2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state
= EDAC_OPSTATE_INVAL
;
44 EXPORT_SYMBOL_GPL(edac_op_state
);
46 static int edac_report
= EDAC_REPORTING_ENABLED
;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex
);
50 static LIST_HEAD(mc_devices
);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner
;
58 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
60 int edac_get_report_status(void)
64 EXPORT_SYMBOL_GPL(edac_get_report_status
);
66 void edac_set_report_status(int new)
68 if (new == EDAC_REPORTING_ENABLED
||
69 new == EDAC_REPORTING_DISABLED
||
70 new == EDAC_REPORTING_FORCE
)
73 EXPORT_SYMBOL_GPL(edac_set_report_status
);
75 static int edac_report_set(const char *str
, const struct kernel_param
*kp
)
80 if (!strncmp(str
, "on", 2))
81 edac_report
= EDAC_REPORTING_ENABLED
;
82 else if (!strncmp(str
, "off", 3))
83 edac_report
= EDAC_REPORTING_DISABLED
;
84 else if (!strncmp(str
, "force", 5))
85 edac_report
= EDAC_REPORTING_FORCE
;
90 static int edac_report_get(char *buffer
, const struct kernel_param
*kp
)
94 switch (edac_report
) {
95 case EDAC_REPORTING_ENABLED
:
96 ret
= sprintf(buffer
, "on");
98 case EDAC_REPORTING_DISABLED
:
99 ret
= sprintf(buffer
, "off");
101 case EDAC_REPORTING_FORCE
:
102 ret
= sprintf(buffer
, "force");
112 static const struct kernel_param_ops edac_report_ops
= {
113 .set
= edac_report_set
,
114 .get
= edac_report_get
,
117 module_param_cb(edac_report
, &edac_report_ops
, &edac_report
, 0644);
119 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
122 struct mem_ctl_info
*mci
= dimm
->mci
;
126 for (i
= 0; i
< mci
->n_layers
; i
++) {
127 n
= snprintf(p
, len
, "%s %d ",
128 edac_layer_name
[mci
->layers
[i
].type
],
140 #ifdef CONFIG_EDAC_DEBUG
142 static void edac_mc_dump_channel(struct rank_info
*chan
)
144 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
145 edac_dbg(4, " channel = %p\n", chan
);
146 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
147 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
150 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
154 edac_dimm_info_location(dimm
, location
, sizeof(location
));
156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 dimm
->mci
->csbased
? "rank" : "dimm",
158 number
, location
, dimm
->csrow
, dimm
->cschannel
);
159 edac_dbg(4, " dimm = %p\n", dimm
);
160 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
162 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
166 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
169 edac_dbg(4, " csrow = %p\n", csrow
);
170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
174 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
175 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
178 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
180 edac_dbg(3, "\tmci = %p\n", mci
);
181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
184 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 mci
->nr_csrows
, mci
->csrows
);
187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 mci
->tot_dimms
, mci
->dimms
);
189 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 mci
->mod_name
, mci
->ctl_name
);
192 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
195 #endif /* CONFIG_EDAC_DEBUG */
197 const char * const edac_mem_types
[] = {
198 [MEM_EMPTY
] = "Empty",
199 [MEM_RESERVED
] = "Reserved",
200 [MEM_UNKNOWN
] = "Unknown",
204 [MEM_SDR
] = "Unbuffered-SDR",
205 [MEM_RDR
] = "Registered-SDR",
206 [MEM_DDR
] = "Unbuffered-DDR",
207 [MEM_RDDR
] = "Registered-DDR",
209 [MEM_DDR2
] = "Unbuffered-DDR2",
210 [MEM_FB_DDR2
] = "FullyBuffered-DDR2",
211 [MEM_RDDR2
] = "Registered-DDR2",
213 [MEM_DDR3
] = "Unbuffered-DDR3",
214 [MEM_RDDR3
] = "Registered-DDR3",
215 [MEM_LRDDR3
] = "Load-Reduced-DDR3-RAM",
216 [MEM_DDR4
] = "Unbuffered-DDR4",
217 [MEM_RDDR4
] = "Registered-DDR4",
218 [MEM_NVDIMM
] = "Non-volatile-RAM",
220 EXPORT_SYMBOL_GPL(edac_mem_types
);
223 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
224 * @p: pointer to a pointer with the memory offset to be used. At
225 * return, this will be incremented to point to the next offset
226 * @size: Size of the data structure to be reserved
227 * @n_elems: Number of elements that should be reserved
229 * If 'size' is a constant, the compiler will optimize this whole function
230 * down to either a no-op or the addition of a constant to the value of '*p'.
232 * The 'p' pointer is absolutely needed to keep the proper advancing
233 * further in memory to the proper offsets when allocating the struct along
234 * with its embedded structs, as edac_device_alloc_ctl_info() does it
235 * above, for example.
237 * At return, the pointer 'p' will be incremented to be used on a next call
240 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
245 *p
+= size
* n_elems
;
248 * 'p' can possibly be an unaligned item X such that sizeof(X) is
249 * 'size'. Adjust 'p' so that its alignment is at least as
250 * stringent as what the compiler would provide for X and return
251 * the aligned result.
252 * Here we assume that the alignment of a "long long" is the most
253 * stringent alignment that the compiler will ever provide by default.
254 * As far as I know, this is a reasonable assumption.
256 if (size
> sizeof(long))
257 align
= sizeof(long long);
258 else if (size
> sizeof(int))
259 align
= sizeof(long);
260 else if (size
> sizeof(short))
262 else if (size
> sizeof(char))
263 align
= sizeof(short);
267 r
= (unsigned long)p
% align
;
274 return (void *)(((unsigned long)ptr
) + align
- r
);
277 static void _edac_mc_free(struct mem_ctl_info
*mci
)
280 struct csrow_info
*csr
;
281 const unsigned int tot_dimms
= mci
->tot_dimms
;
282 const unsigned int tot_channels
= mci
->num_cschannel
;
283 const unsigned int tot_csrows
= mci
->nr_csrows
;
286 for (i
= 0; i
< tot_dimms
; i
++)
287 kfree(mci
->dimms
[i
]);
291 for (row
= 0; row
< tot_csrows
; row
++) {
292 csr
= mci
->csrows
[row
];
295 for (chn
= 0; chn
< tot_channels
; chn
++)
296 kfree(csr
->channels
[chn
]);
297 kfree(csr
->channels
);
307 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
309 struct edac_mc_layer
*layers
,
312 struct mem_ctl_info
*mci
;
313 struct edac_mc_layer
*layer
;
314 struct csrow_info
*csr
;
315 struct rank_info
*chan
;
316 struct dimm_info
*dimm
;
317 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
318 unsigned pos
[EDAC_MAX_LAYERS
];
319 unsigned size
, tot_dimms
= 1, count
= 1;
320 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
321 void *pvt
, *p
, *ptr
= NULL
;
322 int i
, j
, row
, chn
, n
, len
, off
;
323 bool per_rank
= false;
325 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
327 * Calculate the total amount of dimms and csrows/cschannels while
328 * in the old API emulation mode
330 for (i
= 0; i
< n_layers
; i
++) {
331 tot_dimms
*= layers
[i
].size
;
332 if (layers
[i
].is_virt_csrow
)
333 tot_csrows
*= layers
[i
].size
;
335 tot_channels
*= layers
[i
].size
;
337 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
341 /* Figure out the offsets of the various items from the start of an mc
342 * structure. We want the alignment of each item to be at least as
343 * stringent as what the compiler would provide if we could simply
344 * hardcode everything into a single struct.
346 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
347 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
348 for (i
= 0; i
< n_layers
; i
++) {
349 count
*= layers
[i
].size
;
350 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
351 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
352 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
353 tot_errcount
+= 2 * count
;
356 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
357 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
358 size
= ((unsigned long)pvt
) + sz_pvt
;
360 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
363 per_rank
? "ranks" : "dimms",
364 tot_csrows
* tot_channels
);
366 mci
= kzalloc(size
, GFP_KERNEL
);
370 /* Adjust pointers so they point within the memory we just allocated
371 * rather than an imaginary chunk of memory located at address 0.
373 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
374 for (i
= 0; i
< n_layers
; i
++) {
375 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
376 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
378 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
380 /* setup index and various internal pointers */
381 mci
->mc_idx
= mc_num
;
382 mci
->tot_dimms
= tot_dimms
;
384 mci
->n_layers
= n_layers
;
386 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
387 mci
->nr_csrows
= tot_csrows
;
388 mci
->num_cschannel
= tot_channels
;
389 mci
->csbased
= per_rank
;
392 * Alocate and fill the csrow/channels structs
394 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
397 for (row
= 0; row
< tot_csrows
; row
++) {
398 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
401 mci
->csrows
[row
] = csr
;
402 csr
->csrow_idx
= row
;
404 csr
->nr_channels
= tot_channels
;
405 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
410 for (chn
= 0; chn
< tot_channels
; chn
++) {
411 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
414 csr
->channels
[chn
] = chan
;
415 chan
->chan_idx
= chn
;
421 * Allocate and fill the dimm structs
423 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
427 memset(&pos
, 0, sizeof(pos
));
430 for (i
= 0; i
< tot_dimms
; i
++) {
431 chan
= mci
->csrows
[row
]->channels
[chn
];
432 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
433 if (off
< 0 || off
>= tot_dimms
) {
434 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
438 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
441 mci
->dimms
[off
] = dimm
;
445 * Copy DIMM location and initialize it.
447 len
= sizeof(dimm
->label
);
449 n
= snprintf(p
, len
, "mc#%u", mc_num
);
452 for (j
= 0; j
< n_layers
; j
++) {
453 n
= snprintf(p
, len
, "%s#%u",
454 edac_layer_name
[layers
[j
].type
],
458 dimm
->location
[j
] = pos
[j
];
464 /* Link it to the csrows old API data */
467 dimm
->cschannel
= chn
;
469 /* Increment csrow location */
470 if (layers
[0].is_virt_csrow
) {
472 if (chn
== tot_channels
) {
478 if (row
== tot_csrows
) {
484 /* Increment dimm location */
485 for (j
= n_layers
- 1; j
>= 0; j
--) {
487 if (pos
[j
] < layers
[j
].size
)
493 mci
->op_state
= OP_ALLOC
;
502 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
504 void edac_mc_free(struct mem_ctl_info
*mci
)
508 /* If we're not yet registered with sysfs free only what was allocated
509 * in edac_mc_alloc().
511 if (!device_is_registered(&mci
->dev
)) {
516 /* the mci instance is freed here, when the sysfs object is dropped */
517 edac_unregister_sysfs(mci
);
519 EXPORT_SYMBOL_GPL(edac_mc_free
);
521 bool edac_has_mcs(void)
525 mutex_lock(&mem_ctls_mutex
);
527 ret
= list_empty(&mc_devices
);
529 mutex_unlock(&mem_ctls_mutex
);
533 EXPORT_SYMBOL_GPL(edac_has_mcs
);
535 /* Caller must hold mem_ctls_mutex */
536 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
538 struct mem_ctl_info
*mci
;
539 struct list_head
*item
;
543 list_for_each(item
, &mc_devices
) {
544 mci
= list_entry(item
, struct mem_ctl_info
, link
);
546 if (mci
->pdev
== dev
)
556 * scan list of controllers looking for the one that manages
558 * @dev: pointer to a struct device related with the MCI
560 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
562 struct mem_ctl_info
*ret
;
564 mutex_lock(&mem_ctls_mutex
);
565 ret
= __find_mci_by_dev(dev
);
566 mutex_unlock(&mem_ctls_mutex
);
570 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
573 * edac_mc_workq_function
574 * performs the operation scheduled by a workq request
576 static void edac_mc_workq_function(struct work_struct
*work_req
)
578 struct delayed_work
*d_work
= to_delayed_work(work_req
);
579 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
581 mutex_lock(&mem_ctls_mutex
);
583 if (mci
->op_state
!= OP_RUNNING_POLL
) {
584 mutex_unlock(&mem_ctls_mutex
);
588 if (edac_op_state
== EDAC_OPSTATE_POLL
)
589 mci
->edac_check(mci
);
591 mutex_unlock(&mem_ctls_mutex
);
593 /* Queue ourselves again. */
594 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
598 * edac_mc_reset_delay_period(unsigned long value)
600 * user space has updated our poll period value, need to
601 * reset our workq delays
603 void edac_mc_reset_delay_period(unsigned long value
)
605 struct mem_ctl_info
*mci
;
606 struct list_head
*item
;
608 mutex_lock(&mem_ctls_mutex
);
610 list_for_each(item
, &mc_devices
) {
611 mci
= list_entry(item
, struct mem_ctl_info
, link
);
613 if (mci
->op_state
== OP_RUNNING_POLL
)
614 edac_mod_work(&mci
->work
, value
);
616 mutex_unlock(&mem_ctls_mutex
);
621 /* Return 0 on success, 1 on failure.
622 * Before calling this function, caller must
623 * assign a unique value to mci->mc_idx.
627 * called with the mem_ctls_mutex lock held
629 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
631 struct list_head
*item
, *insert_before
;
632 struct mem_ctl_info
*p
;
634 insert_before
= &mc_devices
;
636 p
= __find_mci_by_dev(mci
->pdev
);
637 if (unlikely(p
!= NULL
))
640 list_for_each(item
, &mc_devices
) {
641 p
= list_entry(item
, struct mem_ctl_info
, link
);
643 if (p
->mc_idx
>= mci
->mc_idx
) {
644 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
647 insert_before
= item
;
652 list_add_tail_rcu(&mci
->link
, insert_before
);
656 edac_printk(KERN_WARNING
, EDAC_MC
,
657 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
658 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
662 edac_printk(KERN_WARNING
, EDAC_MC
,
663 "bug in low-level driver: attempt to assign\n"
664 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
668 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
670 list_del_rcu(&mci
->link
);
672 /* these are for safe removal of devices from global list while
673 * NMI handlers may be traversing list
676 INIT_LIST_HEAD(&mci
->link
);
678 return list_empty(&mc_devices
);
681 struct mem_ctl_info
*edac_mc_find(int idx
)
683 struct mem_ctl_info
*mci
= NULL
;
684 struct list_head
*item
;
686 mutex_lock(&mem_ctls_mutex
);
688 list_for_each(item
, &mc_devices
) {
689 mci
= list_entry(item
, struct mem_ctl_info
, link
);
691 if (mci
->mc_idx
>= idx
) {
692 if (mci
->mc_idx
== idx
) {
700 mutex_unlock(&mem_ctls_mutex
);
703 EXPORT_SYMBOL(edac_mc_find
);
705 const char *edac_get_owner(void)
707 return edac_mc_owner
;
709 EXPORT_SYMBOL_GPL(edac_get_owner
);
711 /* FIXME - should a warning be printed if no error detection? correction? */
712 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
713 const struct attribute_group
**groups
)
718 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
719 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
723 #ifdef CONFIG_EDAC_DEBUG
724 if (edac_debug_level
>= 3)
725 edac_mc_dump_mci(mci
);
727 if (edac_debug_level
>= 4) {
730 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
731 struct csrow_info
*csrow
= mci
->csrows
[i
];
735 for (j
= 0; j
< csrow
->nr_channels
; j
++)
736 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
739 edac_mc_dump_csrow(csrow
);
740 for (j
= 0; j
< csrow
->nr_channels
; j
++)
741 if (csrow
->channels
[j
]->dimm
->nr_pages
)
742 edac_mc_dump_channel(csrow
->channels
[j
]);
744 for (i
= 0; i
< mci
->tot_dimms
; i
++)
745 if (mci
->dimms
[i
]->nr_pages
)
746 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
749 mutex_lock(&mem_ctls_mutex
);
751 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
756 if (add_mc_to_global_list(mci
))
759 /* set load time so that error rate can be tracked */
760 mci
->start_time
= jiffies
;
762 mci
->bus
= &mc_bus
[mci
->mc_idx
];
764 if (edac_create_sysfs_mci_device(mci
, groups
)) {
765 edac_mc_printk(mci
, KERN_WARNING
,
766 "failed to create sysfs device\n");
770 if (mci
->edac_check
) {
771 mci
->op_state
= OP_RUNNING_POLL
;
773 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
774 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
777 mci
->op_state
= OP_RUNNING_INTERRUPT
;
780 /* Report action taken */
781 edac_mc_printk(mci
, KERN_INFO
,
782 "Giving out device to module %s controller %s: DEV %s (%s)\n",
783 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
784 edac_op_state_to_string(mci
->op_state
));
786 edac_mc_owner
= mci
->mod_name
;
788 mutex_unlock(&mem_ctls_mutex
);
792 del_mc_from_global_list(mci
);
795 mutex_unlock(&mem_ctls_mutex
);
798 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
800 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
802 struct mem_ctl_info
*mci
;
806 mutex_lock(&mem_ctls_mutex
);
808 /* find the requested mci struct in the global list */
809 mci
= __find_mci_by_dev(dev
);
811 mutex_unlock(&mem_ctls_mutex
);
815 /* mark MCI offline: */
816 mci
->op_state
= OP_OFFLINE
;
818 if (del_mc_from_global_list(mci
))
819 edac_mc_owner
= NULL
;
821 mutex_unlock(&mem_ctls_mutex
);
824 edac_stop_work(&mci
->work
);
826 /* remove from sysfs */
827 edac_remove_sysfs_mci_device(mci
);
829 edac_printk(KERN_INFO
, EDAC_MC
,
830 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
831 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
835 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
837 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
842 unsigned long flags
= 0;
846 /* ECC error page was not in our memory. Ignore it. */
847 if (!pfn_valid(page
))
850 /* Find the actual page structure then map it and fix */
851 pg
= pfn_to_page(page
);
854 local_irq_save(flags
);
856 virt_addr
= kmap_atomic(pg
);
858 /* Perform architecture specific atomic scrub operation */
859 edac_atomic_scrub(virt_addr
+ offset
, size
);
861 /* Unmap and complete */
862 kunmap_atomic(virt_addr
);
865 local_irq_restore(flags
);
868 /* FIXME - should return -1 */
869 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
871 struct csrow_info
**csrows
= mci
->csrows
;
874 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
877 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
878 struct csrow_info
*csrow
= csrows
[i
];
880 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
881 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
887 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
889 csrow
->first_page
, page
, csrow
->last_page
,
892 if ((page
>= csrow
->first_page
) &&
893 (page
<= csrow
->last_page
) &&
894 ((page
& csrow
->page_mask
) ==
895 (csrow
->first_page
& csrow
->page_mask
))) {
902 edac_mc_printk(mci
, KERN_ERR
,
903 "could not look up page error address %lx\n",
904 (unsigned long)page
);
908 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
910 const char *edac_layer_name
[] = {
911 [EDAC_MC_LAYER_BRANCH
] = "branch",
912 [EDAC_MC_LAYER_CHANNEL
] = "channel",
913 [EDAC_MC_LAYER_SLOT
] = "slot",
914 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
915 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
917 EXPORT_SYMBOL_GPL(edac_layer_name
);
919 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
920 bool enable_per_layer_report
,
921 const int pos
[EDAC_MAX_LAYERS
],
928 if (!enable_per_layer_report
) {
929 mci
->ce_noinfo_count
+= count
;
933 for (i
= 0; i
< mci
->n_layers
; i
++) {
937 mci
->ce_per_layer
[i
][index
] += count
;
939 if (i
< mci
->n_layers
- 1)
940 index
*= mci
->layers
[i
+ 1].size
;
944 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
945 bool enable_per_layer_report
,
946 const int pos
[EDAC_MAX_LAYERS
],
953 if (!enable_per_layer_report
) {
954 mci
->ue_noinfo_count
+= count
;
958 for (i
= 0; i
< mci
->n_layers
; i
++) {
962 mci
->ue_per_layer
[i
][index
] += count
;
964 if (i
< mci
->n_layers
- 1)
965 index
*= mci
->layers
[i
+ 1].size
;
969 static void edac_ce_error(struct mem_ctl_info
*mci
,
970 const u16 error_count
,
971 const int pos
[EDAC_MAX_LAYERS
],
973 const char *location
,
976 const char *other_detail
,
977 const bool enable_per_layer_report
,
978 const unsigned long page_frame_number
,
979 const unsigned long offset_in_page
,
982 unsigned long remapped_page
;
988 if (edac_mc_get_log_ce()) {
989 if (other_detail
&& *other_detail
)
990 edac_mc_printk(mci
, KERN_WARNING
,
991 "%d CE %s%son %s (%s %s - %s)\n",
992 error_count
, msg
, msg_aux
, label
,
993 location
, detail
, other_detail
);
995 edac_mc_printk(mci
, KERN_WARNING
,
996 "%d CE %s%son %s (%s %s)\n",
997 error_count
, msg
, msg_aux
, label
,
1000 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
1002 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
1004 * Some memory controllers (called MCs below) can remap
1005 * memory so that it is still available at a different
1006 * address when PCI devices map into memory.
1007 * MC's that can't do this, lose the memory where PCI
1008 * devices are mapped. This mapping is MC-dependent
1009 * and so we call back into the MC driver for it to
1010 * map the MC page to a physical (CPU) page which can
1011 * then be mapped to a virtual page - which can then
1014 remapped_page
= mci
->ctl_page_to_phys
?
1015 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1018 edac_mc_scrub_block(remapped_page
,
1019 offset_in_page
, grain
);
1023 static void edac_ue_error(struct mem_ctl_info
*mci
,
1024 const u16 error_count
,
1025 const int pos
[EDAC_MAX_LAYERS
],
1027 const char *location
,
1030 const char *other_detail
,
1031 const bool enable_per_layer_report
)
1038 if (edac_mc_get_log_ue()) {
1039 if (other_detail
&& *other_detail
)
1040 edac_mc_printk(mci
, KERN_WARNING
,
1041 "%d UE %s%son %s (%s %s - %s)\n",
1042 error_count
, msg
, msg_aux
, label
,
1043 location
, detail
, other_detail
);
1045 edac_mc_printk(mci
, KERN_WARNING
,
1046 "%d UE %s%son %s (%s %s)\n",
1047 error_count
, msg
, msg_aux
, label
,
1051 if (edac_mc_get_panic_on_ue()) {
1052 if (other_detail
&& *other_detail
)
1053 panic("UE %s%son %s (%s%s - %s)\n",
1054 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1056 panic("UE %s%son %s (%s%s)\n",
1057 msg
, msg_aux
, label
, location
, detail
);
1060 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1063 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1064 struct mem_ctl_info
*mci
,
1065 struct edac_raw_error_desc
*e
)
1068 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1070 /* Memory type dependent details about the error */
1071 if (type
== HW_EVENT_ERR_CORRECTED
) {
1072 snprintf(detail
, sizeof(detail
),
1073 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1074 e
->page_frame_number
, e
->offset_in_page
,
1075 e
->grain
, e
->syndrome
);
1076 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1077 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1078 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1080 snprintf(detail
, sizeof(detail
),
1081 "page:0x%lx offset:0x%lx grain:%ld",
1082 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1084 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1085 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1090 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1092 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1093 struct mem_ctl_info
*mci
,
1094 const u16 error_count
,
1095 const unsigned long page_frame_number
,
1096 const unsigned long offset_in_page
,
1097 const unsigned long syndrome
,
1098 const int top_layer
,
1099 const int mid_layer
,
1100 const int low_layer
,
1102 const char *other_detail
)
1105 int row
= -1, chan
= -1;
1106 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1107 int i
, n_labels
= 0;
1109 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1111 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1113 /* Fills the error report buffer */
1114 memset(e
, 0, sizeof (*e
));
1115 e
->error_count
= error_count
;
1116 e
->top_layer
= top_layer
;
1117 e
->mid_layer
= mid_layer
;
1118 e
->low_layer
= low_layer
;
1119 e
->page_frame_number
= page_frame_number
;
1120 e
->offset_in_page
= offset_in_page
;
1121 e
->syndrome
= syndrome
;
1123 e
->other_detail
= other_detail
;
1126 * Check if the event report is consistent and if the memory
1127 * location is known. If it is known, enable_per_layer_report will be
1128 * true, the DIMM(s) label info will be filled and the per-layer
1129 * error counters will be incremented.
1131 for (i
= 0; i
< mci
->n_layers
; i
++) {
1132 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1134 edac_mc_printk(mci
, KERN_ERR
,
1135 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1136 edac_layer_name
[mci
->layers
[i
].type
],
1137 pos
[i
], mci
->layers
[i
].size
);
1139 * Instead of just returning it, let's use what's
1140 * known about the error. The increment routines and
1141 * the DIMM filter logic will do the right thing by
1142 * pointing the likely damaged DIMMs.
1147 e
->enable_per_layer_report
= true;
1151 * Get the dimm label/grain that applies to the match criteria.
1152 * As the error algorithm may not be able to point to just one memory
1153 * stick, the logic here will get all possible labels that could
1154 * pottentially be affected by the error.
1155 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1156 * to have only the MC channel and the MC dimm (also called "branch")
1157 * but the channel is not known, as the memory is arranged in pairs,
1158 * where each memory belongs to a separate channel within the same
1164 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1165 struct dimm_info
*dimm
= mci
->dimms
[i
];
1167 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1169 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1171 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1174 /* get the max grain, over the error match range */
1175 if (dimm
->grain
> e
->grain
)
1176 e
->grain
= dimm
->grain
;
1179 * If the error is memory-controller wide, there's no need to
1180 * seek for the affected DIMMs because the whole
1181 * channel/memory controller/... may be affected.
1182 * Also, don't show errors for empty DIMM slots.
1184 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1185 if (n_labels
>= EDAC_MAX_LABELS
) {
1186 e
->enable_per_layer_report
= false;
1190 if (p
!= e
->label
) {
1191 strcpy(p
, OTHER_LABEL
);
1192 p
+= strlen(OTHER_LABEL
);
1194 strcpy(p
, dimm
->label
);
1199 * get csrow/channel of the DIMM, in order to allow
1200 * incrementing the compat API counters
1202 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1203 mci
->csbased
? "rank" : "dimm",
1204 dimm
->csrow
, dimm
->cschannel
);
1207 else if (row
>= 0 && row
!= dimm
->csrow
)
1211 chan
= dimm
->cschannel
;
1212 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1217 if (!e
->enable_per_layer_report
) {
1218 strcpy(e
->label
, "any memory");
1220 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1222 strcpy(e
->label
, "unknown memory");
1223 if (type
== HW_EVENT_ERR_CORRECTED
) {
1225 mci
->csrows
[row
]->ce_count
+= error_count
;
1227 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1231 mci
->csrows
[row
]->ue_count
+= error_count
;
1234 /* Fill the RAM location data */
1237 for (i
= 0; i
< mci
->n_layers
; i
++) {
1241 p
+= sprintf(p
, "%s:%d ",
1242 edac_layer_name
[mci
->layers
[i
].type
],
1245 if (p
> e
->location
)
1248 /* Report the error via the trace interface */
1249 grain_bits
= fls_long(e
->grain
) + 1;
1251 if (IS_ENABLED(CONFIG_RAS
))
1252 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1253 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
,
1255 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1256 grain_bits
, e
->syndrome
, e
->other_detail
);
1258 edac_raw_mc_handle_error(type
, mci
, e
);
1260 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);