2 * IOMMU API for ARM architected SMMUv3 implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 * Copyright (C) 2015 ARM Limited
18 * Author: Will Deacon <will.deacon@arm.com>
20 * This driver is powered by bad coffee and bombay mix.
23 #include <linux/acpi.h>
24 #include <linux/acpi_iort.h>
25 #include <linux/bitfield.h>
26 #include <linux/bitops.h>
27 #include <linux/delay.h>
28 #include <linux/dma-iommu.h>
29 #include <linux/err.h>
30 #include <linux/interrupt.h>
31 #include <linux/iommu.h>
32 #include <linux/iopoll.h>
33 #include <linux/module.h>
34 #include <linux/msi.h>
36 #include <linux/of_address.h>
37 #include <linux/of_iommu.h>
38 #include <linux/of_platform.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
42 #include <linux/amba/bus.h>
44 #include "io-pgtable.h"
47 #define ARM_SMMU_IDR0 0x0
48 #define IDR0_ST_LVL GENMASK(28, 27)
49 #define IDR0_ST_LVL_2LVL 1
50 #define IDR0_STALL_MODEL GENMASK(25, 24)
51 #define IDR0_STALL_MODEL_STALL 0
52 #define IDR0_STALL_MODEL_FORCE 2
53 #define IDR0_TTENDIAN GENMASK(22, 21)
54 #define IDR0_TTENDIAN_MIXED 0
55 #define IDR0_TTENDIAN_LE 2
56 #define IDR0_TTENDIAN_BE 3
57 #define IDR0_CD2L (1 << 19)
58 #define IDR0_VMID16 (1 << 18)
59 #define IDR0_PRI (1 << 16)
60 #define IDR0_SEV (1 << 14)
61 #define IDR0_MSI (1 << 13)
62 #define IDR0_ASID16 (1 << 12)
63 #define IDR0_ATS (1 << 10)
64 #define IDR0_HYP (1 << 9)
65 #define IDR0_COHACC (1 << 4)
66 #define IDR0_TTF GENMASK(3, 2)
67 #define IDR0_TTF_AARCH64 2
68 #define IDR0_TTF_AARCH32_64 3
69 #define IDR0_S1P (1 << 1)
70 #define IDR0_S2P (1 << 0)
72 #define ARM_SMMU_IDR1 0x4
73 #define IDR1_TABLES_PRESET (1 << 30)
74 #define IDR1_QUEUES_PRESET (1 << 29)
75 #define IDR1_REL (1 << 28)
76 #define IDR1_CMDQS GENMASK(25, 21)
77 #define IDR1_EVTQS GENMASK(20, 16)
78 #define IDR1_PRIQS GENMASK(15, 11)
79 #define IDR1_SSIDSIZE GENMASK(10, 6)
80 #define IDR1_SIDSIZE GENMASK(5, 0)
82 #define ARM_SMMU_IDR5 0x14
83 #define IDR5_STALL_MAX GENMASK(31, 16)
84 #define IDR5_GRAN64K (1 << 6)
85 #define IDR5_GRAN16K (1 << 5)
86 #define IDR5_GRAN4K (1 << 4)
87 #define IDR5_OAS GENMASK(2, 0)
88 #define IDR5_OAS_32_BIT 0
89 #define IDR5_OAS_36_BIT 1
90 #define IDR5_OAS_40_BIT 2
91 #define IDR5_OAS_42_BIT 3
92 #define IDR5_OAS_44_BIT 4
93 #define IDR5_OAS_48_BIT 5
94 #define IDR5_OAS_52_BIT 6
95 #define IDR5_VAX GENMASK(11, 10)
96 #define IDR5_VAX_52_BIT 1
98 #define ARM_SMMU_CR0 0x20
99 #define CR0_CMDQEN (1 << 3)
100 #define CR0_EVTQEN (1 << 2)
101 #define CR0_PRIQEN (1 << 1)
102 #define CR0_SMMUEN (1 << 0)
104 #define ARM_SMMU_CR0ACK 0x24
106 #define ARM_SMMU_CR1 0x28
107 #define CR1_TABLE_SH GENMASK(11, 10)
108 #define CR1_TABLE_OC GENMASK(9, 8)
109 #define CR1_TABLE_IC GENMASK(7, 6)
110 #define CR1_QUEUE_SH GENMASK(5, 4)
111 #define CR1_QUEUE_OC GENMASK(3, 2)
112 #define CR1_QUEUE_IC GENMASK(1, 0)
113 /* CR1 cacheability fields don't quite follow the usual TCR-style encoding */
114 #define CR1_CACHE_NC 0
115 #define CR1_CACHE_WB 1
116 #define CR1_CACHE_WT 2
118 #define ARM_SMMU_CR2 0x2c
119 #define CR2_PTM (1 << 2)
120 #define CR2_RECINVSID (1 << 1)
121 #define CR2_E2H (1 << 0)
123 #define ARM_SMMU_GBPA 0x44
124 #define GBPA_UPDATE (1 << 31)
125 #define GBPA_ABORT (1 << 20)
127 #define ARM_SMMU_IRQ_CTRL 0x50
128 #define IRQ_CTRL_EVTQ_IRQEN (1 << 2)
129 #define IRQ_CTRL_PRIQ_IRQEN (1 << 1)
130 #define IRQ_CTRL_GERROR_IRQEN (1 << 0)
132 #define ARM_SMMU_IRQ_CTRLACK 0x54
134 #define ARM_SMMU_GERROR 0x60
135 #define GERROR_SFM_ERR (1 << 8)
136 #define GERROR_MSI_GERROR_ABT_ERR (1 << 7)
137 #define GERROR_MSI_PRIQ_ABT_ERR (1 << 6)
138 #define GERROR_MSI_EVTQ_ABT_ERR (1 << 5)
139 #define GERROR_MSI_CMDQ_ABT_ERR (1 << 4)
140 #define GERROR_PRIQ_ABT_ERR (1 << 3)
141 #define GERROR_EVTQ_ABT_ERR (1 << 2)
142 #define GERROR_CMDQ_ERR (1 << 0)
143 #define GERROR_ERR_MASK 0xfd
145 #define ARM_SMMU_GERRORN 0x64
147 #define ARM_SMMU_GERROR_IRQ_CFG0 0x68
148 #define ARM_SMMU_GERROR_IRQ_CFG1 0x70
149 #define ARM_SMMU_GERROR_IRQ_CFG2 0x74
151 #define ARM_SMMU_STRTAB_BASE 0x80
152 #define STRTAB_BASE_RA (1UL << 62)
153 #define STRTAB_BASE_ADDR_MASK GENMASK_ULL(51, 6)
155 #define ARM_SMMU_STRTAB_BASE_CFG 0x88
156 #define STRTAB_BASE_CFG_FMT GENMASK(17, 16)
157 #define STRTAB_BASE_CFG_FMT_LINEAR 0
158 #define STRTAB_BASE_CFG_FMT_2LVL 1
159 #define STRTAB_BASE_CFG_SPLIT GENMASK(10, 6)
160 #define STRTAB_BASE_CFG_LOG2SIZE GENMASK(5, 0)
162 #define ARM_SMMU_CMDQ_BASE 0x90
163 #define ARM_SMMU_CMDQ_PROD 0x98
164 #define ARM_SMMU_CMDQ_CONS 0x9c
166 #define ARM_SMMU_EVTQ_BASE 0xa0
167 #define ARM_SMMU_EVTQ_PROD 0x100a8
168 #define ARM_SMMU_EVTQ_CONS 0x100ac
169 #define ARM_SMMU_EVTQ_IRQ_CFG0 0xb0
170 #define ARM_SMMU_EVTQ_IRQ_CFG1 0xb8
171 #define ARM_SMMU_EVTQ_IRQ_CFG2 0xbc
173 #define ARM_SMMU_PRIQ_BASE 0xc0
174 #define ARM_SMMU_PRIQ_PROD 0x100c8
175 #define ARM_SMMU_PRIQ_CONS 0x100cc
176 #define ARM_SMMU_PRIQ_IRQ_CFG0 0xd0
177 #define ARM_SMMU_PRIQ_IRQ_CFG1 0xd8
178 #define ARM_SMMU_PRIQ_IRQ_CFG2 0xdc
180 /* Common MSI config fields */
181 #define MSI_CFG0_ADDR_MASK GENMASK_ULL(51, 2)
182 #define MSI_CFG2_SH GENMASK(5, 4)
183 #define MSI_CFG2_MEMATTR GENMASK(3, 0)
185 /* Common memory attribute values */
186 #define ARM_SMMU_SH_NSH 0
187 #define ARM_SMMU_SH_OSH 2
188 #define ARM_SMMU_SH_ISH 3
189 #define ARM_SMMU_MEMATTR_DEVICE_nGnRE 0x1
190 #define ARM_SMMU_MEMATTR_OIWB 0xf
192 #define Q_IDX(q, p) ((p) & ((1 << (q)->max_n_shift) - 1))
193 #define Q_WRP(q, p) ((p) & (1 << (q)->max_n_shift))
194 #define Q_OVERFLOW_FLAG (1 << 31)
195 #define Q_OVF(q, p) ((p) & Q_OVERFLOW_FLAG)
196 #define Q_ENT(q, p) ((q)->base + \
197 Q_IDX(q, p) * (q)->ent_dwords)
199 #define Q_BASE_RWA (1UL << 62)
200 #define Q_BASE_ADDR_MASK GENMASK_ULL(51, 5)
201 #define Q_BASE_LOG2SIZE GENMASK(4, 0)
206 * Linear: Enough to cover 1 << IDR1.SIDSIZE entries
207 * 2lvl: 128k L1 entries,
208 * 256 lazy entries per table (each table covers a PCI bus)
210 #define STRTAB_L1_SZ_SHIFT 20
211 #define STRTAB_SPLIT 8
213 #define STRTAB_L1_DESC_DWORDS 1
214 #define STRTAB_L1_DESC_SPAN GENMASK_ULL(4, 0)
215 #define STRTAB_L1_DESC_L2PTR_MASK GENMASK_ULL(51, 6)
217 #define STRTAB_STE_DWORDS 8
218 #define STRTAB_STE_0_V (1UL << 0)
219 #define STRTAB_STE_0_CFG GENMASK_ULL(3, 1)
220 #define STRTAB_STE_0_CFG_ABORT 0
221 #define STRTAB_STE_0_CFG_BYPASS 4
222 #define STRTAB_STE_0_CFG_S1_TRANS 5
223 #define STRTAB_STE_0_CFG_S2_TRANS 6
225 #define STRTAB_STE_0_S1FMT GENMASK_ULL(5, 4)
226 #define STRTAB_STE_0_S1FMT_LINEAR 0
227 #define STRTAB_STE_0_S1CTXPTR_MASK GENMASK_ULL(51, 6)
228 #define STRTAB_STE_0_S1CDMAX GENMASK_ULL(63, 59)
230 #define STRTAB_STE_1_S1C_CACHE_NC 0UL
231 #define STRTAB_STE_1_S1C_CACHE_WBRA 1UL
232 #define STRTAB_STE_1_S1C_CACHE_WT 2UL
233 #define STRTAB_STE_1_S1C_CACHE_WB 3UL
234 #define STRTAB_STE_1_S1CIR GENMASK_ULL(3, 2)
235 #define STRTAB_STE_1_S1COR GENMASK_ULL(5, 4)
236 #define STRTAB_STE_1_S1CSH GENMASK_ULL(7, 6)
238 #define STRTAB_STE_1_S1STALLD (1UL << 27)
240 #define STRTAB_STE_1_EATS GENMASK_ULL(29, 28)
241 #define STRTAB_STE_1_EATS_ABT 0UL
242 #define STRTAB_STE_1_EATS_TRANS 1UL
243 #define STRTAB_STE_1_EATS_S1CHK 2UL
245 #define STRTAB_STE_1_STRW GENMASK_ULL(31, 30)
246 #define STRTAB_STE_1_STRW_NSEL1 0UL
247 #define STRTAB_STE_1_STRW_EL2 2UL
249 #define STRTAB_STE_1_SHCFG GENMASK_ULL(45, 44)
250 #define STRTAB_STE_1_SHCFG_INCOMING 1UL
252 #define STRTAB_STE_2_S2VMID GENMASK_ULL(15, 0)
253 #define STRTAB_STE_2_VTCR GENMASK_ULL(50, 32)
254 #define STRTAB_STE_2_S2AA64 (1UL << 51)
255 #define STRTAB_STE_2_S2ENDI (1UL << 52)
256 #define STRTAB_STE_2_S2PTW (1UL << 54)
257 #define STRTAB_STE_2_S2R (1UL << 58)
259 #define STRTAB_STE_3_S2TTB_MASK GENMASK_ULL(51, 4)
261 /* Context descriptor (stage-1 only) */
262 #define CTXDESC_CD_DWORDS 8
263 #define CTXDESC_CD_0_TCR_T0SZ GENMASK_ULL(5, 0)
264 #define ARM64_TCR_T0SZ GENMASK_ULL(5, 0)
265 #define CTXDESC_CD_0_TCR_TG0 GENMASK_ULL(7, 6)
266 #define ARM64_TCR_TG0 GENMASK_ULL(15, 14)
267 #define CTXDESC_CD_0_TCR_IRGN0 GENMASK_ULL(9, 8)
268 #define ARM64_TCR_IRGN0 GENMASK_ULL(9, 8)
269 #define CTXDESC_CD_0_TCR_ORGN0 GENMASK_ULL(11, 10)
270 #define ARM64_TCR_ORGN0 GENMASK_ULL(11, 10)
271 #define CTXDESC_CD_0_TCR_SH0 GENMASK_ULL(13, 12)
272 #define ARM64_TCR_SH0 GENMASK_ULL(13, 12)
273 #define CTXDESC_CD_0_TCR_EPD0 (1ULL << 14)
274 #define ARM64_TCR_EPD0 (1ULL << 7)
275 #define CTXDESC_CD_0_TCR_EPD1 (1ULL << 30)
276 #define ARM64_TCR_EPD1 (1ULL << 23)
278 #define CTXDESC_CD_0_ENDI (1UL << 15)
279 #define CTXDESC_CD_0_V (1UL << 31)
281 #define CTXDESC_CD_0_TCR_IPS GENMASK_ULL(34, 32)
282 #define ARM64_TCR_IPS GENMASK_ULL(34, 32)
283 #define CTXDESC_CD_0_TCR_TBI0 (1ULL << 38)
284 #define ARM64_TCR_TBI0 (1ULL << 37)
286 #define CTXDESC_CD_0_AA64 (1UL << 41)
287 #define CTXDESC_CD_0_S (1UL << 44)
288 #define CTXDESC_CD_0_R (1UL << 45)
289 #define CTXDESC_CD_0_A (1UL << 46)
290 #define CTXDESC_CD_0_ASET (1UL << 47)
291 #define CTXDESC_CD_0_ASID GENMASK_ULL(63, 48)
293 #define CTXDESC_CD_1_TTB0_MASK GENMASK_ULL(51, 4)
295 /* Convert between AArch64 (CPU) TCR format and SMMU CD format */
296 #define ARM_SMMU_TCR2CD(tcr, fld) FIELD_PREP(CTXDESC_CD_0_TCR_##fld, \
297 FIELD_GET(ARM64_TCR_##fld, tcr))
300 #define CMDQ_ENT_DWORDS 2
301 #define CMDQ_MAX_SZ_SHIFT 8
303 #define CMDQ_CONS_ERR GENMASK(30, 24)
304 #define CMDQ_ERR_CERROR_NONE_IDX 0
305 #define CMDQ_ERR_CERROR_ILL_IDX 1
306 #define CMDQ_ERR_CERROR_ABT_IDX 2
308 #define CMDQ_0_OP GENMASK_ULL(7, 0)
309 #define CMDQ_0_SSV (1UL << 11)
311 #define CMDQ_PREFETCH_0_SID GENMASK_ULL(63, 32)
312 #define CMDQ_PREFETCH_1_SIZE GENMASK_ULL(4, 0)
313 #define CMDQ_PREFETCH_1_ADDR_MASK GENMASK_ULL(63, 12)
315 #define CMDQ_CFGI_0_SID GENMASK_ULL(63, 32)
316 #define CMDQ_CFGI_1_LEAF (1UL << 0)
317 #define CMDQ_CFGI_1_RANGE GENMASK_ULL(4, 0)
319 #define CMDQ_TLBI_0_VMID GENMASK_ULL(47, 32)
320 #define CMDQ_TLBI_0_ASID GENMASK_ULL(63, 48)
321 #define CMDQ_TLBI_1_LEAF (1UL << 0)
322 #define CMDQ_TLBI_1_VA_MASK GENMASK_ULL(63, 12)
323 #define CMDQ_TLBI_1_IPA_MASK GENMASK_ULL(51, 12)
325 #define CMDQ_PRI_0_SSID GENMASK_ULL(31, 12)
326 #define CMDQ_PRI_0_SID GENMASK_ULL(63, 32)
327 #define CMDQ_PRI_1_GRPID GENMASK_ULL(8, 0)
328 #define CMDQ_PRI_1_RESP GENMASK_ULL(13, 12)
330 #define CMDQ_SYNC_0_CS GENMASK_ULL(13, 12)
331 #define CMDQ_SYNC_0_CS_NONE 0
332 #define CMDQ_SYNC_0_CS_IRQ 1
333 #define CMDQ_SYNC_0_CS_SEV 2
334 #define CMDQ_SYNC_0_MSH GENMASK_ULL(23, 22)
335 #define CMDQ_SYNC_0_MSIATTR GENMASK_ULL(27, 24)
336 #define CMDQ_SYNC_0_MSIDATA GENMASK_ULL(63, 32)
337 #define CMDQ_SYNC_1_MSIADDR_MASK GENMASK_ULL(51, 2)
340 #define EVTQ_ENT_DWORDS 4
341 #define EVTQ_MAX_SZ_SHIFT 7
343 #define EVTQ_0_ID GENMASK_ULL(7, 0)
346 #define PRIQ_ENT_DWORDS 2
347 #define PRIQ_MAX_SZ_SHIFT 8
349 #define PRIQ_0_SID GENMASK_ULL(31, 0)
350 #define PRIQ_0_SSID GENMASK_ULL(51, 32)
351 #define PRIQ_0_PERM_PRIV (1UL << 58)
352 #define PRIQ_0_PERM_EXEC (1UL << 59)
353 #define PRIQ_0_PERM_READ (1UL << 60)
354 #define PRIQ_0_PERM_WRITE (1UL << 61)
355 #define PRIQ_0_PRG_LAST (1UL << 62)
356 #define PRIQ_0_SSID_V (1UL << 63)
358 #define PRIQ_1_PRG_IDX GENMASK_ULL(8, 0)
359 #define PRIQ_1_ADDR_MASK GENMASK_ULL(63, 12)
361 /* High-level queue structures */
362 #define ARM_SMMU_POLL_TIMEOUT_US 100
363 #define ARM_SMMU_CMDQ_SYNC_TIMEOUT_US 1000000 /* 1s! */
364 #define ARM_SMMU_CMDQ_SYNC_SPIN_COUNT 10
366 #define MSI_IOVA_BASE 0x8000000
367 #define MSI_IOVA_LENGTH 0x100000
369 static bool disable_bypass
;
370 module_param_named(disable_bypass
, disable_bypass
, bool, S_IRUGO
);
371 MODULE_PARM_DESC(disable_bypass
,
372 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
380 enum arm_smmu_msi_index
{
387 static phys_addr_t arm_smmu_msi_cfg
[ARM_SMMU_MAX_MSIS
][3] = {
389 ARM_SMMU_EVTQ_IRQ_CFG0
,
390 ARM_SMMU_EVTQ_IRQ_CFG1
,
391 ARM_SMMU_EVTQ_IRQ_CFG2
,
393 [GERROR_MSI_INDEX
] = {
394 ARM_SMMU_GERROR_IRQ_CFG0
,
395 ARM_SMMU_GERROR_IRQ_CFG1
,
396 ARM_SMMU_GERROR_IRQ_CFG2
,
399 ARM_SMMU_PRIQ_IRQ_CFG0
,
400 ARM_SMMU_PRIQ_IRQ_CFG1
,
401 ARM_SMMU_PRIQ_IRQ_CFG2
,
405 struct arm_smmu_cmdq_ent
{
408 bool substream_valid
;
410 /* Command-specific fields */
412 #define CMDQ_OP_PREFETCH_CFG 0x1
419 #define CMDQ_OP_CFGI_STE 0x3
420 #define CMDQ_OP_CFGI_ALL 0x4
429 #define CMDQ_OP_TLBI_NH_ASID 0x11
430 #define CMDQ_OP_TLBI_NH_VA 0x12
431 #define CMDQ_OP_TLBI_EL2_ALL 0x20
432 #define CMDQ_OP_TLBI_S12_VMALL 0x28
433 #define CMDQ_OP_TLBI_S2_IPA 0x2a
434 #define CMDQ_OP_TLBI_NSNH_ALL 0x30
442 #define CMDQ_OP_PRI_RESP 0x41
450 #define CMDQ_OP_CMD_SYNC 0x46
458 struct arm_smmu_queue
{
459 int irq
; /* Wired interrupt */
470 u32 __iomem
*prod_reg
;
471 u32 __iomem
*cons_reg
;
474 struct arm_smmu_cmdq
{
475 struct arm_smmu_queue q
;
479 struct arm_smmu_evtq
{
480 struct arm_smmu_queue q
;
484 struct arm_smmu_priq
{
485 struct arm_smmu_queue q
;
488 /* High-level stream table and context descriptor structures */
489 struct arm_smmu_strtab_l1_desc
{
493 dma_addr_t l2ptr_dma
;
496 struct arm_smmu_s1_cfg
{
498 dma_addr_t cdptr_dma
;
500 struct arm_smmu_ctx_desc
{
508 struct arm_smmu_s2_cfg
{
514 struct arm_smmu_strtab_ent
{
516 * An STE is "assigned" if the master emitting the corresponding SID
517 * is attached to a domain. The behaviour of an unassigned STE is
518 * determined by the disable_bypass parameter, whereas an assigned
519 * STE behaves according to s1_cfg/s2_cfg, which themselves are
520 * configured according to the domain type.
523 struct arm_smmu_s1_cfg
*s1_cfg
;
524 struct arm_smmu_s2_cfg
*s2_cfg
;
527 struct arm_smmu_strtab_cfg
{
529 dma_addr_t strtab_dma
;
530 struct arm_smmu_strtab_l1_desc
*l1_desc
;
531 unsigned int num_l1_ents
;
537 /* An SMMUv3 instance */
538 struct arm_smmu_device
{
542 #define ARM_SMMU_FEAT_2_LVL_STRTAB (1 << 0)
543 #define ARM_SMMU_FEAT_2_LVL_CDTAB (1 << 1)
544 #define ARM_SMMU_FEAT_TT_LE (1 << 2)
545 #define ARM_SMMU_FEAT_TT_BE (1 << 3)
546 #define ARM_SMMU_FEAT_PRI (1 << 4)
547 #define ARM_SMMU_FEAT_ATS (1 << 5)
548 #define ARM_SMMU_FEAT_SEV (1 << 6)
549 #define ARM_SMMU_FEAT_MSI (1 << 7)
550 #define ARM_SMMU_FEAT_COHERENCY (1 << 8)
551 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 9)
552 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 10)
553 #define ARM_SMMU_FEAT_STALLS (1 << 11)
554 #define ARM_SMMU_FEAT_HYP (1 << 12)
555 #define ARM_SMMU_FEAT_STALL_FORCE (1 << 13)
556 #define ARM_SMMU_FEAT_VAX (1 << 14)
559 #define ARM_SMMU_OPT_SKIP_PREFETCH (1 << 0)
560 #define ARM_SMMU_OPT_PAGE0_REGS_ONLY (1 << 1)
563 struct arm_smmu_cmdq cmdq
;
564 struct arm_smmu_evtq evtq
;
565 struct arm_smmu_priq priq
;
571 unsigned long ias
; /* IPA */
572 unsigned long oas
; /* PA */
573 unsigned long pgsize_bitmap
;
575 #define ARM_SMMU_MAX_ASIDS (1 << 16)
576 unsigned int asid_bits
;
577 DECLARE_BITMAP(asid_map
, ARM_SMMU_MAX_ASIDS
);
579 #define ARM_SMMU_MAX_VMIDS (1 << 16)
580 unsigned int vmid_bits
;
581 DECLARE_BITMAP(vmid_map
, ARM_SMMU_MAX_VMIDS
);
583 unsigned int ssid_bits
;
584 unsigned int sid_bits
;
586 struct arm_smmu_strtab_cfg strtab_cfg
;
590 /* IOMMU core code handle */
591 struct iommu_device iommu
;
594 /* SMMU private data for each master */
595 struct arm_smmu_master_data
{
596 struct arm_smmu_device
*smmu
;
597 struct arm_smmu_strtab_ent ste
;
600 /* SMMU private data for an IOMMU domain */
601 enum arm_smmu_domain_stage
{
602 ARM_SMMU_DOMAIN_S1
= 0,
604 ARM_SMMU_DOMAIN_NESTED
,
605 ARM_SMMU_DOMAIN_BYPASS
,
608 struct arm_smmu_domain
{
609 struct arm_smmu_device
*smmu
;
610 struct mutex init_mutex
; /* Protects smmu pointer */
612 struct io_pgtable_ops
*pgtbl_ops
;
614 enum arm_smmu_domain_stage stage
;
616 struct arm_smmu_s1_cfg s1_cfg
;
617 struct arm_smmu_s2_cfg s2_cfg
;
620 struct iommu_domain domain
;
623 struct arm_smmu_option_prop
{
628 static struct arm_smmu_option_prop arm_smmu_options
[] = {
629 { ARM_SMMU_OPT_SKIP_PREFETCH
, "hisilicon,broken-prefetch-cmd" },
630 { ARM_SMMU_OPT_PAGE0_REGS_ONLY
, "cavium,cn9900-broken-page1-regspace"},
634 static inline void __iomem
*arm_smmu_page1_fixup(unsigned long offset
,
635 struct arm_smmu_device
*smmu
)
637 if ((offset
> SZ_64K
) &&
638 (smmu
->options
& ARM_SMMU_OPT_PAGE0_REGS_ONLY
))
641 return smmu
->base
+ offset
;
644 static struct arm_smmu_domain
*to_smmu_domain(struct iommu_domain
*dom
)
646 return container_of(dom
, struct arm_smmu_domain
, domain
);
649 static void parse_driver_options(struct arm_smmu_device
*smmu
)
654 if (of_property_read_bool(smmu
->dev
->of_node
,
655 arm_smmu_options
[i
].prop
)) {
656 smmu
->options
|= arm_smmu_options
[i
].opt
;
657 dev_notice(smmu
->dev
, "option %s\n",
658 arm_smmu_options
[i
].prop
);
660 } while (arm_smmu_options
[++i
].opt
);
663 /* Low-level queue manipulation functions */
664 static bool queue_full(struct arm_smmu_queue
*q
)
666 return Q_IDX(q
, q
->prod
) == Q_IDX(q
, q
->cons
) &&
667 Q_WRP(q
, q
->prod
) != Q_WRP(q
, q
->cons
);
670 static bool queue_empty(struct arm_smmu_queue
*q
)
672 return Q_IDX(q
, q
->prod
) == Q_IDX(q
, q
->cons
) &&
673 Q_WRP(q
, q
->prod
) == Q_WRP(q
, q
->cons
);
676 static void queue_sync_cons(struct arm_smmu_queue
*q
)
678 q
->cons
= readl_relaxed(q
->cons_reg
);
681 static void queue_inc_cons(struct arm_smmu_queue
*q
)
683 u32 cons
= (Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
)) + 1;
685 q
->cons
= Q_OVF(q
, q
->cons
) | Q_WRP(q
, cons
) | Q_IDX(q
, cons
);
686 writel(q
->cons
, q
->cons_reg
);
689 static int queue_sync_prod(struct arm_smmu_queue
*q
)
692 u32 prod
= readl_relaxed(q
->prod_reg
);
694 if (Q_OVF(q
, prod
) != Q_OVF(q
, q
->prod
))
701 static void queue_inc_prod(struct arm_smmu_queue
*q
)
703 u32 prod
= (Q_WRP(q
, q
->prod
) | Q_IDX(q
, q
->prod
)) + 1;
705 q
->prod
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, prod
) | Q_IDX(q
, prod
);
706 writel(q
->prod
, q
->prod_reg
);
710 * Wait for the SMMU to consume items. If drain is true, wait until the queue
711 * is empty. Otherwise, wait until there is at least one free slot.
713 static int queue_poll_cons(struct arm_smmu_queue
*q
, bool sync
, bool wfe
)
716 unsigned int delay
= 1, spin_cnt
= 0;
718 /* Wait longer if it's a CMD_SYNC */
719 timeout
= ktime_add_us(ktime_get(), sync
?
720 ARM_SMMU_CMDQ_SYNC_TIMEOUT_US
:
721 ARM_SMMU_POLL_TIMEOUT_US
);
723 while (queue_sync_cons(q
), (sync
? !queue_empty(q
) : queue_full(q
))) {
724 if (ktime_compare(ktime_get(), timeout
) > 0)
729 } else if (++spin_cnt
< ARM_SMMU_CMDQ_SYNC_SPIN_COUNT
) {
742 static void queue_write(__le64
*dst
, u64
*src
, size_t n_dwords
)
746 for (i
= 0; i
< n_dwords
; ++i
)
747 *dst
++ = cpu_to_le64(*src
++);
750 static int queue_insert_raw(struct arm_smmu_queue
*q
, u64
*ent
)
755 queue_write(Q_ENT(q
, q
->prod
), ent
, q
->ent_dwords
);
760 static void queue_read(__le64
*dst
, u64
*src
, size_t n_dwords
)
764 for (i
= 0; i
< n_dwords
; ++i
)
765 *dst
++ = le64_to_cpu(*src
++);
768 static int queue_remove_raw(struct arm_smmu_queue
*q
, u64
*ent
)
773 queue_read(ent
, Q_ENT(q
, q
->cons
), q
->ent_dwords
);
778 /* High-level queue accessors */
779 static int arm_smmu_cmdq_build_cmd(u64
*cmd
, struct arm_smmu_cmdq_ent
*ent
)
781 memset(cmd
, 0, CMDQ_ENT_DWORDS
<< 3);
782 cmd
[0] |= FIELD_PREP(CMDQ_0_OP
, ent
->opcode
);
784 switch (ent
->opcode
) {
785 case CMDQ_OP_TLBI_EL2_ALL
:
786 case CMDQ_OP_TLBI_NSNH_ALL
:
788 case CMDQ_OP_PREFETCH_CFG
:
789 cmd
[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID
, ent
->prefetch
.sid
);
790 cmd
[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE
, ent
->prefetch
.size
);
791 cmd
[1] |= ent
->prefetch
.addr
& CMDQ_PREFETCH_1_ADDR_MASK
;
793 case CMDQ_OP_CFGI_STE
:
794 cmd
[0] |= FIELD_PREP(CMDQ_CFGI_0_SID
, ent
->cfgi
.sid
);
795 cmd
[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF
, ent
->cfgi
.leaf
);
797 case CMDQ_OP_CFGI_ALL
:
798 /* Cover the entire SID range */
799 cmd
[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE
, 31);
801 case CMDQ_OP_TLBI_NH_VA
:
802 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID
, ent
->tlbi
.asid
);
803 cmd
[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF
, ent
->tlbi
.leaf
);
804 cmd
[1] |= ent
->tlbi
.addr
& CMDQ_TLBI_1_VA_MASK
;
806 case CMDQ_OP_TLBI_S2_IPA
:
807 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID
, ent
->tlbi
.vmid
);
808 cmd
[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF
, ent
->tlbi
.leaf
);
809 cmd
[1] |= ent
->tlbi
.addr
& CMDQ_TLBI_1_IPA_MASK
;
811 case CMDQ_OP_TLBI_NH_ASID
:
812 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID
, ent
->tlbi
.asid
);
814 case CMDQ_OP_TLBI_S12_VMALL
:
815 cmd
[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID
, ent
->tlbi
.vmid
);
817 case CMDQ_OP_PRI_RESP
:
818 cmd
[0] |= FIELD_PREP(CMDQ_0_SSV
, ent
->substream_valid
);
819 cmd
[0] |= FIELD_PREP(CMDQ_PRI_0_SSID
, ent
->pri
.ssid
);
820 cmd
[0] |= FIELD_PREP(CMDQ_PRI_0_SID
, ent
->pri
.sid
);
821 cmd
[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID
, ent
->pri
.grpid
);
822 switch (ent
->pri
.resp
) {
830 cmd
[1] |= FIELD_PREP(CMDQ_PRI_1_RESP
, ent
->pri
.resp
);
832 case CMDQ_OP_CMD_SYNC
:
833 if (ent
->sync
.msiaddr
)
834 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_CS
, CMDQ_SYNC_0_CS_IRQ
);
836 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_CS
, CMDQ_SYNC_0_CS_SEV
);
837 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH
, ARM_SMMU_SH_ISH
);
838 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR
, ARM_SMMU_MEMATTR_OIWB
);
839 cmd
[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIDATA
, ent
->sync
.msidata
);
840 cmd
[1] |= ent
->sync
.msiaddr
& CMDQ_SYNC_1_MSIADDR_MASK
;
849 static void arm_smmu_cmdq_skip_err(struct arm_smmu_device
*smmu
)
851 static const char *cerror_str
[] = {
852 [CMDQ_ERR_CERROR_NONE_IDX
] = "No error",
853 [CMDQ_ERR_CERROR_ILL_IDX
] = "Illegal command",
854 [CMDQ_ERR_CERROR_ABT_IDX
] = "Abort on command fetch",
858 u64 cmd
[CMDQ_ENT_DWORDS
];
859 struct arm_smmu_queue
*q
= &smmu
->cmdq
.q
;
860 u32 cons
= readl_relaxed(q
->cons_reg
);
861 u32 idx
= FIELD_GET(CMDQ_CONS_ERR
, cons
);
862 struct arm_smmu_cmdq_ent cmd_sync
= {
863 .opcode
= CMDQ_OP_CMD_SYNC
,
866 dev_err(smmu
->dev
, "CMDQ error (cons 0x%08x): %s\n", cons
,
867 idx
< ARRAY_SIZE(cerror_str
) ? cerror_str
[idx
] : "Unknown");
870 case CMDQ_ERR_CERROR_ABT_IDX
:
871 dev_err(smmu
->dev
, "retrying command fetch\n");
872 case CMDQ_ERR_CERROR_NONE_IDX
:
874 case CMDQ_ERR_CERROR_ILL_IDX
:
881 * We may have concurrent producers, so we need to be careful
882 * not to touch any of the shadow cmdq state.
884 queue_read(cmd
, Q_ENT(q
, cons
), q
->ent_dwords
);
885 dev_err(smmu
->dev
, "skipping command in error state:\n");
886 for (i
= 0; i
< ARRAY_SIZE(cmd
); ++i
)
887 dev_err(smmu
->dev
, "\t0x%016llx\n", (unsigned long long)cmd
[i
]);
889 /* Convert the erroneous command into a CMD_SYNC */
890 if (arm_smmu_cmdq_build_cmd(cmd
, &cmd_sync
)) {
891 dev_err(smmu
->dev
, "failed to convert to CMD_SYNC\n");
895 queue_write(Q_ENT(q
, cons
), cmd
, q
->ent_dwords
);
898 static void arm_smmu_cmdq_insert_cmd(struct arm_smmu_device
*smmu
, u64
*cmd
)
900 struct arm_smmu_queue
*q
= &smmu
->cmdq
.q
;
901 bool wfe
= !!(smmu
->features
& ARM_SMMU_FEAT_SEV
);
903 while (queue_insert_raw(q
, cmd
) == -ENOSPC
) {
904 if (queue_poll_cons(q
, false, wfe
))
905 dev_err_ratelimited(smmu
->dev
, "CMDQ timeout\n");
909 static void arm_smmu_cmdq_issue_cmd(struct arm_smmu_device
*smmu
,
910 struct arm_smmu_cmdq_ent
*ent
)
912 u64 cmd
[CMDQ_ENT_DWORDS
];
915 if (arm_smmu_cmdq_build_cmd(cmd
, ent
)) {
916 dev_warn(smmu
->dev
, "ignoring unknown CMDQ opcode 0x%x\n",
921 spin_lock_irqsave(&smmu
->cmdq
.lock
, flags
);
922 arm_smmu_cmdq_insert_cmd(smmu
, cmd
);
923 spin_unlock_irqrestore(&smmu
->cmdq
.lock
, flags
);
927 * The difference between val and sync_idx is bounded by the maximum size of
928 * a queue at 2^20 entries, so 32 bits is plenty for wrap-safe arithmetic.
930 static int __arm_smmu_sync_poll_msi(struct arm_smmu_device
*smmu
, u32 sync_idx
)
935 timeout
= ktime_add_us(ktime_get(), ARM_SMMU_CMDQ_SYNC_TIMEOUT_US
);
936 val
= smp_cond_load_acquire(&smmu
->sync_count
,
937 (int)(VAL
- sync_idx
) >= 0 ||
938 !ktime_before(ktime_get(), timeout
));
940 return (int)(val
- sync_idx
) < 0 ? -ETIMEDOUT
: 0;
943 static int __arm_smmu_cmdq_issue_sync_msi(struct arm_smmu_device
*smmu
)
945 u64 cmd
[CMDQ_ENT_DWORDS
];
947 struct arm_smmu_cmdq_ent ent
= {
948 .opcode
= CMDQ_OP_CMD_SYNC
,
950 .msidata
= atomic_inc_return_relaxed(&smmu
->sync_nr
),
951 .msiaddr
= virt_to_phys(&smmu
->sync_count
),
955 arm_smmu_cmdq_build_cmd(cmd
, &ent
);
957 spin_lock_irqsave(&smmu
->cmdq
.lock
, flags
);
958 arm_smmu_cmdq_insert_cmd(smmu
, cmd
);
959 spin_unlock_irqrestore(&smmu
->cmdq
.lock
, flags
);
961 return __arm_smmu_sync_poll_msi(smmu
, ent
.sync
.msidata
);
964 static int __arm_smmu_cmdq_issue_sync(struct arm_smmu_device
*smmu
)
966 u64 cmd
[CMDQ_ENT_DWORDS
];
968 bool wfe
= !!(smmu
->features
& ARM_SMMU_FEAT_SEV
);
969 struct arm_smmu_cmdq_ent ent
= { .opcode
= CMDQ_OP_CMD_SYNC
};
972 arm_smmu_cmdq_build_cmd(cmd
, &ent
);
974 spin_lock_irqsave(&smmu
->cmdq
.lock
, flags
);
975 arm_smmu_cmdq_insert_cmd(smmu
, cmd
);
976 ret
= queue_poll_cons(&smmu
->cmdq
.q
, true, wfe
);
977 spin_unlock_irqrestore(&smmu
->cmdq
.lock
, flags
);
982 static void arm_smmu_cmdq_issue_sync(struct arm_smmu_device
*smmu
)
985 bool msi
= (smmu
->features
& ARM_SMMU_FEAT_MSI
) &&
986 (smmu
->features
& ARM_SMMU_FEAT_COHERENCY
);
988 ret
= msi
? __arm_smmu_cmdq_issue_sync_msi(smmu
)
989 : __arm_smmu_cmdq_issue_sync(smmu
);
991 dev_err_ratelimited(smmu
->dev
, "CMD_SYNC timeout\n");
994 /* Context descriptor manipulation functions */
995 static u64
arm_smmu_cpu_tcr_to_cd(u64 tcr
)
999 /* Repack the TCR. Just care about TTBR0 for now */
1000 val
|= ARM_SMMU_TCR2CD(tcr
, T0SZ
);
1001 val
|= ARM_SMMU_TCR2CD(tcr
, TG0
);
1002 val
|= ARM_SMMU_TCR2CD(tcr
, IRGN0
);
1003 val
|= ARM_SMMU_TCR2CD(tcr
, ORGN0
);
1004 val
|= ARM_SMMU_TCR2CD(tcr
, SH0
);
1005 val
|= ARM_SMMU_TCR2CD(tcr
, EPD0
);
1006 val
|= ARM_SMMU_TCR2CD(tcr
, EPD1
);
1007 val
|= ARM_SMMU_TCR2CD(tcr
, IPS
);
1008 val
|= ARM_SMMU_TCR2CD(tcr
, TBI0
);
1013 static void arm_smmu_write_ctx_desc(struct arm_smmu_device
*smmu
,
1014 struct arm_smmu_s1_cfg
*cfg
)
1019 * We don't need to issue any invalidation here, as we'll invalidate
1020 * the STE when installing the new entry anyway.
1022 val
= arm_smmu_cpu_tcr_to_cd(cfg
->cd
.tcr
) |
1026 CTXDESC_CD_0_R
| CTXDESC_CD_0_A
| CTXDESC_CD_0_ASET
|
1027 CTXDESC_CD_0_AA64
| FIELD_PREP(CTXDESC_CD_0_ASID
, cfg
->cd
.asid
) |
1030 /* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
1031 if (smmu
->features
& ARM_SMMU_FEAT_STALL_FORCE
)
1032 val
|= CTXDESC_CD_0_S
;
1034 cfg
->cdptr
[0] = cpu_to_le64(val
);
1036 val
= cfg
->cd
.ttbr
& CTXDESC_CD_1_TTB0_MASK
;
1037 cfg
->cdptr
[1] = cpu_to_le64(val
);
1039 cfg
->cdptr
[3] = cpu_to_le64(cfg
->cd
.mair
);
1042 /* Stream table manipulation functions */
1044 arm_smmu_write_strtab_l1_desc(__le64
*dst
, struct arm_smmu_strtab_l1_desc
*desc
)
1048 val
|= FIELD_PREP(STRTAB_L1_DESC_SPAN
, desc
->span
);
1049 val
|= desc
->l2ptr_dma
& STRTAB_L1_DESC_L2PTR_MASK
;
1051 *dst
= cpu_to_le64(val
);
1054 static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device
*smmu
, u32 sid
)
1056 struct arm_smmu_cmdq_ent cmd
= {
1057 .opcode
= CMDQ_OP_CFGI_STE
,
1064 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1065 arm_smmu_cmdq_issue_sync(smmu
);
1068 static void arm_smmu_write_strtab_ent(struct arm_smmu_device
*smmu
, u32 sid
,
1069 __le64
*dst
, struct arm_smmu_strtab_ent
*ste
)
1072 * This is hideously complicated, but we only really care about
1073 * three cases at the moment:
1075 * 1. Invalid (all zero) -> bypass/fault (init)
1076 * 2. Bypass/fault -> translation/bypass (attach)
1077 * 3. Translation/bypass -> bypass/fault (detach)
1079 * Given that we can't update the STE atomically and the SMMU
1080 * doesn't read the thing in a defined order, that leaves us
1081 * with the following maintenance requirements:
1083 * 1. Update Config, return (init time STEs aren't live)
1084 * 2. Write everything apart from dword 0, sync, write dword 0, sync
1085 * 3. Update Config, sync
1087 u64 val
= le64_to_cpu(dst
[0]);
1088 bool ste_live
= false;
1089 struct arm_smmu_cmdq_ent prefetch_cmd
= {
1090 .opcode
= CMDQ_OP_PREFETCH_CFG
,
1096 if (val
& STRTAB_STE_0_V
) {
1097 switch (FIELD_GET(STRTAB_STE_0_CFG
, val
)) {
1098 case STRTAB_STE_0_CFG_BYPASS
:
1100 case STRTAB_STE_0_CFG_S1_TRANS
:
1101 case STRTAB_STE_0_CFG_S2_TRANS
:
1104 case STRTAB_STE_0_CFG_ABORT
:
1108 BUG(); /* STE corruption */
1112 /* Nuke the existing STE_0 value, as we're going to rewrite it */
1113 val
= STRTAB_STE_0_V
;
1116 if (!ste
->assigned
|| !(ste
->s1_cfg
|| ste
->s2_cfg
)) {
1117 if (!ste
->assigned
&& disable_bypass
)
1118 val
|= FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_ABORT
);
1120 val
|= FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_BYPASS
);
1122 dst
[0] = cpu_to_le64(val
);
1123 dst
[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG
,
1124 STRTAB_STE_1_SHCFG_INCOMING
));
1125 dst
[2] = 0; /* Nuke the VMID */
1127 * The SMMU can perform negative caching, so we must sync
1128 * the STE regardless of whether the old value was live.
1131 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1137 dst
[1] = cpu_to_le64(
1138 FIELD_PREP(STRTAB_STE_1_S1CIR
, STRTAB_STE_1_S1C_CACHE_WBRA
) |
1139 FIELD_PREP(STRTAB_STE_1_S1COR
, STRTAB_STE_1_S1C_CACHE_WBRA
) |
1140 FIELD_PREP(STRTAB_STE_1_S1CSH
, ARM_SMMU_SH_ISH
) |
1141 #ifdef CONFIG_PCI_ATS
1142 FIELD_PREP(STRTAB_STE_1_EATS
, STRTAB_STE_1_EATS_TRANS
) |
1144 FIELD_PREP(STRTAB_STE_1_STRW
, STRTAB_STE_1_STRW_NSEL1
));
1146 if (smmu
->features
& ARM_SMMU_FEAT_STALLS
&&
1147 !(smmu
->features
& ARM_SMMU_FEAT_STALL_FORCE
))
1148 dst
[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD
);
1150 val
|= (ste
->s1_cfg
->cdptr_dma
& STRTAB_STE_0_S1CTXPTR_MASK
) |
1151 FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_S1_TRANS
);
1156 dst
[2] = cpu_to_le64(
1157 FIELD_PREP(STRTAB_STE_2_S2VMID
, ste
->s2_cfg
->vmid
) |
1158 FIELD_PREP(STRTAB_STE_2_VTCR
, ste
->s2_cfg
->vtcr
) |
1160 STRTAB_STE_2_S2ENDI
|
1162 STRTAB_STE_2_S2PTW
| STRTAB_STE_2_S2AA64
|
1165 dst
[3] = cpu_to_le64(ste
->s2_cfg
->vttbr
& STRTAB_STE_3_S2TTB_MASK
);
1167 val
|= FIELD_PREP(STRTAB_STE_0_CFG
, STRTAB_STE_0_CFG_S2_TRANS
);
1170 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1171 dst
[0] = cpu_to_le64(val
);
1172 arm_smmu_sync_ste_for_sid(smmu
, sid
);
1174 /* It's likely that we'll want to use the new STE soon */
1175 if (!(smmu
->options
& ARM_SMMU_OPT_SKIP_PREFETCH
))
1176 arm_smmu_cmdq_issue_cmd(smmu
, &prefetch_cmd
);
1179 static void arm_smmu_init_bypass_stes(u64
*strtab
, unsigned int nent
)
1182 struct arm_smmu_strtab_ent ste
= { .assigned
= false };
1184 for (i
= 0; i
< nent
; ++i
) {
1185 arm_smmu_write_strtab_ent(NULL
, -1, strtab
, &ste
);
1186 strtab
+= STRTAB_STE_DWORDS
;
1190 static int arm_smmu_init_l2_strtab(struct arm_smmu_device
*smmu
, u32 sid
)
1194 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
1195 struct arm_smmu_strtab_l1_desc
*desc
= &cfg
->l1_desc
[sid
>> STRTAB_SPLIT
];
1200 size
= 1 << (STRTAB_SPLIT
+ ilog2(STRTAB_STE_DWORDS
) + 3);
1201 strtab
= &cfg
->strtab
[(sid
>> STRTAB_SPLIT
) * STRTAB_L1_DESC_DWORDS
];
1203 desc
->span
= STRTAB_SPLIT
+ 1;
1204 desc
->l2ptr
= dmam_alloc_coherent(smmu
->dev
, size
, &desc
->l2ptr_dma
,
1205 GFP_KERNEL
| __GFP_ZERO
);
1208 "failed to allocate l2 stream table for SID %u\n",
1213 arm_smmu_init_bypass_stes(desc
->l2ptr
, 1 << STRTAB_SPLIT
);
1214 arm_smmu_write_strtab_l1_desc(strtab
, desc
);
1218 /* IRQ and event handlers */
1219 static irqreturn_t
arm_smmu_evtq_thread(int irq
, void *dev
)
1222 struct arm_smmu_device
*smmu
= dev
;
1223 struct arm_smmu_queue
*q
= &smmu
->evtq
.q
;
1224 u64 evt
[EVTQ_ENT_DWORDS
];
1227 while (!queue_remove_raw(q
, evt
)) {
1228 u8 id
= FIELD_GET(EVTQ_0_ID
, evt
[0]);
1230 dev_info(smmu
->dev
, "event 0x%02x received:\n", id
);
1231 for (i
= 0; i
< ARRAY_SIZE(evt
); ++i
)
1232 dev_info(smmu
->dev
, "\t0x%016llx\n",
1233 (unsigned long long)evt
[i
]);
1238 * Not much we can do on overflow, so scream and pretend we're
1241 if (queue_sync_prod(q
) == -EOVERFLOW
)
1242 dev_err(smmu
->dev
, "EVTQ overflow detected -- events lost\n");
1243 } while (!queue_empty(q
));
1245 /* Sync our overflow flag, as we believe we're up to speed */
1246 q
->cons
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
);
1250 static void arm_smmu_handle_ppr(struct arm_smmu_device
*smmu
, u64
*evt
)
1256 sid
= FIELD_GET(PRIQ_0_SID
, evt
[0]);
1257 ssv
= FIELD_GET(PRIQ_0_SSID_V
, evt
[0]);
1258 ssid
= ssv
? FIELD_GET(PRIQ_0_SSID
, evt
[0]) : 0;
1259 last
= FIELD_GET(PRIQ_0_PRG_LAST
, evt
[0]);
1260 grpid
= FIELD_GET(PRIQ_1_PRG_IDX
, evt
[1]);
1262 dev_info(smmu
->dev
, "unexpected PRI request received:\n");
1264 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
1265 sid
, ssid
, grpid
, last
? "L" : "",
1266 evt
[0] & PRIQ_0_PERM_PRIV
? "" : "un",
1267 evt
[0] & PRIQ_0_PERM_READ
? "R" : "",
1268 evt
[0] & PRIQ_0_PERM_WRITE
? "W" : "",
1269 evt
[0] & PRIQ_0_PERM_EXEC
? "X" : "",
1270 evt
[1] & PRIQ_1_ADDR_MASK
);
1273 struct arm_smmu_cmdq_ent cmd
= {
1274 .opcode
= CMDQ_OP_PRI_RESP
,
1275 .substream_valid
= ssv
,
1280 .resp
= PRI_RESP_DENY
,
1284 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1288 static irqreturn_t
arm_smmu_priq_thread(int irq
, void *dev
)
1290 struct arm_smmu_device
*smmu
= dev
;
1291 struct arm_smmu_queue
*q
= &smmu
->priq
.q
;
1292 u64 evt
[PRIQ_ENT_DWORDS
];
1295 while (!queue_remove_raw(q
, evt
))
1296 arm_smmu_handle_ppr(smmu
, evt
);
1298 if (queue_sync_prod(q
) == -EOVERFLOW
)
1299 dev_err(smmu
->dev
, "PRIQ overflow detected -- requests lost\n");
1300 } while (!queue_empty(q
));
1302 /* Sync our overflow flag, as we believe we're up to speed */
1303 q
->cons
= Q_OVF(q
, q
->prod
) | Q_WRP(q
, q
->cons
) | Q_IDX(q
, q
->cons
);
1307 static int arm_smmu_device_disable(struct arm_smmu_device
*smmu
);
1309 static irqreturn_t
arm_smmu_gerror_handler(int irq
, void *dev
)
1311 u32 gerror
, gerrorn
, active
;
1312 struct arm_smmu_device
*smmu
= dev
;
1314 gerror
= readl_relaxed(smmu
->base
+ ARM_SMMU_GERROR
);
1315 gerrorn
= readl_relaxed(smmu
->base
+ ARM_SMMU_GERRORN
);
1317 active
= gerror
^ gerrorn
;
1318 if (!(active
& GERROR_ERR_MASK
))
1319 return IRQ_NONE
; /* No errors pending */
1322 "unexpected global error reported (0x%08x), this could be serious\n",
1325 if (active
& GERROR_SFM_ERR
) {
1326 dev_err(smmu
->dev
, "device has entered Service Failure Mode!\n");
1327 arm_smmu_device_disable(smmu
);
1330 if (active
& GERROR_MSI_GERROR_ABT_ERR
)
1331 dev_warn(smmu
->dev
, "GERROR MSI write aborted\n");
1333 if (active
& GERROR_MSI_PRIQ_ABT_ERR
)
1334 dev_warn(smmu
->dev
, "PRIQ MSI write aborted\n");
1336 if (active
& GERROR_MSI_EVTQ_ABT_ERR
)
1337 dev_warn(smmu
->dev
, "EVTQ MSI write aborted\n");
1339 if (active
& GERROR_MSI_CMDQ_ABT_ERR
)
1340 dev_warn(smmu
->dev
, "CMDQ MSI write aborted\n");
1342 if (active
& GERROR_PRIQ_ABT_ERR
)
1343 dev_err(smmu
->dev
, "PRIQ write aborted -- events may have been lost\n");
1345 if (active
& GERROR_EVTQ_ABT_ERR
)
1346 dev_err(smmu
->dev
, "EVTQ write aborted -- events may have been lost\n");
1348 if (active
& GERROR_CMDQ_ERR
)
1349 arm_smmu_cmdq_skip_err(smmu
);
1351 writel(gerror
, smmu
->base
+ ARM_SMMU_GERRORN
);
1355 static irqreturn_t
arm_smmu_combined_irq_thread(int irq
, void *dev
)
1357 struct arm_smmu_device
*smmu
= dev
;
1359 arm_smmu_evtq_thread(irq
, dev
);
1360 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
1361 arm_smmu_priq_thread(irq
, dev
);
1366 static irqreturn_t
arm_smmu_combined_irq_handler(int irq
, void *dev
)
1368 arm_smmu_gerror_handler(irq
, dev
);
1369 return IRQ_WAKE_THREAD
;
1372 /* IO_PGTABLE API */
1373 static void __arm_smmu_tlb_sync(struct arm_smmu_device
*smmu
)
1375 arm_smmu_cmdq_issue_sync(smmu
);
1378 static void arm_smmu_tlb_sync(void *cookie
)
1380 struct arm_smmu_domain
*smmu_domain
= cookie
;
1381 __arm_smmu_tlb_sync(smmu_domain
->smmu
);
1384 static void arm_smmu_tlb_inv_context(void *cookie
)
1386 struct arm_smmu_domain
*smmu_domain
= cookie
;
1387 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1388 struct arm_smmu_cmdq_ent cmd
;
1390 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1391 cmd
.opcode
= CMDQ_OP_TLBI_NH_ASID
;
1392 cmd
.tlbi
.asid
= smmu_domain
->s1_cfg
.cd
.asid
;
1395 cmd
.opcode
= CMDQ_OP_TLBI_S12_VMALL
;
1396 cmd
.tlbi
.vmid
= smmu_domain
->s2_cfg
.vmid
;
1399 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1400 __arm_smmu_tlb_sync(smmu
);
1403 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova
, size_t size
,
1404 size_t granule
, bool leaf
, void *cookie
)
1406 struct arm_smmu_domain
*smmu_domain
= cookie
;
1407 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1408 struct arm_smmu_cmdq_ent cmd
= {
1415 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1416 cmd
.opcode
= CMDQ_OP_TLBI_NH_VA
;
1417 cmd
.tlbi
.asid
= smmu_domain
->s1_cfg
.cd
.asid
;
1419 cmd
.opcode
= CMDQ_OP_TLBI_S2_IPA
;
1420 cmd
.tlbi
.vmid
= smmu_domain
->s2_cfg
.vmid
;
1424 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
1425 cmd
.tlbi
.addr
+= granule
;
1426 } while (size
-= granule
);
1429 static const struct iommu_gather_ops arm_smmu_gather_ops
= {
1430 .tlb_flush_all
= arm_smmu_tlb_inv_context
,
1431 .tlb_add_flush
= arm_smmu_tlb_inv_range_nosync
,
1432 .tlb_sync
= arm_smmu_tlb_sync
,
1436 static bool arm_smmu_capable(enum iommu_cap cap
)
1439 case IOMMU_CAP_CACHE_COHERENCY
:
1441 case IOMMU_CAP_NOEXEC
:
1448 static struct iommu_domain
*arm_smmu_domain_alloc(unsigned type
)
1450 struct arm_smmu_domain
*smmu_domain
;
1452 if (type
!= IOMMU_DOMAIN_UNMANAGED
&&
1453 type
!= IOMMU_DOMAIN_DMA
&&
1454 type
!= IOMMU_DOMAIN_IDENTITY
)
1458 * Allocate the domain and initialise some of its data structures.
1459 * We can't really do anything meaningful until we've added a
1462 smmu_domain
= kzalloc(sizeof(*smmu_domain
), GFP_KERNEL
);
1466 if (type
== IOMMU_DOMAIN_DMA
&&
1467 iommu_get_dma_cookie(&smmu_domain
->domain
)) {
1472 mutex_init(&smmu_domain
->init_mutex
);
1473 return &smmu_domain
->domain
;
1476 static int arm_smmu_bitmap_alloc(unsigned long *map
, int span
)
1478 int idx
, size
= 1 << span
;
1481 idx
= find_first_zero_bit(map
, size
);
1484 } while (test_and_set_bit(idx
, map
));
1489 static void arm_smmu_bitmap_free(unsigned long *map
, int idx
)
1491 clear_bit(idx
, map
);
1494 static void arm_smmu_domain_free(struct iommu_domain
*domain
)
1496 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1497 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1499 iommu_put_dma_cookie(domain
);
1500 free_io_pgtable_ops(smmu_domain
->pgtbl_ops
);
1502 /* Free the CD and ASID, if we allocated them */
1503 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1504 struct arm_smmu_s1_cfg
*cfg
= &smmu_domain
->s1_cfg
;
1507 dmam_free_coherent(smmu_domain
->smmu
->dev
,
1508 CTXDESC_CD_DWORDS
<< 3,
1512 arm_smmu_bitmap_free(smmu
->asid_map
, cfg
->cd
.asid
);
1515 struct arm_smmu_s2_cfg
*cfg
= &smmu_domain
->s2_cfg
;
1517 arm_smmu_bitmap_free(smmu
->vmid_map
, cfg
->vmid
);
1523 static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain
*smmu_domain
,
1524 struct io_pgtable_cfg
*pgtbl_cfg
)
1528 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1529 struct arm_smmu_s1_cfg
*cfg
= &smmu_domain
->s1_cfg
;
1531 asid
= arm_smmu_bitmap_alloc(smmu
->asid_map
, smmu
->asid_bits
);
1535 cfg
->cdptr
= dmam_alloc_coherent(smmu
->dev
, CTXDESC_CD_DWORDS
<< 3,
1537 GFP_KERNEL
| __GFP_ZERO
);
1539 dev_warn(smmu
->dev
, "failed to allocate context descriptor\n");
1544 cfg
->cd
.asid
= (u16
)asid
;
1545 cfg
->cd
.ttbr
= pgtbl_cfg
->arm_lpae_s1_cfg
.ttbr
[0];
1546 cfg
->cd
.tcr
= pgtbl_cfg
->arm_lpae_s1_cfg
.tcr
;
1547 cfg
->cd
.mair
= pgtbl_cfg
->arm_lpae_s1_cfg
.mair
[0];
1551 arm_smmu_bitmap_free(smmu
->asid_map
, asid
);
1555 static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain
*smmu_domain
,
1556 struct io_pgtable_cfg
*pgtbl_cfg
)
1559 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1560 struct arm_smmu_s2_cfg
*cfg
= &smmu_domain
->s2_cfg
;
1562 vmid
= arm_smmu_bitmap_alloc(smmu
->vmid_map
, smmu
->vmid_bits
);
1566 cfg
->vmid
= (u16
)vmid
;
1567 cfg
->vttbr
= pgtbl_cfg
->arm_lpae_s2_cfg
.vttbr
;
1568 cfg
->vtcr
= pgtbl_cfg
->arm_lpae_s2_cfg
.vtcr
;
1572 static int arm_smmu_domain_finalise(struct iommu_domain
*domain
)
1575 unsigned long ias
, oas
;
1576 enum io_pgtable_fmt fmt
;
1577 struct io_pgtable_cfg pgtbl_cfg
;
1578 struct io_pgtable_ops
*pgtbl_ops
;
1579 int (*finalise_stage_fn
)(struct arm_smmu_domain
*,
1580 struct io_pgtable_cfg
*);
1581 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1582 struct arm_smmu_device
*smmu
= smmu_domain
->smmu
;
1584 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
) {
1585 smmu_domain
->stage
= ARM_SMMU_DOMAIN_BYPASS
;
1589 /* Restrict the stage to what we can actually support */
1590 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S1
))
1591 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S2
;
1592 if (!(smmu
->features
& ARM_SMMU_FEAT_TRANS_S2
))
1593 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
1595 switch (smmu_domain
->stage
) {
1596 case ARM_SMMU_DOMAIN_S1
:
1597 ias
= (smmu
->features
& ARM_SMMU_FEAT_VAX
) ? 52 : 48;
1598 ias
= min_t(unsigned long, ias
, VA_BITS
);
1600 fmt
= ARM_64_LPAE_S1
;
1601 finalise_stage_fn
= arm_smmu_domain_finalise_s1
;
1603 case ARM_SMMU_DOMAIN_NESTED
:
1604 case ARM_SMMU_DOMAIN_S2
:
1607 fmt
= ARM_64_LPAE_S2
;
1608 finalise_stage_fn
= arm_smmu_domain_finalise_s2
;
1614 pgtbl_cfg
= (struct io_pgtable_cfg
) {
1615 .pgsize_bitmap
= smmu
->pgsize_bitmap
,
1618 .tlb
= &arm_smmu_gather_ops
,
1619 .iommu_dev
= smmu
->dev
,
1622 if (smmu
->features
& ARM_SMMU_FEAT_COHERENCY
)
1623 pgtbl_cfg
.quirks
= IO_PGTABLE_QUIRK_NO_DMA
;
1625 pgtbl_ops
= alloc_io_pgtable_ops(fmt
, &pgtbl_cfg
, smmu_domain
);
1629 domain
->pgsize_bitmap
= pgtbl_cfg
.pgsize_bitmap
;
1630 domain
->geometry
.aperture_end
= (1UL << pgtbl_cfg
.ias
) - 1;
1631 domain
->geometry
.force_aperture
= true;
1633 ret
= finalise_stage_fn(smmu_domain
, &pgtbl_cfg
);
1635 free_io_pgtable_ops(pgtbl_ops
);
1639 smmu_domain
->pgtbl_ops
= pgtbl_ops
;
1643 static __le64
*arm_smmu_get_step_for_sid(struct arm_smmu_device
*smmu
, u32 sid
)
1646 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
1648 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
) {
1649 struct arm_smmu_strtab_l1_desc
*l1_desc
;
1652 /* Two-level walk */
1653 idx
= (sid
>> STRTAB_SPLIT
) * STRTAB_L1_DESC_DWORDS
;
1654 l1_desc
= &cfg
->l1_desc
[idx
];
1655 idx
= (sid
& ((1 << STRTAB_SPLIT
) - 1)) * STRTAB_STE_DWORDS
;
1656 step
= &l1_desc
->l2ptr
[idx
];
1658 /* Simple linear lookup */
1659 step
= &cfg
->strtab
[sid
* STRTAB_STE_DWORDS
];
1665 static void arm_smmu_install_ste_for_dev(struct iommu_fwspec
*fwspec
)
1668 struct arm_smmu_master_data
*master
= fwspec
->iommu_priv
;
1669 struct arm_smmu_device
*smmu
= master
->smmu
;
1671 for (i
= 0; i
< fwspec
->num_ids
; ++i
) {
1672 u32 sid
= fwspec
->ids
[i
];
1673 __le64
*step
= arm_smmu_get_step_for_sid(smmu
, sid
);
1675 /* Bridged PCI devices may end up with duplicated IDs */
1676 for (j
= 0; j
< i
; j
++)
1677 if (fwspec
->ids
[j
] == sid
)
1682 arm_smmu_write_strtab_ent(smmu
, sid
, step
, &master
->ste
);
1686 static void arm_smmu_detach_dev(struct device
*dev
)
1688 struct arm_smmu_master_data
*master
= dev
->iommu_fwspec
->iommu_priv
;
1690 master
->ste
.assigned
= false;
1691 arm_smmu_install_ste_for_dev(dev
->iommu_fwspec
);
1694 static int arm_smmu_attach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1697 struct arm_smmu_device
*smmu
;
1698 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1699 struct arm_smmu_master_data
*master
;
1700 struct arm_smmu_strtab_ent
*ste
;
1702 if (!dev
->iommu_fwspec
)
1705 master
= dev
->iommu_fwspec
->iommu_priv
;
1706 smmu
= master
->smmu
;
1709 /* Already attached to a different domain? */
1711 arm_smmu_detach_dev(dev
);
1713 mutex_lock(&smmu_domain
->init_mutex
);
1715 if (!smmu_domain
->smmu
) {
1716 smmu_domain
->smmu
= smmu
;
1717 ret
= arm_smmu_domain_finalise(domain
);
1719 smmu_domain
->smmu
= NULL
;
1722 } else if (smmu_domain
->smmu
!= smmu
) {
1724 "cannot attach to SMMU %s (upstream of %s)\n",
1725 dev_name(smmu_domain
->smmu
->dev
),
1726 dev_name(smmu
->dev
));
1731 ste
->assigned
= true;
1733 if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_BYPASS
) {
1736 } else if (smmu_domain
->stage
== ARM_SMMU_DOMAIN_S1
) {
1737 ste
->s1_cfg
= &smmu_domain
->s1_cfg
;
1739 arm_smmu_write_ctx_desc(smmu
, ste
->s1_cfg
);
1742 ste
->s2_cfg
= &smmu_domain
->s2_cfg
;
1745 arm_smmu_install_ste_for_dev(dev
->iommu_fwspec
);
1747 mutex_unlock(&smmu_domain
->init_mutex
);
1751 static int arm_smmu_map(struct iommu_domain
*domain
, unsigned long iova
,
1752 phys_addr_t paddr
, size_t size
, int prot
)
1754 struct io_pgtable_ops
*ops
= to_smmu_domain(domain
)->pgtbl_ops
;
1759 return ops
->map(ops
, iova
, paddr
, size
, prot
);
1763 arm_smmu_unmap(struct iommu_domain
*domain
, unsigned long iova
, size_t size
)
1765 struct io_pgtable_ops
*ops
= to_smmu_domain(domain
)->pgtbl_ops
;
1770 return ops
->unmap(ops
, iova
, size
);
1773 static void arm_smmu_iotlb_sync(struct iommu_domain
*domain
)
1775 struct arm_smmu_device
*smmu
= to_smmu_domain(domain
)->smmu
;
1778 __arm_smmu_tlb_sync(smmu
);
1782 arm_smmu_iova_to_phys(struct iommu_domain
*domain
, dma_addr_t iova
)
1784 struct io_pgtable_ops
*ops
= to_smmu_domain(domain
)->pgtbl_ops
;
1786 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
1792 return ops
->iova_to_phys(ops
, iova
);
1795 static struct platform_driver arm_smmu_driver
;
1797 static int arm_smmu_match_node(struct device
*dev
, void *data
)
1799 return dev
->fwnode
== data
;
1803 struct arm_smmu_device
*arm_smmu_get_by_fwnode(struct fwnode_handle
*fwnode
)
1805 struct device
*dev
= driver_find_device(&arm_smmu_driver
.driver
, NULL
,
1806 fwnode
, arm_smmu_match_node
);
1808 return dev
? dev_get_drvdata(dev
) : NULL
;
1811 static bool arm_smmu_sid_in_range(struct arm_smmu_device
*smmu
, u32 sid
)
1813 unsigned long limit
= smmu
->strtab_cfg
.num_l1_ents
;
1815 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
)
1816 limit
*= 1UL << STRTAB_SPLIT
;
1821 static struct iommu_ops arm_smmu_ops
;
1823 static int arm_smmu_add_device(struct device
*dev
)
1826 struct arm_smmu_device
*smmu
;
1827 struct arm_smmu_master_data
*master
;
1828 struct iommu_fwspec
*fwspec
= dev
->iommu_fwspec
;
1829 struct iommu_group
*group
;
1831 if (!fwspec
|| fwspec
->ops
!= &arm_smmu_ops
)
1834 * We _can_ actually withstand dodgy bus code re-calling add_device()
1835 * without an intervening remove_device()/of_xlate() sequence, but
1836 * we're not going to do so quietly...
1838 if (WARN_ON_ONCE(fwspec
->iommu_priv
)) {
1839 master
= fwspec
->iommu_priv
;
1840 smmu
= master
->smmu
;
1842 smmu
= arm_smmu_get_by_fwnode(fwspec
->iommu_fwnode
);
1845 master
= kzalloc(sizeof(*master
), GFP_KERNEL
);
1849 master
->smmu
= smmu
;
1850 fwspec
->iommu_priv
= master
;
1853 /* Check the SIDs are in range of the SMMU and our stream table */
1854 for (i
= 0; i
< fwspec
->num_ids
; i
++) {
1855 u32 sid
= fwspec
->ids
[i
];
1857 if (!arm_smmu_sid_in_range(smmu
, sid
))
1860 /* Ensure l2 strtab is initialised */
1861 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
) {
1862 ret
= arm_smmu_init_l2_strtab(smmu
, sid
);
1868 group
= iommu_group_get_for_dev(dev
);
1869 if (!IS_ERR(group
)) {
1870 iommu_group_put(group
);
1871 iommu_device_link(&smmu
->iommu
, dev
);
1874 return PTR_ERR_OR_ZERO(group
);
1877 static void arm_smmu_remove_device(struct device
*dev
)
1879 struct iommu_fwspec
*fwspec
= dev
->iommu_fwspec
;
1880 struct arm_smmu_master_data
*master
;
1881 struct arm_smmu_device
*smmu
;
1883 if (!fwspec
|| fwspec
->ops
!= &arm_smmu_ops
)
1886 master
= fwspec
->iommu_priv
;
1887 smmu
= master
->smmu
;
1888 if (master
&& master
->ste
.assigned
)
1889 arm_smmu_detach_dev(dev
);
1890 iommu_group_remove_device(dev
);
1891 iommu_device_unlink(&smmu
->iommu
, dev
);
1893 iommu_fwspec_free(dev
);
1896 static struct iommu_group
*arm_smmu_device_group(struct device
*dev
)
1898 struct iommu_group
*group
;
1901 * We don't support devices sharing stream IDs other than PCI RID
1902 * aliases, since the necessary ID-to-device lookup becomes rather
1903 * impractical given a potential sparse 32-bit stream ID space.
1905 if (dev_is_pci(dev
))
1906 group
= pci_device_group(dev
);
1908 group
= generic_device_group(dev
);
1913 static int arm_smmu_domain_get_attr(struct iommu_domain
*domain
,
1914 enum iommu_attr attr
, void *data
)
1916 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1918 if (domain
->type
!= IOMMU_DOMAIN_UNMANAGED
)
1922 case DOMAIN_ATTR_NESTING
:
1923 *(int *)data
= (smmu_domain
->stage
== ARM_SMMU_DOMAIN_NESTED
);
1930 static int arm_smmu_domain_set_attr(struct iommu_domain
*domain
,
1931 enum iommu_attr attr
, void *data
)
1934 struct arm_smmu_domain
*smmu_domain
= to_smmu_domain(domain
);
1936 if (domain
->type
!= IOMMU_DOMAIN_UNMANAGED
)
1939 mutex_lock(&smmu_domain
->init_mutex
);
1942 case DOMAIN_ATTR_NESTING
:
1943 if (smmu_domain
->smmu
) {
1949 smmu_domain
->stage
= ARM_SMMU_DOMAIN_NESTED
;
1951 smmu_domain
->stage
= ARM_SMMU_DOMAIN_S1
;
1959 mutex_unlock(&smmu_domain
->init_mutex
);
1963 static int arm_smmu_of_xlate(struct device
*dev
, struct of_phandle_args
*args
)
1965 return iommu_fwspec_add_ids(dev
, args
->args
, 1);
1968 static void arm_smmu_get_resv_regions(struct device
*dev
,
1969 struct list_head
*head
)
1971 struct iommu_resv_region
*region
;
1972 int prot
= IOMMU_WRITE
| IOMMU_NOEXEC
| IOMMU_MMIO
;
1974 region
= iommu_alloc_resv_region(MSI_IOVA_BASE
, MSI_IOVA_LENGTH
,
1975 prot
, IOMMU_RESV_SW_MSI
);
1979 list_add_tail(®ion
->list
, head
);
1981 iommu_dma_get_resv_regions(dev
, head
);
1984 static void arm_smmu_put_resv_regions(struct device
*dev
,
1985 struct list_head
*head
)
1987 struct iommu_resv_region
*entry
, *next
;
1989 list_for_each_entry_safe(entry
, next
, head
, list
)
1993 static struct iommu_ops arm_smmu_ops
= {
1994 .capable
= arm_smmu_capable
,
1995 .domain_alloc
= arm_smmu_domain_alloc
,
1996 .domain_free
= arm_smmu_domain_free
,
1997 .attach_dev
= arm_smmu_attach_dev
,
1998 .map
= arm_smmu_map
,
1999 .unmap
= arm_smmu_unmap
,
2000 .map_sg
= default_iommu_map_sg
,
2001 .flush_iotlb_all
= arm_smmu_iotlb_sync
,
2002 .iotlb_sync
= arm_smmu_iotlb_sync
,
2003 .iova_to_phys
= arm_smmu_iova_to_phys
,
2004 .add_device
= arm_smmu_add_device
,
2005 .remove_device
= arm_smmu_remove_device
,
2006 .device_group
= arm_smmu_device_group
,
2007 .domain_get_attr
= arm_smmu_domain_get_attr
,
2008 .domain_set_attr
= arm_smmu_domain_set_attr
,
2009 .of_xlate
= arm_smmu_of_xlate
,
2010 .get_resv_regions
= arm_smmu_get_resv_regions
,
2011 .put_resv_regions
= arm_smmu_put_resv_regions
,
2012 .pgsize_bitmap
= -1UL, /* Restricted during device attach */
2015 /* Probing and initialisation functions */
2016 static int arm_smmu_init_one_queue(struct arm_smmu_device
*smmu
,
2017 struct arm_smmu_queue
*q
,
2018 unsigned long prod_off
,
2019 unsigned long cons_off
,
2022 size_t qsz
= ((1 << q
->max_n_shift
) * dwords
) << 3;
2024 q
->base
= dmam_alloc_coherent(smmu
->dev
, qsz
, &q
->base_dma
, GFP_KERNEL
);
2026 dev_err(smmu
->dev
, "failed to allocate queue (0x%zx bytes)\n",
2031 q
->prod_reg
= arm_smmu_page1_fixup(prod_off
, smmu
);
2032 q
->cons_reg
= arm_smmu_page1_fixup(cons_off
, smmu
);
2033 q
->ent_dwords
= dwords
;
2035 q
->q_base
= Q_BASE_RWA
;
2036 q
->q_base
|= q
->base_dma
& Q_BASE_ADDR_MASK
;
2037 q
->q_base
|= FIELD_PREP(Q_BASE_LOG2SIZE
, q
->max_n_shift
);
2039 q
->prod
= q
->cons
= 0;
2043 static int arm_smmu_init_queues(struct arm_smmu_device
*smmu
)
2048 spin_lock_init(&smmu
->cmdq
.lock
);
2049 ret
= arm_smmu_init_one_queue(smmu
, &smmu
->cmdq
.q
, ARM_SMMU_CMDQ_PROD
,
2050 ARM_SMMU_CMDQ_CONS
, CMDQ_ENT_DWORDS
);
2055 ret
= arm_smmu_init_one_queue(smmu
, &smmu
->evtq
.q
, ARM_SMMU_EVTQ_PROD
,
2056 ARM_SMMU_EVTQ_CONS
, EVTQ_ENT_DWORDS
);
2061 if (!(smmu
->features
& ARM_SMMU_FEAT_PRI
))
2064 return arm_smmu_init_one_queue(smmu
, &smmu
->priq
.q
, ARM_SMMU_PRIQ_PROD
,
2065 ARM_SMMU_PRIQ_CONS
, PRIQ_ENT_DWORDS
);
2068 static int arm_smmu_init_l1_strtab(struct arm_smmu_device
*smmu
)
2071 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2072 size_t size
= sizeof(*cfg
->l1_desc
) * cfg
->num_l1_ents
;
2073 void *strtab
= smmu
->strtab_cfg
.strtab
;
2075 cfg
->l1_desc
= devm_kzalloc(smmu
->dev
, size
, GFP_KERNEL
);
2076 if (!cfg
->l1_desc
) {
2077 dev_err(smmu
->dev
, "failed to allocate l1 stream table desc\n");
2081 for (i
= 0; i
< cfg
->num_l1_ents
; ++i
) {
2082 arm_smmu_write_strtab_l1_desc(strtab
, &cfg
->l1_desc
[i
]);
2083 strtab
+= STRTAB_L1_DESC_DWORDS
<< 3;
2089 static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device
*smmu
)
2094 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2096 /* Calculate the L1 size, capped to the SIDSIZE. */
2097 size
= STRTAB_L1_SZ_SHIFT
- (ilog2(STRTAB_L1_DESC_DWORDS
) + 3);
2098 size
= min(size
, smmu
->sid_bits
- STRTAB_SPLIT
);
2099 cfg
->num_l1_ents
= 1 << size
;
2101 size
+= STRTAB_SPLIT
;
2102 if (size
< smmu
->sid_bits
)
2104 "2-level strtab only covers %u/%u bits of SID\n",
2105 size
, smmu
->sid_bits
);
2107 l1size
= cfg
->num_l1_ents
* (STRTAB_L1_DESC_DWORDS
<< 3);
2108 strtab
= dmam_alloc_coherent(smmu
->dev
, l1size
, &cfg
->strtab_dma
,
2109 GFP_KERNEL
| __GFP_ZERO
);
2112 "failed to allocate l1 stream table (%u bytes)\n",
2116 cfg
->strtab
= strtab
;
2118 /* Configure strtab_base_cfg for 2 levels */
2119 reg
= FIELD_PREP(STRTAB_BASE_CFG_FMT
, STRTAB_BASE_CFG_FMT_2LVL
);
2120 reg
|= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE
, size
);
2121 reg
|= FIELD_PREP(STRTAB_BASE_CFG_SPLIT
, STRTAB_SPLIT
);
2122 cfg
->strtab_base_cfg
= reg
;
2124 return arm_smmu_init_l1_strtab(smmu
);
2127 static int arm_smmu_init_strtab_linear(struct arm_smmu_device
*smmu
)
2132 struct arm_smmu_strtab_cfg
*cfg
= &smmu
->strtab_cfg
;
2134 size
= (1 << smmu
->sid_bits
) * (STRTAB_STE_DWORDS
<< 3);
2135 strtab
= dmam_alloc_coherent(smmu
->dev
, size
, &cfg
->strtab_dma
,
2136 GFP_KERNEL
| __GFP_ZERO
);
2139 "failed to allocate linear stream table (%u bytes)\n",
2143 cfg
->strtab
= strtab
;
2144 cfg
->num_l1_ents
= 1 << smmu
->sid_bits
;
2146 /* Configure strtab_base_cfg for a linear table covering all SIDs */
2147 reg
= FIELD_PREP(STRTAB_BASE_CFG_FMT
, STRTAB_BASE_CFG_FMT_LINEAR
);
2148 reg
|= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE
, smmu
->sid_bits
);
2149 cfg
->strtab_base_cfg
= reg
;
2151 arm_smmu_init_bypass_stes(strtab
, cfg
->num_l1_ents
);
2155 static int arm_smmu_init_strtab(struct arm_smmu_device
*smmu
)
2160 if (smmu
->features
& ARM_SMMU_FEAT_2_LVL_STRTAB
)
2161 ret
= arm_smmu_init_strtab_2lvl(smmu
);
2163 ret
= arm_smmu_init_strtab_linear(smmu
);
2168 /* Set the strtab base address */
2169 reg
= smmu
->strtab_cfg
.strtab_dma
& STRTAB_BASE_ADDR_MASK
;
2170 reg
|= STRTAB_BASE_RA
;
2171 smmu
->strtab_cfg
.strtab_base
= reg
;
2173 /* Allocate the first VMID for stage-2 bypass STEs */
2174 set_bit(0, smmu
->vmid_map
);
2178 static int arm_smmu_init_structures(struct arm_smmu_device
*smmu
)
2182 atomic_set(&smmu
->sync_nr
, 0);
2183 ret
= arm_smmu_init_queues(smmu
);
2187 return arm_smmu_init_strtab(smmu
);
2190 static int arm_smmu_write_reg_sync(struct arm_smmu_device
*smmu
, u32 val
,
2191 unsigned int reg_off
, unsigned int ack_off
)
2195 writel_relaxed(val
, smmu
->base
+ reg_off
);
2196 return readl_relaxed_poll_timeout(smmu
->base
+ ack_off
, reg
, reg
== val
,
2197 1, ARM_SMMU_POLL_TIMEOUT_US
);
2200 /* GBPA is "special" */
2201 static int arm_smmu_update_gbpa(struct arm_smmu_device
*smmu
, u32 set
, u32 clr
)
2204 u32 reg
, __iomem
*gbpa
= smmu
->base
+ ARM_SMMU_GBPA
;
2206 ret
= readl_relaxed_poll_timeout(gbpa
, reg
, !(reg
& GBPA_UPDATE
),
2207 1, ARM_SMMU_POLL_TIMEOUT_US
);
2213 writel_relaxed(reg
| GBPA_UPDATE
, gbpa
);
2214 return readl_relaxed_poll_timeout(gbpa
, reg
, !(reg
& GBPA_UPDATE
),
2215 1, ARM_SMMU_POLL_TIMEOUT_US
);
2218 static void arm_smmu_free_msis(void *data
)
2220 struct device
*dev
= data
;
2221 platform_msi_domain_free_irqs(dev
);
2224 static void arm_smmu_write_msi_msg(struct msi_desc
*desc
, struct msi_msg
*msg
)
2226 phys_addr_t doorbell
;
2227 struct device
*dev
= msi_desc_to_dev(desc
);
2228 struct arm_smmu_device
*smmu
= dev_get_drvdata(dev
);
2229 phys_addr_t
*cfg
= arm_smmu_msi_cfg
[desc
->platform
.msi_index
];
2231 doorbell
= (((u64
)msg
->address_hi
) << 32) | msg
->address_lo
;
2232 doorbell
&= MSI_CFG0_ADDR_MASK
;
2234 writeq_relaxed(doorbell
, smmu
->base
+ cfg
[0]);
2235 writel_relaxed(msg
->data
, smmu
->base
+ cfg
[1]);
2236 writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE
, smmu
->base
+ cfg
[2]);
2239 static void arm_smmu_setup_msis(struct arm_smmu_device
*smmu
)
2241 struct msi_desc
*desc
;
2242 int ret
, nvec
= ARM_SMMU_MAX_MSIS
;
2243 struct device
*dev
= smmu
->dev
;
2245 /* Clear the MSI address regs */
2246 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_GERROR_IRQ_CFG0
);
2247 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_EVTQ_IRQ_CFG0
);
2249 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
2250 writeq_relaxed(0, smmu
->base
+ ARM_SMMU_PRIQ_IRQ_CFG0
);
2254 if (!(smmu
->features
& ARM_SMMU_FEAT_MSI
))
2257 if (!dev
->msi_domain
) {
2258 dev_info(smmu
->dev
, "msi_domain absent - falling back to wired irqs\n");
2262 /* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
2263 ret
= platform_msi_domain_alloc_irqs(dev
, nvec
, arm_smmu_write_msi_msg
);
2265 dev_warn(dev
, "failed to allocate MSIs - falling back to wired irqs\n");
2269 for_each_msi_entry(desc
, dev
) {
2270 switch (desc
->platform
.msi_index
) {
2271 case EVTQ_MSI_INDEX
:
2272 smmu
->evtq
.q
.irq
= desc
->irq
;
2274 case GERROR_MSI_INDEX
:
2275 smmu
->gerr_irq
= desc
->irq
;
2277 case PRIQ_MSI_INDEX
:
2278 smmu
->priq
.q
.irq
= desc
->irq
;
2280 default: /* Unknown */
2285 /* Add callback to free MSIs on teardown */
2286 devm_add_action(dev
, arm_smmu_free_msis
, dev
);
2289 static void arm_smmu_setup_unique_irqs(struct arm_smmu_device
*smmu
)
2293 arm_smmu_setup_msis(smmu
);
2295 /* Request interrupt lines */
2296 irq
= smmu
->evtq
.q
.irq
;
2298 ret
= devm_request_threaded_irq(smmu
->dev
, irq
, NULL
,
2299 arm_smmu_evtq_thread
,
2301 "arm-smmu-v3-evtq", smmu
);
2303 dev_warn(smmu
->dev
, "failed to enable evtq irq\n");
2305 dev_warn(smmu
->dev
, "no evtq irq - events will not be reported!\n");
2308 irq
= smmu
->gerr_irq
;
2310 ret
= devm_request_irq(smmu
->dev
, irq
, arm_smmu_gerror_handler
,
2311 0, "arm-smmu-v3-gerror", smmu
);
2313 dev_warn(smmu
->dev
, "failed to enable gerror irq\n");
2315 dev_warn(smmu
->dev
, "no gerr irq - errors will not be reported!\n");
2318 if (smmu
->features
& ARM_SMMU_FEAT_PRI
) {
2319 irq
= smmu
->priq
.q
.irq
;
2321 ret
= devm_request_threaded_irq(smmu
->dev
, irq
, NULL
,
2322 arm_smmu_priq_thread
,
2328 "failed to enable priq irq\n");
2330 dev_warn(smmu
->dev
, "no priq irq - PRI will be broken\n");
2335 static int arm_smmu_setup_irqs(struct arm_smmu_device
*smmu
)
2338 u32 irqen_flags
= IRQ_CTRL_EVTQ_IRQEN
| IRQ_CTRL_GERROR_IRQEN
;
2340 /* Disable IRQs first */
2341 ret
= arm_smmu_write_reg_sync(smmu
, 0, ARM_SMMU_IRQ_CTRL
,
2342 ARM_SMMU_IRQ_CTRLACK
);
2344 dev_err(smmu
->dev
, "failed to disable irqs\n");
2348 irq
= smmu
->combined_irq
;
2351 * Cavium ThunderX2 implementation doesn't not support unique
2352 * irq lines. Use single irq line for all the SMMUv3 interrupts.
2354 ret
= devm_request_threaded_irq(smmu
->dev
, irq
,
2355 arm_smmu_combined_irq_handler
,
2356 arm_smmu_combined_irq_thread
,
2358 "arm-smmu-v3-combined-irq", smmu
);
2360 dev_warn(smmu
->dev
, "failed to enable combined irq\n");
2362 arm_smmu_setup_unique_irqs(smmu
);
2364 if (smmu
->features
& ARM_SMMU_FEAT_PRI
)
2365 irqen_flags
|= IRQ_CTRL_PRIQ_IRQEN
;
2367 /* Enable interrupt generation on the SMMU */
2368 ret
= arm_smmu_write_reg_sync(smmu
, irqen_flags
,
2369 ARM_SMMU_IRQ_CTRL
, ARM_SMMU_IRQ_CTRLACK
);
2371 dev_warn(smmu
->dev
, "failed to enable irqs\n");
2376 static int arm_smmu_device_disable(struct arm_smmu_device
*smmu
)
2380 ret
= arm_smmu_write_reg_sync(smmu
, 0, ARM_SMMU_CR0
, ARM_SMMU_CR0ACK
);
2382 dev_err(smmu
->dev
, "failed to clear cr0\n");
2387 static int arm_smmu_device_reset(struct arm_smmu_device
*smmu
, bool bypass
)
2391 struct arm_smmu_cmdq_ent cmd
;
2393 /* Clear CR0 and sync (disables SMMU and queue processing) */
2394 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_CR0
);
2395 if (reg
& CR0_SMMUEN
)
2396 dev_warn(smmu
->dev
, "SMMU currently enabled! Resetting...\n");
2398 ret
= arm_smmu_device_disable(smmu
);
2402 /* CR1 (table and queue memory attributes) */
2403 reg
= FIELD_PREP(CR1_TABLE_SH
, ARM_SMMU_SH_ISH
) |
2404 FIELD_PREP(CR1_TABLE_OC
, CR1_CACHE_WB
) |
2405 FIELD_PREP(CR1_TABLE_IC
, CR1_CACHE_WB
) |
2406 FIELD_PREP(CR1_QUEUE_SH
, ARM_SMMU_SH_ISH
) |
2407 FIELD_PREP(CR1_QUEUE_OC
, CR1_CACHE_WB
) |
2408 FIELD_PREP(CR1_QUEUE_IC
, CR1_CACHE_WB
);
2409 writel_relaxed(reg
, smmu
->base
+ ARM_SMMU_CR1
);
2411 /* CR2 (random crap) */
2412 reg
= CR2_PTM
| CR2_RECINVSID
| CR2_E2H
;
2413 writel_relaxed(reg
, smmu
->base
+ ARM_SMMU_CR2
);
2416 writeq_relaxed(smmu
->strtab_cfg
.strtab_base
,
2417 smmu
->base
+ ARM_SMMU_STRTAB_BASE
);
2418 writel_relaxed(smmu
->strtab_cfg
.strtab_base_cfg
,
2419 smmu
->base
+ ARM_SMMU_STRTAB_BASE_CFG
);
2422 writeq_relaxed(smmu
->cmdq
.q
.q_base
, smmu
->base
+ ARM_SMMU_CMDQ_BASE
);
2423 writel_relaxed(smmu
->cmdq
.q
.prod
, smmu
->base
+ ARM_SMMU_CMDQ_PROD
);
2424 writel_relaxed(smmu
->cmdq
.q
.cons
, smmu
->base
+ ARM_SMMU_CMDQ_CONS
);
2426 enables
= CR0_CMDQEN
;
2427 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2430 dev_err(smmu
->dev
, "failed to enable command queue\n");
2434 /* Invalidate any cached configuration */
2435 cmd
.opcode
= CMDQ_OP_CFGI_ALL
;
2436 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2437 arm_smmu_cmdq_issue_sync(smmu
);
2439 /* Invalidate any stale TLB entries */
2440 if (smmu
->features
& ARM_SMMU_FEAT_HYP
) {
2441 cmd
.opcode
= CMDQ_OP_TLBI_EL2_ALL
;
2442 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2445 cmd
.opcode
= CMDQ_OP_TLBI_NSNH_ALL
;
2446 arm_smmu_cmdq_issue_cmd(smmu
, &cmd
);
2447 arm_smmu_cmdq_issue_sync(smmu
);
2450 writeq_relaxed(smmu
->evtq
.q
.q_base
, smmu
->base
+ ARM_SMMU_EVTQ_BASE
);
2451 writel_relaxed(smmu
->evtq
.q
.prod
,
2452 arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD
, smmu
));
2453 writel_relaxed(smmu
->evtq
.q
.cons
,
2454 arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS
, smmu
));
2456 enables
|= CR0_EVTQEN
;
2457 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2460 dev_err(smmu
->dev
, "failed to enable event queue\n");
2465 if (smmu
->features
& ARM_SMMU_FEAT_PRI
) {
2466 writeq_relaxed(smmu
->priq
.q
.q_base
,
2467 smmu
->base
+ ARM_SMMU_PRIQ_BASE
);
2468 writel_relaxed(smmu
->priq
.q
.prod
,
2469 arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD
, smmu
));
2470 writel_relaxed(smmu
->priq
.q
.cons
,
2471 arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS
, smmu
));
2473 enables
|= CR0_PRIQEN
;
2474 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2477 dev_err(smmu
->dev
, "failed to enable PRI queue\n");
2482 ret
= arm_smmu_setup_irqs(smmu
);
2484 dev_err(smmu
->dev
, "failed to setup irqs\n");
2489 /* Enable the SMMU interface, or ensure bypass */
2490 if (!bypass
|| disable_bypass
) {
2491 enables
|= CR0_SMMUEN
;
2493 ret
= arm_smmu_update_gbpa(smmu
, 0, GBPA_ABORT
);
2495 dev_err(smmu
->dev
, "GBPA not responding to update\n");
2499 ret
= arm_smmu_write_reg_sync(smmu
, enables
, ARM_SMMU_CR0
,
2502 dev_err(smmu
->dev
, "failed to enable SMMU interface\n");
2509 static int arm_smmu_device_hw_probe(struct arm_smmu_device
*smmu
)
2512 bool coherent
= smmu
->features
& ARM_SMMU_FEAT_COHERENCY
;
2515 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR0
);
2517 /* 2-level structures */
2518 if (FIELD_GET(IDR0_ST_LVL
, reg
) == IDR0_ST_LVL_2LVL
)
2519 smmu
->features
|= ARM_SMMU_FEAT_2_LVL_STRTAB
;
2521 if (reg
& IDR0_CD2L
)
2522 smmu
->features
|= ARM_SMMU_FEAT_2_LVL_CDTAB
;
2525 * Translation table endianness.
2526 * We currently require the same endianness as the CPU, but this
2527 * could be changed later by adding a new IO_PGTABLE_QUIRK.
2529 switch (FIELD_GET(IDR0_TTENDIAN
, reg
)) {
2530 case IDR0_TTENDIAN_MIXED
:
2531 smmu
->features
|= ARM_SMMU_FEAT_TT_LE
| ARM_SMMU_FEAT_TT_BE
;
2534 case IDR0_TTENDIAN_BE
:
2535 smmu
->features
|= ARM_SMMU_FEAT_TT_BE
;
2538 case IDR0_TTENDIAN_LE
:
2539 smmu
->features
|= ARM_SMMU_FEAT_TT_LE
;
2543 dev_err(smmu
->dev
, "unknown/unsupported TT endianness!\n");
2547 /* Boolean feature flags */
2548 if (IS_ENABLED(CONFIG_PCI_PRI
) && reg
& IDR0_PRI
)
2549 smmu
->features
|= ARM_SMMU_FEAT_PRI
;
2551 if (IS_ENABLED(CONFIG_PCI_ATS
) && reg
& IDR0_ATS
)
2552 smmu
->features
|= ARM_SMMU_FEAT_ATS
;
2555 smmu
->features
|= ARM_SMMU_FEAT_SEV
;
2558 smmu
->features
|= ARM_SMMU_FEAT_MSI
;
2561 smmu
->features
|= ARM_SMMU_FEAT_HYP
;
2564 * The coherency feature as set by FW is used in preference to the ID
2565 * register, but warn on mismatch.
2567 if (!!(reg
& IDR0_COHACC
) != coherent
)
2568 dev_warn(smmu
->dev
, "IDR0.COHACC overridden by FW configuration (%s)\n",
2569 coherent
? "true" : "false");
2571 switch (FIELD_GET(IDR0_STALL_MODEL
, reg
)) {
2572 case IDR0_STALL_MODEL_FORCE
:
2573 smmu
->features
|= ARM_SMMU_FEAT_STALL_FORCE
;
2575 case IDR0_STALL_MODEL_STALL
:
2576 smmu
->features
|= ARM_SMMU_FEAT_STALLS
;
2580 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S1
;
2583 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S2
;
2585 if (!(reg
& (IDR0_S1P
| IDR0_S2P
))) {
2586 dev_err(smmu
->dev
, "no translation support!\n");
2590 /* We only support the AArch64 table format at present */
2591 switch (FIELD_GET(IDR0_TTF
, reg
)) {
2592 case IDR0_TTF_AARCH32_64
:
2595 case IDR0_TTF_AARCH64
:
2598 dev_err(smmu
->dev
, "AArch64 table format not supported!\n");
2602 /* ASID/VMID sizes */
2603 smmu
->asid_bits
= reg
& IDR0_ASID16
? 16 : 8;
2604 smmu
->vmid_bits
= reg
& IDR0_VMID16
? 16 : 8;
2607 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR1
);
2608 if (reg
& (IDR1_TABLES_PRESET
| IDR1_QUEUES_PRESET
| IDR1_REL
)) {
2609 dev_err(smmu
->dev
, "embedded implementation not supported\n");
2613 /* Queue sizes, capped at 4k */
2614 smmu
->cmdq
.q
.max_n_shift
= min_t(u32
, CMDQ_MAX_SZ_SHIFT
,
2615 FIELD_GET(IDR1_CMDQS
, reg
));
2616 if (!smmu
->cmdq
.q
.max_n_shift
) {
2617 /* Odd alignment restrictions on the base, so ignore for now */
2618 dev_err(smmu
->dev
, "unit-length command queue not supported\n");
2622 smmu
->evtq
.q
.max_n_shift
= min_t(u32
, EVTQ_MAX_SZ_SHIFT
,
2623 FIELD_GET(IDR1_EVTQS
, reg
));
2624 smmu
->priq
.q
.max_n_shift
= min_t(u32
, PRIQ_MAX_SZ_SHIFT
,
2625 FIELD_GET(IDR1_PRIQS
, reg
));
2627 /* SID/SSID sizes */
2628 smmu
->ssid_bits
= FIELD_GET(IDR1_SSIDSIZE
, reg
);
2629 smmu
->sid_bits
= FIELD_GET(IDR1_SIDSIZE
, reg
);
2632 * If the SMMU supports fewer bits than would fill a single L2 stream
2633 * table, use a linear table instead.
2635 if (smmu
->sid_bits
<= STRTAB_SPLIT
)
2636 smmu
->features
&= ~ARM_SMMU_FEAT_2_LVL_STRTAB
;
2639 reg
= readl_relaxed(smmu
->base
+ ARM_SMMU_IDR5
);
2641 /* Maximum number of outstanding stalls */
2642 smmu
->evtq
.max_stalls
= FIELD_GET(IDR5_STALL_MAX
, reg
);
2645 if (reg
& IDR5_GRAN64K
)
2646 smmu
->pgsize_bitmap
|= SZ_64K
| SZ_512M
;
2647 if (reg
& IDR5_GRAN16K
)
2648 smmu
->pgsize_bitmap
|= SZ_16K
| SZ_32M
;
2649 if (reg
& IDR5_GRAN4K
)
2650 smmu
->pgsize_bitmap
|= SZ_4K
| SZ_2M
| SZ_1G
;
2652 /* Input address size */
2653 if (FIELD_GET(IDR5_VAX
, reg
) == IDR5_VAX_52_BIT
)
2654 smmu
->features
|= ARM_SMMU_FEAT_VAX
;
2656 /* Output address size */
2657 switch (FIELD_GET(IDR5_OAS
, reg
)) {
2658 case IDR5_OAS_32_BIT
:
2661 case IDR5_OAS_36_BIT
:
2664 case IDR5_OAS_40_BIT
:
2667 case IDR5_OAS_42_BIT
:
2670 case IDR5_OAS_44_BIT
:
2673 case IDR5_OAS_52_BIT
:
2675 smmu
->pgsize_bitmap
|= 1ULL << 42; /* 4TB */
2679 "unknown output address size. Truncating to 48-bit\n");
2681 case IDR5_OAS_48_BIT
:
2685 if (arm_smmu_ops
.pgsize_bitmap
== -1UL)
2686 arm_smmu_ops
.pgsize_bitmap
= smmu
->pgsize_bitmap
;
2688 arm_smmu_ops
.pgsize_bitmap
|= smmu
->pgsize_bitmap
;
2690 /* Set the DMA mask for our table walker */
2691 if (dma_set_mask_and_coherent(smmu
->dev
, DMA_BIT_MASK(smmu
->oas
)))
2693 "failed to set DMA mask for table walker\n");
2695 smmu
->ias
= max(smmu
->ias
, smmu
->oas
);
2697 dev_info(smmu
->dev
, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
2698 smmu
->ias
, smmu
->oas
, smmu
->features
);
2703 static void acpi_smmu_get_options(u32 model
, struct arm_smmu_device
*smmu
)
2706 case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX
:
2707 smmu
->options
|= ARM_SMMU_OPT_PAGE0_REGS_ONLY
;
2709 case ACPI_IORT_SMMU_V3_HISILICON_HI161X
:
2710 smmu
->options
|= ARM_SMMU_OPT_SKIP_PREFETCH
;
2714 dev_notice(smmu
->dev
, "option mask 0x%x\n", smmu
->options
);
2717 static int arm_smmu_device_acpi_probe(struct platform_device
*pdev
,
2718 struct arm_smmu_device
*smmu
)
2720 struct acpi_iort_smmu_v3
*iort_smmu
;
2721 struct device
*dev
= smmu
->dev
;
2722 struct acpi_iort_node
*node
;
2724 node
= *(struct acpi_iort_node
**)dev_get_platdata(dev
);
2726 /* Retrieve SMMUv3 specific data */
2727 iort_smmu
= (struct acpi_iort_smmu_v3
*)node
->node_data
;
2729 acpi_smmu_get_options(iort_smmu
->model
, smmu
);
2731 if (iort_smmu
->flags
& ACPI_IORT_SMMU_V3_COHACC_OVERRIDE
)
2732 smmu
->features
|= ARM_SMMU_FEAT_COHERENCY
;
2737 static inline int arm_smmu_device_acpi_probe(struct platform_device
*pdev
,
2738 struct arm_smmu_device
*smmu
)
2744 static int arm_smmu_device_dt_probe(struct platform_device
*pdev
,
2745 struct arm_smmu_device
*smmu
)
2747 struct device
*dev
= &pdev
->dev
;
2751 if (of_property_read_u32(dev
->of_node
, "#iommu-cells", &cells
))
2752 dev_err(dev
, "missing #iommu-cells property\n");
2753 else if (cells
!= 1)
2754 dev_err(dev
, "invalid #iommu-cells value (%d)\n", cells
);
2758 parse_driver_options(smmu
);
2760 if (of_dma_is_coherent(dev
->of_node
))
2761 smmu
->features
|= ARM_SMMU_FEAT_COHERENCY
;
2766 static unsigned long arm_smmu_resource_size(struct arm_smmu_device
*smmu
)
2768 if (smmu
->options
& ARM_SMMU_OPT_PAGE0_REGS_ONLY
)
2774 static int arm_smmu_device_probe(struct platform_device
*pdev
)
2777 struct resource
*res
;
2778 resource_size_t ioaddr
;
2779 struct arm_smmu_device
*smmu
;
2780 struct device
*dev
= &pdev
->dev
;
2783 smmu
= devm_kzalloc(dev
, sizeof(*smmu
), GFP_KERNEL
);
2785 dev_err(dev
, "failed to allocate arm_smmu_device\n");
2791 ret
= arm_smmu_device_dt_probe(pdev
, smmu
);
2793 ret
= arm_smmu_device_acpi_probe(pdev
, smmu
);
2798 /* Set bypass mode according to firmware probing result */
2802 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2803 if (resource_size(res
) + 1 < arm_smmu_resource_size(smmu
)) {
2804 dev_err(dev
, "MMIO region too small (%pr)\n", res
);
2807 ioaddr
= res
->start
;
2809 smmu
->base
= devm_ioremap_resource(dev
, res
);
2810 if (IS_ERR(smmu
->base
))
2811 return PTR_ERR(smmu
->base
);
2813 /* Interrupt lines */
2815 irq
= platform_get_irq_byname(pdev
, "combined");
2817 smmu
->combined_irq
= irq
;
2819 irq
= platform_get_irq_byname(pdev
, "eventq");
2821 smmu
->evtq
.q
.irq
= irq
;
2823 irq
= platform_get_irq_byname(pdev
, "priq");
2825 smmu
->priq
.q
.irq
= irq
;
2827 irq
= platform_get_irq_byname(pdev
, "gerror");
2829 smmu
->gerr_irq
= irq
;
2832 ret
= arm_smmu_device_hw_probe(smmu
);
2836 /* Initialise in-memory data structures */
2837 ret
= arm_smmu_init_structures(smmu
);
2841 /* Record our private device structure */
2842 platform_set_drvdata(pdev
, smmu
);
2844 /* Reset the device */
2845 ret
= arm_smmu_device_reset(smmu
, bypass
);
2849 /* And we're up. Go go go! */
2850 ret
= iommu_device_sysfs_add(&smmu
->iommu
, dev
, NULL
,
2851 "smmu3.%pa", &ioaddr
);
2855 iommu_device_set_ops(&smmu
->iommu
, &arm_smmu_ops
);
2856 iommu_device_set_fwnode(&smmu
->iommu
, dev
->fwnode
);
2858 ret
= iommu_device_register(&smmu
->iommu
);
2860 dev_err(dev
, "Failed to register iommu\n");
2865 if (pci_bus_type
.iommu_ops
!= &arm_smmu_ops
) {
2867 ret
= bus_set_iommu(&pci_bus_type
, &arm_smmu_ops
);
2872 #ifdef CONFIG_ARM_AMBA
2873 if (amba_bustype
.iommu_ops
!= &arm_smmu_ops
) {
2874 ret
= bus_set_iommu(&amba_bustype
, &arm_smmu_ops
);
2879 if (platform_bus_type
.iommu_ops
!= &arm_smmu_ops
) {
2880 ret
= bus_set_iommu(&platform_bus_type
, &arm_smmu_ops
);
2887 static int arm_smmu_device_remove(struct platform_device
*pdev
)
2889 struct arm_smmu_device
*smmu
= platform_get_drvdata(pdev
);
2891 arm_smmu_device_disable(smmu
);
2896 static void arm_smmu_device_shutdown(struct platform_device
*pdev
)
2898 arm_smmu_device_remove(pdev
);
2901 static const struct of_device_id arm_smmu_of_match
[] = {
2902 { .compatible
= "arm,smmu-v3", },
2905 MODULE_DEVICE_TABLE(of
, arm_smmu_of_match
);
2907 static struct platform_driver arm_smmu_driver
= {
2909 .name
= "arm-smmu-v3",
2910 .of_match_table
= of_match_ptr(arm_smmu_of_match
),
2912 .probe
= arm_smmu_device_probe
,
2913 .remove
= arm_smmu_device_remove
,
2914 .shutdown
= arm_smmu_device_shutdown
,
2916 module_platform_driver(arm_smmu_driver
);
2918 IOMMU_OF_DECLARE(arm_smmuv3
, "arm,smmu-v3");
2920 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
2921 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2922 MODULE_LICENSE("GPL v2");