powerpc/windfarm: Fix XServe G5 fan control Makefile issue
[linux/fpc-iii.git] / block / blk-mq.c
blobcdc629cf075b74f27f7801565ec3d90f3e299ce0
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
18 #include <trace/events/block.h>
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
30 DEFINE_PER_CPU(struct llist_head, ipi_lists);
32 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
33 unsigned int cpu)
35 return per_cpu_ptr(q->queue_ctx, cpu);
39 * This assumes per-cpu software queueing queues. They could be per-node
40 * as well, for instance. For now this is hardcoded as-is. Note that we don't
41 * care about preemption, since we know the ctx's are persistent. This does
42 * mean that we can't rely on ctx always matching the currently running CPU.
44 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
46 return __blk_mq_get_ctx(q, get_cpu());
49 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
51 put_cpu();
55 * Check if any of the ctx's have pending work in this hardware queue
57 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
59 unsigned int i;
61 for (i = 0; i < hctx->nr_ctx_map; i++)
62 if (hctx->ctx_map[i])
63 return true;
65 return false;
69 * Mark this ctx as having pending work in this hardware queue
71 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
74 if (!test_bit(ctx->index_hw, hctx->ctx_map))
75 set_bit(ctx->index_hw, hctx->ctx_map);
78 static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
79 bool reserved)
81 struct request *rq;
82 unsigned int tag;
84 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
85 if (tag != BLK_MQ_TAG_FAIL) {
86 rq = hctx->rqs[tag];
87 rq->tag = tag;
89 return rq;
92 return NULL;
95 static int blk_mq_queue_enter(struct request_queue *q)
97 int ret;
99 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
100 smp_wmb();
101 /* we have problems to freeze the queue if it's initializing */
102 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
103 return 0;
105 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
107 spin_lock_irq(q->queue_lock);
108 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
109 !blk_queue_bypass(q), *q->queue_lock);
110 /* inc usage with lock hold to avoid freeze_queue runs here */
111 if (!ret)
112 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
113 spin_unlock_irq(q->queue_lock);
115 return ret;
118 static void blk_mq_queue_exit(struct request_queue *q)
120 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
124 * Guarantee no request is in use, so we can change any data structure of
125 * the queue afterward.
127 static void blk_mq_freeze_queue(struct request_queue *q)
129 bool drain;
131 spin_lock_irq(q->queue_lock);
132 drain = !q->bypass_depth++;
133 queue_flag_set(QUEUE_FLAG_BYPASS, q);
134 spin_unlock_irq(q->queue_lock);
136 if (!drain)
137 return;
139 while (true) {
140 s64 count;
142 spin_lock_irq(q->queue_lock);
143 count = percpu_counter_sum(&q->mq_usage_counter);
144 spin_unlock_irq(q->queue_lock);
146 if (count == 0)
147 break;
148 blk_mq_run_queues(q, false);
149 msleep(10);
153 static void blk_mq_unfreeze_queue(struct request_queue *q)
155 bool wake = false;
157 spin_lock_irq(q->queue_lock);
158 if (!--q->bypass_depth) {
159 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
160 wake = true;
162 WARN_ON_ONCE(q->bypass_depth < 0);
163 spin_unlock_irq(q->queue_lock);
164 if (wake)
165 wake_up_all(&q->mq_freeze_wq);
168 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
170 return blk_mq_has_free_tags(hctx->tags);
172 EXPORT_SYMBOL(blk_mq_can_queue);
174 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
175 struct request *rq, unsigned int rw_flags)
177 if (blk_queue_io_stat(q))
178 rw_flags |= REQ_IO_STAT;
180 rq->mq_ctx = ctx;
181 rq->cmd_flags = rw_flags;
182 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
185 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
186 gfp_t gfp, bool reserved)
188 return blk_mq_alloc_rq(hctx, gfp, reserved);
191 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
192 int rw, gfp_t gfp,
193 bool reserved)
195 struct request *rq;
197 do {
198 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
199 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
201 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
202 if (rq) {
203 blk_mq_rq_ctx_init(q, ctx, rq, rw);
204 break;
205 } else if (!(gfp & __GFP_WAIT))
206 break;
208 blk_mq_put_ctx(ctx);
209 __blk_mq_run_hw_queue(hctx);
210 blk_mq_wait_for_tags(hctx->tags);
211 } while (1);
213 return rq;
216 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
217 gfp_t gfp, bool reserved)
219 struct request *rq;
221 if (blk_mq_queue_enter(q))
222 return NULL;
224 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
225 blk_mq_put_ctx(rq->mq_ctx);
226 return rq;
229 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
230 gfp_t gfp)
232 struct request *rq;
234 if (blk_mq_queue_enter(q))
235 return NULL;
237 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
238 blk_mq_put_ctx(rq->mq_ctx);
239 return rq;
241 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
244 * Re-init and set pdu, if we have it
246 static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
248 blk_rq_init(hctx->queue, rq);
250 if (hctx->cmd_size)
251 rq->special = blk_mq_rq_to_pdu(rq);
254 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
255 struct blk_mq_ctx *ctx, struct request *rq)
257 const int tag = rq->tag;
258 struct request_queue *q = rq->q;
260 blk_mq_rq_init(hctx, rq);
261 blk_mq_put_tag(hctx->tags, tag);
263 blk_mq_queue_exit(q);
266 void blk_mq_free_request(struct request *rq)
268 struct blk_mq_ctx *ctx = rq->mq_ctx;
269 struct blk_mq_hw_ctx *hctx;
270 struct request_queue *q = rq->q;
272 ctx->rq_completed[rq_is_sync(rq)]++;
274 hctx = q->mq_ops->map_queue(q, ctx->cpu);
275 __blk_mq_free_request(hctx, ctx, rq);
278 static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
280 if (error)
281 clear_bit(BIO_UPTODATE, &bio->bi_flags);
282 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
283 error = -EIO;
285 if (unlikely(rq->cmd_flags & REQ_QUIET))
286 set_bit(BIO_QUIET, &bio->bi_flags);
288 /* don't actually finish bio if it's part of flush sequence */
289 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
290 bio_endio(bio, error);
293 void blk_mq_complete_request(struct request *rq, int error)
295 struct bio *bio = rq->bio;
296 unsigned int bytes = 0;
298 trace_block_rq_complete(rq->q, rq);
300 while (bio) {
301 struct bio *next = bio->bi_next;
303 bio->bi_next = NULL;
304 bytes += bio->bi_size;
305 blk_mq_bio_endio(rq, bio, error);
306 bio = next;
309 blk_account_io_completion(rq, bytes);
311 if (rq->end_io)
312 rq->end_io(rq, error);
313 else
314 blk_mq_free_request(rq);
316 blk_account_io_done(rq);
319 void __blk_mq_end_io(struct request *rq, int error)
321 if (!blk_mark_rq_complete(rq))
322 blk_mq_complete_request(rq, error);
325 #if defined(CONFIG_SMP)
328 * Called with interrupts disabled.
330 static void ipi_end_io(void *data)
332 struct llist_head *list = &per_cpu(ipi_lists, smp_processor_id());
333 struct llist_node *entry, *next;
334 struct request *rq;
336 entry = llist_del_all(list);
338 while (entry) {
339 next = entry->next;
340 rq = llist_entry(entry, struct request, ll_list);
341 __blk_mq_end_io(rq, rq->errors);
342 entry = next;
346 static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
347 struct request *rq, const int error)
349 struct call_single_data *data = &rq->csd;
351 rq->errors = error;
352 rq->ll_list.next = NULL;
355 * If the list is non-empty, an existing IPI must already
356 * be "in flight". If that is the case, we need not schedule
357 * a new one.
359 if (llist_add(&rq->ll_list, &per_cpu(ipi_lists, ctx->cpu))) {
360 data->func = ipi_end_io;
361 data->flags = 0;
362 __smp_call_function_single(ctx->cpu, data, 0);
365 return true;
367 #else /* CONFIG_SMP */
368 static int ipi_remote_cpu(struct blk_mq_ctx *ctx, const int cpu,
369 struct request *rq, const int error)
371 return false;
373 #endif
376 * End IO on this request on a multiqueue enabled driver. We'll either do
377 * it directly inline, or punt to a local IPI handler on the matching
378 * remote CPU.
380 void blk_mq_end_io(struct request *rq, int error)
382 struct blk_mq_ctx *ctx = rq->mq_ctx;
383 int cpu;
385 if (!ctx->ipi_redirect)
386 return __blk_mq_end_io(rq, error);
388 cpu = get_cpu();
390 if (cpu == ctx->cpu || !cpu_online(ctx->cpu) ||
391 !ipi_remote_cpu(ctx, cpu, rq, error))
392 __blk_mq_end_io(rq, error);
394 put_cpu();
396 EXPORT_SYMBOL(blk_mq_end_io);
398 static void blk_mq_start_request(struct request *rq)
400 struct request_queue *q = rq->q;
402 trace_block_rq_issue(q, rq);
405 * Just mark start time and set the started bit. Due to memory
406 * ordering, we know we'll see the correct deadline as long as
407 * REQ_ATOMIC_STARTED is seen.
409 rq->deadline = jiffies + q->rq_timeout;
410 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 static void blk_mq_requeue_request(struct request *rq)
415 struct request_queue *q = rq->q;
417 trace_block_rq_requeue(q, rq);
418 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
421 struct blk_mq_timeout_data {
422 struct blk_mq_hw_ctx *hctx;
423 unsigned long *next;
424 unsigned int *next_set;
427 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
429 struct blk_mq_timeout_data *data = __data;
430 struct blk_mq_hw_ctx *hctx = data->hctx;
431 unsigned int tag;
433 /* It may not be in flight yet (this is where
434 * the REQ_ATOMIC_STARTED flag comes in). The requests are
435 * statically allocated, so we know it's always safe to access the
436 * memory associated with a bit offset into ->rqs[].
438 tag = 0;
439 do {
440 struct request *rq;
442 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
443 if (tag >= hctx->queue_depth)
444 break;
446 rq = hctx->rqs[tag++];
448 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
449 continue;
451 blk_rq_check_expired(rq, data->next, data->next_set);
452 } while (1);
455 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
456 unsigned long *next,
457 unsigned int *next_set)
459 struct blk_mq_timeout_data data = {
460 .hctx = hctx,
461 .next = next,
462 .next_set = next_set,
466 * Ask the tagging code to iterate busy requests, so we can
467 * check them for timeout.
469 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
472 static void blk_mq_rq_timer(unsigned long data)
474 struct request_queue *q = (struct request_queue *) data;
475 struct blk_mq_hw_ctx *hctx;
476 unsigned long next = 0;
477 int i, next_set = 0;
479 queue_for_each_hw_ctx(q, hctx, i)
480 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
482 if (next_set)
483 mod_timer(&q->timeout, round_jiffies_up(next));
487 * Reverse check our software queue for entries that we could potentially
488 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
489 * too much time checking for merges.
491 static bool blk_mq_attempt_merge(struct request_queue *q,
492 struct blk_mq_ctx *ctx, struct bio *bio)
494 struct request *rq;
495 int checked = 8;
497 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
498 int el_ret;
500 if (!checked--)
501 break;
503 if (!blk_rq_merge_ok(rq, bio))
504 continue;
506 el_ret = blk_try_merge(rq, bio);
507 if (el_ret == ELEVATOR_BACK_MERGE) {
508 if (bio_attempt_back_merge(q, rq, bio)) {
509 ctx->rq_merged++;
510 return true;
512 break;
513 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
514 if (bio_attempt_front_merge(q, rq, bio)) {
515 ctx->rq_merged++;
516 return true;
518 break;
522 return false;
525 void blk_mq_add_timer(struct request *rq)
527 __blk_add_timer(rq, NULL);
531 * Run this hardware queue, pulling any software queues mapped to it in.
532 * Note that this function currently has various problems around ordering
533 * of IO. In particular, we'd like FIFO behaviour on handling existing
534 * items on the hctx->dispatch list. Ignore that for now.
536 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
538 struct request_queue *q = hctx->queue;
539 struct blk_mq_ctx *ctx;
540 struct request *rq;
541 LIST_HEAD(rq_list);
542 int bit, queued;
544 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
545 return;
547 hctx->run++;
550 * Touch any software queue that has pending entries.
552 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
553 clear_bit(bit, hctx->ctx_map);
554 ctx = hctx->ctxs[bit];
555 BUG_ON(bit != ctx->index_hw);
557 spin_lock(&ctx->lock);
558 list_splice_tail_init(&ctx->rq_list, &rq_list);
559 spin_unlock(&ctx->lock);
563 * If we have previous entries on our dispatch list, grab them
564 * and stuff them at the front for more fair dispatch.
566 if (!list_empty_careful(&hctx->dispatch)) {
567 spin_lock(&hctx->lock);
568 if (!list_empty(&hctx->dispatch))
569 list_splice_init(&hctx->dispatch, &rq_list);
570 spin_unlock(&hctx->lock);
574 * Delete and return all entries from our dispatch list
576 queued = 0;
579 * Now process all the entries, sending them to the driver.
581 while (!list_empty(&rq_list)) {
582 int ret;
584 rq = list_first_entry(&rq_list, struct request, queuelist);
585 list_del_init(&rq->queuelist);
586 blk_mq_start_request(rq);
589 * Last request in the series. Flag it as such, this
590 * enables drivers to know when IO should be kicked off,
591 * if they don't do it on a per-request basis.
593 * Note: the flag isn't the only condition drivers
594 * should do kick off. If drive is busy, the last
595 * request might not have the bit set.
597 if (list_empty(&rq_list))
598 rq->cmd_flags |= REQ_END;
600 ret = q->mq_ops->queue_rq(hctx, rq);
601 switch (ret) {
602 case BLK_MQ_RQ_QUEUE_OK:
603 queued++;
604 continue;
605 case BLK_MQ_RQ_QUEUE_BUSY:
607 * FIXME: we should have a mechanism to stop the queue
608 * like blk_stop_queue, otherwise we will waste cpu
609 * time
611 list_add(&rq->queuelist, &rq_list);
612 blk_mq_requeue_request(rq);
613 break;
614 default:
615 pr_err("blk-mq: bad return on queue: %d\n", ret);
616 rq->errors = -EIO;
617 case BLK_MQ_RQ_QUEUE_ERROR:
618 blk_mq_end_io(rq, rq->errors);
619 break;
622 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
623 break;
626 if (!queued)
627 hctx->dispatched[0]++;
628 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
629 hctx->dispatched[ilog2(queued) + 1]++;
632 * Any items that need requeuing? Stuff them into hctx->dispatch,
633 * that is where we will continue on next queue run.
635 if (!list_empty(&rq_list)) {
636 spin_lock(&hctx->lock);
637 list_splice(&rq_list, &hctx->dispatch);
638 spin_unlock(&hctx->lock);
642 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
644 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
645 return;
647 if (!async)
648 __blk_mq_run_hw_queue(hctx);
649 else {
650 struct request_queue *q = hctx->queue;
652 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
656 void blk_mq_run_queues(struct request_queue *q, bool async)
658 struct blk_mq_hw_ctx *hctx;
659 int i;
661 queue_for_each_hw_ctx(q, hctx, i) {
662 if ((!blk_mq_hctx_has_pending(hctx) &&
663 list_empty_careful(&hctx->dispatch)) ||
664 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
665 continue;
667 blk_mq_run_hw_queue(hctx, async);
670 EXPORT_SYMBOL(blk_mq_run_queues);
672 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
674 cancel_delayed_work(&hctx->delayed_work);
675 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
677 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
679 void blk_mq_stop_hw_queues(struct request_queue *q)
681 struct blk_mq_hw_ctx *hctx;
682 int i;
684 queue_for_each_hw_ctx(q, hctx, i)
685 blk_mq_stop_hw_queue(hctx);
687 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
689 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
691 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
692 __blk_mq_run_hw_queue(hctx);
694 EXPORT_SYMBOL(blk_mq_start_hw_queue);
696 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
698 struct blk_mq_hw_ctx *hctx;
699 int i;
701 queue_for_each_hw_ctx(q, hctx, i) {
702 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
703 continue;
705 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
706 blk_mq_run_hw_queue(hctx, true);
709 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
711 static void blk_mq_work_fn(struct work_struct *work)
713 struct blk_mq_hw_ctx *hctx;
715 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
716 __blk_mq_run_hw_queue(hctx);
719 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
720 struct request *rq)
722 struct blk_mq_ctx *ctx = rq->mq_ctx;
724 trace_block_rq_insert(hctx->queue, rq);
726 list_add_tail(&rq->queuelist, &ctx->rq_list);
727 blk_mq_hctx_mark_pending(hctx, ctx);
730 * We do this early, to ensure we are on the right CPU.
732 blk_mq_add_timer(rq);
735 void blk_mq_insert_request(struct request_queue *q, struct request *rq,
736 bool run_queue)
738 struct blk_mq_hw_ctx *hctx;
739 struct blk_mq_ctx *ctx, *current_ctx;
741 ctx = rq->mq_ctx;
742 hctx = q->mq_ops->map_queue(q, ctx->cpu);
744 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
745 blk_insert_flush(rq);
746 } else {
747 current_ctx = blk_mq_get_ctx(q);
749 if (!cpu_online(ctx->cpu)) {
750 ctx = current_ctx;
751 hctx = q->mq_ops->map_queue(q, ctx->cpu);
752 rq->mq_ctx = ctx;
754 spin_lock(&ctx->lock);
755 __blk_mq_insert_request(hctx, rq);
756 spin_unlock(&ctx->lock);
758 blk_mq_put_ctx(current_ctx);
761 if (run_queue)
762 __blk_mq_run_hw_queue(hctx);
764 EXPORT_SYMBOL(blk_mq_insert_request);
767 * This is a special version of blk_mq_insert_request to bypass FLUSH request
768 * check. Should only be used internally.
770 void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
772 struct request_queue *q = rq->q;
773 struct blk_mq_hw_ctx *hctx;
774 struct blk_mq_ctx *ctx, *current_ctx;
776 current_ctx = blk_mq_get_ctx(q);
778 ctx = rq->mq_ctx;
779 if (!cpu_online(ctx->cpu)) {
780 ctx = current_ctx;
781 rq->mq_ctx = ctx;
783 hctx = q->mq_ops->map_queue(q, ctx->cpu);
785 /* ctx->cpu might be offline */
786 spin_lock(&ctx->lock);
787 __blk_mq_insert_request(hctx, rq);
788 spin_unlock(&ctx->lock);
790 blk_mq_put_ctx(current_ctx);
792 if (run_queue)
793 blk_mq_run_hw_queue(hctx, async);
796 static void blk_mq_insert_requests(struct request_queue *q,
797 struct blk_mq_ctx *ctx,
798 struct list_head *list,
799 int depth,
800 bool from_schedule)
803 struct blk_mq_hw_ctx *hctx;
804 struct blk_mq_ctx *current_ctx;
806 trace_block_unplug(q, depth, !from_schedule);
808 current_ctx = blk_mq_get_ctx(q);
810 if (!cpu_online(ctx->cpu))
811 ctx = current_ctx;
812 hctx = q->mq_ops->map_queue(q, ctx->cpu);
815 * preemption doesn't flush plug list, so it's possible ctx->cpu is
816 * offline now
818 spin_lock(&ctx->lock);
819 while (!list_empty(list)) {
820 struct request *rq;
822 rq = list_first_entry(list, struct request, queuelist);
823 list_del_init(&rq->queuelist);
824 rq->mq_ctx = ctx;
825 __blk_mq_insert_request(hctx, rq);
827 spin_unlock(&ctx->lock);
829 blk_mq_put_ctx(current_ctx);
831 blk_mq_run_hw_queue(hctx, from_schedule);
834 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
836 struct request *rqa = container_of(a, struct request, queuelist);
837 struct request *rqb = container_of(b, struct request, queuelist);
839 return !(rqa->mq_ctx < rqb->mq_ctx ||
840 (rqa->mq_ctx == rqb->mq_ctx &&
841 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
844 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
846 struct blk_mq_ctx *this_ctx;
847 struct request_queue *this_q;
848 struct request *rq;
849 LIST_HEAD(list);
850 LIST_HEAD(ctx_list);
851 unsigned int depth;
853 list_splice_init(&plug->mq_list, &list);
855 list_sort(NULL, &list, plug_ctx_cmp);
857 this_q = NULL;
858 this_ctx = NULL;
859 depth = 0;
861 while (!list_empty(&list)) {
862 rq = list_entry_rq(list.next);
863 list_del_init(&rq->queuelist);
864 BUG_ON(!rq->q);
865 if (rq->mq_ctx != this_ctx) {
866 if (this_ctx) {
867 blk_mq_insert_requests(this_q, this_ctx,
868 &ctx_list, depth,
869 from_schedule);
872 this_ctx = rq->mq_ctx;
873 this_q = rq->q;
874 depth = 0;
877 depth++;
878 list_add_tail(&rq->queuelist, &ctx_list);
882 * If 'this_ctx' is set, we know we have entries to complete
883 * on 'ctx_list'. Do those.
885 if (this_ctx) {
886 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
887 from_schedule);
891 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
893 init_request_from_bio(rq, bio);
894 blk_account_io_start(rq, 1);
897 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
899 struct blk_mq_hw_ctx *hctx;
900 struct blk_mq_ctx *ctx;
901 const int is_sync = rw_is_sync(bio->bi_rw);
902 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
903 int rw = bio_data_dir(bio);
904 struct request *rq;
905 unsigned int use_plug, request_count = 0;
908 * If we have multiple hardware queues, just go directly to
909 * one of those for sync IO.
911 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
913 blk_queue_bounce(q, &bio);
915 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
916 return;
918 if (blk_mq_queue_enter(q)) {
919 bio_endio(bio, -EIO);
920 return;
923 ctx = blk_mq_get_ctx(q);
924 hctx = q->mq_ops->map_queue(q, ctx->cpu);
926 trace_block_getrq(q, bio, rw);
927 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
928 if (likely(rq))
929 blk_mq_rq_ctx_init(q, ctx, rq, rw);
930 else {
931 blk_mq_put_ctx(ctx);
932 trace_block_sleeprq(q, bio, rw);
933 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
934 false);
935 ctx = rq->mq_ctx;
936 hctx = q->mq_ops->map_queue(q, ctx->cpu);
939 hctx->queued++;
941 if (unlikely(is_flush_fua)) {
942 blk_mq_bio_to_request(rq, bio);
943 blk_mq_put_ctx(ctx);
944 blk_insert_flush(rq);
945 goto run_queue;
949 * A task plug currently exists. Since this is completely lockless,
950 * utilize that to temporarily store requests until the task is
951 * either done or scheduled away.
953 if (use_plug) {
954 struct blk_plug *plug = current->plug;
956 if (plug) {
957 blk_mq_bio_to_request(rq, bio);
958 if (list_empty(&plug->mq_list))
959 trace_block_plug(q);
960 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
961 blk_flush_plug_list(plug, false);
962 trace_block_plug(q);
964 list_add_tail(&rq->queuelist, &plug->mq_list);
965 blk_mq_put_ctx(ctx);
966 return;
970 spin_lock(&ctx->lock);
972 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
973 blk_mq_attempt_merge(q, ctx, bio))
974 __blk_mq_free_request(hctx, ctx, rq);
975 else {
976 blk_mq_bio_to_request(rq, bio);
977 __blk_mq_insert_request(hctx, rq);
980 spin_unlock(&ctx->lock);
981 blk_mq_put_ctx(ctx);
984 * For a SYNC request, send it to the hardware immediately. For an
985 * ASYNC request, just ensure that we run it later on. The latter
986 * allows for merging opportunities and more efficient dispatching.
988 run_queue:
989 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
993 * Default mapping to a software queue, since we use one per CPU.
995 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
997 return q->queue_hw_ctx[q->mq_map[cpu]];
999 EXPORT_SYMBOL(blk_mq_map_queue);
1001 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1002 unsigned int hctx_index)
1004 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1005 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1007 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1009 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1010 unsigned int hctx_index)
1012 kfree(hctx);
1014 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1016 static void blk_mq_hctx_notify(void *data, unsigned long action,
1017 unsigned int cpu)
1019 struct blk_mq_hw_ctx *hctx = data;
1020 struct blk_mq_ctx *ctx;
1021 LIST_HEAD(tmp);
1023 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1024 return;
1027 * Move ctx entries to new CPU, if this one is going away.
1029 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1031 spin_lock(&ctx->lock);
1032 if (!list_empty(&ctx->rq_list)) {
1033 list_splice_init(&ctx->rq_list, &tmp);
1034 clear_bit(ctx->index_hw, hctx->ctx_map);
1036 spin_unlock(&ctx->lock);
1038 if (list_empty(&tmp))
1039 return;
1041 ctx = blk_mq_get_ctx(hctx->queue);
1042 spin_lock(&ctx->lock);
1044 while (!list_empty(&tmp)) {
1045 struct request *rq;
1047 rq = list_first_entry(&tmp, struct request, queuelist);
1048 rq->mq_ctx = ctx;
1049 list_move_tail(&rq->queuelist, &ctx->rq_list);
1052 blk_mq_hctx_mark_pending(hctx, ctx);
1054 spin_unlock(&ctx->lock);
1055 blk_mq_put_ctx(ctx);
1058 static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1059 void (*init)(void *, struct blk_mq_hw_ctx *,
1060 struct request *, unsigned int),
1061 void *data)
1063 unsigned int i;
1065 for (i = 0; i < hctx->queue_depth; i++) {
1066 struct request *rq = hctx->rqs[i];
1068 init(data, hctx, rq, i);
1072 void blk_mq_init_commands(struct request_queue *q,
1073 void (*init)(void *, struct blk_mq_hw_ctx *,
1074 struct request *, unsigned int),
1075 void *data)
1077 struct blk_mq_hw_ctx *hctx;
1078 unsigned int i;
1080 queue_for_each_hw_ctx(q, hctx, i)
1081 blk_mq_init_hw_commands(hctx, init, data);
1083 EXPORT_SYMBOL(blk_mq_init_commands);
1085 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1087 struct page *page;
1089 while (!list_empty(&hctx->page_list)) {
1090 page = list_first_entry(&hctx->page_list, struct page, list);
1091 list_del_init(&page->list);
1092 __free_pages(page, page->private);
1095 kfree(hctx->rqs);
1097 if (hctx->tags)
1098 blk_mq_free_tags(hctx->tags);
1101 static size_t order_to_size(unsigned int order)
1103 size_t ret = PAGE_SIZE;
1105 while (order--)
1106 ret *= 2;
1108 return ret;
1111 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1112 unsigned int reserved_tags, int node)
1114 unsigned int i, j, entries_per_page, max_order = 4;
1115 size_t rq_size, left;
1117 INIT_LIST_HEAD(&hctx->page_list);
1119 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1120 GFP_KERNEL, node);
1121 if (!hctx->rqs)
1122 return -ENOMEM;
1125 * rq_size is the size of the request plus driver payload, rounded
1126 * to the cacheline size
1128 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1129 cache_line_size());
1130 left = rq_size * hctx->queue_depth;
1132 for (i = 0; i < hctx->queue_depth;) {
1133 int this_order = max_order;
1134 struct page *page;
1135 int to_do;
1136 void *p;
1138 while (left < order_to_size(this_order - 1) && this_order)
1139 this_order--;
1141 do {
1142 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1143 if (page)
1144 break;
1145 if (!this_order--)
1146 break;
1147 if (order_to_size(this_order) < rq_size)
1148 break;
1149 } while (1);
1151 if (!page)
1152 break;
1154 page->private = this_order;
1155 list_add_tail(&page->list, &hctx->page_list);
1157 p = page_address(page);
1158 entries_per_page = order_to_size(this_order) / rq_size;
1159 to_do = min(entries_per_page, hctx->queue_depth - i);
1160 left -= to_do * rq_size;
1161 for (j = 0; j < to_do; j++) {
1162 hctx->rqs[i] = p;
1163 blk_mq_rq_init(hctx, hctx->rqs[i]);
1164 p += rq_size;
1165 i++;
1169 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1170 goto err_rq_map;
1171 else if (i != hctx->queue_depth) {
1172 hctx->queue_depth = i;
1173 pr_warn("%s: queue depth set to %u because of low memory\n",
1174 __func__, i);
1177 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1178 if (!hctx->tags) {
1179 err_rq_map:
1180 blk_mq_free_rq_map(hctx);
1181 return -ENOMEM;
1184 return 0;
1187 static int blk_mq_init_hw_queues(struct request_queue *q,
1188 struct blk_mq_reg *reg, void *driver_data)
1190 struct blk_mq_hw_ctx *hctx;
1191 unsigned int i, j;
1194 * Initialize hardware queues
1196 queue_for_each_hw_ctx(q, hctx, i) {
1197 unsigned int num_maps;
1198 int node;
1200 node = hctx->numa_node;
1201 if (node == NUMA_NO_NODE)
1202 node = hctx->numa_node = reg->numa_node;
1204 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1205 spin_lock_init(&hctx->lock);
1206 INIT_LIST_HEAD(&hctx->dispatch);
1207 hctx->queue = q;
1208 hctx->queue_num = i;
1209 hctx->flags = reg->flags;
1210 hctx->queue_depth = reg->queue_depth;
1211 hctx->cmd_size = reg->cmd_size;
1213 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1214 blk_mq_hctx_notify, hctx);
1215 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1217 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1218 break;
1221 * Allocate space for all possible cpus to avoid allocation in
1222 * runtime
1224 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1225 GFP_KERNEL, node);
1226 if (!hctx->ctxs)
1227 break;
1229 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1230 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1231 GFP_KERNEL, node);
1232 if (!hctx->ctx_map)
1233 break;
1235 hctx->nr_ctx_map = num_maps;
1236 hctx->nr_ctx = 0;
1238 if (reg->ops->init_hctx &&
1239 reg->ops->init_hctx(hctx, driver_data, i))
1240 break;
1243 if (i == q->nr_hw_queues)
1244 return 0;
1247 * Init failed
1249 queue_for_each_hw_ctx(q, hctx, j) {
1250 if (i == j)
1251 break;
1253 if (reg->ops->exit_hctx)
1254 reg->ops->exit_hctx(hctx, j);
1256 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1257 blk_mq_free_rq_map(hctx);
1258 kfree(hctx->ctxs);
1261 return 1;
1264 static void blk_mq_init_cpu_queues(struct request_queue *q,
1265 unsigned int nr_hw_queues)
1267 unsigned int i;
1269 for_each_possible_cpu(i) {
1270 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1271 struct blk_mq_hw_ctx *hctx;
1273 memset(__ctx, 0, sizeof(*__ctx));
1274 __ctx->cpu = i;
1275 spin_lock_init(&__ctx->lock);
1276 INIT_LIST_HEAD(&__ctx->rq_list);
1277 __ctx->queue = q;
1279 /* If the cpu isn't online, the cpu is mapped to first hctx */
1280 hctx = q->mq_ops->map_queue(q, i);
1281 hctx->nr_ctx++;
1283 if (!cpu_online(i))
1284 continue;
1287 * Set local node, IFF we have more than one hw queue. If
1288 * not, we remain on the home node of the device
1290 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1291 hctx->numa_node = cpu_to_node(i);
1295 static void blk_mq_map_swqueue(struct request_queue *q)
1297 unsigned int i;
1298 struct blk_mq_hw_ctx *hctx;
1299 struct blk_mq_ctx *ctx;
1301 queue_for_each_hw_ctx(q, hctx, i) {
1302 hctx->nr_ctx = 0;
1306 * Map software to hardware queues
1308 queue_for_each_ctx(q, ctx, i) {
1309 /* If the cpu isn't online, the cpu is mapped to first hctx */
1310 hctx = q->mq_ops->map_queue(q, i);
1311 ctx->index_hw = hctx->nr_ctx;
1312 hctx->ctxs[hctx->nr_ctx++] = ctx;
1316 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1317 void *driver_data)
1319 struct blk_mq_hw_ctx **hctxs;
1320 struct blk_mq_ctx *ctx;
1321 struct request_queue *q;
1322 int i;
1324 if (!reg->nr_hw_queues ||
1325 !reg->ops->queue_rq || !reg->ops->map_queue ||
1326 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1327 return ERR_PTR(-EINVAL);
1329 if (!reg->queue_depth)
1330 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1331 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1332 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1333 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1337 * Set aside a tag for flush requests. It will only be used while
1338 * another flush request is in progress but outside the driver.
1340 * TODO: only allocate if flushes are supported
1342 reg->queue_depth++;
1343 reg->reserved_tags++;
1345 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1346 return ERR_PTR(-EINVAL);
1348 ctx = alloc_percpu(struct blk_mq_ctx);
1349 if (!ctx)
1350 return ERR_PTR(-ENOMEM);
1352 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1353 reg->numa_node);
1355 if (!hctxs)
1356 goto err_percpu;
1358 for (i = 0; i < reg->nr_hw_queues; i++) {
1359 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1360 if (!hctxs[i])
1361 goto err_hctxs;
1363 hctxs[i]->numa_node = NUMA_NO_NODE;
1364 hctxs[i]->queue_num = i;
1367 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1368 if (!q)
1369 goto err_hctxs;
1371 q->mq_map = blk_mq_make_queue_map(reg);
1372 if (!q->mq_map)
1373 goto err_map;
1375 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1376 blk_queue_rq_timeout(q, 30000);
1378 q->nr_queues = nr_cpu_ids;
1379 q->nr_hw_queues = reg->nr_hw_queues;
1381 q->queue_ctx = ctx;
1382 q->queue_hw_ctx = hctxs;
1384 q->mq_ops = reg->ops;
1385 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1387 blk_queue_make_request(q, blk_mq_make_request);
1388 blk_queue_rq_timed_out(q, reg->ops->timeout);
1389 if (reg->timeout)
1390 blk_queue_rq_timeout(q, reg->timeout);
1392 blk_mq_init_flush(q);
1393 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1395 if (blk_mq_init_hw_queues(q, reg, driver_data))
1396 goto err_hw;
1398 blk_mq_map_swqueue(q);
1400 mutex_lock(&all_q_mutex);
1401 list_add_tail(&q->all_q_node, &all_q_list);
1402 mutex_unlock(&all_q_mutex);
1404 return q;
1405 err_hw:
1406 kfree(q->mq_map);
1407 err_map:
1408 blk_cleanup_queue(q);
1409 err_hctxs:
1410 for (i = 0; i < reg->nr_hw_queues; i++) {
1411 if (!hctxs[i])
1412 break;
1413 reg->ops->free_hctx(hctxs[i], i);
1415 kfree(hctxs);
1416 err_percpu:
1417 free_percpu(ctx);
1418 return ERR_PTR(-ENOMEM);
1420 EXPORT_SYMBOL(blk_mq_init_queue);
1422 void blk_mq_free_queue(struct request_queue *q)
1424 struct blk_mq_hw_ctx *hctx;
1425 int i;
1427 queue_for_each_hw_ctx(q, hctx, i) {
1428 cancel_delayed_work_sync(&hctx->delayed_work);
1429 kfree(hctx->ctx_map);
1430 kfree(hctx->ctxs);
1431 blk_mq_free_rq_map(hctx);
1432 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1433 if (q->mq_ops->exit_hctx)
1434 q->mq_ops->exit_hctx(hctx, i);
1435 q->mq_ops->free_hctx(hctx, i);
1438 free_percpu(q->queue_ctx);
1439 kfree(q->queue_hw_ctx);
1440 kfree(q->mq_map);
1442 q->queue_ctx = NULL;
1443 q->queue_hw_ctx = NULL;
1444 q->mq_map = NULL;
1446 mutex_lock(&all_q_mutex);
1447 list_del_init(&q->all_q_node);
1448 mutex_unlock(&all_q_mutex);
1450 EXPORT_SYMBOL(blk_mq_free_queue);
1452 /* Basically redo blk_mq_init_queue with queue frozen */
1453 static void blk_mq_queue_reinit(struct request_queue *q)
1455 blk_mq_freeze_queue(q);
1457 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1460 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1461 * we should change hctx numa_node according to new topology (this
1462 * involves free and re-allocate memory, worthy doing?)
1465 blk_mq_map_swqueue(q);
1467 blk_mq_unfreeze_queue(q);
1470 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1471 unsigned long action, void *hcpu)
1473 struct request_queue *q;
1476 * Before new mapping is established, hotadded cpu might already start
1477 * handling requests. This doesn't break anything as we map offline
1478 * CPUs to first hardware queue. We will re-init queue below to get
1479 * optimal settings.
1481 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1482 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1483 return NOTIFY_OK;
1485 mutex_lock(&all_q_mutex);
1486 list_for_each_entry(q, &all_q_list, all_q_node)
1487 blk_mq_queue_reinit(q);
1488 mutex_unlock(&all_q_mutex);
1489 return NOTIFY_OK;
1492 static int __init blk_mq_init(void)
1494 unsigned int i;
1496 for_each_possible_cpu(i)
1497 init_llist_head(&per_cpu(ipi_lists, i));
1499 blk_mq_cpu_init();
1501 /* Must be called after percpu_counter_hotcpu_callback() */
1502 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1504 return 0;
1506 subsys_initcall(blk_mq_init);