2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
9 * 2_by_8 routines added by Simon Munton
11 * 4_by_16 work by Carolyn J. Smith
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
20 * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
30 #include <asm/byteorder.h>
32 #include <linux/errno.h>
33 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/interrupt.h>
36 #include <linux/mtd/compatmac.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
45 #define MAX_WORD_RETRIES 3
47 #define MANUFACTURER_AMD 0x0001
48 #define MANUFACTURER_ATMEL 0x001F
49 #define MANUFACTURER_SST 0x00BF
50 #define SST49LF004B 0x0060
51 #define SST49LF040B 0x0050
52 #define SST49LF008A 0x005a
53 #define AT49BV6416 0x00d6
55 static int cfi_amdstd_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
56 static int cfi_amdstd_write_words(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
57 static int cfi_amdstd_write_buffers(struct mtd_info
*, loff_t
, size_t, size_t *, const u_char
*);
58 static int cfi_amdstd_erase_chip(struct mtd_info
*, struct erase_info
*);
59 static int cfi_amdstd_erase_varsize(struct mtd_info
*, struct erase_info
*);
60 static void cfi_amdstd_sync (struct mtd_info
*);
61 static int cfi_amdstd_suspend (struct mtd_info
*);
62 static void cfi_amdstd_resume (struct mtd_info
*);
63 static int cfi_amdstd_secsi_read (struct mtd_info
*, loff_t
, size_t, size_t *, u_char
*);
65 static void cfi_amdstd_destroy(struct mtd_info
*);
67 struct mtd_info
*cfi_cmdset_0002(struct map_info
*, int);
68 static struct mtd_info
*cfi_amdstd_setup (struct mtd_info
*);
70 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
);
71 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
);
74 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
);
75 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
);
77 static struct mtd_chip_driver cfi_amdstd_chipdrv
= {
78 .probe
= NULL
, /* Not usable directly */
79 .destroy
= cfi_amdstd_destroy
,
80 .name
= "cfi_cmdset_0002",
85 /* #define DEBUG_CFI_FEATURES */
88 #ifdef DEBUG_CFI_FEATURES
89 static void cfi_tell_features(struct cfi_pri_amdstd
*extp
)
91 const char* erase_suspend
[3] = {
92 "Not supported", "Read only", "Read/write"
94 const char* top_bottom
[6] = {
95 "No WP", "8x8KiB sectors at top & bottom, no WP",
96 "Bottom boot", "Top boot",
97 "Uniform, Bottom WP", "Uniform, Top WP"
100 printk(" Silicon revision: %d\n", extp
->SiliconRevision
>> 1);
101 printk(" Address sensitive unlock: %s\n",
102 (extp
->SiliconRevision
& 1) ? "Not required" : "Required");
104 if (extp
->EraseSuspend
< ARRAY_SIZE(erase_suspend
))
105 printk(" Erase Suspend: %s\n", erase_suspend
[extp
->EraseSuspend
]);
107 printk(" Erase Suspend: Unknown value %d\n", extp
->EraseSuspend
);
109 if (extp
->BlkProt
== 0)
110 printk(" Block protection: Not supported\n");
112 printk(" Block protection: %d sectors per group\n", extp
->BlkProt
);
115 printk(" Temporary block unprotect: %s\n",
116 extp
->TmpBlkUnprotect
? "Supported" : "Not supported");
117 printk(" Block protect/unprotect scheme: %d\n", extp
->BlkProtUnprot
);
118 printk(" Number of simultaneous operations: %d\n", extp
->SimultaneousOps
);
119 printk(" Burst mode: %s\n",
120 extp
->BurstMode
? "Supported" : "Not supported");
121 if (extp
->PageMode
== 0)
122 printk(" Page mode: Not supported\n");
124 printk(" Page mode: %d word page\n", extp
->PageMode
<< 2);
126 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
127 extp
->VppMin
>> 4, extp
->VppMin
& 0xf);
128 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
129 extp
->VppMax
>> 4, extp
->VppMax
& 0xf);
131 if (extp
->TopBottom
< ARRAY_SIZE(top_bottom
))
132 printk(" Top/Bottom Boot Block: %s\n", top_bottom
[extp
->TopBottom
]);
134 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp
->TopBottom
);
138 #ifdef AMD_BOOTLOC_BUG
139 /* Wheee. Bring me the head of someone at AMD. */
140 static void fixup_amd_bootblock(struct mtd_info
*mtd
, void* param
)
142 struct map_info
*map
= mtd
->priv
;
143 struct cfi_private
*cfi
= map
->fldrv_priv
;
144 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
145 __u8 major
= extp
->MajorVersion
;
146 __u8 minor
= extp
->MinorVersion
;
148 if (((major
<< 8) | minor
) < 0x3131) {
149 /* CFI version 1.0 => don't trust bootloc */
150 if (cfi
->id
& 0x80) {
151 printk(KERN_WARNING
"%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map
->name
, cfi
->id
);
152 extp
->TopBottom
= 3; /* top boot */
154 extp
->TopBottom
= 2; /* bottom boot */
160 static void fixup_use_write_buffers(struct mtd_info
*mtd
, void *param
)
162 struct map_info
*map
= mtd
->priv
;
163 struct cfi_private
*cfi
= map
->fldrv_priv
;
164 if (cfi
->cfiq
->BufWriteTimeoutTyp
) {
165 DEBUG(MTD_DEBUG_LEVEL1
, "Using buffer write method\n" );
166 mtd
->write
= cfi_amdstd_write_buffers
;
170 /* Atmel chips don't use the same PRI format as AMD chips */
171 static void fixup_convert_atmel_pri(struct mtd_info
*mtd
, void *param
)
173 struct map_info
*map
= mtd
->priv
;
174 struct cfi_private
*cfi
= map
->fldrv_priv
;
175 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
176 struct cfi_pri_atmel atmel_pri
;
178 memcpy(&atmel_pri
, extp
, sizeof(atmel_pri
));
179 memset((char *)extp
+ 5, 0, sizeof(*extp
) - 5);
181 if (atmel_pri
.Features
& 0x02)
182 extp
->EraseSuspend
= 2;
184 if (atmel_pri
.BottomBoot
)
190 static void fixup_use_secsi(struct mtd_info
*mtd
, void *param
)
192 /* Setup for chips with a secsi area */
193 mtd
->read_user_prot_reg
= cfi_amdstd_secsi_read
;
194 mtd
->read_fact_prot_reg
= cfi_amdstd_secsi_read
;
197 static void fixup_use_erase_chip(struct mtd_info
*mtd
, void *param
)
199 struct map_info
*map
= mtd
->priv
;
200 struct cfi_private
*cfi
= map
->fldrv_priv
;
201 if ((cfi
->cfiq
->NumEraseRegions
== 1) &&
202 ((cfi
->cfiq
->EraseRegionInfo
[0] & 0xffff) == 0)) {
203 mtd
->erase
= cfi_amdstd_erase_chip
;
209 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
212 static void fixup_use_atmel_lock(struct mtd_info
*mtd
, void *param
)
214 mtd
->lock
= cfi_atmel_lock
;
215 mtd
->unlock
= cfi_atmel_unlock
;
216 mtd
->flags
|= MTD_STUPID_LOCK
;
219 static struct cfi_fixup cfi_fixup_table
[] = {
220 #ifdef AMD_BOOTLOC_BUG
221 { CFI_MFR_AMD
, CFI_ID_ANY
, fixup_amd_bootblock
, NULL
},
223 { CFI_MFR_AMD
, 0x0050, fixup_use_secsi
, NULL
, },
224 { CFI_MFR_AMD
, 0x0053, fixup_use_secsi
, NULL
, },
225 { CFI_MFR_AMD
, 0x0055, fixup_use_secsi
, NULL
, },
226 { CFI_MFR_AMD
, 0x0056, fixup_use_secsi
, NULL
, },
227 { CFI_MFR_AMD
, 0x005C, fixup_use_secsi
, NULL
, },
228 { CFI_MFR_AMD
, 0x005F, fixup_use_secsi
, NULL
, },
229 #if !FORCE_WORD_WRITE
230 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_write_buffers
, NULL
, },
232 { CFI_MFR_ATMEL
, CFI_ID_ANY
, fixup_convert_atmel_pri
, NULL
},
235 static struct cfi_fixup jedec_fixup_table
[] = {
236 { MANUFACTURER_SST
, SST49LF004B
, fixup_use_fwh_lock
, NULL
, },
237 { MANUFACTURER_SST
, SST49LF040B
, fixup_use_fwh_lock
, NULL
, },
238 { MANUFACTURER_SST
, SST49LF008A
, fixup_use_fwh_lock
, NULL
, },
242 static struct cfi_fixup fixup_table
[] = {
243 /* The CFI vendor ids and the JEDEC vendor IDs appear
244 * to be common. It is like the devices id's are as
245 * well. This table is to pick all cases where
246 * we know that is the case.
248 { CFI_MFR_ANY
, CFI_ID_ANY
, fixup_use_erase_chip
, NULL
},
249 { CFI_MFR_ATMEL
, AT49BV6416
, fixup_use_atmel_lock
, NULL
},
254 struct mtd_info
*cfi_cmdset_0002(struct map_info
*map
, int primary
)
256 struct cfi_private
*cfi
= map
->fldrv_priv
;
257 struct mtd_info
*mtd
;
260 mtd
= kzalloc(sizeof(*mtd
), GFP_KERNEL
);
262 printk(KERN_WARNING
"Failed to allocate memory for MTD device\n");
266 mtd
->type
= MTD_NORFLASH
;
268 /* Fill in the default mtd operations */
269 mtd
->erase
= cfi_amdstd_erase_varsize
;
270 mtd
->write
= cfi_amdstd_write_words
;
271 mtd
->read
= cfi_amdstd_read
;
272 mtd
->sync
= cfi_amdstd_sync
;
273 mtd
->suspend
= cfi_amdstd_suspend
;
274 mtd
->resume
= cfi_amdstd_resume
;
275 mtd
->flags
= MTD_CAP_NORFLASH
;
276 mtd
->name
= map
->name
;
279 if (cfi
->cfi_mode
==CFI_MODE_CFI
){
280 unsigned char bootloc
;
282 * It's a real CFI chip, not one for which the probe
283 * routine faked a CFI structure. So we read the feature
286 __u16 adr
= primary
?cfi
->cfiq
->P_ADR
:cfi
->cfiq
->A_ADR
;
287 struct cfi_pri_amdstd
*extp
;
289 extp
= (struct cfi_pri_amdstd
*)cfi_read_pri(map
, adr
, sizeof(*extp
), "Amd/Fujitsu");
295 if (extp
->MajorVersion
!= '1' ||
296 (extp
->MinorVersion
< '0' || extp
->MinorVersion
> '4')) {
297 printk(KERN_ERR
" Unknown Amd/Fujitsu Extended Query "
298 "version %c.%c.\n", extp
->MajorVersion
,
305 /* Install our own private info structure */
306 cfi
->cmdset_priv
= extp
;
308 /* Apply cfi device specific fixups */
309 cfi_fixup(mtd
, cfi_fixup_table
);
311 #ifdef DEBUG_CFI_FEATURES
312 /* Tell the user about it in lots of lovely detail */
313 cfi_tell_features(extp
);
316 bootloc
= extp
->TopBottom
;
317 if ((bootloc
!= 2) && (bootloc
!= 3)) {
318 printk(KERN_WARNING
"%s: CFI does not contain boot "
319 "bank location. Assuming top.\n", map
->name
);
323 if (bootloc
== 3 && cfi
->cfiq
->NumEraseRegions
> 1) {
324 printk(KERN_WARNING
"%s: Swapping erase regions for broken CFI table.\n", map
->name
);
326 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
/ 2; i
++) {
327 int j
= (cfi
->cfiq
->NumEraseRegions
-1)-i
;
330 swap
= cfi
->cfiq
->EraseRegionInfo
[i
];
331 cfi
->cfiq
->EraseRegionInfo
[i
] = cfi
->cfiq
->EraseRegionInfo
[j
];
332 cfi
->cfiq
->EraseRegionInfo
[j
] = swap
;
335 /* Set the default CFI lock/unlock addresses */
336 cfi
->addr_unlock1
= 0x555;
337 cfi
->addr_unlock2
= 0x2aa;
338 /* Modify the unlock address if we are in compatibility mode */
339 if ( /* x16 in x8 mode */
340 ((cfi
->device_type
== CFI_DEVICETYPE_X8
) &&
341 (cfi
->cfiq
->InterfaceDesc
== 2)) ||
342 /* x32 in x16 mode */
343 ((cfi
->device_type
== CFI_DEVICETYPE_X16
) &&
344 (cfi
->cfiq
->InterfaceDesc
== 4)))
346 cfi
->addr_unlock1
= 0xaaa;
347 cfi
->addr_unlock2
= 0x555;
351 else if (cfi
->cfi_mode
== CFI_MODE_JEDEC
) {
352 /* Apply jedec specific fixups */
353 cfi_fixup(mtd
, jedec_fixup_table
);
355 /* Apply generic fixups */
356 cfi_fixup(mtd
, fixup_table
);
358 for (i
=0; i
< cfi
->numchips
; i
++) {
359 cfi
->chips
[i
].word_write_time
= 1<<cfi
->cfiq
->WordWriteTimeoutTyp
;
360 cfi
->chips
[i
].buffer_write_time
= 1<<cfi
->cfiq
->BufWriteTimeoutTyp
;
361 cfi
->chips
[i
].erase_time
= 1<<cfi
->cfiq
->BlockEraseTimeoutTyp
;
362 cfi
->chips
[i
].ref_point_counter
= 0;
363 init_waitqueue_head(&(cfi
->chips
[i
].wq
));
366 map
->fldrv
= &cfi_amdstd_chipdrv
;
368 return cfi_amdstd_setup(mtd
);
370 EXPORT_SYMBOL_GPL(cfi_cmdset_0002
);
372 static struct mtd_info
*cfi_amdstd_setup(struct mtd_info
*mtd
)
374 struct map_info
*map
= mtd
->priv
;
375 struct cfi_private
*cfi
= map
->fldrv_priv
;
376 unsigned long devsize
= (1<<cfi
->cfiq
->DevSize
) * cfi
->interleave
;
377 unsigned long offset
= 0;
380 printk(KERN_NOTICE
"number of %s chips: %d\n",
381 (cfi
->cfi_mode
== CFI_MODE_CFI
)?"CFI":"JEDEC",cfi
->numchips
);
382 /* Select the correct geometry setup */
383 mtd
->size
= devsize
* cfi
->numchips
;
385 mtd
->numeraseregions
= cfi
->cfiq
->NumEraseRegions
* cfi
->numchips
;
386 mtd
->eraseregions
= kmalloc(sizeof(struct mtd_erase_region_info
)
387 * mtd
->numeraseregions
, GFP_KERNEL
);
388 if (!mtd
->eraseregions
) {
389 printk(KERN_WARNING
"Failed to allocate memory for MTD erase region info\n");
393 for (i
=0; i
<cfi
->cfiq
->NumEraseRegions
; i
++) {
394 unsigned long ernum
, ersize
;
395 ersize
= ((cfi
->cfiq
->EraseRegionInfo
[i
] >> 8) & ~0xff) * cfi
->interleave
;
396 ernum
= (cfi
->cfiq
->EraseRegionInfo
[i
] & 0xffff) + 1;
398 if (mtd
->erasesize
< ersize
) {
399 mtd
->erasesize
= ersize
;
401 for (j
=0; j
<cfi
->numchips
; j
++) {
402 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].offset
= (j
*devsize
)+offset
;
403 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].erasesize
= ersize
;
404 mtd
->eraseregions
[(j
*cfi
->cfiq
->NumEraseRegions
)+i
].numblocks
= ernum
;
406 offset
+= (ersize
* ernum
);
408 if (offset
!= devsize
) {
410 printk(KERN_WARNING
"Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset
, devsize
);
415 for (i
=0; i
<mtd
->numeraseregions
;i
++){
416 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
417 i
,mtd
->eraseregions
[i
].offset
,
418 mtd
->eraseregions
[i
].erasesize
,
419 mtd
->eraseregions
[i
].numblocks
);
423 /* FIXME: erase-suspend-program is broken. See
424 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
425 printk(KERN_NOTICE
"cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
427 __module_get(THIS_MODULE
);
432 kfree(mtd
->eraseregions
);
435 kfree(cfi
->cmdset_priv
);
441 * Return true if the chip is ready.
443 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
444 * non-suspended sector) and is indicated by no toggle bits toggling.
446 * Note that anything more complicated than checking if no bits are toggling
447 * (including checking DQ5 for an error status) is tricky to get working
448 * correctly and is therefore not done (particulary with interleaved chips
449 * as each chip must be checked independantly of the others).
451 static int __xipram
chip_ready(struct map_info
*map
, unsigned long addr
)
455 d
= map_read(map
, addr
);
456 t
= map_read(map
, addr
);
458 return map_word_equal(map
, d
, t
);
462 * Return true if the chip is ready and has the correct value.
464 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
465 * non-suspended sector) and it is indicated by no bits toggling.
467 * Error are indicated by toggling bits or bits held with the wrong value,
468 * or with bits toggling.
470 * Note that anything more complicated than checking if no bits are toggling
471 * (including checking DQ5 for an error status) is tricky to get working
472 * correctly and is therefore not done (particulary with interleaved chips
473 * as each chip must be checked independantly of the others).
476 static int __xipram
chip_good(struct map_info
*map
, unsigned long addr
, map_word expected
)
480 oldd
= map_read(map
, addr
);
481 curd
= map_read(map
, addr
);
483 return map_word_equal(map
, oldd
, curd
) &&
484 map_word_equal(map
, curd
, expected
);
487 static int get_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int mode
)
489 DECLARE_WAITQUEUE(wait
, current
);
490 struct cfi_private
*cfi
= map
->fldrv_priv
;
492 struct cfi_pri_amdstd
*cfip
= (struct cfi_pri_amdstd
*)cfi
->cmdset_priv
;
495 timeo
= jiffies
+ HZ
;
497 switch (chip
->state
) {
501 if (chip_ready(map
, adr
))
504 if (time_after(jiffies
, timeo
)) {
505 printk(KERN_ERR
"Waiting for chip to be ready timed out.\n");
506 spin_unlock(chip
->mutex
);
509 spin_unlock(chip
->mutex
);
511 spin_lock(chip
->mutex
);
512 /* Someone else might have been playing with it. */
522 if (mode
== FL_WRITING
) /* FIXME: Erase-suspend-program appears broken. */
525 if (!( mode
== FL_READY
528 || (mode
== FL_WRITING
&& (cfip
->EraseSuspend
& 0x2))
529 || (mode
== FL_WRITING
&& (cfip
->EraseSuspend
& 0x1)
533 /* We could check to see if we're trying to access the sector
534 * that is currently being erased. However, no user will try
535 * anything like that so we just wait for the timeout. */
538 /* It's harmless to issue the Erase-Suspend and Erase-Resume
539 * commands when the erase algorithm isn't in progress. */
540 map_write(map
, CMD(0xB0), chip
->in_progress_block_addr
);
541 chip
->oldstate
= FL_ERASING
;
542 chip
->state
= FL_ERASE_SUSPENDING
;
543 chip
->erase_suspended
= 1;
545 if (chip_ready(map
, adr
))
548 if (time_after(jiffies
, timeo
)) {
549 /* Should have suspended the erase by now.
550 * Send an Erase-Resume command as either
551 * there was an error (so leave the erase
552 * routine to recover from it) or we trying to
553 * use the erase-in-progress sector. */
554 map_write(map
, CMD(0x30), chip
->in_progress_block_addr
);
555 chip
->state
= FL_ERASING
;
556 chip
->oldstate
= FL_READY
;
557 printk(KERN_ERR
"MTD %s(): chip not ready after erase suspend\n", __func__
);
561 spin_unlock(chip
->mutex
);
563 spin_lock(chip
->mutex
);
564 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
565 So we can just loop here. */
567 chip
->state
= FL_READY
;
570 case FL_XIP_WHILE_ERASING
:
571 if (mode
!= FL_READY
&& mode
!= FL_POINT
&&
572 (!cfip
|| !(cfip
->EraseSuspend
&2)))
574 chip
->oldstate
= chip
->state
;
575 chip
->state
= FL_READY
;
579 /* Only if there's no operation suspended... */
580 if (mode
== FL_READY
&& chip
->oldstate
== FL_READY
)
585 set_current_state(TASK_UNINTERRUPTIBLE
);
586 add_wait_queue(&chip
->wq
, &wait
);
587 spin_unlock(chip
->mutex
);
589 remove_wait_queue(&chip
->wq
, &wait
);
590 spin_lock(chip
->mutex
);
596 static void put_chip(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
)
598 struct cfi_private
*cfi
= map
->fldrv_priv
;
600 switch(chip
->oldstate
) {
602 chip
->state
= chip
->oldstate
;
603 map_write(map
, CMD(0x30), chip
->in_progress_block_addr
);
604 chip
->oldstate
= FL_READY
;
605 chip
->state
= FL_ERASING
;
608 case FL_XIP_WHILE_ERASING
:
609 chip
->state
= chip
->oldstate
;
610 chip
->oldstate
= FL_READY
;
615 /* We should really make set_vpp() count, rather than doing this */
619 printk(KERN_ERR
"MTD: put_chip() called with oldstate %d!!\n", chip
->oldstate
);
624 #ifdef CONFIG_MTD_XIP
627 * No interrupt what so ever can be serviced while the flash isn't in array
628 * mode. This is ensured by the xip_disable() and xip_enable() functions
629 * enclosing any code path where the flash is known not to be in array mode.
630 * And within a XIP disabled code path, only functions marked with __xipram
631 * may be called and nothing else (it's a good thing to inspect generated
632 * assembly to make sure inline functions were actually inlined and that gcc
633 * didn't emit calls to its own support functions). Also configuring MTD CFI
634 * support to a single buswidth and a single interleave is also recommended.
637 static void xip_disable(struct map_info
*map
, struct flchip
*chip
,
640 /* TODO: chips with no XIP use should ignore and return */
641 (void) map_read(map
, adr
); /* ensure mmu mapping is up to date */
645 static void __xipram
xip_enable(struct map_info
*map
, struct flchip
*chip
,
648 struct cfi_private
*cfi
= map
->fldrv_priv
;
650 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
651 map_write(map
, CMD(0xf0), adr
);
652 chip
->state
= FL_READY
;
654 (void) map_read(map
, adr
);
660 * When a delay is required for the flash operation to complete, the
661 * xip_udelay() function is polling for both the given timeout and pending
662 * (but still masked) hardware interrupts. Whenever there is an interrupt
663 * pending then the flash erase operation is suspended, array mode restored
664 * and interrupts unmasked. Task scheduling might also happen at that
665 * point. The CPU eventually returns from the interrupt or the call to
666 * schedule() and the suspended flash operation is resumed for the remaining
667 * of the delay period.
669 * Warning: this function _will_ fool interrupt latency tracing tools.
672 static void __xipram
xip_udelay(struct map_info
*map
, struct flchip
*chip
,
673 unsigned long adr
, int usec
)
675 struct cfi_private
*cfi
= map
->fldrv_priv
;
676 struct cfi_pri_amdstd
*extp
= cfi
->cmdset_priv
;
677 map_word status
, OK
= CMD(0x80);
678 unsigned long suspended
, start
= xip_currtime();
683 if (xip_irqpending() && extp
&&
684 ((chip
->state
== FL_ERASING
&& (extp
->EraseSuspend
& 2))) &&
685 (cfi_interleave_is_1(cfi
) || chip
->oldstate
== FL_READY
)) {
687 * Let's suspend the erase operation when supported.
688 * Note that we currently don't try to suspend
689 * interleaved chips if there is already another
690 * operation suspended (imagine what happens
691 * when one chip was already done with the current
692 * operation while another chip suspended it, then
693 * we resume the whole thing at once). Yes, it
696 map_write(map
, CMD(0xb0), adr
);
697 usec
-= xip_elapsed_since(start
);
698 suspended
= xip_currtime();
700 if (xip_elapsed_since(suspended
) > 100000) {
702 * The chip doesn't want to suspend
703 * after waiting for 100 msecs.
704 * This is a critical error but there
705 * is not much we can do here.
709 status
= map_read(map
, adr
);
710 } while (!map_word_andequal(map
, status
, OK
, OK
));
712 /* Suspend succeeded */
713 oldstate
= chip
->state
;
714 if (!map_word_bitsset(map
, status
, CMD(0x40)))
716 chip
->state
= FL_XIP_WHILE_ERASING
;
717 chip
->erase_suspended
= 1;
718 map_write(map
, CMD(0xf0), adr
);
719 (void) map_read(map
, adr
);
720 asm volatile (".rep 8; nop; .endr");
722 spin_unlock(chip
->mutex
);
723 asm volatile (".rep 8; nop; .endr");
727 * We're back. However someone else might have
728 * decided to go write to the chip if we are in
729 * a suspended erase state. If so let's wait
732 spin_lock(chip
->mutex
);
733 while (chip
->state
!= FL_XIP_WHILE_ERASING
) {
734 DECLARE_WAITQUEUE(wait
, current
);
735 set_current_state(TASK_UNINTERRUPTIBLE
);
736 add_wait_queue(&chip
->wq
, &wait
);
737 spin_unlock(chip
->mutex
);
739 remove_wait_queue(&chip
->wq
, &wait
);
740 spin_lock(chip
->mutex
);
742 /* Disallow XIP again */
745 /* Resume the write or erase operation */
746 map_write(map
, CMD(0x30), adr
);
747 chip
->state
= oldstate
;
748 start
= xip_currtime();
749 } else if (usec
>= 1000000/HZ
) {
751 * Try to save on CPU power when waiting delay
752 * is at least a system timer tick period.
753 * No need to be extremely accurate here.
757 status
= map_read(map
, adr
);
758 } while (!map_word_andequal(map
, status
, OK
, OK
)
759 && xip_elapsed_since(start
) < usec
);
762 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
765 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
766 * the flash is actively programming or erasing since we have to poll for
767 * the operation to complete anyway. We can't do that in a generic way with
768 * a XIP setup so do it before the actual flash operation in this case
769 * and stub it out from INVALIDATE_CACHE_UDELAY.
771 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
772 INVALIDATE_CACHED_RANGE(map, from, size)
774 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
775 UDELAY(map, chip, adr, usec)
780 * Activating this XIP support changes the way the code works a bit. For
781 * example the code to suspend the current process when concurrent access
782 * happens is never executed because xip_udelay() will always return with the
783 * same chip state as it was entered with. This is why there is no care for
784 * the presence of add_wait_queue() or schedule() calls from within a couple
785 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
786 * The queueing and scheduling are always happening within xip_udelay().
788 * Similarly, get_chip() and put_chip() just happen to always be executed
789 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
790 * is in array mode, therefore never executing many cases therein and not
791 * causing any problem with XIP.
796 #define xip_disable(map, chip, adr)
797 #define xip_enable(map, chip, adr)
798 #define XIP_INVAL_CACHED_RANGE(x...)
800 #define UDELAY(map, chip, adr, usec) \
802 spin_unlock(chip->mutex); \
804 spin_lock(chip->mutex); \
807 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
809 spin_unlock(chip->mutex); \
810 INVALIDATE_CACHED_RANGE(map, adr, len); \
812 spin_lock(chip->mutex); \
817 static inline int do_read_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
819 unsigned long cmd_addr
;
820 struct cfi_private
*cfi
= map
->fldrv_priv
;
825 /* Ensure cmd read/writes are aligned. */
826 cmd_addr
= adr
& ~(map_bankwidth(map
)-1);
828 spin_lock(chip
->mutex
);
829 ret
= get_chip(map
, chip
, cmd_addr
, FL_READY
);
831 spin_unlock(chip
->mutex
);
835 if (chip
->state
!= FL_POINT
&& chip
->state
!= FL_READY
) {
836 map_write(map
, CMD(0xf0), cmd_addr
);
837 chip
->state
= FL_READY
;
840 map_copy_from(map
, buf
, adr
, len
);
842 put_chip(map
, chip
, cmd_addr
);
844 spin_unlock(chip
->mutex
);
849 static int cfi_amdstd_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
851 struct map_info
*map
= mtd
->priv
;
852 struct cfi_private
*cfi
= map
->fldrv_priv
;
857 /* ofs: offset within the first chip that the first read should start */
859 chipnum
= (from
>> cfi
->chipshift
);
860 ofs
= from
- (chipnum
<< cfi
->chipshift
);
866 unsigned long thislen
;
868 if (chipnum
>= cfi
->numchips
)
871 if ((len
+ ofs
-1) >> cfi
->chipshift
)
872 thislen
= (1<<cfi
->chipshift
) - ofs
;
876 ret
= do_read_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
891 static inline int do_read_secsi_onechip(struct map_info
*map
, struct flchip
*chip
, loff_t adr
, size_t len
, u_char
*buf
)
893 DECLARE_WAITQUEUE(wait
, current
);
894 unsigned long timeo
= jiffies
+ HZ
;
895 struct cfi_private
*cfi
= map
->fldrv_priv
;
898 spin_lock(chip
->mutex
);
900 if (chip
->state
!= FL_READY
){
902 printk(KERN_DEBUG
"Waiting for chip to read, status = %d\n", chip
->state
);
904 set_current_state(TASK_UNINTERRUPTIBLE
);
905 add_wait_queue(&chip
->wq
, &wait
);
907 spin_unlock(chip
->mutex
);
910 remove_wait_queue(&chip
->wq
, &wait
);
912 if(signal_pending(current
))
915 timeo
= jiffies
+ HZ
;
922 chip
->state
= FL_READY
;
924 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
925 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
926 cfi_send_gen_cmd(0x88, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
928 map_copy_from(map
, buf
, adr
, len
);
930 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
931 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
932 cfi_send_gen_cmd(0x90, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
933 cfi_send_gen_cmd(0x00, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
936 spin_unlock(chip
->mutex
);
941 static int cfi_amdstd_secsi_read (struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
, u_char
*buf
)
943 struct map_info
*map
= mtd
->priv
;
944 struct cfi_private
*cfi
= map
->fldrv_priv
;
950 /* ofs: offset within the first chip that the first read should start */
952 /* 8 secsi bytes per chip */
960 unsigned long thislen
;
962 if (chipnum
>= cfi
->numchips
)
965 if ((len
+ ofs
-1) >> 3)
966 thislen
= (1<<3) - ofs
;
970 ret
= do_read_secsi_onechip(map
, &cfi
->chips
[chipnum
], ofs
, thislen
, buf
);
985 static int __xipram
do_write_oneword(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, map_word datum
)
987 struct cfi_private
*cfi
= map
->fldrv_priv
;
988 unsigned long timeo
= jiffies
+ HZ
;
990 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
991 * have a max write time of a few hundreds usec). However, we should
992 * use the maximum timeout value given by the chip at probe time
993 * instead. Unfortunately, struct flchip does have a field for
994 * maximum timeout, only for typical which can be far too short
995 * depending of the conditions. The ' + 1' is to avoid having a
996 * timeout of 0 jiffies if HZ is smaller than 1000.
998 unsigned long uWriteTimeout
= ( HZ
/ 1000 ) + 1;
1005 spin_lock(chip
->mutex
);
1006 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1008 spin_unlock(chip
->mutex
);
1012 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1013 __func__
, adr
, datum
.x
[0] );
1016 * Check for a NOP for the case when the datum to write is already
1017 * present - it saves time and works around buggy chips that corrupt
1018 * data at other locations when 0xff is written to a location that
1019 * already contains 0xff.
1021 oldd
= map_read(map
, adr
);
1022 if (map_word_equal(map
, oldd
, datum
)) {
1023 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): NOP\n",
1028 XIP_INVAL_CACHED_RANGE(map
, adr
, map_bankwidth(map
));
1030 xip_disable(map
, chip
, adr
);
1032 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1033 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1034 cfi_send_gen_cmd(0xA0, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1035 map_write(map
, datum
, adr
);
1036 chip
->state
= FL_WRITING
;
1038 INVALIDATE_CACHE_UDELAY(map
, chip
,
1039 adr
, map_bankwidth(map
),
1040 chip
->word_write_time
);
1042 /* See comment above for timeout value. */
1043 timeo
= jiffies
+ uWriteTimeout
;
1045 if (chip
->state
!= FL_WRITING
) {
1046 /* Someone's suspended the write. Sleep */
1047 DECLARE_WAITQUEUE(wait
, current
);
1049 set_current_state(TASK_UNINTERRUPTIBLE
);
1050 add_wait_queue(&chip
->wq
, &wait
);
1051 spin_unlock(chip
->mutex
);
1053 remove_wait_queue(&chip
->wq
, &wait
);
1054 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1055 spin_lock(chip
->mutex
);
1059 if (time_after(jiffies
, timeo
) && !chip_ready(map
, adr
)){
1060 xip_enable(map
, chip
, adr
);
1061 printk(KERN_WARNING
"MTD %s(): software timeout\n", __func__
);
1062 xip_disable(map
, chip
, adr
);
1066 if (chip_ready(map
, adr
))
1069 /* Latency issues. Drop the lock, wait a while and retry */
1070 UDELAY(map
, chip
, adr
, 1);
1072 /* Did we succeed? */
1073 if (!chip_good(map
, adr
, datum
)) {
1074 /* reset on all failures. */
1075 map_write( map
, CMD(0xF0), chip
->start
);
1076 /* FIXME - should have reset delay before continuing */
1078 if (++retry_cnt
<= MAX_WORD_RETRIES
)
1083 xip_enable(map
, chip
, adr
);
1085 chip
->state
= FL_READY
;
1086 put_chip(map
, chip
, adr
);
1087 spin_unlock(chip
->mutex
);
1093 static int cfi_amdstd_write_words(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1094 size_t *retlen
, const u_char
*buf
)
1096 struct map_info
*map
= mtd
->priv
;
1097 struct cfi_private
*cfi
= map
->fldrv_priv
;
1100 unsigned long ofs
, chipstart
;
1101 DECLARE_WAITQUEUE(wait
, current
);
1107 chipnum
= to
>> cfi
->chipshift
;
1108 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1109 chipstart
= cfi
->chips
[chipnum
].start
;
1111 /* If it's not bus-aligned, do the first byte write */
1112 if (ofs
& (map_bankwidth(map
)-1)) {
1113 unsigned long bus_ofs
= ofs
& ~(map_bankwidth(map
)-1);
1114 int i
= ofs
- bus_ofs
;
1119 spin_lock(cfi
->chips
[chipnum
].mutex
);
1121 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1123 printk(KERN_DEBUG
"Waiting for chip to write, status = %d\n", cfi
->chips
[chipnum
].state
);
1125 set_current_state(TASK_UNINTERRUPTIBLE
);
1126 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1128 spin_unlock(cfi
->chips
[chipnum
].mutex
);
1131 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1133 if(signal_pending(current
))
1139 /* Load 'tmp_buf' with old contents of flash */
1140 tmp_buf
= map_read(map
, bus_ofs
+chipstart
);
1142 spin_unlock(cfi
->chips
[chipnum
].mutex
);
1144 /* Number of bytes to copy from buffer */
1145 n
= min_t(int, len
, map_bankwidth(map
)-i
);
1147 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, i
, n
);
1149 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1159 if (ofs
>> cfi
->chipshift
) {
1162 if (chipnum
== cfi
->numchips
)
1167 /* We are now aligned, write as much as possible */
1168 while(len
>= map_bankwidth(map
)) {
1171 datum
= map_word_load(map
, buf
);
1173 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1178 ofs
+= map_bankwidth(map
);
1179 buf
+= map_bankwidth(map
);
1180 (*retlen
) += map_bankwidth(map
);
1181 len
-= map_bankwidth(map
);
1183 if (ofs
>> cfi
->chipshift
) {
1186 if (chipnum
== cfi
->numchips
)
1188 chipstart
= cfi
->chips
[chipnum
].start
;
1192 /* Write the trailing bytes if any */
1193 if (len
& (map_bankwidth(map
)-1)) {
1197 spin_lock(cfi
->chips
[chipnum
].mutex
);
1199 if (cfi
->chips
[chipnum
].state
!= FL_READY
) {
1201 printk(KERN_DEBUG
"Waiting for chip to write, status = %d\n", cfi
->chips
[chipnum
].state
);
1203 set_current_state(TASK_UNINTERRUPTIBLE
);
1204 add_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1206 spin_unlock(cfi
->chips
[chipnum
].mutex
);
1209 remove_wait_queue(&cfi
->chips
[chipnum
].wq
, &wait
);
1211 if(signal_pending(current
))
1217 tmp_buf
= map_read(map
, ofs
+ chipstart
);
1219 spin_unlock(cfi
->chips
[chipnum
].mutex
);
1221 tmp_buf
= map_word_load_partial(map
, tmp_buf
, buf
, 0, len
);
1223 ret
= do_write_oneword(map
, &cfi
->chips
[chipnum
],
1236 * FIXME: interleaved mode not tested, and probably not supported!
1238 static int __xipram
do_write_buffer(struct map_info
*map
, struct flchip
*chip
,
1239 unsigned long adr
, const u_char
*buf
,
1242 struct cfi_private
*cfi
= map
->fldrv_priv
;
1243 unsigned long timeo
= jiffies
+ HZ
;
1244 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1245 unsigned long uWriteTimeout
= ( HZ
/ 1000 ) + 1;
1247 unsigned long cmd_adr
;
1254 spin_lock(chip
->mutex
);
1255 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1257 spin_unlock(chip
->mutex
);
1261 datum
= map_word_load(map
, buf
);
1263 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1264 __func__
, adr
, datum
.x
[0] );
1266 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1268 xip_disable(map
, chip
, cmd_adr
);
1270 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1271 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1272 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1274 /* Write Buffer Load */
1275 map_write(map
, CMD(0x25), cmd_adr
);
1277 chip
->state
= FL_WRITING_TO_BUFFER
;
1279 /* Write length of data to come */
1280 words
= len
/ map_bankwidth(map
);
1281 map_write(map
, CMD(words
- 1), cmd_adr
);
1284 while(z
< words
* map_bankwidth(map
)) {
1285 datum
= map_word_load(map
, buf
);
1286 map_write(map
, datum
, adr
+ z
);
1288 z
+= map_bankwidth(map
);
1289 buf
+= map_bankwidth(map
);
1291 z
-= map_bankwidth(map
);
1295 /* Write Buffer Program Confirm: GO GO GO */
1296 map_write(map
, CMD(0x29), cmd_adr
);
1297 chip
->state
= FL_WRITING
;
1299 INVALIDATE_CACHE_UDELAY(map
, chip
,
1300 adr
, map_bankwidth(map
),
1301 chip
->word_write_time
);
1303 timeo
= jiffies
+ uWriteTimeout
;
1306 if (chip
->state
!= FL_WRITING
) {
1307 /* Someone's suspended the write. Sleep */
1308 DECLARE_WAITQUEUE(wait
, current
);
1310 set_current_state(TASK_UNINTERRUPTIBLE
);
1311 add_wait_queue(&chip
->wq
, &wait
);
1312 spin_unlock(chip
->mutex
);
1314 remove_wait_queue(&chip
->wq
, &wait
);
1315 timeo
= jiffies
+ (HZ
/ 2); /* FIXME */
1316 spin_lock(chip
->mutex
);
1320 if (time_after(jiffies
, timeo
) && !chip_ready(map
, adr
))
1323 if (chip_ready(map
, adr
)) {
1324 xip_enable(map
, chip
, adr
);
1328 /* Latency issues. Drop the lock, wait a while and retry */
1329 UDELAY(map
, chip
, adr
, 1);
1332 /* reset on all failures. */
1333 map_write( map
, CMD(0xF0), chip
->start
);
1334 xip_enable(map
, chip
, adr
);
1335 /* FIXME - should have reset delay before continuing */
1337 printk(KERN_WARNING
"MTD %s(): software timeout\n",
1342 chip
->state
= FL_READY
;
1343 put_chip(map
, chip
, adr
);
1344 spin_unlock(chip
->mutex
);
1350 static int cfi_amdstd_write_buffers(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1351 size_t *retlen
, const u_char
*buf
)
1353 struct map_info
*map
= mtd
->priv
;
1354 struct cfi_private
*cfi
= map
->fldrv_priv
;
1355 int wbufsize
= cfi_interleave(cfi
) << cfi
->cfiq
->MaxBufWriteSize
;
1364 chipnum
= to
>> cfi
->chipshift
;
1365 ofs
= to
- (chipnum
<< cfi
->chipshift
);
1367 /* If it's not bus-aligned, do the first word write */
1368 if (ofs
& (map_bankwidth(map
)-1)) {
1369 size_t local_len
= (-ofs
)&(map_bankwidth(map
)-1);
1370 if (local_len
> len
)
1372 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1373 local_len
, retlen
, buf
);
1380 if (ofs
>> cfi
->chipshift
) {
1383 if (chipnum
== cfi
->numchips
)
1388 /* Write buffer is worth it only if more than one word to write... */
1389 while (len
>= map_bankwidth(map
) * 2) {
1390 /* We must not cross write block boundaries */
1391 int size
= wbufsize
- (ofs
& (wbufsize
-1));
1395 if (size
% map_bankwidth(map
))
1396 size
-= size
% map_bankwidth(map
);
1398 ret
= do_write_buffer(map
, &cfi
->chips
[chipnum
],
1408 if (ofs
>> cfi
->chipshift
) {
1411 if (chipnum
== cfi
->numchips
)
1417 size_t retlen_dregs
= 0;
1419 ret
= cfi_amdstd_write_words(mtd
, ofs
+ (chipnum
<<cfi
->chipshift
),
1420 len
, &retlen_dregs
, buf
);
1422 *retlen
+= retlen_dregs
;
1431 * Handle devices with one erase region, that only implement
1432 * the chip erase command.
1434 static int __xipram
do_erase_chip(struct map_info
*map
, struct flchip
*chip
)
1436 struct cfi_private
*cfi
= map
->fldrv_priv
;
1437 unsigned long timeo
= jiffies
+ HZ
;
1438 unsigned long int adr
;
1439 DECLARE_WAITQUEUE(wait
, current
);
1442 adr
= cfi
->addr_unlock1
;
1444 spin_lock(chip
->mutex
);
1445 ret
= get_chip(map
, chip
, adr
, FL_WRITING
);
1447 spin_unlock(chip
->mutex
);
1451 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): ERASE 0x%.8lx\n",
1452 __func__
, chip
->start
);
1454 XIP_INVAL_CACHED_RANGE(map
, adr
, map
->size
);
1456 xip_disable(map
, chip
, adr
);
1458 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1459 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1460 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1461 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1462 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1463 cfi_send_gen_cmd(0x10, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1465 chip
->state
= FL_ERASING
;
1466 chip
->erase_suspended
= 0;
1467 chip
->in_progress_block_addr
= adr
;
1469 INVALIDATE_CACHE_UDELAY(map
, chip
,
1471 chip
->erase_time
*500);
1473 timeo
= jiffies
+ (HZ
*20);
1476 if (chip
->state
!= FL_ERASING
) {
1477 /* Someone's suspended the erase. Sleep */
1478 set_current_state(TASK_UNINTERRUPTIBLE
);
1479 add_wait_queue(&chip
->wq
, &wait
);
1480 spin_unlock(chip
->mutex
);
1482 remove_wait_queue(&chip
->wq
, &wait
);
1483 spin_lock(chip
->mutex
);
1486 if (chip
->erase_suspended
) {
1487 /* This erase was suspended and resumed.
1488 Adjust the timeout */
1489 timeo
= jiffies
+ (HZ
*20); /* FIXME */
1490 chip
->erase_suspended
= 0;
1493 if (chip_ready(map
, adr
))
1496 if (time_after(jiffies
, timeo
)) {
1497 printk(KERN_WARNING
"MTD %s(): software timeout\n",
1502 /* Latency issues. Drop the lock, wait a while and retry */
1503 UDELAY(map
, chip
, adr
, 1000000/HZ
);
1505 /* Did we succeed? */
1506 if (!chip_good(map
, adr
, map_word_ff(map
))) {
1507 /* reset on all failures. */
1508 map_write( map
, CMD(0xF0), chip
->start
);
1509 /* FIXME - should have reset delay before continuing */
1514 chip
->state
= FL_READY
;
1515 xip_enable(map
, chip
, adr
);
1516 put_chip(map
, chip
, adr
);
1517 spin_unlock(chip
->mutex
);
1523 static int __xipram
do_erase_oneblock(struct map_info
*map
, struct flchip
*chip
, unsigned long adr
, int len
, void *thunk
)
1525 struct cfi_private
*cfi
= map
->fldrv_priv
;
1526 unsigned long timeo
= jiffies
+ HZ
;
1527 DECLARE_WAITQUEUE(wait
, current
);
1532 spin_lock(chip
->mutex
);
1533 ret
= get_chip(map
, chip
, adr
, FL_ERASING
);
1535 spin_unlock(chip
->mutex
);
1539 DEBUG( MTD_DEBUG_LEVEL3
, "MTD %s(): ERASE 0x%.8lx\n",
1542 XIP_INVAL_CACHED_RANGE(map
, adr
, len
);
1544 xip_disable(map
, chip
, adr
);
1546 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1547 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1548 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1549 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1550 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
, cfi
->device_type
, NULL
);
1551 map_write(map
, CMD(0x30), adr
);
1553 chip
->state
= FL_ERASING
;
1554 chip
->erase_suspended
= 0;
1555 chip
->in_progress_block_addr
= adr
;
1557 INVALIDATE_CACHE_UDELAY(map
, chip
,
1559 chip
->erase_time
*500);
1561 timeo
= jiffies
+ (HZ
*20);
1564 if (chip
->state
!= FL_ERASING
) {
1565 /* Someone's suspended the erase. Sleep */
1566 set_current_state(TASK_UNINTERRUPTIBLE
);
1567 add_wait_queue(&chip
->wq
, &wait
);
1568 spin_unlock(chip
->mutex
);
1570 remove_wait_queue(&chip
->wq
, &wait
);
1571 spin_lock(chip
->mutex
);
1574 if (chip
->erase_suspended
) {
1575 /* This erase was suspended and resumed.
1576 Adjust the timeout */
1577 timeo
= jiffies
+ (HZ
*20); /* FIXME */
1578 chip
->erase_suspended
= 0;
1581 if (chip_ready(map
, adr
)) {
1582 xip_enable(map
, chip
, adr
);
1586 if (time_after(jiffies
, timeo
)) {
1587 xip_enable(map
, chip
, adr
);
1588 printk(KERN_WARNING
"MTD %s(): software timeout\n",
1593 /* Latency issues. Drop the lock, wait a while and retry */
1594 UDELAY(map
, chip
, adr
, 1000000/HZ
);
1596 /* Did we succeed? */
1597 if (!chip_good(map
, adr
, map_word_ff(map
))) {
1598 /* reset on all failures. */
1599 map_write( map
, CMD(0xF0), chip
->start
);
1600 /* FIXME - should have reset delay before continuing */
1605 chip
->state
= FL_READY
;
1606 put_chip(map
, chip
, adr
);
1607 spin_unlock(chip
->mutex
);
1612 static int cfi_amdstd_erase_varsize(struct mtd_info
*mtd
, struct erase_info
*instr
)
1614 unsigned long ofs
, len
;
1620 ret
= cfi_varsize_frob(mtd
, do_erase_oneblock
, ofs
, len
, NULL
);
1624 instr
->state
= MTD_ERASE_DONE
;
1625 mtd_erase_callback(instr
);
1631 static int cfi_amdstd_erase_chip(struct mtd_info
*mtd
, struct erase_info
*instr
)
1633 struct map_info
*map
= mtd
->priv
;
1634 struct cfi_private
*cfi
= map
->fldrv_priv
;
1637 if (instr
->addr
!= 0)
1640 if (instr
->len
!= mtd
->size
)
1643 ret
= do_erase_chip(map
, &cfi
->chips
[0]);
1647 instr
->state
= MTD_ERASE_DONE
;
1648 mtd_erase_callback(instr
);
1653 static int do_atmel_lock(struct map_info
*map
, struct flchip
*chip
,
1654 unsigned long adr
, int len
, void *thunk
)
1656 struct cfi_private
*cfi
= map
->fldrv_priv
;
1659 spin_lock(chip
->mutex
);
1660 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_LOCKING
);
1663 chip
->state
= FL_LOCKING
;
1665 DEBUG(MTD_DEBUG_LEVEL3
, "MTD %s(): LOCK 0x%08lx len %d\n",
1666 __func__
, adr
, len
);
1668 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1669 cfi
->device_type
, NULL
);
1670 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1671 cfi
->device_type
, NULL
);
1672 cfi_send_gen_cmd(0x80, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1673 cfi
->device_type
, NULL
);
1674 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1675 cfi
->device_type
, NULL
);
1676 cfi_send_gen_cmd(0x55, cfi
->addr_unlock2
, chip
->start
, map
, cfi
,
1677 cfi
->device_type
, NULL
);
1678 map_write(map
, CMD(0x40), chip
->start
+ adr
);
1680 chip
->state
= FL_READY
;
1681 put_chip(map
, chip
, adr
+ chip
->start
);
1685 spin_unlock(chip
->mutex
);
1689 static int do_atmel_unlock(struct map_info
*map
, struct flchip
*chip
,
1690 unsigned long adr
, int len
, void *thunk
)
1692 struct cfi_private
*cfi
= map
->fldrv_priv
;
1695 spin_lock(chip
->mutex
);
1696 ret
= get_chip(map
, chip
, adr
+ chip
->start
, FL_UNLOCKING
);
1699 chip
->state
= FL_UNLOCKING
;
1701 DEBUG(MTD_DEBUG_LEVEL3
, "MTD %s(): LOCK 0x%08lx len %d\n",
1702 __func__
, adr
, len
);
1704 cfi_send_gen_cmd(0xAA, cfi
->addr_unlock1
, chip
->start
, map
, cfi
,
1705 cfi
->device_type
, NULL
);
1706 map_write(map
, CMD(0x70), adr
);
1708 chip
->state
= FL_READY
;
1709 put_chip(map
, chip
, adr
+ chip
->start
);
1713 spin_unlock(chip
->mutex
);
1717 static int cfi_atmel_lock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
)
1719 return cfi_varsize_frob(mtd
, do_atmel_lock
, ofs
, len
, NULL
);
1722 static int cfi_atmel_unlock(struct mtd_info
*mtd
, loff_t ofs
, size_t len
)
1724 return cfi_varsize_frob(mtd
, do_atmel_unlock
, ofs
, len
, NULL
);
1728 static void cfi_amdstd_sync (struct mtd_info
*mtd
)
1730 struct map_info
*map
= mtd
->priv
;
1731 struct cfi_private
*cfi
= map
->fldrv_priv
;
1733 struct flchip
*chip
;
1735 DECLARE_WAITQUEUE(wait
, current
);
1737 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1738 chip
= &cfi
->chips
[i
];
1741 spin_lock(chip
->mutex
);
1743 switch(chip
->state
) {
1747 case FL_JEDEC_QUERY
:
1748 chip
->oldstate
= chip
->state
;
1749 chip
->state
= FL_SYNCING
;
1750 /* No need to wake_up() on this state change -
1751 * as the whole point is that nobody can do anything
1752 * with the chip now anyway.
1755 spin_unlock(chip
->mutex
);
1759 /* Not an idle state */
1760 add_wait_queue(&chip
->wq
, &wait
);
1762 spin_unlock(chip
->mutex
);
1766 remove_wait_queue(&chip
->wq
, &wait
);
1772 /* Unlock the chips again */
1774 for (i
--; i
>=0; i
--) {
1775 chip
= &cfi
->chips
[i
];
1777 spin_lock(chip
->mutex
);
1779 if (chip
->state
== FL_SYNCING
) {
1780 chip
->state
= chip
->oldstate
;
1783 spin_unlock(chip
->mutex
);
1788 static int cfi_amdstd_suspend(struct mtd_info
*mtd
)
1790 struct map_info
*map
= mtd
->priv
;
1791 struct cfi_private
*cfi
= map
->fldrv_priv
;
1793 struct flchip
*chip
;
1796 for (i
=0; !ret
&& i
<cfi
->numchips
; i
++) {
1797 chip
= &cfi
->chips
[i
];
1799 spin_lock(chip
->mutex
);
1801 switch(chip
->state
) {
1805 case FL_JEDEC_QUERY
:
1806 chip
->oldstate
= chip
->state
;
1807 chip
->state
= FL_PM_SUSPENDED
;
1808 /* No need to wake_up() on this state change -
1809 * as the whole point is that nobody can do anything
1810 * with the chip now anyway.
1812 case FL_PM_SUSPENDED
:
1819 spin_unlock(chip
->mutex
);
1822 /* Unlock the chips again */
1825 for (i
--; i
>=0; i
--) {
1826 chip
= &cfi
->chips
[i
];
1828 spin_lock(chip
->mutex
);
1830 if (chip
->state
== FL_PM_SUSPENDED
) {
1831 chip
->state
= chip
->oldstate
;
1834 spin_unlock(chip
->mutex
);
1842 static void cfi_amdstd_resume(struct mtd_info
*mtd
)
1844 struct map_info
*map
= mtd
->priv
;
1845 struct cfi_private
*cfi
= map
->fldrv_priv
;
1847 struct flchip
*chip
;
1849 for (i
=0; i
<cfi
->numchips
; i
++) {
1851 chip
= &cfi
->chips
[i
];
1853 spin_lock(chip
->mutex
);
1855 if (chip
->state
== FL_PM_SUSPENDED
) {
1856 chip
->state
= FL_READY
;
1857 map_write(map
, CMD(0xF0), chip
->start
);
1861 printk(KERN_ERR
"Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1863 spin_unlock(chip
->mutex
);
1867 static void cfi_amdstd_destroy(struct mtd_info
*mtd
)
1869 struct map_info
*map
= mtd
->priv
;
1870 struct cfi_private
*cfi
= map
->fldrv_priv
;
1872 kfree(cfi
->cmdset_priv
);
1875 kfree(mtd
->eraseregions
);
1878 MODULE_LICENSE("GPL");
1879 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1880 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");