk_sects &&
1016 conf->near_copies < conf->raid_disks)) {
1017 struct bio_pair *bp;
1018 /* Sanity check -- queue functions should prevent this happening */
1019 if (bio->bi_vcnt != 1 ||
1020 bio->bi_idx != 0)
1021 goto bad_map;
1022 /* This is a one page bio that upper layers
1023 * refuse to split for us, so we need to split it.
1025 bp = bio_split(bio,
1026 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1028 /* Each of these 'make_request' calls will call 'wait_barrier'.
1029 * If the first succeeds but the second blocks due to the resync
1030 * thread raising the barrier, we will deadlock because the
1031 * IO to the underlying device will be queued in generic_make_request
1032 * and will never complete, so will never reduce nr_pending.
1033 * So increment nr_waiting here so no new raise_barriers will
1034 * succeed, and so the second wait_barrier cannot block.
1036 spin_lock_irq(&conf->resync_lock);
1037 conf->nr_waiting++;
1038 spin_unlock_irq(&conf->resync_lock);
1040 make_request(mddev, &bp->bio1);
1041 make_request(mddev, &bp->bio2);
1043 spin_lock_irq(&conf->resync_lock);
1044 conf->nr_waiting--;
1045 wake_up(&conf->wait_barrier);
1046 spin_unlock_irq(&conf->resync_lock);
1048 bio_pair_release(bp);
1049 return;
1050 bad_map:
1051 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1052 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1053 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1055 bio_io_error(bio);
1056 return;
1059 md_write_start(mddev, bio);
1062 * Register the new request and wait if the reconstruction
1063 * thread has put up a bar for new requests.
1064 * Continue immediately if no resync is active currently.
1066 wait_barrier(conf);
1068 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1070 r10_bio->master_bio = bio;
1071 r10_bio->sectors = bio->bi_size >> 9;
1073 r10_bio->mddev = mddev;
1074 r10_bio->sector = bio->bi_sector;
1075 r10_bio->state = 0;
1077 /* We might need to issue multiple reads to different
1078 * devices if there are bad blocks around, so we keep
1079 * track of the number of reads in bio->bi_phys_segments.
1080 * If this is 0, there is only one r10_bio and no locking
1081 * will be needed when the request completes. If it is
1082 * non-zero, then it is the number of not-completed requests.
1084 bio->bi_phys_segments = 0;
1085 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1087 if (rw == READ) {
1089 * read balancing logic:
1091 struct md_rdev *rdev;
1092 int slot;
1094 read_again:
1095 rdev = read_balance(conf, r10_bio, &max_sectors);
1096 if (!rdev) {
1097 raid_end_bio_io(r10_bio);
1098 return;
1100 slot = r10_bio->read_slot;
1102 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1103 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1104 max_sectors);
1106 r10_bio->devs[slot].bio = read_bio;
1107 r10_bio->devs[slot].rdev = rdev;
1109 read_bio->bi_sector = r10_bio->devs[slot].addr +
1110 rdev->data_offset;
1111 read_bio->bi_bdev = rdev->bdev;
1112 read_bio->bi_end_io = raid10_end_read_request;
1113 read_bio->bi_rw = READ | do_sync;
1114 read_bio->bi_private = r10_bio;
1116 if (max_sectors < r10_bio->sectors) {
1117 /* Could not read all from this device, so we will
1118 * need another r10_bio.
1120 sectors_handled = (r10_bio->sectors + max_sectors
1121 - bio->bi_sector);
1122 r10_bio->sectors = max_sectors;
1123 spin_lock_irq(&conf->device_lock);
1124 if (bio->bi_phys_segments == 0)
1125 bio->bi_phys_segments = 2;
1126 else
1127 bio->bi_phys_segments++;
1128 spin_unlock(&conf->device_lock);
1129 /* Cannot call generic_make_request directly
1130 * as that will be queued in __generic_make_request
1131 * and subsequent mempool_alloc might block
1132 * waiting for it. so hand bio over to raid10d.
1134 reschedule_retry(r10_bio);
1136 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1138 r10_bio->master_bio = bio;
1139 r10_bio->sectors = ((bio->bi_size >> 9)
1140 - sectors_handled);
1141 r10_bio->state = 0;
1142 r10_bio->mddev = mddev;
1143 r10_bio->sector = bio->bi_sector + sectors_handled;
1144 goto read_again;
1145 } else
1146 generic_make_request(read_bio);
1147 return;
1151 * WRITE:
1153 if (conf->pending_count >= max_queued_requests) {
1154 md_wakeup_thread(mddev->thread);
1155 wait_event(conf->wait_barrier,
1156 conf->pending_count < max_queued_requests);
1158 /* first select target devices under rcu_lock and
1159 * inc refcount on their rdev. Record them by setting
1160 * bios[x] to bio
1161 * If there are known/acknowledged bad blocks on any device
1162 * on which we have seen a write error, we want to avoid
1163 * writing to those blocks. This potentially requires several
1164 * writes to write around the bad blocks. Each set of writes
1165 * gets its own r10_bio with a set of bios attached. The number
1166 * of r10_bios is recored in bio->bi_phys_segments just as with
1167 * the read case.
1169 plugged = mddev_check_plugged(mddev);
1171 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1172 raid10_find_phys(conf, r10_bio);
1173 retry_write:
1174 blocked_rdev = NULL;
1175 rcu_read_lock();
1176 max_sectors = r10_bio->sectors;
1178 for (i = 0; i < conf->copies; i++) {
1179 int d = r10_bio->devs[i].devnum;
1180 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1181 struct md_rdev *rrdev = rcu_dereference(
1182 conf->mirrors[d].replacement);
1183 if (rdev == rrdev)
1184 rrdev = NULL;
1185 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1186 atomic_inc(&rdev->nr_pending);
1187 blocked_rdev = rdev;
1188 break;
1190 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1191 atomic_inc(&rrdev->nr_pending);
1192 blocked_rdev = rrdev;
1193 break;
1195 if (rdev && (test_bit(Faulty, &rdev->flags)
1196 || test_bit(Unmerged, &rdev->flags)))
1197 rdev = NULL;
1198 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1199 || test_bit(Unmerged, &rrdev->flags)))
1200 rrdev = NULL;
1202 r10_bio->devs[i].bio = NULL;
1203 r10_bio->devs[i].repl_bio = NULL;
1205 if (!rdev && !rrdev) {
1206 set_bit(R10BIO_Degraded, &r10_bio->state);
1207 continue;
1209 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1210 sector_t first_bad;
1211 sector_t dev_sector = r10_bio->devs[i].addr;
1212 int bad_sectors;
1213 int is_bad;
1215 is_bad = is_badblock(rdev, dev_sector,
1216 max_sectors,
1217 &first_bad, &bad_sectors);
1218 if (is_bad < 0) {
1219 /* Mustn't write here until the bad block
1220 * is acknowledged
1222 atomic_inc(&rdev->nr_pending);
1223 set_bit(BlockedBadBlocks, &rdev->flags);
1224 blocked_rdev = rdev;
1225 break;
1227 if (is_bad && first_bad <= dev_sector) {
1228 /* Cannot write here at all */
1229 bad_sectors -= (dev_sector - first_bad);
1230 if (bad_sectors < max_sectors)
1231 /* Mustn't write more than bad_sectors
1232 * to other devices yet
1234 max_sectors = bad_sectors;
1235 /* We don't set R10BIO_Degraded as that
1236 * only applies if the disk is missing,
1237 * so it might be re-added, and we want to
1238 * know to recover this chunk.
1239 * In this case the device is here, and the
1240 * fact that this chunk is not in-sync is
1241 * recorded in the bad block log.
1243 continue;
1245 if (is_bad) {
1246 int good_sectors = first_bad - dev_sector;
1247 if (good_sectors < max_sectors)
1248 max_sectors = good_sectors;
1251 if (rdev) {
1252 r10_bio->devs[i].bio = bio;
1253 atomic_inc(&rdev->nr_pending);
1255 if (rrdev) {
1256 r10_bio->devs[i].repl_bio = bio;
1257 atomic_inc(&rrdev->nr_pending);
1260 rcu_read_unlock();
1262 if (unlikely(blocked_rdev)) {
1263 /* Have to wait for this device to get unblocked, then retry */
1264 int j;
1265 int d;
1267 for (j = 0; j < i; j++) {
1268 if (r10_bio->devs[j].bio) {
1269 d = r10_bio->devs[j].devnum;
1270 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1272 if (r10_bio->devs[j].repl_bio) {
1273 struct md_rdev *rdev;
1274 d = r10_bio->devs[j].devnum;
1275 rdev = conf->mirrors[d].replacement;
1276 if (!rdev) {
1277 /* Race with remove_disk */
1278 smp_mb();
1279 rdev = conf->mirrors[d].rdev;
1281 rdev_dec_pending(rdev, mddev);
1284 allow_barrier(conf);
1285 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1286 wait_barrier(conf);
1287 goto retry_write;
1290 if (max_sectors < r10_bio->sectors) {
1291 /* We are splitting this into multiple parts, so
1292 * we need to prepare for allocating another r10_bio.
1294 r10_bio->sectors = max_sectors;
1295 spin_lock_irq(&conf->device_lock);
1296 if (bio->bi_phys_segments == 0)
1297 bio->bi_phys_segments = 2;
1298 else
1299 bio->bi_phys_segments++;
1300 spin_unlock_irq(&conf->device_lock);
1302 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1304 atomic_set(&r10_bio->remaining, 1);
1305 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1307 for (i = 0; i < conf->copies; i++) {
1308 struct bio *mbio;
1309 int d = r10_bio->devs[i].devnum;
1310 if (r10_bio->devs[i].bio) {
1311 struct md_rdev *rdev = conf->mirrors[d].rdev;
1312 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1313 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1314 max_sectors);
1315 r10_bio->devs[i].bio = mbio;
1317 mbio->bi_sector = (r10_bio->devs[i].addr+
1318 rdev->data_offset);
1319 mbio->bi_bdev = rdev->bdev;
1320 mbio->bi_end_io = raid10_end_write_request;
1321 mbio->bi_rw = WRITE | do_sync | do_fua;
1322 mbio->bi_private = r10_bio;
1324 atomic_inc(&r10_bio->remaining);
1325 spin_lock_irqsave(&conf->device_lock, flags);
1326 bio_list_add(&conf->pending_bio_list, mbio);
1327 conf->pending_count++;
1328 spin_unlock_irqrestore(&conf->device_lock, flags);
1331 if (r10_bio->devs[i].repl_bio) {
1332 struct md_rdev *rdev = conf->mirrors[d].replacement;
1333 if (rdev == NULL) {
1334 /* Replacement just got moved to main 'rdev' */
1335 smp_mb();
1336 rdev = conf->mirrors[d].rdev;
1338 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1339 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1340 max_sectors);
1341 r10_bio->devs[i].repl_bio = mbio;
1343 mbio->bi_sector = (r10_bio->devs[i].addr+
1344 rdev->data_offset);
1345 mbio->bi_bdev = rdev->bdev;
1346 mbio->bi_end_io = raid10_end_write_request;
1347 mbio->bi_rw = WRITE | do_sync | do_fua;
1348 mbio->bi_private = r10_bio;
1350 atomic_inc(&r10_bio->remaining);
1351 spin_lock_irqsave(&conf->device_lock, flags);
1352 bio_list_add(&conf->pending_bio_list, mbio);
1353 conf->pending_count++;
1354 spin_unlock_irqrestore(&conf->device_lock, flags);
1358 /* Don't remove the bias on 'remaining' (one_write_done) until
1359 * after checking if we need to go around again.
1362 if (sectors_handled < (bio->bi_size >> 9)) {
1363 one_write_done(r10_bio);
1364 /* We need another r10_bio. It has already been counted
1365 * in bio->bi_phys_segments.
1367 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1369 r10_bio->master_bio = bio;
1370 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1372 r10_bio->mddev = mddev;
1373 r10_bio->sector = bio->bi_sector + sectors_handled;
1374 r10_bio->state = 0;
1375 goto retry_write;
1377 one_write_done(r10_bio);
1379 /* In case raid10d snuck in to freeze_array */
1380 wake_up(&conf->wait_barrier);
1382 if (do_sync || !mddev->bitmap || !plugged)
1383 md_wakeup_thread(mddev->thread);
1386 static void status(struct seq_file *seq, struct mddev *mddev)
1388 struct r10conf *conf = mddev->private;
1389 int i;
1391 if (conf->near_copies < conf->raid_disks)
1392 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1393 if (conf->near_copies > 1)
1394 seq_printf(seq, " %d near-copies", conf->near_copies);
1395 if (conf->far_copies > 1) {
1396 if (conf->far_offset)
1397 seq_printf(seq, " %d offset-copies", conf->far_copies);
1398 else
1399 seq_printf(seq, " %d far-copies", conf->far_copies);
1401 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1402 conf->raid_disks - mddev->degraded);
1403 for (i = 0; i < conf->raid_disks; i++)
1404 seq_printf(seq, "%s",
1405 conf->mirrors[i].rdev &&
1406 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1407 seq_printf(seq, "]");
1410 /* check if there are enough drives for
1411 * every block to appear on atleast one.
1412 * Don't consider the device numbered 'ignore'
1413 * as we might be about to remove it.
1415 static int enough(struct r10conf *conf, int ignore)
1417 int first = 0;
1419 do {
1420 int n = conf->copies;
1421 int cnt = 0;
1422 while (n--) {
1423 if (conf->mirrors[first].rdev &&
1424 first != ignore)
1425 cnt++;
1426 first = (first+1) % conf->raid_disks;
1428 if (cnt == 0)
1429 return 0;
1430 } while (first != 0);
1431 return 1;
1434 static void error(struct mddev *mddev, struct md_rdev *rdev)
1436 char b[BDEVNAME_SIZE];
1437 struct r10conf *conf = mddev->private;
1440 * If it is not operational, then we have already marked it as dead
1441 * else if it is the last working disks, ignore the error, let the
1442 * next level up know.
1443 * else mark the drive as failed
1445 if (test_bit(In_sync, &rdev->flags)
1446 && !enough(conf, rdev->raid_disk))
1448 * Don't fail the drive, just return an IO error.
1450 return;
1451 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1452 unsigned long flags;
1453 spin_lock_irqsave(&conf->device_lock, flags);
1454 mddev->degraded++;
1455 spin_unlock_irqrestore(&conf->device_lock, flags);
1457 * if recovery is running, make sure it aborts.
1459 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1461 set_bit(Blocked, &rdev->flags);
1462 set_bit(Faulty, &rdev->flags);
1463 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1464 printk(KERN_ALERT
1465 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1466 "md/raid10:%s: Operation continuing on %d devices.\n",
1467 mdname(mddev), bdevname(rdev->bdev, b),
1468 mdname(mddev), conf->raid_disks - mddev->degraded);
1471 static void print_conf(struct r10conf *conf)
1473 int i;
1474 struct mirror_info *tmp;
1476 printk(KERN_DEBUG "RAID10 conf printout:\n");
1477 if (!conf) {
1478 printk(KERN_DEBUG "(!conf)\n");
1479 return;
1481 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1482 conf->raid_disks);
1484 for (i = 0; i < conf->raid_disks; i++) {
1485 char b[BDEVNAME_SIZE];
1486 tmp = conf->mirrors + i;
1487 if (tmp->rdev)
1488 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1489 i, !test_bit(In_sync, &tmp->rdev->flags),
1490 !test_bit(Faulty, &tmp->rdev->flags),
1491 bdevname(tmp->rdev->bdev,b));
1495 static void close_sync(struct r10conf *conf)
1497 wait_barrier(conf);
1498 allow_barrier(conf);
1500 mempool_destroy(conf->r10buf_pool);
1501 conf->r10buf_pool = NULL;
1504 static int raid10_spare_active(struct mddev *mddev)
1506 int i;
1507 struct r10conf *conf = mddev->private;
1508 struct mirror_info *tmp;
1509 int count = 0;
1510 unsigned long flags;
1513 * Find all non-in_sync disks within the RAID10 configuration
1514 * and mark them in_sync
1516 for (i = 0; i < conf->raid_disks; i++) {
1517 tmp = conf->mirrors + i;
1518 if (tmp->replacement
1519 && tmp->replacement->recovery_offset == MaxSector
1520 && !test_bit(Faulty, &tmp->replacement->flags)
1521 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1522 /* Replacement has just become active */
1523 if (!tmp->rdev
1524 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1525 count++;
1526 if (tmp->rdev) {
1527 /* Replaced device not technically faulty,
1528 * but we need to be sure it gets removed
1529 * and never re-added.
1531 set_bit(Faulty, &tmp->rdev->flags);
1532 sysfs_notify_dirent_safe(
1533 tmp->rdev->sysfs_state);
1535 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1536 } else if (tmp->rdev
1537 && tmp->rdev->recovery_offset == MaxSector
1538 && !test_bit(Faulty, &tmp->rdev->flags)
1539 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1540 count++;
1541 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1544 spin_lock_irqsave(&conf->device_lock, flags);
1545 mddev->degraded -= count;
1546 spin_unlock_irqrestore(&conf->device_lock, flags);
1548 print_conf(conf);
1549 return count;
1553 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1555 struct r10conf *conf = mddev->private;
1556 int err = -EEXIST;
1557 int mirror;
1558 int first = 0;
1559 int last = conf->raid_disks - 1;
1560 struct request_queue *q = bdev_get_queue(rdev->bdev);
1562 if (mddev->recovery_cp < MaxSector)
1563 /* only hot-add to in-sync arrays, as recovery is
1564 * very different from resync
1566 return -EBUSY;
1567 if (rdev->saved_raid_disk < 0 && !enough(conf, -1))
1568 return -EINVAL;
1570 if (rdev->raid_disk >= 0)
1571 first = last = rdev->raid_disk;
1573 if (q->merge_bvec_fn) {
1574 set_bit(Unmerged, &rdev->flags);
1575 mddev->merge_check_needed = 1;
1578 if (rdev->saved_raid_disk >= first &&
1579 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1580 mirror = rdev->saved_raid_disk;
1581 else
1582 mirror = first;
1583 for ( ; mirror <= last ; mirror++) {
1584 struct mirror_info *p = &conf->mirrors[mirror];
1585 if (p->recovery_disabled == mddev->recovery_disabled)
1586 continue;
1587 if (p->rdev) {
1588 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1589 p->replacement != NULL)
1590 continue;
1591 clear_bit(In_sync, &rdev->flags);
1592 set_bit(Replacement, &rdev->flags);
1593 rdev->raid_disk = mirror;
1594 err = 0;
1595 disk_stack_limits(mddev->gendisk, rdev->bdev,
1596 rdev->data_offset << 9);
1597 conf->fullsync = 1;
1598 rcu_assign_pointer(p->replacement, rdev);
1599 break;
1602 disk_stack_limits(mddev->gendisk, rdev->bdev,
1603 rdev->data_offset << 9);
1605 p->head_position = 0;
1606 p->recovery_disabled = mddev->recovery_disabled - 1;
1607 rdev->raid_disk = mirror;
1608 err = 0;
1609 if (rdev->saved_raid_disk != mirror)
1610 conf->fullsync = 1;
1611 rcu_assign_pointer(p->rdev, rdev);
1612 break;
1614 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1615 /* Some requests might not have seen this new
1616 * merge_bvec_fn. We must wait for them to complete
1617 * before merging the device fully.
1618 * First we make sure any code which has tested
1619 * our function has submitted the request, then
1620 * we wait for all outstanding requests to complete.
1622 synchronize_sched();
1623 freeze_array(conf, 0);
1624 unfreeze_array(conf);
1625 clear_bit(Unmerged, &rdev->flags);
1627 md_integrity_add_rdev(rdev, mddev);
1628 print_conf(conf);
1629 return err;
1632 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1634 struct r10conf *conf = mddev->private;
1635 int err = 0;
1636 int number = rdev->raid_disk;
1637 struct md_rdev **rdevp;
1638 struct mirror_info *p = conf->mirrors + number;
1640 print_conf(conf);
1641 if (rdev == p->rdev)
1642 rdevp = &p->rdev;
1643 else if (rdev == p->replacement)
1644 rdevp = &p->replacement;
1645 else
1646 return 0;
1648 if (test_bit(In_sync, &rdev->flags) ||
1649 atomic_read(&rdev->nr_pending)) {
1650 err = -EBUSY;
1651 goto abort;
1653 /* Only remove faulty devices if recovery
1654 * is not possible.
1656 if (!test_bit(Faulty, &rdev->flags) &&
1657 mddev->recovery_disabled != p->recovery_disabled &&
1658 (!p->replacement || p->replacement == rdev) &&
1659 enough(conf, -1)) {
1660 err = -EBUSY;
1661 goto abort;
1663 *rdevp = NULL;
1664 synchronize_rcu();
1665 if (atomic_read(&rdev->nr_pending)) {
1666 /* lost the race, try later */
1667 err = -EBUSY;
1668 *rdevp = rdev;
1669 goto abort;
1670 } else if (p->replacement) {
1671 /* We must have just cleared 'rdev' */
1672 p->rdev = p->replacement;
1673 clear_bit(Replacement, &p->replacement->flags);
1674 smp_mb(); /* Make sure other CPUs may see both as identical
1675 * but will never see neither -- if they are careful.
1677 p->replacement = NULL;
1678 clear_bit(WantReplacement, &rdev->flags);
1679 } else
1680 /* We might have just remove the Replacement as faulty
1681 * Clear the flag just in case
1683 clear_bit(WantReplacement, &rdev->flags);
1685 err = md_integrity_register(mddev);
1687 abort:
1689 print_conf(conf);
1690 return err;
1694 static void end_sync_read(struct bio *bio, int error)
1696 struct r10bio *r10_bio = bio->bi_private;
1697 struct r10conf *conf = r10_bio->mddev->private;
1698 int d;
1700 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1702 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1703 set_bit(R10BIO_Uptodate, &r10_bio->state);
1704 else
1705 /* The write handler will notice the lack of
1706 * R10BIO_Uptodate and record any errors etc
1708 atomic_add(r10_bio->sectors,
1709 &conf->mirrors[d].rdev->corrected_errors);
1711 /* for reconstruct, we always reschedule after a read.
1712 * for resync, only after all reads
1714 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1715 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1716 atomic_dec_and_test(&r10_bio->remaining)) {
1717 /* we have read all the blocks,
1718 * do the comparison in process context in raid10d
1720 reschedule_retry(r10_bio);
1724 static void end_sync_request(struct r10bio *r10_bio)
1726 struct mddev *mddev = r10_bio->mddev;
1728 while (atomic_dec_and_test(&r10_bio->remaining)) {
1729 if (r10_bio->master_bio == NULL) {
1730 /* the primary of several recovery bios */
1731 sector_t s = r10_bio->sectors;
1732 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1733 test_bit(R10BIO_WriteError, &r10_bio->state))
1734 reschedule_retry(r10_bio);
1735 else
1736 put_buf(r10_bio);
1737 md_done_sync(mddev, s, 1);
1738 break;
1739 } else {
1740 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1741 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1742 test_bit(R10BIO_WriteError, &r10_bio->state))
1743 reschedule_retry(r10_bio);
1744 else
1745 put_buf(r10_bio);
1746 r10_bio = r10_bio2;
1751 static void end_sync_write(struct bio *bio, int error)
1753 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1754 struct r10bio *r10_bio = bio->bi_private;
1755 struct mddev *mddev = r10_bio->mddev;
1756 struct r10conf *conf = mddev->private;
1757 int d;
1758 sector_t first_bad;
1759 int bad_sectors;
1760 int slot;
1761 int repl;
1762 struct md_rdev *rdev = NULL;
1764 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1765 if (repl)
1766 rdev = conf->mirrors[d].replacement;
1767 else
1768 rdev = conf->mirrors[d].rdev;
1770 if (!uptodate) {
1771 if (repl)
1772 md_error(mddev, rdev);
1773 else {
1774 set_bit(WriteErrorSeen, &rdev->flags);
1775 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1776 set_bit(MD_RECOVERY_NEEDED,
1777 &rdev->mddev->recovery);
1778 set_bit(R10BIO_WriteError, &r10_bio->state);
1780 } else if (is_badblock(rdev,
1781 r10_bio->devs[slot].addr,
1782 r10_bio->sectors,
1783 &first_bad, &bad_sectors))
1784 set_bit(R10BIO_MadeGood, &r10_bio->state);
1786 rdev_dec_pending(rdev, mddev);
1788 end_sync_request(r10_bio);
1792 * Note: sync and recover and handled very differently for raid10
1793 * This code is for resync.
1794 * For resync, we read through virtual addresses and read all blocks.
1795 * If there is any error, we schedule a write. The lowest numbered
1796 * drive is authoritative.
1797 * However requests come for physical address, so we need to map.
1798 * For every physical address there are raid_disks/copies virtual addresses,
1799 * which is always are least one, but is not necessarly an integer.
1800 * This means that a physical address can span multiple chunks, so we may
1801 * have to submit multiple io requests for a single sync request.
1804 * We check if all blocks are in-sync and only write to blocks that
1805 * aren't in sync
1807 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1809 struct r10conf *conf = mddev->private;
1810 int i, first;
1811 struct bio *tbio, *fbio;
1812 int vcnt;
1814 atomic_set(&r10_bio->remaining, 1);
1816 /* find the first device with a block */
1817 for (i=0; i<conf->copies; i++)
1818 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1819 break;
1821 if (i == conf->copies)
1822 goto done;
1824 first = i;
1825 fbio = r10_bio->devs[i].bio;
1827 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1828 /* now find blocks with errors */
1829 for (i=0 ; i < conf->copies ; i++) {
1830 int j, d;
1832 tbio = r10_bio->devs[i].bio;
1834 if (tbio->bi_end_io != end_sync_read)
1835 continue;
1836 if (i == first)
1837 continue;
1838 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1839 /* We know that the bi_io_vec layout is the same for
1840 * both 'first' and 'i', so we just compare them.
1841 * All vec entries are PAGE_SIZE;
1843 for (j = 0; j < vcnt; j++)
1844 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1845 page_address(tbio->bi_io_vec[j].bv_page),
1846 fbio->bi_io_vec[j].bv_len))
1847 break;
1848 if (j == vcnt)
1849 continue;
1850 mddev->resync_mismatches += r10_bio->sectors;
1851 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1852 /* Don't fix anything. */
1853 continue;
1855 /* Ok, we need to write this bio, either to correct an
1856 * inconsistency or to correct an unreadable block.
1857 * First we need to fixup bv_offset, bv_len and
1858 * bi_vecs, as the read request might have corrupted these
1860 tbio->bi_vcnt = vcnt;
1861 tbio->bi_size = r10_bio->sectors << 9;
1862 tbio->bi_idx = 0;
1863 tbio->bi_phys_segments = 0;
1864 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1865 tbio->bi_flags |= 1 << BIO_UPTODATE;
1866 tbio->bi_next = NULL;
1867 tbio->bi_rw = WRITE;
1868 tbio->bi_private = r10_bio;
1869 tbio->bi_sector = r10_bio->devs[i].addr;
1871 for (j=0; j < vcnt ; j++) {
1872 tbio->bi_io_vec[j].bv_offset = 0;
1873 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1875 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1876 page_address(fbio->bi_io_vec[j].bv_page),
1877 PAGE_SIZE);
1879 tbio->bi_end_io = end_sync_write;
1881 d = r10_bio->devs[i].devnum;
1882 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1883 atomic_inc(&r10_bio->remaining);
1884 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1886 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1887 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1888 generic_make_request(tbio);
1891 /* Now write out to any replacement devices
1892 * that are active
1894 for (i = 0; i < conf->copies; i++) {
1895 int j, d;
1897 tbio = r10_bio->devs[i].repl_bio;
1898 if (!tbio || !tbio->bi_end_io)
1899 continue;
1900 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1901 && r10_bio->devs[i].bio != fbio)
1902 for (j = 0; j < vcnt; j++)
1903 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1904 page_address(fbio->bi_io_vec[j].bv_page),
1905 PAGE_SIZE);
1906 d = r10_bio->devs[i].devnum;
1907 atomic_inc(&r10_bio->remaining);
1908 md_sync_acct(conf->mirrors[d].replacement->bdev,
1909 tbio->bi_size >> 9);
1910 generic_make_request(tbio);
1913 done:
1914 if (atomic_dec_and_test(&r10_bio->remaining)) {
1915 md_done_sync(mddev, r10_bio->sectors, 1);
1916 put_buf(r10_bio);
1921 * Now for the recovery code.
1922 * Recovery happens across physical sectors.
1923 * We recover all non-is_sync drives by finding the virtual address of
1924 * each, and then choose a working drive that also has that virt address.
1925 * There is a separate r10_bio for each non-in_sync drive.
1926 * Only the first two slots are in use. The first for reading,
1927 * The second for writing.
1930 static void fix_recovery_read_error(struct r10bio *r10_bio)
1932 /* We got a read error during recovery.
1933 * We repeat the read in smaller page-sized sections.
1934 * If a read succeeds, write it to the new device or record
1935 * a bad block if we cannot.
1936 * If a read fails, record a bad block on both old and
1937 * new devices.
1939 struct mddev *mddev = r10_bio->mddev;
1940 struct r10conf *conf = mddev->private;
1941 struct bio *bio = r10_bio->devs[0].bio;
1942 sector_t sect = 0;
1943 int sectors = r10_bio->sectors;
1944 int idx = 0;
1945 int dr = r10_bio->devs[0].devnum;
1946 int dw = r10_bio->devs[1].devnum;
1948 while (sectors) {
1949 int s = sectors;
1950 struct md_rdev *rdev;
1951 sector_t addr;
1952 int ok;
1954 if (s > (PAGE_SIZE>>9))
1955 s = PAGE_SIZE >> 9;
1957 rdev = conf->mirrors[dr].rdev;
1958 addr = r10_bio->devs[0].addr + sect,
1959 ok = sync_page_io(rdev,
1960 addr,
1961 s << 9,
1962 bio->bi_io_vec[idx].bv_page,
1963 READ, false);
1964 if (ok) {
1965 rdev = conf->mirrors[dw].rdev;
1966 addr = r10_bio->devs[1].addr + sect;
1967 ok = sync_page_io(rdev,
1968 addr,
1969 s << 9,
1970 bio->bi_io_vec[idx].bv_page,
1971 WRITE, false);
1972 if (!ok) {
1973 set_bit(WriteErrorSeen, &rdev->flags);
1974 if (!test_and_set_bit(WantReplacement,
1975 &rdev->flags))
1976 set_bit(MD_RECOVERY_NEEDED,
1977 &rdev->mddev->recovery);
1980 if (!ok) {
1981 /* We don't worry if we cannot set a bad block -
1982 * it really is bad so there is no loss in not
1983 * recording it yet
1985 rdev_set_badblocks(rdev, addr, s, 0);
1987 if (rdev != conf->mirrors[dw].rdev) {
1988 /* need bad block on destination too */
1989 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1990 addr = r10_bio->devs[1].addr + sect;
1991 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1992 if (!ok) {
1993 /* just abort the recovery */
1994 printk(KERN_NOTICE
1995 "md/raid10:%s: recovery aborted"
1996 " due to read error\n",
1997 mdname(mddev));
1999 conf->mirrors[dw].recovery_disabled
2000 = mddev->recovery_disabled;
2001 set_bit(MD_RECOVERY_INTR,
2002 &mddev->recovery);
2003 break;
2008 sectors -= s;
2009 sect += s;
2010 idx++;
2014 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2016 struct r10conf *conf = mddev->private;
2017 int d;
2018 struct bio *wbio, *wbio2;
2020 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2021 fix_recovery_read_error(r10_bio);
2022 end_sync_request(r10_bio);
2023 return;
2027 * share the pages with the first bio
2028 * and submit the write request
2030 d = r10_bio->devs[1].devnum;
2031 wbio = r10_bio->devs[1].bio;
2032 wbio2 = r10_bio->devs[1].repl_bio;
2033 /* Need to test wbio2->bi_end_io before we call
2034 * generic_make_request as if the former is NULL,
2035 * the latter is free to free wbio2.
2037 if (wbio2 && !wbio2->bi_end_io)
2038 wbio2 = NULL;
2039 if (wbio->bi_end_io) {
2040 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2041 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2042 generic_make_request(wbio);
2044 if (wbio2) {
2045 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2046 md_sync_acct(conf->mirrors[d].replacement->bdev,
2047 wbio2->bi_size >> 9);
2048 generic_make_request(wbio2);
2054 * Used by fix_read_error() to decay the per rdev read_errors.
2055 * We halve the read error count for every hour that has elapsed
2056 * since the last recorded read error.
2059 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2061 struct timespec cur_time_mon;
2062 unsigned long hours_since_last;
2063 unsigned int read_errors = atomic_read(&rdev->read_errors);
2065 ktime_get_ts(&cur_time_mon);
2067 if (rdev->last_read_error.tv_sec == 0 &&
2068 rdev->last_read_error.tv_nsec == 0) {
2069 /* first time we've seen a read error */
2070 rdev->last_read_error = cur_time_mon;
2071 return;
2074 hours_since_last = (cur_time_mon.tv_sec -
2075 rdev->last_read_error.tv_sec) / 3600;
2077 rdev->last_read_error = cur_time_mon;
2080 * if hours_since_last is > the number of bits in read_errors
2081 * just set read errors to 0. We do this to avoid
2082 * overflowing the shift of read_errors by hours_since_last.
2084 if (hours_since_last >= 8 * sizeof(read_errors))
2085 atomic_set(&rdev->read_errors, 0);
2086 else
2087 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2090 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2091 int sectors, struct page *page, int rw)
2093 sector_t first_bad;
2094 int bad_sectors;
2096 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2097 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2098 return -1;
2099 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2100 /* success */
2101 return 1;
2102 if (rw == WRITE) {
2103 set_bit(WriteErrorSeen, &rdev->flags);
2104 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2105 set_bit(MD_RECOVERY_NEEDED,
2106 &rdev->mddev->recovery);
2108 /* need to record an error - either for the block or the device */
2109 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2110 md_error(rdev->mddev, rdev);
2111 return 0;
2115 * This is a kernel thread which:
2117 * 1. Retries failed read operations on working mirrors.
2118 * 2. Updates the raid superblock when problems encounter.
2119 * 3. Performs writes following reads for array synchronising.
2122 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2124 int sect = 0; /* Offset from r10_bio->sector */
2125 int sectors = r10_bio->sectors;
2126 struct md_rdev*rdev;
2127 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2128 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2130 /* still own a reference to this rdev, so it cannot
2131 * have been cleared recently.
2133 rdev = conf->mirrors[d].rdev;
2135 if (test_bit(Faulty, &rdev->flags))
2136 /* drive has already been failed, just ignore any
2137 more fix_read_error() attempts */
2138 return;
2140 check_decay_read_errors(mddev, rdev);
2141 atomic_inc(&rdev->read_errors);
2142 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2143 char b[BDEVNAME_SIZE];
2144 bdevname(rdev->bdev, b);
2146 printk(KERN_NOTICE
2147 "md/raid10:%s: %s: Raid device exceeded "
2148 "read_error threshold [cur %d:max %d]\n",
2149 mdname(mddev), b,
2150 atomic_read(&rdev->read_errors), max_read_errors);
2151 printk(KERN_NOTICE
2152 "md/raid10:%s: %s: Failing raid device\n",
2153 mdname(mddev), b);
2154 md_error(mddev, conf->mirrors[d].rdev);
2155 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2156 return;
2159 while(sectors) {
2160 int s = sectors;
2161 int sl = r10_bio->read_slot;
2162 int success = 0;
2163 int start;
2165 if (s > (PAGE_SIZE>>9))
2166 s = PAGE_SIZE >> 9;
2168 rcu_read_lock();
2169 do {
2170 sector_t first_bad;
2171 int bad_sectors;
2173 d = r10_bio->devs[sl].devnum;
2174 rdev = rcu_dereference(conf->mirrors[d].rdev);
2175 if (rdev &&
2176 !test_bit(Unmerged, &rdev->flags) &&
2177 test_bit(In_sync, &rdev->flags) &&
2178 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2179 &first_bad, &bad_sectors) == 0) {
2180 atomic_inc(&rdev->nr_pending);
2181 rcu_read_unlock();
2182 success = sync_page_io(rdev,
2183 r10_bio->devs[sl].addr +
2184 sect,
2185 s<<9,
2186 conf->tmppage, READ, false);
2187 rdev_dec_pending(rdev, mddev);
2188 rcu_read_lock();
2189 if (success)
2190 break;
2192 sl++;
2193 if (sl == conf->copies)
2194 sl = 0;
2195 } while (!success && sl != r10_bio->read_slot);
2196 rcu_read_unlock();
2198 if (!success) {
2199 /* Cannot read from anywhere, just mark the block
2200 * as bad on the first device to discourage future
2201 * reads.
2203 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2204 rdev = conf->mirrors[dn].rdev;
2206 if (!rdev_set_badblocks(
2207 rdev,
2208 r10_bio->devs[r10_bio->read_slot].addr
2209 + sect,
2210 s, 0)) {
2211 md_error(mddev, rdev);
2212 r10_bio->devs[r10_bio->read_slot].bio
2213 = IO_BLOCKED;
2215 break;
2218 start = sl;
2219 /* write it back and re-read */
2220 rcu_read_lock();
2221 while (sl != r10_bio->read_slot) {
2222 char b[BDEVNAME_SIZE];
2224 if (sl==0)
2225 sl = conf->copies;
2226 sl--;
2227 d = r10_bio->devs[sl].devnum;
2228 rdev = rcu_dereference(conf->mirrors[d].rdev);
2229 if (!rdev ||
2230 test_bit(Unmerged, &rdev->flags) ||
2231 !test_bit(In_sync, &rdev->flags))
2232 continue;
2234 atomic_inc(&rdev->nr_pending);
2235 rcu_read_unlock();
2236 if (r10_sync_page_io(rdev,
2237 r10_bio->devs[sl].addr +
2238 sect,
2239 s, conf->tmppage, WRITE)
2240 == 0) {
2241 /* Well, this device is dead */
2242 printk(KERN_NOTICE
2243 "md/raid10:%s: read correction "
2244 "write failed"
2245 " (%d sectors at %llu on %s)\n",
2246 mdname(mddev), s,
2247 (unsigned long long)(
2248 sect + rdev->data_offset),
2249 bdevname(rdev->bdev, b));
2250 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2251 "drive\n",
2252 mdname(mddev),
2253 bdevname(rdev->bdev, b));
2255 rdev_dec_pending(rdev, mddev);
2256 rcu_read_lock();
2258 sl = start;
2259 while (sl != r10_bio->read_slot) {
2260 char b[BDEVNAME_SIZE];
2262 if (sl==0)
2263 sl = conf->copies;
2264 sl--;
2265 d = r10_bio->devs[sl].devnum;
2266 rdev = rcu_dereference(conf->mirrors[d].rdev);
2267 if (!rdev ||
2268 !test_bit(In_sync, &rdev->flags))
2269 continue;
2271 atomic_inc(&rdev->nr_pending);
2272 rcu_read_unlock();
2273 switch (r10_sync_page_io(rdev,
2274 r10_bio->devs[sl].addr +
2275 sect,
2276 s, conf->tmppage,
2277 READ)) {
2278 case 0:
2279 /* Well, this device is dead */
2280 printk(KERN_NOTICE
2281 "md/raid10:%s: unable to read back "
2282 "corrected sectors"
2283 " (%d sectors at %llu on %s)\n",
2284 mdname(mddev), s,
2285 (unsigned long long)(
2286 sect + rdev->data_offset),
2287 bdevname(rdev->bdev, b));
2288 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2289 "drive\n",
2290 mdname(mddev),
2291 bdevname(rdev->bdev, b));
2292 break;
2293 case 1:
2294 printk(KERN_INFO
2295 "md/raid10:%s: read error corrected"
2296 " (%d sectors at %llu on %s)\n",
2297 mdname(mddev), s,
2298 (unsigned long long)(
2299 sect + rdev->data_offset),
2300 bdevname(rdev->bdev, b));
2301 atomic_add(s, &rdev->corrected_errors);
2304 rdev_dec_pending(rdev, mddev);
2305 rcu_read_lock();
2307 rcu_read_unlock();
2309 sectors -= s;
2310 sect += s;
2314 static void bi_complete(struct bio *bio, int error)
2316 complete((struct completion *)bio->bi_private);
2319 static int submit_bio_wait(int rw, struct bio *bio)
2321 struct completion event;
2322 rw |= REQ_SYNC;
2324 init_completion(&event);
2325 bio->bi_private = &event;
2326 bio->bi_end_io = bi_complete;
2327 submit_bio(rw, bio);
2328 wait_for_completion(&event);
2330 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2333 static int narrow_write_error(struct r10bio *r10_bio, int i)
2335 struct bio *bio = r10_bio->master_bio;
2336 struct mddev *mddev = r10_bio->mddev;
2337 struct r10conf *conf = mddev->private;
2338 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2339 /* bio has the data to be written to slot 'i' where
2340 * we just recently had a write error.
2341 * We repeatedly clone the bio and trim down to one block,
2342 * then try the write. Where the write fails we record
2343 * a bad block.
2344 * It is conceivable that the bio doesn't exactly align with
2345 * blocks. We must handle this.
2347 * We currently own a reference to the rdev.
2350 int block_sectors;
2351 sector_t sector;
2352 int sectors;
2353 int sect_to_write = r10_bio->sectors;
2354 int ok = 1;
2356 if (rdev->badblocks.shift < 0)
2357 return 0;
2359 block_sectors = 1 << rdev->badblocks.shift;
2360 sector = r10_bio->sector;
2361 sectors = ((r10_bio->sector + block_sectors)
2362 & ~(sector_t)(block_sectors - 1))
2363 - sector;
2365 while (sect_to_write) {
2366 struct bio *wbio;
2367 if (sectors > sect_to_write)
2368 sectors = sect_to_write;
2369 /* Write at 'sector' for 'sectors' */
2370 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2371 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2372 wbio->bi_sector = (r10_bio->devs[i].addr+
2373 rdev->data_offset+
2374 (sector - r10_bio->sector));
2375 wbio->bi_bdev = rdev->bdev;
2376 if (submit_bio_wait(WRITE, wbio) == 0)
2377 /* Failure! */
2378 ok = rdev_set_badblocks(rdev, sector,
2379 sectors, 0)
2380 && ok;
2382 bio_put(wbio);
2383 sect_to_write -= sectors;
2384 sector += sectors;
2385 sectors = block_sectors;
2387 return ok;
2390 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2392 int slot = r10_bio->read_slot;
2393 struct bio *bio;
2394 struct r10conf *conf = mddev->private;
2395 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2396 char b[BDEVNAME_SIZE];
2397 unsigned long do_sync;
2398 int max_sectors;
2400 /* we got a read error. Maybe the drive is bad. Maybe just
2401 * the block and we can fix it.
2402 * We freeze all other IO, and try reading the block from
2403 * other devices. When we find one, we re-write
2404 * and check it that fixes the read error.
2405 * This is all done synchronously while the array is
2406 * frozen.
2408 bio = r10_bio->devs[slot].bio;
2409 bdevname(bio->bi_bdev, b);
2410 bio_put(bio);
2411 r10_bio->devs[slot].bio = NULL;
2413 if (mddev->ro == 0) {
2414 freeze_array(conf, 1);
2415 fix_read_error(conf, mddev, r10_bio);
2416 unfreeze_array(conf);
2417 } else
2418 r10_bio->devs[slot].bio = IO_BLOCKED;
2420 rdev_dec_pending(rdev, mddev);
2422 read_more:
2423 rdev = read_balance(conf, r10_bio, &max_sectors);
2424 if (rdev == NULL) {
2425 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2426 " read error for block %llu\n",
2427 mdname(mddev), b,
2428 (unsigned long long)r10_bio->sector);
2429 raid_end_bio_io(r10_bio);
2430 return;
2433 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2434 slot = r10_bio->read_slot;
2435 printk_ratelimited(
2436 KERN_ERR
2437 "md/raid10:%s: %s: redirecting "
2438 "sector %llu to another mirror\n",
2439 mdname(mddev),
2440 bdevname(rdev->bdev, b),
2441 (unsigned long long)r10_bio->sector);
2442 bio = bio_clone_mddev(r10_bio->master_bio,
2443 GFP_NOIO, mddev);
2444 md_trim_bio(bio,
2445 r10_bio->sector - bio->bi_sector,
2446 max_sectors);
2447 r10_bio->devs[slot].bio = bio;
2448 r10_bio->devs[slot].rdev = rdev;
2449 bio->bi_sector = r10_bio->devs[slot].addr
2450 + rdev->data_offset;
2451 bio->bi_bdev = rdev->bdev;
2452 bio->bi_rw = READ | do_sync;
2453 bio->bi_private = r10_bio;
2454 bio->bi_end_io = raid10_end_read_request;
2455 if (max_sectors < r10_bio->sectors) {
2456 /* Drat - have to split this up more */
2457 struct bio *mbio = r10_bio->master_bio;
2458 int sectors_handled =
2459 r10_bio->sector + max_sectors
2460 - mbio->bi_sector;
2461 r10_bio->sectors = max_sectors;
2462 spin_lock_irq(&conf->device_lock);
2463 if (mbio->bi_phys_segments == 0)
2464 mbio->bi_phys_segments = 2;
2465 else
2466 mbio->bi_phys_segments++;
2467 spin_unlock_irq(&conf->device_lock);
2468 generic_make_request(bio);
2470 r10_bio = mempool_alloc(conf->r10bio_pool,
2471 GFP_NOIO);
2472 r10_bio->master_bio = mbio;
2473 r10_bio->sectors = (mbio->bi_size >> 9)
2474 - sectors_handled;
2475 r10_bio->state = 0;
2476 set_bit(R10BIO_ReadError,
2477 &r10_bio->state);
2478 r10_bio->mddev = mddev;
2479 r10_bio->sector = mbio->bi_sector
2480 + sectors_handled;
2482 goto read_more;
2483 } else
2484 generic_make_request(bio);
2487 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2489 /* Some sort of write request has finished and it
2490 * succeeded in writing where we thought there was a
2491 * bad block. So forget the bad block.
2492 * Or possibly if failed and we need to record
2493 * a bad block.
2495 int m;
2496 struct md_rdev *rdev;
2498 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2499 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2500 for (m = 0; m < conf->copies; m++) {
2501 int dev = r10_bio->devs[m].devnum;
2502 rdev = conf->mirrors[dev].rdev;
2503 if (r10_bio->devs[m].bio == NULL)
2504 continue;
2505 if (test_bit(BIO_UPTODATE,
2506 &r10_bio->devs[m].bio->bi_flags)) {
2507 rdev_clear_badblocks(
2508 rdev,
2509 r10_bio->devs[m].addr,
2510 r10_bio->sectors);
2511 } else {
2512 if (!rdev_set_badblocks(
2513 rdev,
2514 r10_bio->devs[m].addr,
2515 r10_bio->sectors, 0))
2516 md_error(conf->mddev, rdev);
2518 rdev = conf->mirrors[dev].replacement;
2519 if (r10_bio->devs[m].repl_bio == NULL)
2520 continue;
2521 if (test_bit(BIO_UPTODATE,
2522 &r10_bio->devs[m].repl_bio->bi_flags)) {
2523 rdev_clear_badblocks(
2524 rdev,
2525 r10_bio->devs[m].addr,
2526 r10_bio->sectors);
2527 } else {
2528 if (!rdev_set_badblocks(
2529 rdev,
2530 r10_bio->devs[m].addr,
2531 r10_bio->sectors, 0))
2532 md_error(conf->mddev, rdev);
2535 put_buf(r10_bio);
2536 } else {
2537 for (m = 0; m < conf->copies; m++) {
2538 int dev = r10_bio->devs[m].devnum;
2539 struct bio *bio = r10_bio->devs[m].bio;
2540 rdev = conf->mirrors[dev].rdev;
2541 if (bio == IO_MADE_GOOD) {
2542 rdev_clear_badblocks(
2543 rdev,
2544 r10_bio->devs[m].addr,
2545 r10_bio->sectors);
2546 rdev_dec_pending(rdev, conf->mddev);
2547 } else if (bio != NULL &&
2548 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2549 if (!narrow_write_error(r10_bio, m)) {
2550 md_error(conf->mddev, rdev);
2551 set_bit(R10BIO_Degraded,
2552 &r10_bio->state);
2554 rdev_dec_pending(rdev, conf->mddev);
2556 bio = r10_bio->devs[m].repl_bio;
2557 rdev = conf->mirrors[dev].replacement;
2558 if (rdev && bio == IO_MADE_GOOD) {
2559 rdev_clear_badblocks(
2560 rdev,
2561 r10_bio->devs[m].addr,
2562 r10_bio->sectors);
2563 rdev_dec_pending(rdev, conf->mddev);
2566 if (test_bit(R10BIO_WriteError,
2567 &r10_bio->state))
2568 close_write(r10_bio);
2569 raid_end_bio_io(r10_bio);
2573 static void raid10d(struct mddev *mddev)
2575 struct r10bio *r10_bio;
2576 unsigned long flags;
2577 struct r10conf *conf = mddev->private;
2578 struct list_head *head = &conf->retry_list;
2579 struct blk_plug plug;
2581 md_check_recovery(mddev);
2583 blk_start_plug(&plug);
2584 for (;;) {
2586 flush_pending_writes(conf);
2588 spin_lock_irqsave(&conf->device_lock, flags);
2589 if (list_empty(head)) {
2590 spin_unlock_irqrestore(&conf->device_lock, flags);
2591 break;
2593 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2594 list_del(head->prev);
2595 conf->nr_queued--;
2596 spin_unlock_irqrestore(&conf->device_lock, flags);
2598 mddev = r10_bio->mddev;
2599 conf = mddev->private;
2600 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2601 test_bit(R10BIO_WriteError, &r10_bio->state))
2602 handle_write_completed(conf, r10_bio);
2603 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2604 sync_request_write(mddev, r10_bio);
2605 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2606 recovery_request_write(mddev, r10_bio);
2607 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2608 handle_read_error(mddev, r10_bio);
2609 else {
2610 /* just a partial read to be scheduled from a
2611 * separate context
2613 int slot = r10_bio->read_slot;
2614 generic_make_request(r10_bio->devs[slot].bio);
2617 cond_resched();
2618 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2619 md_check_recovery(mddev);
2621 blk_finish_plug(&plug);
2625 static int init_resync(struct r10conf *conf)
2627 int buffs;
2628 int i;
2630 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2631 BUG_ON(conf->r10buf_pool);
2632 conf->have_replacement = 0;
2633 for (i = 0; i < conf->raid_disks; i++)
2634 if (conf->mirrors[i].replacement)
2635 conf->have_replacement = 1;
2636 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2637 if (!conf->r10buf_pool)
2638 return -ENOMEM;
2639 conf->next_resync = 0;
2640 return 0;
2644 * perform a "sync" on one "block"
2646 * We need to make sure that no normal I/O request - particularly write
2647 * requests - conflict with active sync requests.
2649 * This is achieved by tracking pending requests and a 'barrier' concept
2650 * that can be installed to exclude normal IO requests.
2652 * Resync and recovery are handled very differently.
2653 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2655 * For resync, we iterate over virtual addresses, read all copies,
2656 * and update if there are differences. If only one copy is live,
2657 * skip it.
2658 * For recovery, we iterate over physical addresses, read a good
2659 * value for each non-in_sync drive, and over-write.
2661 * So, for recovery we may have several outstanding complex requests for a
2662 * given address, one for each out-of-sync device. We model this by allocating
2663 * a number of r10_bio structures, one for each out-of-sync device.
2664 * As we setup these structures, we collect all bio's together into a list
2665 * which we then process collectively to add pages, and then process again
2666 * to pass to generic_make_request.
2668 * The r10_bio structures are linked using a borrowed master_bio pointer.
2669 * This link is counted in ->remaining. When the r10_bio that points to NULL
2670 * has its remaining count decremented to 0, the whole complex operation
2671 * is complete.
2675 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2676 int *skipped, int go_faster)
2678 struct r10conf *conf = mddev->private;
2679 struct r10bio *r10_bio;
2680 struct bio *biolist = NULL, *bio;
2681 sector_t max_sector, nr_sectors;
2682 int i;
2683 int max_sync;
2684 sector_t sync_blocks;
2685 sector_t sectors_skipped = 0;
2686 int chunks_skipped = 0;
2688 if (!conf->r10buf_pool)
2689 if (init_resync(conf))
2690 return 0;
2692 skipped:
2693 max_sector = mddev->dev_sectors;
2694 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2695 max_sector = mddev->resync_max_sectors;
2696 if (sector_nr >= max_sector) {
2697 /* If we aborted, we need to abort the
2698 * sync on the 'current' bitmap chucks (there can
2699 * be several when recovering multiple devices).
2700 * as we may have started syncing it but not finished.
2701 * We can find the current address in
2702 * mddev->curr_resync, but for recovery,
2703 * we need to convert that to several
2704 * virtual addresses.
2706 if (mddev->curr_resync < max_sector) { /* aborted */
2707 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2708 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2709 &sync_blocks, 1);
2710 else for (i=0; i<conf->raid_disks; i++) {
2711 sector_t sect =
2712 raid10_find_virt(conf, mddev->curr_resync, i);
2713 bitmap_end_sync(mddev->bitmap, sect,
2714 &sync_blocks, 1);
2716 } else {
2717 /* completed sync */
2718 if ((!mddev->bitmap || conf->fullsync)
2719 && conf->have_replacement
2720 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2721 /* Completed a full sync so the replacements
2722 * are now fully recovered.
2724 for (i = 0; i < conf->raid_disks; i++)
2725 if (conf->mirrors[i].replacement)
2726 conf->mirrors[i].replacement
2727 ->recovery_offset
2728 = MaxSector;
2730 conf->fullsync = 0;
2732 bitmap_close_sync(mddev->bitmap);
2733 close_sync(conf);
2734 *skipped = 1;
2735 return sectors_skipped;
2737 if (chunks_skipped >= conf->raid_disks) {
2738 /* if there has been nothing to do on any drive,
2739 * then there is nothing to do at all..
2741 *skipped = 1;
2742 return (max_sector - sector_nr) + sectors_skipped;
2745 if (max_sector > mddev->resync_max)
2746 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2748 /* make sure whole request will fit in a chunk - if chunks
2749 * are meaningful
2751 if (conf->near_copies < conf->raid_disks &&
2752 max_sector > (sector_nr | conf->chunk_mask))
2753 max_sector = (sector_nr | conf->chunk_mask) + 1;
2755 * If there is non-resync activity waiting for us then
2756 * put in a delay to throttle resync.
2758 if (!go_faster && conf->nr_waiting)
2759 msleep_interruptible(1000);
2761 /* Again, very different code for resync and recovery.
2762 * Both must result in an r10bio with a list of bios that
2763 * have bi_end_io, bi_sector, bi_bdev set,
2764 * and bi_private set to the r10bio.
2765 * For recovery, we may actually create several r10bios
2766 * with 2 bios in each, that correspond to the bios in the main one.
2767 * In this case, the subordinate r10bios link back through a
2768 * borrowed master_bio pointer, and the counter in the master
2769 * includes a ref from each subordinate.
2771 /* First, we decide what to do and set ->bi_end_io
2772 * To end_sync_read if we want to read, and
2773 * end_sync_write if we will want to write.
2776 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2777 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2778 /* recovery... the complicated one */
2779 int j;
2780 r10_bio = NULL;
2782 for (i=0 ; i<conf->raid_disks; i++) {
2783 int still_degraded;
2784 struct r10bio *rb2;
2785 sector_t sect;
2786 int must_sync;
2787 int any_working;
2788 struct mirror_info *mirror = &conf->mirrors[i];
2790 if ((mirror->rdev == NULL ||
2791 test_bit(In_sync, &mirror->rdev->flags))
2793 (mirror->replacement == NULL ||
2794 test_bit(Faulty,
2795 &mirror->replacement->flags)))
2796 continue;
2798 still_degraded = 0;
2799 /* want to reconstruct this device */
2800 rb2 = r10_bio;
2801 sect = raid10_find_virt(conf, sector_nr, i);
2802 if (sect >= mddev->resync_max_sectors) {
2803 /* last stripe is not complete - don't
2804 * try to recover this sector.
2806 continue;
2808 /* Unless we are doing a full sync, or a replacement
2809 * we only need to recover the block if it is set in
2810 * the bitmap
2812 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2813 &sync_blocks, 1);
2814 if (sync_blocks < max_sync)
2815 max_sync = sync_blocks;
2816 if (!must_sync &&
2817 mirror->replacement == NULL &&
2818 !conf->fullsync) {
2819 /* yep, skip the sync_blocks here, but don't assume
2820 * that there will never be anything to do here
2822 chunks_skipped = -1;
2823 continue;
2826 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2827 raise_barrier(conf, rb2 != NULL);
2828 atomic_set(&r10_bio->remaining, 0);
2830 r10_bio->master_bio = (struct bio*)rb2;
2831 if (rb2)
2832 atomic_inc(&rb2->remaining);
2833 r10_bio->mddev = mddev;
2834 set_bit(R10BIO_IsRecover, &r10_bio->state);
2835 r10_bio->sector = sect;
2837 raid10_find_phys(conf, r10_bio);
2839 /* Need to check if the array will still be
2840 * degraded
2842 for (j=0; j<conf->raid_disks; j++)
2843 if (conf->mirrors[j].rdev == NULL ||
2844 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2845 still_degraded = 1;
2846 break;
2849 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2850 &sync_blocks, still_degraded);
2852 any_working = 0;
2853 for (j=0; j<conf->copies;j++) {
2854 int k;
2855 int d = r10_bio->devs[j].devnum;
2856 sector_t from_addr, to_addr;
2857 struct md_rdev *rdev;
2858 sector_t sector, first_bad;
2859 int bad_sectors;
2860 if (!conf->mirrors[d].rdev ||
2861 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2862 continue;
2863 /* This is where we read from */
2864 any_working = 1;
2865 rdev = conf->mirrors[d].rdev;
2866 sector = r10_bio->devs[j].addr;
2868 if (is_badblock(rdev, sector, max_sync,
2869 &first_bad, &bad_sectors)) {
2870 if (first_bad > sector)
2871 max_sync = first_bad - sector;
2872 else {
2873 bad_sectors -= (sector
2874 - first_bad);
2875 if (max_sync > bad_sectors)
2876 max_sync = bad_sectors;
2877 continue;
2880 bio = r10_bio->devs[0].bio;
2881 bio->bi_next = biolist;
2882 biolist = bio;
2883 bio->bi_private = r10_bio;
2884 bio->bi_end_io = end_sync_read;
2885 bio->bi_rw = READ;
2886 from_addr = r10_bio->devs[j].addr;
2887 bio->bi_sector = from_addr + rdev->data_offset;
2888 bio->bi_bdev = rdev->bdev;
2889 atomic_inc(&rdev->nr_pending);
2890 /* and we write to 'i' (if not in_sync) */
2892 for (k=0; k<conf->copies; k++)
2893 if (r10_bio->devs[k].devnum == i)
2894 break;
2895 BUG_ON(k == conf->copies);
2896 to_addr = r10_bio->devs[k].addr;
2897 r10_bio->devs[0].devnum = d;
2898 r10_bio->devs[0].addr = from_addr;
2899 r10_bio->devs[1].devnum = i;
2900 r10_bio->devs[1].addr = to_addr;
2902 rdev = mirror->rdev;
2903 if (!test_bit(In_sync, &rdev->flags)) {
2904 bio = r10_bio->devs[1].bio;
2905 bio->bi_next = biolist;
2906 biolist = bio;
2907 bio->bi_private = r10_bio;
2908 bio->bi_end_io = end_sync_write;
2909 bio->bi_rw = WRITE;
2910 bio->bi_sector = to_addr
2911 + rdev->data_offset;
2912 bio->bi_bdev = rdev->bdev;
2913 atomic_inc(&r10_bio->remaining);
2914 } else
2915 r10_bio->devs[1].bio->bi_end_io = NULL;
2917 /* and maybe write to replacement */
2918 bio = r10_bio->devs[1].repl_bio;
2919 if (bio)
2920 bio->bi_end_io = NULL;
2921 rdev = mirror->replacement;
2922 /* Note: if rdev != NULL, then bio
2923 * cannot be NULL as r10buf_pool_alloc will
2924 * have allocated it.
2925 * So the second test here is pointless.
2926 * But it keeps semantic-checkers happy, and
2927 * this comment keeps human reviewers
2928 * happy.
2930 if (rdev == NULL || bio == NULL ||
2931 test_bit(Faulty, &rdev->flags))
2932 break;
2933 bio->bi_next = biolist;
2934 biolist = bio;
2935 bio->bi_private = r10_bio;
2936 bio->bi_end_io = end_sync_write;
2937 bio->bi_rw = WRITE;
2938 bio->bi_sector = to_addr + rdev->data_offset;
2939 bio->bi_bdev = rdev->bdev;
2940 atomic_inc(&r10_bio->remaining);
2941 break;
2943 if (j == conf->copies) {
2944 /* Cannot recover, so abort the recovery or
2945 * record a bad block */
2946 put_buf(r10_bio);
2947 if (rb2)
2948 atomic_dec(&rb2->remaining);
2949 r10_bio = rb2;
2950 if (any_working) {
2951 /* problem is that there are bad blocks
2952 * on other device(s)
2954 int k;
2955 for (k = 0; k < conf->copies; k++)
2956 if (r10_bio->devs[k].devnum == i)
2957 break;
2958 if (!test_bit(In_sync,
2959 &mirror->rdev->flags)
2960 && !rdev_set_badblocks(
2961 mirror->rdev,
2962 r10_bio->devs[k].addr,
2963 max_sync, 0))
2964 any_working = 0;
2965 if (mirror->replacement &&
2966 !rdev_set_badblocks(
2967 mirror->replacement,
2968 r10_bio->devs[k].addr,
2969 max_sync, 0))
2970 any_working = 0;
2972 if (!any_working) {
2973 if (!test_and_set_bit(MD_RECOVERY_INTR,
2974 &mddev->recovery))
2975 printk(KERN_INFO "md/raid10:%s: insufficient "
2976 "working devices for recovery.\n",
2977 mdname(mddev));
2978 mirror->recovery_disabled
2979 = mddev->recovery_disabled;
2981 break;
2984 if (biolist == NULL) {
2985 while (r10_bio) {
2986 struct r10bio *rb2 = r10_bio;
2987 r10_bio = (struct r10bio*) rb2->master_bio;
2988 rb2->master_bio = NULL;
2989 put_buf(rb2);
2991 goto giveup;
2993 } else {
2994 /* resync. Schedule a read for every block at this virt offset */
2995 int count = 0;
2997 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2999 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3000 &sync_blocks, mddev->degraded) &&
3001 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3002 &mddev->recovery)) {
3003 /* We can skip this block */
3004 *skipped = 1;
3005 return sync_blocks + sectors_skipped;
3007 if (sync_blocks < max_sync)
3008 max_sync = sync_blocks;
3009 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3011 r10_bio->mddev = mddev;
3012 atomic_set(&r10_bio->remaining, 0);
3013 raise_barrier(conf, 0);
3014 conf->next_resync = sector_nr;
3016 r10_bio->master_bio = NULL;
3017 r10_bio->sector = sector_nr;
3018 set_bit(R10BIO_IsSync, &r10_bio->state);
3019 raid10_find_phys(conf, r10_bio);
3020 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
3022 for (i=0; i<conf->copies; i++) {
3023 int d = r10_bio->devs[i].devnum;
3024 sector_t first_bad, sector;
3025 int bad_sectors;
3027 if (r10_bio->devs[i].repl_bio)
3028 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3030 bio = r10_bio->devs[i].bio;
3031 bio->bi_end_io = NULL;
3032 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3033 if (conf->mirrors[d].rdev == NULL ||
3034 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3035 continue;
3036 sector = r10_bio->devs[i].addr;
3037 if (is_badblock(conf->mirrors[d].rdev,
3038 sector, max_sync,
3039 &first_bad, &bad_sectors)) {
3040 if (first_bad > sector)
3041 max_sync = first_bad - sector;
3042 else {
3043 bad_sectors -= (sector - first_bad);
3044 if (max_sync > bad_sectors)
3045 max_sync = bad_sectors;
3046 continue;
3049 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3050 atomic_inc(&r10_bio->remaining);
3051 bio->bi_next = biolist;
3052 biolist = bio;
3053 bio->bi_private = r10_bio;
3054 bio->bi_end_io = end_sync_read;
3055 bio->bi_rw = READ;
3056 bio->bi_sector = sector +
3057 conf->mirrors[d].rdev->data_offset;
3058 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3059 count++;
3061 if (conf->mirrors[d].replacement == NULL ||
3062 test_bit(Faulty,
3063 &conf->mirrors[d].replacement->flags))
3064 continue;
3066 /* Need to set up for writing to the replacement */
3067 bio = r10_bio->devs[i].repl_bio;
3068 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3070 sector = r10_bio->devs[i].addr;
3071 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3072 bio->bi_next = biolist;
3073 biolist = bio;
3074 bio->bi_private = r10_bio;
3075 bio->bi_end_io = end_sync_write;
3076 bio->bi_rw = WRITE;
3077 bio->bi_sector = sector +
3078 conf->mirrors[d].replacement->data_offset;
3079 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3080 count++;
3083 if (count < 2) {
3084 for (i=0; i<conf->copies; i++) {
3085 int d = r10_bio->devs[i].devnum;
3086 if (r10_bio->devs[i].bio->bi_end_io)
3087 rdev_dec_pending(conf->mirrors[d].rdev,
3088 mddev);
3089 if (r10_bio->devs[i].repl_bio &&
3090 r10_bio->devs[i].repl_bio->bi_end_io)
3091 rdev_dec_pending(
3092 conf->mirrors[d].replacement,
3093 mddev);
3095 put_buf(r10_bio);
3096 biolist = NULL;
3097 goto giveup;
3101 for (bio = biolist; bio ; bio=bio->bi_next) {
3103 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3104 if (bio->bi_end_io)
3105 bio->bi_flags |= 1 << BIO_UPTODATE;
3106 bio->bi_vcnt = 0;
3107 bio->bi_idx = 0;
3108 bio->bi_phys_segments = 0;
3109 bio->bi_size = 0;
3112 nr_sectors = 0;
3113 if (sector_nr + max_sync < max_sector)
3114 max_sector = sector_nr + max_sync;
3115 do {
3116 struct page *page;
3117 int len = PAGE_SIZE;
3118 if (sector_nr + (len>>9) > max_sector)
3119 len = (max_sector - sector_nr) << 9;
3120 if (len == 0)
3121 break;
3122 for (bio= biolist ; bio ; bio=bio->bi_next) {
3123 struct bio *bio2;
3124 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3125 if (bio_add_page(bio, page, len, 0))
3126 continue;
3128 /* stop here */
3129 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3130 for (bio2 = biolist;
3131 bio2 && bio2 != bio;
3132 bio2 = bio2->bi_next) {
3133 /* remove last page from this bio */
3134 bio2->bi_vcnt--;
3135 bio2->bi_size -= len;
3136 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3138 goto bio_full;
3140 nr_sectors += len>>9;
3141 sector_nr += len>>9;
3142 } while (biolist->bi_vcnt < RESYNC_PAGES);
3143 bio_full:
3144 r10_bio->sectors = nr_sectors;
3146 while (biolist) {
3147 bio = biolist;
3148 biolist = biolist->bi_next;
3150 bio->bi_next = NULL;
3151 r10_bio = bio->bi_private;
3152 r10_bio->sectors = nr_sectors;
3154 if (bio->bi_end_io == end_sync_read) {
3155 md_sync_acct(bio->bi_bdev, nr_sectors);
3156 generic_make_request(bio);
3160 if (sectors_skipped)
3161 /* pretend they weren't skipped, it makes
3162 * no important difference in this case
3164 md_done_sync(mddev, sectors_skipped, 1);
3166 return sectors_skipped + nr_sectors;
3167 giveup:
3168 /* There is nowhere to write, so all non-sync
3169 * drives must be failed or in resync, all drives
3170 * have a bad block, so try the next chunk...
3172 if (sector_nr + max_sync < max_sector)
3173 max_sector = sector_nr + max_sync;
3175 sectors_skipped += (max_sector - sector_nr);
3176 chunks_skipped ++;
3177 sector_nr = max_sector;
3178 goto skipped;
3181 static sector_t
3182 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3184 sector_t size;
3185 struct r10conf *conf = mddev->private;
3187 if (!raid_disks)
3188 raid_disks = conf->raid_disks;
3189 if (!sectors)
3190 sectors = conf->dev_sectors;
3192 size = sectors >> conf->chunk_shift;
3193 sector_div(size, conf->far_copies);
3194 size = size * raid_disks;
3195 sector_div(size, conf->near_copies);
3197 return size << conf->chunk_shift;
3200 static void calc_sectors(struct r10conf *conf, sector_t size)
3202 /* Calculate the number of sectors-per-device that will
3203 * actually be used, and set conf->dev_sectors and
3204 * conf->stride
3207 size = size >> conf->chunk_shift;
3208 sector_div(size, conf->far_copies);
3209 size = size * conf->raid_disks;
3210 sector_div(size, conf->near_copies);
3211 /* 'size' is now the number of chunks in the array */
3212 /* calculate "used chunks per device" */
3213 size = size * conf->copies;
3215 /* We need to round up when dividing by raid_disks to
3216 * get the stride size.
3218 size = DIV_ROUND_UP_SECTOR_T(size, conf->raid_disks);
3220 conf->dev_sectors = size << conf->chunk_shift;
3222 if (conf->far_offset)
3223 conf->stride = 1 << conf->chunk_shift;
3224 else {
3225 sector_div(size, conf->far_copies);
3226 conf->stride = size << conf->chunk_shift;
3230 static struct r10conf *setup_conf(struct mddev *mddev)
3232 struct r10conf *conf = NULL;
3233 int nc, fc, fo;
3234 int err = -EINVAL;
3236 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3237 !is_power_of_2(mddev->new_chunk_sectors)) {
3238 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3239 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3240 mdname(mddev), PAGE_SIZE);
3241 goto out;
3244 nc = mddev->new_layout & 255;
3245 fc = (mddev->new_layout >> 8) & 255;
3246 fo = mddev->new_layout & (1<<16);
3248 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3249 (mddev->new_layout >> 17)) {
3250 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3251 mdname(mddev), mddev->new_layout);
3252 goto out;
3255 err = -ENOMEM;
3256 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3257 if (!conf)
3258 goto out;
3260 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3261 GFP_KERNEL);
3262 if (!conf->mirrors)
3263 goto out;
3265 conf->tmppage = alloc_page(GFP_KERNEL);
3266 if (!conf->tmppage)
3267 goto out;
3270 conf->raid_disks = mddev->raid_disks;
3271 conf->near_copies = nc;
3272 conf->far_copies = fc;
3273 conf->copies = nc*fc;
3274 conf->far_offset = fo;
3275 conf->chunk_mask = mddev->new_chunk_sectors - 1;
3276 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3278 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3279 r10bio_pool_free, conf);
3280 if (!conf->r10bio_pool)
3281 goto out;
3283 calc_sectors(conf, mddev->dev_sectors);
3285 spin_lock_init(&conf->device_lock);
3286 INIT_LIST_HEAD(&conf->retry_list);
3288 spin_lock_init(&conf->resync_lock);
3289 init_waitqueue_head(&conf->wait_barrier);
3291 conf->thread = md_register_thread(raid10d, mddev, NULL);
3292 if (!conf->thread)
3293 goto out;
3295 conf->mddev = mddev;
3296 return conf;
3298 out:
3299 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3300 mdname(mddev));
3301 if (conf) {
3302 if (conf->r10bio_pool)
3303 mempool_destroy(conf->r10bio_pool);
3304 kfree(conf->mirrors);
3305 safe_put_page(conf->tmppage);
3306 kfree(conf);
3308 return ERR_PTR(err);
3311 static int run(struct mddev *mddev)
3313 struct r10conf *conf;
3314 int i, disk_idx, chunk_size;
3315 struct mirror_info *disk;
3316 struct md_rdev *rdev;
3317 sector_t size;
3320 * copy the already verified devices into our private RAID10
3321 * bookkeeping area. [whatever we allocate in run(),
3322 * should be freed in stop()]
3325 if (mddev->private == NULL) {
3326 conf = setup_conf(mddev);
3327 if (IS_ERR(conf))
3328 return PTR_ERR(conf);
3329 mddev->private = conf;
3331 conf = mddev->private;
3332 if (!conf)
3333 goto out;
3335 mddev->thread = conf->thread;
3336 conf->thread = NULL;
3338 chunk_size = mddev->chunk_sectors << 9;
3339 blk_queue_io_min(mddev->queue, chunk_size);
3340 if (conf->raid_disks % conf->near_copies)
3341 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3342 else
3343 blk_queue_io_opt(mddev->queue, chunk_size *
3344 (conf->raid_disks / conf->near_copies));
3346 rdev_for_each(rdev, mddev) {
3347 struct request_queue *q;
3348 disk_idx = rdev->raid_disk;
3349 if (disk_idx >= conf->raid_disks
3350 || disk_idx < 0)
3351 continue;
3352 disk = conf->mirrors + disk_idx;
3354 if (test_bit(Replacement, &rdev->flags)) {
3355 if (disk->replacement)
3356 goto out_free_conf;
3357 disk->replacement = rdev;
3358 } else {
3359 if (disk->rdev)
3360 goto out_free_conf;
3361 disk->rdev = rdev;
3363 q = bdev_get_queue(rdev->bdev);
3364 if (q->merge_bvec_fn)
3365 mddev->merge_check_needed = 1;
3367 disk_stack_limits(mddev->gendisk, rdev->bdev,
3368 rdev->data_offset << 9);
3370 disk->head_position = 0;
3372 /* need to check that every block has at least one working mirror */
3373 if (!enough(conf, -1)) {
3374 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3375 mdname(mddev));
3376 goto out_free_conf;
3379 mddev->degraded = 0;
3380 for (i = 0; i < conf->raid_disks; i++) {
3382 disk = conf->mirrors + i;
3384 if (!disk->rdev && disk->replacement) {
3385 /* The replacement is all we have - use it */
3386 disk->rdev = disk->replacement;
3387 disk->replacement = NULL;
3388 clear_bit(Replacement, &disk->rdev->flags);
3391 if (!disk->rdev ||
3392 !test_bit(In_sync, &disk->rdev->flags)) {
3393 disk->head_position = 0;
3394 mddev->degraded++;
3395 if (disk->rdev)
3396 conf->fullsync = 1;
3398 disk->recovery_disabled = mddev->recovery_disabled - 1;
3401 if (mddev->recovery_cp != MaxSector)
3402 printk(KERN_NOTICE "md/raid10:%s: not clean"
3403 " -- starting background reconstruction\n",
3404 mdname(mddev));
3405 printk(KERN_INFO
3406 "md/raid10:%s: active with %d out of %d devices\n",
3407 mdname(mddev), conf->raid_disks - mddev->degraded,
3408 conf->raid_disks);
3410 * Ok, everything is just fine now
3412 mddev->dev_sectors = conf->dev_sectors;
3413 size = raid10_size(mddev, 0, 0);
3414 md_set_array_sectors(mddev, size);
3415 mddev->resync_max_sectors = size;
3417 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3418 mddev->queue->backing_dev_info.congested_data = mddev;
3420 /* Calculate max read-ahead size.
3421 * We need to readahead at least twice a whole stripe....
3422 * maybe...
3425 int stripe = conf->raid_disks *
3426 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3427 stripe /= conf->near_copies;
3428 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3429 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3432 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3434 if (md_integrity_register(mddev))
3435 goto out_free_conf;
3437 return 0;
3439 out_free_conf:
3440 md_unregister_thread(&mddev->thread);
3441 if (conf->r10bio_pool)
3442 mempool_destroy(conf->r10bio_pool);
3443 safe_put_page(conf->tmppage);
3444 kfree(conf->mirrors);
3445 kfree(conf);
3446 mddev->private = NULL;
3447 out:
3448 return -EIO;
3451 static int stop(struct mddev *mddev)
3453 struct r10conf *conf = mddev->private;
3455 raise_barrier(conf, 0);
3456 lower_barrier(conf);
3458 md_unregister_thread(&mddev->thread);
3459 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3460 if (conf->r10bio_pool)
3461 mempool_destroy(conf->r10bio_pool);
3462 kfree(conf->mirrors);
3463 kfree(conf);
3464 mddev->private = NULL;
3465 return 0;
3468 static void raid10_quiesce(struct mddev *mddev, int state)
3470 struct r10conf *conf = mddev->private;
3472 switch(state) {
3473 case 1:
3474 raise_barrier(conf, 0);
3475 break;
3476 case 0:
3477 lower_barrier(conf);
3478 break;
3482 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3484 /* Resize of 'far' arrays is not supported.
3485 * For 'near' and 'offset' arrays we can set the
3486 * number of sectors used to be an appropriate multiple
3487 * of the chunk size.
3488 * For 'offset', this is far_copies*chunksize.
3489 * For 'near' the multiplier is the LCM of
3490 * near_copies and raid_disks.
3491 * So if far_copies > 1 && !far_offset, fail.
3492 * Else find LCM(raid_disks, near_copy)*far_copies and
3493 * multiply by chunk_size. Then round to this number.
3494 * This is mostly done by raid10_size()
3496 struct r10conf *conf = mddev->private;
3497 sector_t oldsize, size;
3499 if (conf->far_copies > 1 && !conf->far_offset)
3500 return -EINVAL;
3502 oldsize = raid10_size(mddev, 0, 0);
3503 size = raid10_size(mddev, sectors, 0);
3504 md_set_array_sectors(mddev, size);
3505 if (mddev->array_sectors > size)
3506 return -EINVAL;
3507 set_capacity(mddev->gendisk, mddev->array_sectors);
3508 revalidate_disk(mddev->gendisk);
3509 if (sectors > mddev->dev_sectors &&
3510 mddev->recovery_cp > oldsize) {
3511 mddev->recovery_cp = oldsize;
3512 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3514 calc_sectors(conf, sectors);
3515 mddev->dev_sectors = conf->dev_sectors;
3516 mddev->resync_max_sectors = size;
3517 return 0;
3520 static void *raid10_takeover_raid0(struct mddev *mddev)
3522 struct md_rdev *rdev;
3523 struct r10conf *conf;
3525 if (mddev->degraded > 0) {
3526 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3527 mdname(mddev));
3528 return ERR_PTR(-EINVAL);
3531 /* Set new parameters */
3532 mddev->new_level = 10;
3533 /* new layout: far_copies = 1, near_copies = 2 */
3534 mddev->new_layout = (1<<8) + 2;
3535 mddev->new_chunk_sectors = mddev->chunk_sectors;
3536 mddev->delta_disks = mddev->raid_disks;
3537 mddev->raid_disks *= 2;
3538 /* make sure it will be not marked as dirty */
3539 mddev->recovery_cp = MaxSector;
3541 conf = setup_conf(mddev);
3542 if (!IS_ERR(conf)) {
3543 rdev_for_each(rdev, mddev)
3544 if (rdev->raid_disk >= 0)
3545 rdev->new_raid_disk = rdev->raid_disk * 2;
3546 conf->barrier = 1;
3549 return conf;
3552 static void *raid10_takeover(struct mddev *mddev)
3554 struct r0conf *raid0_conf;
3556 /* raid10 can take over:
3557 * raid0 - providing it has only two drives
3559 if (mddev->level == 0) {
3560 /* for raid0 takeover only one zone is supported */
3561 raid0_conf = mddev->private;
3562 if (raid0_conf->nr_strip_zones > 1) {
3563 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3564 " with more than one zone.\n",
3565 mdname(mddev));
3566 return ERR_PTR(-EINVAL);
3568 return raid10_takeover_raid0(mddev);
3570 return ERR_PTR(-EINVAL);
3573 static struct md_personality raid10_personality =
3575 .name = "raid10",
3576 .level = 10,
3577 .owner = THIS_MODULE,
3578 .make_request = make_request,
3579 .run = run,
3580 .stop = stop,
3581 .status = status,
3582 .error_handler = error,
3583 .hot_add_disk = raid10_add_disk,
3584 .hot_remove_disk= raid10_remove_disk,
3585 .spare_active = raid10_spare_active,
3586 .sync_request = sync_request,
3587 .quiesce = raid10_quiesce,
3588 .size = raid10_size,
3589 .resize = raid10_resize,
3590 .takeover = raid10_takeover,
3593 static int __init raid_init(void)
3595 return register_md_personality(&raid10_personality);
3598 static void raid_exit(void)
3600 unregister_md_personality(&raid10_personality);
3603 module_init(raid_init);
3604 module_exit(raid_exit);
3605 MODULE_LICENSE("GPL");
3606 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3607 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3608 MODULE_ALIAS("md-raid10");
3609 MODULE_ALIAS("md-level-10");
3611 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);