2 * random.c -- A strong random number generator
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
101 * Exported interfaces ---- output
102 * ===============================
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
107 * void get_random_bytes(void *buf, int nbytes);
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
125 * Exported interfaces ---- input
126 * ==============================
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
162 * Ensuring unpredictability at system startup
163 * ============================================
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
273 #include <asm/irq_regs.h>
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
279 /* #define ADD_INTERRUPT_BENCH */
282 * Configuration information
284 #define INPUT_POOL_SHIFT 12
285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT 10
287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE 512
289 #define EXTRACT_SIZE 10
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
295 * To allow fractional bits to be tracked, the entropy_count field is
296 * denominated in units of 1/8th bits.
298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299 * credit_entropy_bits() needs to be 64 bits wide.
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
305 * The minimum number of bits of entropy before we wake up a read on
306 * /dev/random. Should be enough to do a significant reseed.
308 static int random_read_wakeup_bits
= 64;
311 * If the entropy count falls under this number of bits, then we
312 * should wake up processes which are selecting or polling on write
313 * access to /dev/random.
315 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
318 * Originally, we used a primitive polynomial of degree .poolwords
319 * over GF(2). The taps for various sizes are defined below. They
320 * were chosen to be evenly spaced except for the last tap, which is 1
321 * to get the twisting happening as fast as possible.
323 * For the purposes of better mixing, we use the CRC-32 polynomial as
324 * well to make a (modified) twisted Generalized Feedback Shift
325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
326 * generators. ACM Transactions on Modeling and Computer Simulation
327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
328 * GFSR generators II. ACM Transactions on Modeling and Computer
329 * Simulation 4:254-266)
331 * Thanks to Colin Plumb for suggesting this.
333 * The mixing operation is much less sensitive than the output hash,
334 * where we use SHA-1. All that we want of mixing operation is that
335 * it be a good non-cryptographic hash; i.e. it not produce collisions
336 * when fed "random" data of the sort we expect to see. As long as
337 * the pool state differs for different inputs, we have preserved the
338 * input entropy and done a good job. The fact that an intelligent
339 * attacker can construct inputs that will produce controlled
340 * alterations to the pool's state is not important because we don't
341 * consider such inputs to contribute any randomness. The only
342 * property we need with respect to them is that the attacker can't
343 * increase his/her knowledge of the pool's state. Since all
344 * additions are reversible (knowing the final state and the input,
345 * you can reconstruct the initial state), if an attacker has any
346 * uncertainty about the initial state, he/she can only shuffle that
347 * uncertainty about, but never cause any collisions (which would
348 * decrease the uncertainty).
350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351 * Videau in their paper, "The Linux Pseudorandom Number Generator
352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
353 * paper, they point out that we are not using a true Twisted GFSR,
354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355 * is, with only three taps, instead of the six that we are using).
356 * As a result, the resulting polynomial is neither primitive nor
357 * irreducible, and hence does not have a maximal period over
358 * GF(2**32). They suggest a slight change to the generator
359 * polynomial which improves the resulting TGFSR polynomial to be
360 * irreducible, which we have made here.
362 static struct poolinfo
{
363 int poolbitshift
, poolwords
, poolbytes
, poolbits
, poolfracbits
;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 int tap1
, tap2
, tap3
, tap4
, tap5
;
366 } poolinfo_table
[] = {
367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 { S(128), 104, 76, 51, 25, 1 },
370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 { S(32), 26, 19, 14, 7, 1 },
374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
375 { S(2048), 1638, 1231, 819, 411, 1 },
377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 { S(1024), 817, 615, 412, 204, 1 },
380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 { S(1024), 819, 616, 410, 207, 2 },
383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 { S(512), 411, 308, 208, 104, 1 },
386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 { S(512), 409, 307, 206, 102, 2 },
388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 { S(512), 409, 309, 205, 103, 2 },
391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 { S(256), 205, 155, 101, 52, 1 },
394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 { S(128), 103, 78, 51, 27, 2 },
397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 { S(64), 52, 39, 26, 14, 1 },
403 * Static global variables
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
407 static struct fasync_struct
*fasync
;
409 static DEFINE_SPINLOCK(random_ready_list_lock
);
410 static LIST_HEAD(random_ready_list
);
414 unsigned long init_time
;
418 struct crng_state primary_crng
= {
419 .lock
= __SPIN_LOCK_UNLOCKED(primary_crng
.lock
),
423 * crng_init = 0 --> Uninitialized
425 * 2 --> Initialized from input_pool
427 * crng_init is protected by primary_crng->lock, and only increases
428 * its value (from 0->1->2).
430 static int crng_init
= 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt
= 0;
433 static unsigned long crng_global_init_time
= 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state
*crng
,
436 __u32 out
[CHACHA20_BLOCK_WORDS
]);
437 static void _crng_backtrack_protect(struct crng_state
*crng
,
438 __u32 tmp
[CHACHA20_BLOCK_WORDS
], int used
);
439 static void process_random_ready_list(void);
440 static void _get_random_bytes(void *buf
, int nbytes
);
442 static struct ratelimit_state unseeded_warning
=
443 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ
, 3);
444 static struct ratelimit_state urandom_warning
=
445 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ
, 3);
447 static int ratelimit_disable __read_mostly
;
449 module_param_named(ratelimit_disable
, ratelimit_disable
, int, 0644);
450 MODULE_PARM_DESC(ratelimit_disable
, "Disable random ratelimit suppression");
452 /**********************************************************************
454 * OS independent entropy store. Here are the functions which handle
455 * storing entropy in an entropy pool.
457 **********************************************************************/
459 struct entropy_store
;
460 struct entropy_store
{
461 /* read-only data: */
462 const struct poolinfo
*poolinfo
;
465 struct entropy_store
*pull
;
466 struct work_struct push_work
;
468 /* read-write data: */
469 unsigned long last_pulled
;
471 unsigned short add_ptr
;
472 unsigned short input_rotate
;
475 unsigned int initialized
:1;
476 unsigned int last_data_init
:1;
477 __u8 last_data
[EXTRACT_SIZE
];
480 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
481 size_t nbytes
, int min
, int rsvd
);
482 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
483 size_t nbytes
, int fips
);
485 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
);
486 static void push_to_pool(struct work_struct
*work
);
487 static __u32 input_pool_data
[INPUT_POOL_WORDS
] __latent_entropy
;
488 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
] __latent_entropy
;
490 static struct entropy_store input_pool
= {
491 .poolinfo
= &poolinfo_table
[0],
493 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
494 .pool
= input_pool_data
497 static struct entropy_store blocking_pool
= {
498 .poolinfo
= &poolinfo_table
[1],
501 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
502 .pool
= blocking_pool_data
,
503 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
507 static __u32
const twist_table
[8] = {
508 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
512 * This function adds bytes into the entropy "pool". It does not
513 * update the entropy estimate. The caller should call
514 * credit_entropy_bits if this is appropriate.
516 * The pool is stirred with a primitive polynomial of the appropriate
517 * degree, and then twisted. We twist by three bits at a time because
518 * it's cheap to do so and helps slightly in the expected case where
519 * the entropy is concentrated in the low-order bits.
521 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
524 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
526 int wordmask
= r
->poolinfo
->poolwords
- 1;
527 const char *bytes
= in
;
530 tap1
= r
->poolinfo
->tap1
;
531 tap2
= r
->poolinfo
->tap2
;
532 tap3
= r
->poolinfo
->tap3
;
533 tap4
= r
->poolinfo
->tap4
;
534 tap5
= r
->poolinfo
->tap5
;
536 input_rotate
= r
->input_rotate
;
539 /* mix one byte at a time to simplify size handling and churn faster */
541 w
= rol32(*bytes
++, input_rotate
);
542 i
= (i
- 1) & wordmask
;
544 /* XOR in the various taps */
546 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
547 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
548 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
549 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
550 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
552 /* Mix the result back in with a twist */
553 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
556 * Normally, we add 7 bits of rotation to the pool.
557 * At the beginning of the pool, add an extra 7 bits
558 * rotation, so that successive passes spread the
559 * input bits across the pool evenly.
561 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
564 r
->input_rotate
= input_rotate
;
568 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
571 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
572 _mix_pool_bytes(r
, in
, nbytes
);
575 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
580 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
581 spin_lock_irqsave(&r
->lock
, flags
);
582 _mix_pool_bytes(r
, in
, nbytes
);
583 spin_unlock_irqrestore(&r
->lock
, flags
);
589 unsigned short reg_idx
;
594 * This is a fast mixing routine used by the interrupt randomness
595 * collector. It's hardcoded for an 128 bit pool and assumes that any
596 * locks that might be needed are taken by the caller.
598 static void fast_mix(struct fast_pool
*f
)
600 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
601 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
604 b
= rol32(b
, 6); d
= rol32(d
, 27);
608 b
= rol32(b
, 16); d
= rol32(d
, 14);
612 b
= rol32(b
, 6); d
= rol32(d
, 27);
616 b
= rol32(b
, 16); d
= rol32(d
, 14);
619 f
->pool
[0] = a
; f
->pool
[1] = b
;
620 f
->pool
[2] = c
; f
->pool
[3] = d
;
624 static void process_random_ready_list(void)
627 struct random_ready_callback
*rdy
, *tmp
;
629 spin_lock_irqsave(&random_ready_list_lock
, flags
);
630 list_for_each_entry_safe(rdy
, tmp
, &random_ready_list
, list
) {
631 struct module
*owner
= rdy
->owner
;
633 list_del_init(&rdy
->list
);
637 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
641 * Credit (or debit) the entropy store with n bits of entropy.
642 * Use credit_entropy_bits_safe() if the value comes from userspace
643 * or otherwise should be checked for extreme values.
645 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
647 int entropy_count
, orig
;
648 const int pool_size
= r
->poolinfo
->poolfracbits
;
649 int nfrac
= nbits
<< ENTROPY_SHIFT
;
655 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
658 entropy_count
+= nfrac
;
661 * Credit: we have to account for the possibility of
662 * overwriting already present entropy. Even in the
663 * ideal case of pure Shannon entropy, new contributions
664 * approach the full value asymptotically:
666 * entropy <- entropy + (pool_size - entropy) *
667 * (1 - exp(-add_entropy/pool_size))
669 * For add_entropy <= pool_size/2 then
670 * (1 - exp(-add_entropy/pool_size)) >=
671 * (add_entropy/pool_size)*0.7869...
672 * so we can approximate the exponential with
673 * 3/4*add_entropy/pool_size and still be on the
674 * safe side by adding at most pool_size/2 at a time.
676 * The use of pool_size-2 in the while statement is to
677 * prevent rounding artifacts from making the loop
678 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 * turns no matter how large nbits is.
682 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
683 /* The +2 corresponds to the /4 in the denominator */
686 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
688 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
690 entropy_count
+= add
;
692 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
695 if (unlikely(entropy_count
< 0)) {
696 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 r
->name
, entropy_count
);
700 } else if (entropy_count
> pool_size
)
701 entropy_count
= pool_size
;
702 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
705 r
->entropy_total
+= nbits
;
706 if (!r
->initialized
&& r
->entropy_total
> 128) {
708 r
->entropy_total
= 0;
711 trace_credit_entropy_bits(r
->name
, nbits
,
712 entropy_count
>> ENTROPY_SHIFT
,
713 r
->entropy_total
, _RET_IP_
);
715 if (r
== &input_pool
) {
716 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
718 if (crng_init
< 2 && entropy_bits
>= 128) {
719 crng_reseed(&primary_crng
, r
);
720 entropy_bits
= r
->entropy_count
>> ENTROPY_SHIFT
;
723 /* should we wake readers? */
724 if (entropy_bits
>= random_read_wakeup_bits
&&
725 wq_has_sleeper(&random_read_wait
)) {
726 wake_up_interruptible(&random_read_wait
);
727 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
729 /* If the input pool is getting full, send some
730 * entropy to the blocking pool until it is 75% full.
732 if (entropy_bits
> random_write_wakeup_bits
&&
734 r
->entropy_total
>= 2*random_read_wakeup_bits
) {
735 struct entropy_store
*other
= &blocking_pool
;
737 if (other
->entropy_count
<=
738 3 * other
->poolinfo
->poolfracbits
/ 4) {
739 schedule_work(&other
->push_work
);
740 r
->entropy_total
= 0;
746 static int credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
748 const int nbits_max
= r
->poolinfo
->poolwords
* 32;
753 /* Cap the value to avoid overflows */
754 nbits
= min(nbits
, nbits_max
);
756 credit_entropy_bits(r
, nbits
);
760 /*********************************************************************
762 * CRNG using CHACHA20
764 *********************************************************************/
766 #define CRNG_RESEED_INTERVAL (300*HZ)
768 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait
);
772 * Hack to deal with crazy userspace progams when they are all trying
773 * to access /dev/urandom in parallel. The programs are almost
774 * certainly doing something terribly wrong, but we'll work around
775 * their brain damage.
777 static struct crng_state
**crng_node_pool __read_mostly
;
780 static void invalidate_batched_entropy(void);
782 static void crng_initialize(struct crng_state
*crng
)
787 memcpy(&crng
->state
[0], "expand 32-byte k", 16);
788 if (crng
== &primary_crng
)
789 _extract_entropy(&input_pool
, &crng
->state
[4],
790 sizeof(__u32
) * 12, 0);
792 _get_random_bytes(&crng
->state
[4], sizeof(__u32
) * 12);
793 for (i
= 4; i
< 16; i
++) {
794 if (!arch_get_random_seed_long(&rv
) &&
795 !arch_get_random_long(&rv
))
796 rv
= random_get_entropy();
797 crng
->state
[i
] ^= rv
;
799 crng
->init_time
= jiffies
- CRNG_RESEED_INTERVAL
- 1;
803 static void do_numa_crng_init(struct work_struct
*work
)
806 struct crng_state
*crng
;
807 struct crng_state
**pool
;
809 pool
= kcalloc(nr_node_ids
, sizeof(*pool
), GFP_KERNEL
|__GFP_NOFAIL
);
810 for_each_online_node(i
) {
811 crng
= kmalloc_node(sizeof(struct crng_state
),
812 GFP_KERNEL
| __GFP_NOFAIL
, i
);
813 spin_lock_init(&crng
->lock
);
814 crng_initialize(crng
);
818 if (cmpxchg(&crng_node_pool
, NULL
, pool
)) {
825 static DECLARE_WORK(numa_crng_init_work
, do_numa_crng_init
);
827 static void numa_crng_init(void)
829 schedule_work(&numa_crng_init_work
);
832 static void numa_crng_init(void) {}
836 * crng_fast_load() can be called by code in the interrupt service
837 * path. So we can't afford to dilly-dally.
839 static int crng_fast_load(const char *cp
, size_t len
)
844 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
846 if (crng_init
!= 0) {
847 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
850 p
= (unsigned char *) &primary_crng
.state
[4];
851 while (len
> 0 && crng_init_cnt
< CRNG_INIT_CNT_THRESH
) {
852 p
[crng_init_cnt
% CHACHA20_KEY_SIZE
] ^= *cp
;
853 cp
++; crng_init_cnt
++; len
--;
855 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
856 if (crng_init_cnt
>= CRNG_INIT_CNT_THRESH
) {
857 invalidate_batched_entropy();
859 wake_up_interruptible(&crng_init_wait
);
860 pr_notice("random: fast init done\n");
866 * crng_slow_load() is called by add_device_randomness, which has two
867 * attributes. (1) We can't trust the buffer passed to it is
868 * guaranteed to be unpredictable (so it might not have any entropy at
869 * all), and (2) it doesn't have the performance constraints of
872 * So we do something more comprehensive which is guaranteed to touch
873 * all of the primary_crng's state, and which uses a LFSR with a
874 * period of 255 as part of the mixing algorithm. Finally, we do
875 * *not* advance crng_init_cnt since buffer we may get may be something
876 * like a fixed DMI table (for example), which might very well be
877 * unique to the machine, but is otherwise unvarying.
879 static int crng_slow_load(const char *cp
, size_t len
)
882 static unsigned char lfsr
= 1;
884 unsigned i
, max
= CHACHA20_KEY_SIZE
;
885 const char * src_buf
= cp
;
886 char * dest_buf
= (char *) &primary_crng
.state
[4];
888 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
890 if (crng_init
!= 0) {
891 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
897 for (i
= 0; i
< max
; i
++) {
902 tmp
= dest_buf
[i
% CHACHA20_KEY_SIZE
];
903 dest_buf
[i
% CHACHA20_KEY_SIZE
] ^= src_buf
[i
% len
] ^ lfsr
;
904 lfsr
+= (tmp
<< 3) | (tmp
>> 5);
906 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
910 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
)
915 __u32 block
[CHACHA20_BLOCK_WORDS
];
920 num
= extract_entropy(r
, &buf
, 32, 16, 0);
924 _extract_crng(&primary_crng
, buf
.block
);
925 _crng_backtrack_protect(&primary_crng
, buf
.block
,
928 spin_lock_irqsave(&crng
->lock
, flags
);
929 for (i
= 0; i
< 8; i
++) {
931 if (!arch_get_random_seed_long(&rv
) &&
932 !arch_get_random_long(&rv
))
933 rv
= random_get_entropy();
934 crng
->state
[i
+4] ^= buf
.key
[i
] ^ rv
;
936 memzero_explicit(&buf
, sizeof(buf
));
937 crng
->init_time
= jiffies
;
938 spin_unlock_irqrestore(&crng
->lock
, flags
);
939 if (crng
== &primary_crng
&& crng_init
< 2) {
940 invalidate_batched_entropy();
943 process_random_ready_list();
944 wake_up_interruptible(&crng_init_wait
);
945 pr_notice("random: crng init done\n");
946 if (unseeded_warning
.missed
) {
947 pr_notice("random: %d get_random_xx warning(s) missed "
948 "due to ratelimiting\n",
949 unseeded_warning
.missed
);
950 unseeded_warning
.missed
= 0;
952 if (urandom_warning
.missed
) {
953 pr_notice("random: %d urandom warning(s) missed "
954 "due to ratelimiting\n",
955 urandom_warning
.missed
);
956 urandom_warning
.missed
= 0;
961 static void _extract_crng(struct crng_state
*crng
,
962 __u32 out
[CHACHA20_BLOCK_WORDS
])
964 unsigned long v
, flags
;
967 (time_after(crng_global_init_time
, crng
->init_time
) ||
968 time_after(jiffies
, crng
->init_time
+ CRNG_RESEED_INTERVAL
)))
969 crng_reseed(crng
, crng
== &primary_crng
? &input_pool
: NULL
);
970 spin_lock_irqsave(&crng
->lock
, flags
);
971 if (arch_get_random_long(&v
))
972 crng
->state
[14] ^= v
;
973 chacha20_block(&crng
->state
[0], out
);
974 if (crng
->state
[12] == 0)
976 spin_unlock_irqrestore(&crng
->lock
, flags
);
979 static void extract_crng(__u32 out
[CHACHA20_BLOCK_WORDS
])
981 struct crng_state
*crng
= NULL
;
985 crng
= crng_node_pool
[numa_node_id()];
988 crng
= &primary_crng
;
989 _extract_crng(crng
, out
);
993 * Use the leftover bytes from the CRNG block output (if there is
994 * enough) to mutate the CRNG key to provide backtracking protection.
996 static void _crng_backtrack_protect(struct crng_state
*crng
,
997 __u32 tmp
[CHACHA20_BLOCK_WORDS
], int used
)
1003 used
= round_up(used
, sizeof(__u32
));
1004 if (used
+ CHACHA20_KEY_SIZE
> CHACHA20_BLOCK_SIZE
) {
1008 spin_lock_irqsave(&crng
->lock
, flags
);
1009 s
= &tmp
[used
/ sizeof(__u32
)];
1010 d
= &crng
->state
[4];
1011 for (i
=0; i
< 8; i
++)
1013 spin_unlock_irqrestore(&crng
->lock
, flags
);
1016 static void crng_backtrack_protect(__u32 tmp
[CHACHA20_BLOCK_WORDS
], int used
)
1018 struct crng_state
*crng
= NULL
;
1022 crng
= crng_node_pool
[numa_node_id()];
1025 crng
= &primary_crng
;
1026 _crng_backtrack_protect(crng
, tmp
, used
);
1029 static ssize_t
extract_crng_user(void __user
*buf
, size_t nbytes
)
1031 ssize_t ret
= 0, i
= CHACHA20_BLOCK_SIZE
;
1032 __u32 tmp
[CHACHA20_BLOCK_WORDS
];
1033 int large_request
= (nbytes
> 256);
1036 if (large_request
&& need_resched()) {
1037 if (signal_pending(current
)) {
1046 i
= min_t(int, nbytes
, CHACHA20_BLOCK_SIZE
);
1047 if (copy_to_user(buf
, tmp
, i
)) {
1056 crng_backtrack_protect(tmp
, i
);
1058 /* Wipe data just written to memory */
1059 memzero_explicit(tmp
, sizeof(tmp
));
1065 /*********************************************************************
1067 * Entropy input management
1069 *********************************************************************/
1071 /* There is one of these per entropy source */
1072 struct timer_rand_state
{
1074 long last_delta
, last_delta2
;
1077 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1080 * Add device- or boot-specific data to the input pool to help
1083 * None of this adds any entropy; it is meant to avoid the problem of
1084 * the entropy pool having similar initial state across largely
1085 * identical devices.
1087 void add_device_randomness(const void *buf
, unsigned int size
)
1089 unsigned long time
= random_get_entropy() ^ jiffies
;
1090 unsigned long flags
;
1092 if (!crng_ready() && size
)
1093 crng_slow_load(buf
, size
);
1095 trace_add_device_randomness(size
, _RET_IP_
);
1096 spin_lock_irqsave(&input_pool
.lock
, flags
);
1097 _mix_pool_bytes(&input_pool
, buf
, size
);
1098 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
1099 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
1101 EXPORT_SYMBOL(add_device_randomness
);
1103 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
1106 * This function adds entropy to the entropy "pool" by using timing
1107 * delays. It uses the timer_rand_state structure to make an estimate
1108 * of how many bits of entropy this call has added to the pool.
1110 * The number "num" is also added to the pool - it should somehow describe
1111 * the type of event which just happened. This is currently 0-255 for
1112 * keyboard scan codes, and 256 upwards for interrupts.
1115 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
1117 struct entropy_store
*r
;
1123 long delta
, delta2
, delta3
;
1127 sample
.jiffies
= jiffies
;
1128 sample
.cycles
= random_get_entropy();
1131 mix_pool_bytes(r
, &sample
, sizeof(sample
));
1134 * Calculate number of bits of randomness we probably added.
1135 * We take into account the first, second and third-order deltas
1136 * in order to make our estimate.
1138 delta
= sample
.jiffies
- state
->last_time
;
1139 state
->last_time
= sample
.jiffies
;
1141 delta2
= delta
- state
->last_delta
;
1142 state
->last_delta
= delta
;
1144 delta3
= delta2
- state
->last_delta2
;
1145 state
->last_delta2
= delta2
;
1159 * delta is now minimum absolute delta.
1160 * Round down by 1 bit on general principles,
1161 * and limit entropy entimate to 12 bits.
1163 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
1168 void add_input_randomness(unsigned int type
, unsigned int code
,
1171 static unsigned char last_value
;
1173 /* ignore autorepeat and the like */
1174 if (value
== last_value
)
1178 add_timer_randomness(&input_timer_state
,
1179 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
1180 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
1182 EXPORT_SYMBOL_GPL(add_input_randomness
);
1184 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
1186 #ifdef ADD_INTERRUPT_BENCH
1187 static unsigned long avg_cycles
, avg_deviation
;
1189 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1190 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1192 static void add_interrupt_bench(cycles_t start
)
1194 long delta
= random_get_entropy() - start
;
1196 /* Use a weighted moving average */
1197 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
1198 avg_cycles
+= delta
;
1199 /* And average deviation */
1200 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
1201 avg_deviation
+= delta
;
1204 #define add_interrupt_bench(x)
1207 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
1209 __u32
*ptr
= (__u32
*) regs
;
1214 idx
= READ_ONCE(f
->reg_idx
);
1215 if (idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
1218 WRITE_ONCE(f
->reg_idx
, idx
);
1222 void add_interrupt_randomness(int irq
, int irq_flags
)
1224 struct entropy_store
*r
;
1225 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
1226 struct pt_regs
*regs
= get_irq_regs();
1227 unsigned long now
= jiffies
;
1228 cycles_t cycles
= random_get_entropy();
1229 __u32 c_high
, j_high
;
1235 cycles
= get_reg(fast_pool
, regs
);
1236 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
1237 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
1238 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
1239 fast_pool
->pool
[1] ^= now
^ c_high
;
1240 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
1241 fast_pool
->pool
[2] ^= ip
;
1242 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
1243 get_reg(fast_pool
, regs
);
1245 fast_mix(fast_pool
);
1246 add_interrupt_bench(cycles
);
1248 if (unlikely(crng_init
== 0)) {
1249 if ((fast_pool
->count
>= 64) &&
1250 crng_fast_load((char *) fast_pool
->pool
,
1251 sizeof(fast_pool
->pool
))) {
1252 fast_pool
->count
= 0;
1253 fast_pool
->last
= now
;
1258 if ((fast_pool
->count
< 64) &&
1259 !time_after(now
, fast_pool
->last
+ HZ
))
1263 if (!spin_trylock(&r
->lock
))
1266 fast_pool
->last
= now
;
1267 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
1270 * If we have architectural seed generator, produce a seed and
1271 * add it to the pool. For the sake of paranoia don't let the
1272 * architectural seed generator dominate the input from the
1275 if (arch_get_random_seed_long(&seed
)) {
1276 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
1279 spin_unlock(&r
->lock
);
1281 fast_pool
->count
= 0;
1283 /* award one bit for the contents of the fast pool */
1284 credit_entropy_bits(r
, credit
+ 1);
1286 EXPORT_SYMBOL_GPL(add_interrupt_randomness
);
1289 void add_disk_randomness(struct gendisk
*disk
)
1291 if (!disk
|| !disk
->random
)
1293 /* first major is 1, so we get >= 0x200 here */
1294 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
1295 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
1297 EXPORT_SYMBOL_GPL(add_disk_randomness
);
1300 /*********************************************************************
1302 * Entropy extraction routines
1304 *********************************************************************/
1307 * This utility inline function is responsible for transferring entropy
1308 * from the primary pool to the secondary extraction pool. We make
1309 * sure we pull enough for a 'catastrophic reseed'.
1311 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
1312 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1315 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
1316 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
1319 _xfer_secondary_pool(r
, nbytes
);
1322 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1324 __u32 tmp
[OUTPUT_POOL_WORDS
];
1328 /* pull at least as much as a wakeup */
1329 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
1330 /* but never more than the buffer size */
1331 bytes
= min_t(int, bytes
, sizeof(tmp
));
1333 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
1334 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
1335 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
1336 random_read_wakeup_bits
/ 8, 0);
1337 mix_pool_bytes(r
, tmp
, bytes
);
1338 credit_entropy_bits(r
, bytes
*8);
1342 * Used as a workqueue function so that when the input pool is getting
1343 * full, we can "spill over" some entropy to the output pools. That
1344 * way the output pools can store some of the excess entropy instead
1345 * of letting it go to waste.
1347 static void push_to_pool(struct work_struct
*work
)
1349 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1352 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1353 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1354 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1358 * This function decides how many bytes to actually take from the
1359 * given pool, and also debits the entropy count accordingly.
1361 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1364 int entropy_count
, orig
, have_bytes
;
1365 size_t ibytes
, nfrac
;
1367 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1369 /* Can we pull enough? */
1371 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
1373 /* never pull more than available */
1374 have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1376 if ((have_bytes
-= reserved
) < 0)
1378 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1382 if (unlikely(entropy_count
< 0)) {
1383 pr_warn("random: negative entropy count: pool %s count %d\n",
1384 r
->name
, entropy_count
);
1388 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1389 if ((size_t) entropy_count
> nfrac
)
1390 entropy_count
-= nfrac
;
1394 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1397 trace_debit_entropy(r
->name
, 8 * ibytes
);
1399 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1400 wake_up_interruptible(&random_write_wait
);
1401 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1408 * This function does the actual extraction for extract_entropy and
1409 * extract_entropy_user.
1411 * Note: we assume that .poolwords is a multiple of 16 words.
1413 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1418 unsigned long l
[LONGS(20)];
1420 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1421 unsigned long flags
;
1424 * If we have an architectural hardware random number
1425 * generator, use it for SHA's initial vector
1428 for (i
= 0; i
< LONGS(20); i
++) {
1430 if (!arch_get_random_long(&v
))
1435 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1436 spin_lock_irqsave(&r
->lock
, flags
);
1437 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1438 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1441 * We mix the hash back into the pool to prevent backtracking
1442 * attacks (where the attacker knows the state of the pool
1443 * plus the current outputs, and attempts to find previous
1444 * ouputs), unless the hash function can be inverted. By
1445 * mixing at least a SHA1 worth of hash data back, we make
1446 * brute-forcing the feedback as hard as brute-forcing the
1449 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1450 spin_unlock_irqrestore(&r
->lock
, flags
);
1452 memzero_explicit(workspace
, sizeof(workspace
));
1455 * In case the hash function has some recognizable output
1456 * pattern, we fold it in half. Thus, we always feed back
1457 * twice as much data as we output.
1459 hash
.w
[0] ^= hash
.w
[3];
1460 hash
.w
[1] ^= hash
.w
[4];
1461 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1463 memcpy(out
, &hash
, EXTRACT_SIZE
);
1464 memzero_explicit(&hash
, sizeof(hash
));
1467 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
1468 size_t nbytes
, int fips
)
1471 __u8 tmp
[EXTRACT_SIZE
];
1472 unsigned long flags
;
1475 extract_buf(r
, tmp
);
1478 spin_lock_irqsave(&r
->lock
, flags
);
1479 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1480 panic("Hardware RNG duplicated output!\n");
1481 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1482 spin_unlock_irqrestore(&r
->lock
, flags
);
1484 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1485 memcpy(buf
, tmp
, i
);
1491 /* Wipe data just returned from memory */
1492 memzero_explicit(tmp
, sizeof(tmp
));
1498 * This function extracts randomness from the "entropy pool", and
1499 * returns it in a buffer.
1501 * The min parameter specifies the minimum amount we can pull before
1502 * failing to avoid races that defeat catastrophic reseeding while the
1503 * reserved parameter indicates how much entropy we must leave in the
1504 * pool after each pull to avoid starving other readers.
1506 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1507 size_t nbytes
, int min
, int reserved
)
1509 __u8 tmp
[EXTRACT_SIZE
];
1510 unsigned long flags
;
1512 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1514 spin_lock_irqsave(&r
->lock
, flags
);
1515 if (!r
->last_data_init
) {
1516 r
->last_data_init
= 1;
1517 spin_unlock_irqrestore(&r
->lock
, flags
);
1518 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1519 ENTROPY_BITS(r
), _RET_IP_
);
1520 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1521 extract_buf(r
, tmp
);
1522 spin_lock_irqsave(&r
->lock
, flags
);
1523 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1525 spin_unlock_irqrestore(&r
->lock
, flags
);
1528 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1529 xfer_secondary_pool(r
, nbytes
);
1530 nbytes
= account(r
, nbytes
, min
, reserved
);
1532 return _extract_entropy(r
, buf
, nbytes
, fips_enabled
);
1536 * This function extracts randomness from the "entropy pool", and
1537 * returns it in a userspace buffer.
1539 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1543 __u8 tmp
[EXTRACT_SIZE
];
1544 int large_request
= (nbytes
> 256);
1546 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1547 xfer_secondary_pool(r
, nbytes
);
1548 nbytes
= account(r
, nbytes
, 0, 0);
1551 if (large_request
&& need_resched()) {
1552 if (signal_pending(current
)) {
1560 extract_buf(r
, tmp
);
1561 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1562 if (copy_to_user(buf
, tmp
, i
)) {
1572 /* Wipe data just returned from memory */
1573 memzero_explicit(tmp
, sizeof(tmp
));
1578 #define warn_unseeded_randomness(previous) \
1579 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1581 static void _warn_unseeded_randomness(const char *func_name
, void *caller
,
1584 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1585 const bool print_once
= false;
1587 static bool print_once __read_mostly
;
1592 (previous
&& (caller
== READ_ONCE(*previous
))))
1594 WRITE_ONCE(*previous
, caller
);
1595 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1598 if (__ratelimit(&unseeded_warning
))
1599 pr_notice("random: %s called from %pS with crng_init=%d\n",
1600 func_name
, caller
, crng_init
);
1604 * This function is the exported kernel interface. It returns some
1605 * number of good random numbers, suitable for key generation, seeding
1606 * TCP sequence numbers, etc. It does not rely on the hardware random
1607 * number generator. For random bytes direct from the hardware RNG
1608 * (when available), use get_random_bytes_arch(). In order to ensure
1609 * that the randomness provided by this function is okay, the function
1610 * wait_for_random_bytes() should be called and return 0 at least once
1611 * at any point prior.
1613 static void _get_random_bytes(void *buf
, int nbytes
)
1615 __u32 tmp
[CHACHA20_BLOCK_WORDS
];
1617 trace_get_random_bytes(nbytes
, _RET_IP_
);
1619 while (nbytes
>= CHACHA20_BLOCK_SIZE
) {
1621 buf
+= CHACHA20_BLOCK_SIZE
;
1622 nbytes
-= CHACHA20_BLOCK_SIZE
;
1627 memcpy(buf
, tmp
, nbytes
);
1628 crng_backtrack_protect(tmp
, nbytes
);
1630 crng_backtrack_protect(tmp
, CHACHA20_BLOCK_SIZE
);
1631 memzero_explicit(tmp
, sizeof(tmp
));
1634 void get_random_bytes(void *buf
, int nbytes
)
1636 static void *previous
;
1638 warn_unseeded_randomness(&previous
);
1639 _get_random_bytes(buf
, nbytes
);
1641 EXPORT_SYMBOL(get_random_bytes
);
1644 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1645 * cryptographically secure random numbers. This applies to: the /dev/urandom
1646 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1647 * family of functions. Using any of these functions without first calling
1648 * this function forfeits the guarantee of security.
1650 * Returns: 0 if the urandom pool has been seeded.
1651 * -ERESTARTSYS if the function was interrupted by a signal.
1653 int wait_for_random_bytes(void)
1655 if (likely(crng_ready()))
1657 return wait_event_interruptible(crng_init_wait
, crng_ready());
1659 EXPORT_SYMBOL(wait_for_random_bytes
);
1662 * Add a callback function that will be invoked when the nonblocking
1663 * pool is initialised.
1665 * returns: 0 if callback is successfully added
1666 * -EALREADY if pool is already initialised (callback not called)
1667 * -ENOENT if module for callback is not alive
1669 int add_random_ready_callback(struct random_ready_callback
*rdy
)
1671 struct module
*owner
;
1672 unsigned long flags
;
1673 int err
= -EALREADY
;
1679 if (!try_module_get(owner
))
1682 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1688 list_add(&rdy
->list
, &random_ready_list
);
1692 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1698 EXPORT_SYMBOL(add_random_ready_callback
);
1701 * Delete a previously registered readiness callback function.
1703 void del_random_ready_callback(struct random_ready_callback
*rdy
)
1705 unsigned long flags
;
1706 struct module
*owner
= NULL
;
1708 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1709 if (!list_empty(&rdy
->list
)) {
1710 list_del_init(&rdy
->list
);
1713 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1717 EXPORT_SYMBOL(del_random_ready_callback
);
1720 * This function will use the architecture-specific hardware random
1721 * number generator if it is available. The arch-specific hw RNG will
1722 * almost certainly be faster than what we can do in software, but it
1723 * is impossible to verify that it is implemented securely (as
1724 * opposed, to, say, the AES encryption of a sequence number using a
1725 * key known by the NSA). So it's useful if we need the speed, but
1726 * only if we're willing to trust the hardware manufacturer not to
1727 * have put in a back door.
1729 void get_random_bytes_arch(void *buf
, int nbytes
)
1733 trace_get_random_bytes_arch(nbytes
, _RET_IP_
);
1736 int chunk
= min(nbytes
, (int)sizeof(unsigned long));
1738 if (!arch_get_random_long(&v
))
1741 memcpy(p
, &v
, chunk
);
1747 get_random_bytes(p
, nbytes
);
1749 EXPORT_SYMBOL(get_random_bytes_arch
);
1753 * init_std_data - initialize pool with system data
1755 * @r: pool to initialize
1757 * This function clears the pool's entropy count and mixes some system
1758 * data into the pool to prepare it for use. The pool is not cleared
1759 * as that can only decrease the entropy in the pool.
1761 static void init_std_data(struct entropy_store
*r
)
1764 ktime_t now
= ktime_get_real();
1767 r
->last_pulled
= jiffies
;
1768 mix_pool_bytes(r
, &now
, sizeof(now
));
1769 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1770 if (!arch_get_random_seed_long(&rv
) &&
1771 !arch_get_random_long(&rv
))
1772 rv
= random_get_entropy();
1773 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1775 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1779 * Note that setup_arch() may call add_device_randomness()
1780 * long before we get here. This allows seeding of the pools
1781 * with some platform dependent data very early in the boot
1782 * process. But it limits our options here. We must use
1783 * statically allocated structures that already have all
1784 * initializations complete at compile time. We should also
1785 * take care not to overwrite the precious per platform data
1788 static int rand_initialize(void)
1790 init_std_data(&input_pool
);
1791 init_std_data(&blocking_pool
);
1792 crng_initialize(&primary_crng
);
1793 crng_global_init_time
= jiffies
;
1794 if (ratelimit_disable
) {
1795 urandom_warning
.interval
= 0;
1796 unseeded_warning
.interval
= 0;
1800 early_initcall(rand_initialize
);
1803 void rand_initialize_disk(struct gendisk
*disk
)
1805 struct timer_rand_state
*state
;
1808 * If kzalloc returns null, we just won't use that entropy
1811 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1813 state
->last_time
= INITIAL_JIFFIES
;
1814 disk
->random
= state
;
1820 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1827 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1829 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1832 trace_random_read(n
*8, (nbytes
-n
)*8,
1833 ENTROPY_BITS(&blocking_pool
),
1834 ENTROPY_BITS(&input_pool
));
1838 /* Pool is (near) empty. Maybe wait and retry. */
1842 wait_event_interruptible(random_read_wait
,
1843 ENTROPY_BITS(&input_pool
) >=
1844 random_read_wakeup_bits
);
1845 if (signal_pending(current
))
1846 return -ERESTARTSYS
;
1851 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1853 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
1857 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1859 unsigned long flags
;
1860 static int maxwarn
= 10;
1863 if (!crng_ready() && maxwarn
> 0) {
1865 if (__ratelimit(&urandom_warning
))
1866 printk(KERN_NOTICE
"random: %s: uninitialized "
1867 "urandom read (%zd bytes read)\n",
1868 current
->comm
, nbytes
);
1869 spin_lock_irqsave(&primary_crng
.lock
, flags
);
1871 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
1873 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
1874 ret
= extract_crng_user(buf
, nbytes
);
1875 trace_urandom_read(8 * nbytes
, 0, ENTROPY_BITS(&input_pool
));
1880 random_poll(struct file
*file
, poll_table
* wait
)
1884 poll_wait(file
, &random_read_wait
, wait
);
1885 poll_wait(file
, &random_write_wait
, wait
);
1887 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1888 mask
|= EPOLLIN
| EPOLLRDNORM
;
1889 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1890 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1895 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1899 const char __user
*p
= buffer
;
1902 bytes
= min(count
, sizeof(buf
));
1903 if (copy_from_user(&buf
, p
, bytes
))
1909 mix_pool_bytes(r
, buf
, bytes
);
1916 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
1917 size_t count
, loff_t
*ppos
)
1921 ret
= write_pool(&input_pool
, buffer
, count
);
1925 return (ssize_t
)count
;
1928 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1930 int size
, ent_count
;
1931 int __user
*p
= (int __user
*)arg
;
1936 /* inherently racy, no point locking */
1937 ent_count
= ENTROPY_BITS(&input_pool
);
1938 if (put_user(ent_count
, p
))
1941 case RNDADDTOENTCNT
:
1942 if (!capable(CAP_SYS_ADMIN
))
1944 if (get_user(ent_count
, p
))
1946 return credit_entropy_bits_safe(&input_pool
, ent_count
);
1948 if (!capable(CAP_SYS_ADMIN
))
1950 if (get_user(ent_count
, p
++))
1954 if (get_user(size
, p
++))
1956 retval
= write_pool(&input_pool
, (const char __user
*)p
,
1960 return credit_entropy_bits_safe(&input_pool
, ent_count
);
1964 * Clear the entropy pool counters. We no longer clear
1965 * the entropy pool, as that's silly.
1967 if (!capable(CAP_SYS_ADMIN
))
1969 input_pool
.entropy_count
= 0;
1970 blocking_pool
.entropy_count
= 0;
1973 if (!capable(CAP_SYS_ADMIN
))
1977 crng_reseed(&primary_crng
, NULL
);
1978 crng_global_init_time
= jiffies
- 1;
1985 static int random_fasync(int fd
, struct file
*filp
, int on
)
1987 return fasync_helper(fd
, filp
, on
, &fasync
);
1990 const struct file_operations random_fops
= {
1991 .read
= random_read
,
1992 .write
= random_write
,
1993 .poll
= random_poll
,
1994 .unlocked_ioctl
= random_ioctl
,
1995 .fasync
= random_fasync
,
1996 .llseek
= noop_llseek
,
1999 const struct file_operations urandom_fops
= {
2000 .read
= urandom_read
,
2001 .write
= random_write
,
2002 .unlocked_ioctl
= random_ioctl
,
2003 .fasync
= random_fasync
,
2004 .llseek
= noop_llseek
,
2007 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
2008 unsigned int, flags
)
2012 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
2015 if (count
> INT_MAX
)
2018 if (flags
& GRND_RANDOM
)
2019 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
2021 if (!crng_ready()) {
2022 if (flags
& GRND_NONBLOCK
)
2024 ret
= wait_for_random_bytes();
2028 return urandom_read(NULL
, buf
, count
, NULL
);
2031 /********************************************************************
2035 ********************************************************************/
2037 #ifdef CONFIG_SYSCTL
2039 #include <linux/sysctl.h>
2041 static int min_read_thresh
= 8, min_write_thresh
;
2042 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
2043 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
2044 static int random_min_urandom_seed
= 60;
2045 static char sysctl_bootid
[16];
2048 * This function is used to return both the bootid UUID, and random
2049 * UUID. The difference is in whether table->data is NULL; if it is,
2050 * then a new UUID is generated and returned to the user.
2052 * If the user accesses this via the proc interface, the UUID will be
2053 * returned as an ASCII string in the standard UUID format; if via the
2054 * sysctl system call, as 16 bytes of binary data.
2056 static int proc_do_uuid(struct ctl_table
*table
, int write
,
2057 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2059 struct ctl_table fake_table
;
2060 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
2065 generate_random_uuid(uuid
);
2067 static DEFINE_SPINLOCK(bootid_spinlock
);
2069 spin_lock(&bootid_spinlock
);
2071 generate_random_uuid(uuid
);
2072 spin_unlock(&bootid_spinlock
);
2075 sprintf(buf
, "%pU", uuid
);
2077 fake_table
.data
= buf
;
2078 fake_table
.maxlen
= sizeof(buf
);
2080 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
2084 * Return entropy available scaled to integral bits
2086 static int proc_do_entropy(struct ctl_table
*table
, int write
,
2087 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2089 struct ctl_table fake_table
;
2092 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
2094 fake_table
.data
= &entropy_count
;
2095 fake_table
.maxlen
= sizeof(entropy_count
);
2097 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
2100 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
2101 extern struct ctl_table random_table
[];
2102 struct ctl_table random_table
[] = {
2104 .procname
= "poolsize",
2105 .data
= &sysctl_poolsize
,
2106 .maxlen
= sizeof(int),
2108 .proc_handler
= proc_dointvec
,
2111 .procname
= "entropy_avail",
2112 .maxlen
= sizeof(int),
2114 .proc_handler
= proc_do_entropy
,
2115 .data
= &input_pool
.entropy_count
,
2118 .procname
= "read_wakeup_threshold",
2119 .data
= &random_read_wakeup_bits
,
2120 .maxlen
= sizeof(int),
2122 .proc_handler
= proc_dointvec_minmax
,
2123 .extra1
= &min_read_thresh
,
2124 .extra2
= &max_read_thresh
,
2127 .procname
= "write_wakeup_threshold",
2128 .data
= &random_write_wakeup_bits
,
2129 .maxlen
= sizeof(int),
2131 .proc_handler
= proc_dointvec_minmax
,
2132 .extra1
= &min_write_thresh
,
2133 .extra2
= &max_write_thresh
,
2136 .procname
= "urandom_min_reseed_secs",
2137 .data
= &random_min_urandom_seed
,
2138 .maxlen
= sizeof(int),
2140 .proc_handler
= proc_dointvec
,
2143 .procname
= "boot_id",
2144 .data
= &sysctl_bootid
,
2147 .proc_handler
= proc_do_uuid
,
2153 .proc_handler
= proc_do_uuid
,
2155 #ifdef ADD_INTERRUPT_BENCH
2157 .procname
= "add_interrupt_avg_cycles",
2158 .data
= &avg_cycles
,
2159 .maxlen
= sizeof(avg_cycles
),
2161 .proc_handler
= proc_doulongvec_minmax
,
2164 .procname
= "add_interrupt_avg_deviation",
2165 .data
= &avg_deviation
,
2166 .maxlen
= sizeof(avg_deviation
),
2168 .proc_handler
= proc_doulongvec_minmax
,
2173 #endif /* CONFIG_SYSCTL */
2175 struct batched_entropy
{
2177 u64 entropy_u64
[CHACHA20_BLOCK_SIZE
/ sizeof(u64
)];
2178 u32 entropy_u32
[CHACHA20_BLOCK_SIZE
/ sizeof(u32
)];
2180 unsigned int position
;
2182 static rwlock_t batched_entropy_reset_lock
= __RW_LOCK_UNLOCKED(batched_entropy_reset_lock
);
2185 * Get a random word for internal kernel use only. The quality of the random
2186 * number is either as good as RDRAND or as good as /dev/urandom, with the
2187 * goal of being quite fast and not depleting entropy. In order to ensure
2188 * that the randomness provided by this function is okay, the function
2189 * wait_for_random_bytes() should be called and return 0 at least once
2190 * at any point prior.
2192 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u64
);
2193 u64
get_random_u64(void)
2197 unsigned long flags
= 0;
2198 struct batched_entropy
*batch
;
2199 static void *previous
;
2201 #if BITS_PER_LONG == 64
2202 if (arch_get_random_long((unsigned long *)&ret
))
2205 if (arch_get_random_long((unsigned long *)&ret
) &&
2206 arch_get_random_long((unsigned long *)&ret
+ 1))
2210 warn_unseeded_randomness(&previous
);
2212 use_lock
= READ_ONCE(crng_init
) < 2;
2213 batch
= &get_cpu_var(batched_entropy_u64
);
2215 read_lock_irqsave(&batched_entropy_reset_lock
, flags
);
2216 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u64
) == 0) {
2217 extract_crng((__u32
*)batch
->entropy_u64
);
2218 batch
->position
= 0;
2220 ret
= batch
->entropy_u64
[batch
->position
++];
2222 read_unlock_irqrestore(&batched_entropy_reset_lock
, flags
);
2223 put_cpu_var(batched_entropy_u64
);
2226 EXPORT_SYMBOL(get_random_u64
);
2228 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u32
);
2229 u32
get_random_u32(void)
2233 unsigned long flags
= 0;
2234 struct batched_entropy
*batch
;
2235 static void *previous
;
2237 if (arch_get_random_int(&ret
))
2240 warn_unseeded_randomness(&previous
);
2242 use_lock
= READ_ONCE(crng_init
) < 2;
2243 batch
= &get_cpu_var(batched_entropy_u32
);
2245 read_lock_irqsave(&batched_entropy_reset_lock
, flags
);
2246 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u32
) == 0) {
2247 extract_crng(batch
->entropy_u32
);
2248 batch
->position
= 0;
2250 ret
= batch
->entropy_u32
[batch
->position
++];
2252 read_unlock_irqrestore(&batched_entropy_reset_lock
, flags
);
2253 put_cpu_var(batched_entropy_u32
);
2256 EXPORT_SYMBOL(get_random_u32
);
2258 /* It's important to invalidate all potential batched entropy that might
2259 * be stored before the crng is initialized, which we can do lazily by
2260 * simply resetting the counter to zero so that it's re-extracted on the
2262 static void invalidate_batched_entropy(void)
2265 unsigned long flags
;
2267 write_lock_irqsave(&batched_entropy_reset_lock
, flags
);
2268 for_each_possible_cpu (cpu
) {
2269 per_cpu_ptr(&batched_entropy_u32
, cpu
)->position
= 0;
2270 per_cpu_ptr(&batched_entropy_u64
, cpu
)->position
= 0;
2272 write_unlock_irqrestore(&batched_entropy_reset_lock
, flags
);
2276 * randomize_page - Generate a random, page aligned address
2277 * @start: The smallest acceptable address the caller will take.
2278 * @range: The size of the area, starting at @start, within which the
2279 * random address must fall.
2281 * If @start + @range would overflow, @range is capped.
2283 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2284 * @start was already page aligned. We now align it regardless.
2286 * Return: A page aligned address within [start, start + range). On error,
2287 * @start is returned.
2290 randomize_page(unsigned long start
, unsigned long range
)
2292 if (!PAGE_ALIGNED(start
)) {
2293 range
-= PAGE_ALIGN(start
) - start
;
2294 start
= PAGE_ALIGN(start
);
2297 if (start
> ULONG_MAX
- range
)
2298 range
= ULONG_MAX
- start
;
2300 range
>>= PAGE_SHIFT
;
2305 return start
+ (get_random_long() % range
<< PAGE_SHIFT
);
2308 /* Interface for in-kernel drivers of true hardware RNGs.
2309 * Those devices may produce endless random bits and will be throttled
2310 * when our pool is full.
2312 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
2315 struct entropy_store
*poolp
= &input_pool
;
2317 if (unlikely(crng_init
== 0)) {
2318 crng_fast_load(buffer
, count
);
2322 /* Suspend writing if we're above the trickle threshold.
2323 * We'll be woken up again once below random_write_wakeup_thresh,
2324 * or when the calling thread is about to terminate.
2326 wait_event_interruptible(random_write_wait
, kthread_should_stop() ||
2327 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
2328 mix_pool_bytes(poolp
, buffer
, count
);
2329 credit_entropy_bits(poolp
, entropy
);
2331 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);