2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/acpi_iort.h>
23 #include <linux/device.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/gfp.h>
26 #include <linux/huge_mm.h>
27 #include <linux/iommu.h>
28 #include <linux/iova.h>
29 #include <linux/irq.h>
31 #include <linux/pci.h>
32 #include <linux/scatterlist.h>
33 #include <linux/vmalloc.h>
35 #define IOMMU_MAPPING_ERROR 0
37 struct iommu_dma_msi_page
{
38 struct list_head list
;
43 enum iommu_dma_cookie_type
{
44 IOMMU_DMA_IOVA_COOKIE
,
48 struct iommu_dma_cookie
{
49 enum iommu_dma_cookie_type type
;
51 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
52 struct iova_domain iovad
;
53 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
56 struct list_head msi_page_list
;
60 static inline size_t cookie_msi_granule(struct iommu_dma_cookie
*cookie
)
62 if (cookie
->type
== IOMMU_DMA_IOVA_COOKIE
)
63 return cookie
->iovad
.granule
;
67 static struct iommu_dma_cookie
*cookie_alloc(enum iommu_dma_cookie_type type
)
69 struct iommu_dma_cookie
*cookie
;
71 cookie
= kzalloc(sizeof(*cookie
), GFP_KERNEL
);
73 spin_lock_init(&cookie
->msi_lock
);
74 INIT_LIST_HEAD(&cookie
->msi_page_list
);
80 int iommu_dma_init(void)
82 return iova_cache_get();
86 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
87 * @domain: IOMMU domain to prepare for DMA-API usage
89 * IOMMU drivers should normally call this from their domain_alloc
90 * callback when domain->type == IOMMU_DOMAIN_DMA.
92 int iommu_get_dma_cookie(struct iommu_domain
*domain
)
94 if (domain
->iova_cookie
)
97 domain
->iova_cookie
= cookie_alloc(IOMMU_DMA_IOVA_COOKIE
);
98 if (!domain
->iova_cookie
)
103 EXPORT_SYMBOL(iommu_get_dma_cookie
);
106 * iommu_get_msi_cookie - Acquire just MSI remapping resources
107 * @domain: IOMMU domain to prepare
108 * @base: Start address of IOVA region for MSI mappings
110 * Users who manage their own IOVA allocation and do not want DMA API support,
111 * but would still like to take advantage of automatic MSI remapping, can use
112 * this to initialise their own domain appropriately. Users should reserve a
113 * contiguous IOVA region, starting at @base, large enough to accommodate the
114 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
115 * used by the devices attached to @domain.
117 int iommu_get_msi_cookie(struct iommu_domain
*domain
, dma_addr_t base
)
119 struct iommu_dma_cookie
*cookie
;
121 if (domain
->type
!= IOMMU_DOMAIN_UNMANAGED
)
124 if (domain
->iova_cookie
)
127 cookie
= cookie_alloc(IOMMU_DMA_MSI_COOKIE
);
131 cookie
->msi_iova
= base
;
132 domain
->iova_cookie
= cookie
;
135 EXPORT_SYMBOL(iommu_get_msi_cookie
);
138 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
139 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
140 * iommu_get_msi_cookie()
142 * IOMMU drivers should normally call this from their domain_free callback.
144 void iommu_put_dma_cookie(struct iommu_domain
*domain
)
146 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
147 struct iommu_dma_msi_page
*msi
, *tmp
;
152 if (cookie
->type
== IOMMU_DMA_IOVA_COOKIE
&& cookie
->iovad
.granule
)
153 put_iova_domain(&cookie
->iovad
);
155 list_for_each_entry_safe(msi
, tmp
, &cookie
->msi_page_list
, list
) {
156 list_del(&msi
->list
);
160 domain
->iova_cookie
= NULL
;
162 EXPORT_SYMBOL(iommu_put_dma_cookie
);
165 * iommu_dma_get_resv_regions - Reserved region driver helper
166 * @dev: Device from iommu_get_resv_regions()
167 * @list: Reserved region list from iommu_get_resv_regions()
169 * IOMMU drivers can use this to implement their .get_resv_regions callback
170 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
171 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
174 void iommu_dma_get_resv_regions(struct device
*dev
, struct list_head
*list
)
177 if (!is_of_node(dev
->iommu_fwspec
->iommu_fwnode
))
178 iort_iommu_msi_get_resv_regions(dev
, list
);
181 EXPORT_SYMBOL(iommu_dma_get_resv_regions
);
183 static int cookie_init_hw_msi_region(struct iommu_dma_cookie
*cookie
,
184 phys_addr_t start
, phys_addr_t end
)
186 struct iova_domain
*iovad
= &cookie
->iovad
;
187 struct iommu_dma_msi_page
*msi_page
;
190 start
-= iova_offset(iovad
, start
);
191 num_pages
= iova_align(iovad
, end
- start
) >> iova_shift(iovad
);
193 msi_page
= kcalloc(num_pages
, sizeof(*msi_page
), GFP_KERNEL
);
197 for (i
= 0; i
< num_pages
; i
++) {
198 msi_page
[i
].phys
= start
;
199 msi_page
[i
].iova
= start
;
200 INIT_LIST_HEAD(&msi_page
[i
].list
);
201 list_add(&msi_page
[i
].list
, &cookie
->msi_page_list
);
202 start
+= iovad
->granule
;
208 static void iova_reserve_pci_windows(struct pci_dev
*dev
,
209 struct iova_domain
*iovad
)
211 struct pci_host_bridge
*bridge
= pci_find_host_bridge(dev
->bus
);
212 struct resource_entry
*window
;
213 unsigned long lo
, hi
;
215 resource_list_for_each_entry(window
, &bridge
->windows
) {
216 if (resource_type(window
->res
) != IORESOURCE_MEM
)
219 lo
= iova_pfn(iovad
, window
->res
->start
- window
->offset
);
220 hi
= iova_pfn(iovad
, window
->res
->end
- window
->offset
);
221 reserve_iova(iovad
, lo
, hi
);
225 static int iova_reserve_iommu_regions(struct device
*dev
,
226 struct iommu_domain
*domain
)
228 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
229 struct iova_domain
*iovad
= &cookie
->iovad
;
230 struct iommu_resv_region
*region
;
231 LIST_HEAD(resv_regions
);
235 iova_reserve_pci_windows(to_pci_dev(dev
), iovad
);
237 iommu_get_resv_regions(dev
, &resv_regions
);
238 list_for_each_entry(region
, &resv_regions
, list
) {
239 unsigned long lo
, hi
;
241 /* We ARE the software that manages these! */
242 if (region
->type
== IOMMU_RESV_SW_MSI
)
245 lo
= iova_pfn(iovad
, region
->start
);
246 hi
= iova_pfn(iovad
, region
->start
+ region
->length
- 1);
247 reserve_iova(iovad
, lo
, hi
);
249 if (region
->type
== IOMMU_RESV_MSI
)
250 ret
= cookie_init_hw_msi_region(cookie
, region
->start
,
251 region
->start
+ region
->length
);
255 iommu_put_resv_regions(dev
, &resv_regions
);
261 * iommu_dma_init_domain - Initialise a DMA mapping domain
262 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
263 * @base: IOVA at which the mappable address space starts
264 * @size: Size of IOVA space
265 * @dev: Device the domain is being initialised for
267 * @base and @size should be exact multiples of IOMMU page granularity to
268 * avoid rounding surprises. If necessary, we reserve the page at address 0
269 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
270 * any change which could make prior IOVAs invalid will fail.
272 int iommu_dma_init_domain(struct iommu_domain
*domain
, dma_addr_t base
,
273 u64 size
, struct device
*dev
)
275 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
276 struct iova_domain
*iovad
= &cookie
->iovad
;
277 unsigned long order
, base_pfn
, end_pfn
;
279 if (!cookie
|| cookie
->type
!= IOMMU_DMA_IOVA_COOKIE
)
282 /* Use the smallest supported page size for IOVA granularity */
283 order
= __ffs(domain
->pgsize_bitmap
);
284 base_pfn
= max_t(unsigned long, 1, base
>> order
);
285 end_pfn
= (base
+ size
- 1) >> order
;
287 /* Check the domain allows at least some access to the device... */
288 if (domain
->geometry
.force_aperture
) {
289 if (base
> domain
->geometry
.aperture_end
||
290 base
+ size
<= domain
->geometry
.aperture_start
) {
291 pr_warn("specified DMA range outside IOMMU capability\n");
294 /* ...then finally give it a kicking to make sure it fits */
295 base_pfn
= max_t(unsigned long, base_pfn
,
296 domain
->geometry
.aperture_start
>> order
);
299 /* start_pfn is always nonzero for an already-initialised domain */
300 if (iovad
->start_pfn
) {
301 if (1UL << order
!= iovad
->granule
||
302 base_pfn
!= iovad
->start_pfn
) {
303 pr_warn("Incompatible range for DMA domain\n");
310 init_iova_domain(iovad
, 1UL << order
, base_pfn
);
314 return iova_reserve_iommu_regions(dev
, domain
);
316 EXPORT_SYMBOL(iommu_dma_init_domain
);
319 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
321 * @dir: Direction of DMA transfer
322 * @coherent: Is the DMA master cache-coherent?
323 * @attrs: DMA attributes for the mapping
325 * Return: corresponding IOMMU API page protection flags
327 int dma_info_to_prot(enum dma_data_direction dir
, bool coherent
,
330 int prot
= coherent
? IOMMU_CACHE
: 0;
332 if (attrs
& DMA_ATTR_PRIVILEGED
)
336 case DMA_BIDIRECTIONAL
:
337 return prot
| IOMMU_READ
| IOMMU_WRITE
;
339 return prot
| IOMMU_READ
;
340 case DMA_FROM_DEVICE
:
341 return prot
| IOMMU_WRITE
;
347 static dma_addr_t
iommu_dma_alloc_iova(struct iommu_domain
*domain
,
348 size_t size
, dma_addr_t dma_limit
, struct device
*dev
)
350 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
351 struct iova_domain
*iovad
= &cookie
->iovad
;
352 unsigned long shift
, iova_len
, iova
= 0;
354 if (cookie
->type
== IOMMU_DMA_MSI_COOKIE
) {
355 cookie
->msi_iova
+= size
;
356 return cookie
->msi_iova
- size
;
359 shift
= iova_shift(iovad
);
360 iova_len
= size
>> shift
;
362 * Freeing non-power-of-two-sized allocations back into the IOVA caches
363 * will come back to bite us badly, so we have to waste a bit of space
364 * rounding up anything cacheable to make sure that can't happen. The
365 * order of the unadjusted size will still match upon freeing.
367 if (iova_len
< (1 << (IOVA_RANGE_CACHE_MAX_SIZE
- 1)))
368 iova_len
= roundup_pow_of_two(iova_len
);
370 if (domain
->geometry
.force_aperture
)
371 dma_limit
= min(dma_limit
, domain
->geometry
.aperture_end
);
373 /* Try to get PCI devices a SAC address */
374 if (dma_limit
> DMA_BIT_MASK(32) && dev_is_pci(dev
))
375 iova
= alloc_iova_fast(iovad
, iova_len
,
376 DMA_BIT_MASK(32) >> shift
, false);
379 iova
= alloc_iova_fast(iovad
, iova_len
, dma_limit
>> shift
,
382 return (dma_addr_t
)iova
<< shift
;
385 static void iommu_dma_free_iova(struct iommu_dma_cookie
*cookie
,
386 dma_addr_t iova
, size_t size
)
388 struct iova_domain
*iovad
= &cookie
->iovad
;
390 /* The MSI case is only ever cleaning up its most recent allocation */
391 if (cookie
->type
== IOMMU_DMA_MSI_COOKIE
)
392 cookie
->msi_iova
-= size
;
394 free_iova_fast(iovad
, iova_pfn(iovad
, iova
),
395 size
>> iova_shift(iovad
));
398 static void __iommu_dma_unmap(struct iommu_domain
*domain
, dma_addr_t dma_addr
,
401 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
402 struct iova_domain
*iovad
= &cookie
->iovad
;
403 size_t iova_off
= iova_offset(iovad
, dma_addr
);
405 dma_addr
-= iova_off
;
406 size
= iova_align(iovad
, size
+ iova_off
);
408 WARN_ON(iommu_unmap(domain
, dma_addr
, size
) != size
);
409 iommu_dma_free_iova(cookie
, dma_addr
, size
);
412 static void __iommu_dma_free_pages(struct page
**pages
, int count
)
415 __free_page(pages
[count
]);
419 static struct page
**__iommu_dma_alloc_pages(unsigned int count
,
420 unsigned long order_mask
, gfp_t gfp
)
423 unsigned int i
= 0, array_size
= count
* sizeof(*pages
);
425 order_mask
&= (2U << MAX_ORDER
) - 1;
429 if (array_size
<= PAGE_SIZE
)
430 pages
= kzalloc(array_size
, GFP_KERNEL
);
432 pages
= vzalloc(array_size
);
436 /* IOMMU can map any pages, so himem can also be used here */
437 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
440 struct page
*page
= NULL
;
441 unsigned int order_size
;
444 * Higher-order allocations are a convenience rather
445 * than a necessity, hence using __GFP_NORETRY until
446 * falling back to minimum-order allocations.
448 for (order_mask
&= (2U << __fls(count
)) - 1;
449 order_mask
; order_mask
&= ~order_size
) {
450 unsigned int order
= __fls(order_mask
);
452 order_size
= 1U << order
;
453 page
= alloc_pages((order_mask
- order_size
) ?
454 gfp
| __GFP_NORETRY
: gfp
, order
);
459 if (!PageCompound(page
)) {
460 split_page(page
, order
);
462 } else if (!split_huge_page(page
)) {
465 __free_pages(page
, order
);
468 __iommu_dma_free_pages(pages
, i
);
479 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
480 * @dev: Device which owns this buffer
481 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
482 * @size: Size of buffer in bytes
483 * @handle: DMA address of buffer
485 * Frees both the pages associated with the buffer, and the array
488 void iommu_dma_free(struct device
*dev
, struct page
**pages
, size_t size
,
491 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), *handle
, size
);
492 __iommu_dma_free_pages(pages
, PAGE_ALIGN(size
) >> PAGE_SHIFT
);
493 *handle
= IOMMU_MAPPING_ERROR
;
497 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
498 * @dev: Device to allocate memory for. Must be a real device
499 * attached to an iommu_dma_domain
500 * @size: Size of buffer in bytes
501 * @gfp: Allocation flags
502 * @attrs: DMA attributes for this allocation
503 * @prot: IOMMU mapping flags
504 * @handle: Out argument for allocated DMA handle
505 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
506 * given VA/PA are visible to the given non-coherent device.
508 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
509 * but an IOMMU which supports smaller pages might not map the whole thing.
511 * Return: Array of struct page pointers describing the buffer,
512 * or NULL on failure.
514 struct page
**iommu_dma_alloc(struct device
*dev
, size_t size
, gfp_t gfp
,
515 unsigned long attrs
, int prot
, dma_addr_t
*handle
,
516 void (*flush_page
)(struct device
*, const void *, phys_addr_t
))
518 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
519 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
520 struct iova_domain
*iovad
= &cookie
->iovad
;
524 unsigned int count
, min_size
, alloc_sizes
= domain
->pgsize_bitmap
;
526 *handle
= IOMMU_MAPPING_ERROR
;
528 min_size
= alloc_sizes
& -alloc_sizes
;
529 if (min_size
< PAGE_SIZE
) {
530 min_size
= PAGE_SIZE
;
531 alloc_sizes
|= PAGE_SIZE
;
533 size
= ALIGN(size
, min_size
);
535 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
536 alloc_sizes
= min_size
;
538 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
539 pages
= __iommu_dma_alloc_pages(count
, alloc_sizes
>> PAGE_SHIFT
, gfp
);
543 size
= iova_align(iovad
, size
);
544 iova
= iommu_dma_alloc_iova(domain
, size
, dev
->coherent_dma_mask
, dev
);
548 if (sg_alloc_table_from_pages(&sgt
, pages
, count
, 0, size
, GFP_KERNEL
))
551 if (!(prot
& IOMMU_CACHE
)) {
552 struct sg_mapping_iter miter
;
554 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
555 * sufficient here, so skip it by using the "wrong" direction.
557 sg_miter_start(&miter
, sgt
.sgl
, sgt
.orig_nents
, SG_MITER_FROM_SG
);
558 while (sg_miter_next(&miter
))
559 flush_page(dev
, miter
.addr
, page_to_phys(miter
.page
));
560 sg_miter_stop(&miter
);
563 if (iommu_map_sg(domain
, iova
, sgt
.sgl
, sgt
.orig_nents
, prot
)
574 iommu_dma_free_iova(cookie
, iova
, size
);
576 __iommu_dma_free_pages(pages
, count
);
581 * iommu_dma_mmap - Map a buffer into provided user VMA
582 * @pages: Array representing buffer from iommu_dma_alloc()
583 * @size: Size of buffer in bytes
584 * @vma: VMA describing requested userspace mapping
586 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
587 * for verifying the correct size and protection of @vma beforehand.
590 int iommu_dma_mmap(struct page
**pages
, size_t size
, struct vm_area_struct
*vma
)
592 unsigned long uaddr
= vma
->vm_start
;
593 unsigned int i
, count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
596 for (i
= vma
->vm_pgoff
; i
< count
&& uaddr
< vma
->vm_end
; i
++) {
597 ret
= vm_insert_page(vma
, uaddr
, pages
[i
]);
605 static dma_addr_t
__iommu_dma_map(struct device
*dev
, phys_addr_t phys
,
606 size_t size
, int prot
)
608 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
609 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
613 if (cookie
->type
== IOMMU_DMA_IOVA_COOKIE
) {
614 iova_off
= iova_offset(&cookie
->iovad
, phys
);
615 size
= iova_align(&cookie
->iovad
, size
+ iova_off
);
618 iova
= iommu_dma_alloc_iova(domain
, size
, dma_get_mask(dev
), dev
);
620 return IOMMU_MAPPING_ERROR
;
622 if (iommu_map(domain
, iova
, phys
- iova_off
, size
, prot
)) {
623 iommu_dma_free_iova(cookie
, iova
, size
);
624 return IOMMU_MAPPING_ERROR
;
626 return iova
+ iova_off
;
629 dma_addr_t
iommu_dma_map_page(struct device
*dev
, struct page
*page
,
630 unsigned long offset
, size_t size
, int prot
)
632 return __iommu_dma_map(dev
, page_to_phys(page
) + offset
, size
, prot
);
635 void iommu_dma_unmap_page(struct device
*dev
, dma_addr_t handle
, size_t size
,
636 enum dma_data_direction dir
, unsigned long attrs
)
638 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), handle
, size
);
642 * Prepare a successfully-mapped scatterlist to give back to the caller.
644 * At this point the segments are already laid out by iommu_dma_map_sg() to
645 * avoid individually crossing any boundaries, so we merely need to check a
646 * segment's start address to avoid concatenating across one.
648 static int __finalise_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
651 struct scatterlist
*s
, *cur
= sg
;
652 unsigned long seg_mask
= dma_get_seg_boundary(dev
);
653 unsigned int cur_len
= 0, max_len
= dma_get_max_seg_size(dev
);
656 for_each_sg(sg
, s
, nents
, i
) {
657 /* Restore this segment's original unaligned fields first */
658 unsigned int s_iova_off
= sg_dma_address(s
);
659 unsigned int s_length
= sg_dma_len(s
);
660 unsigned int s_iova_len
= s
->length
;
662 s
->offset
+= s_iova_off
;
663 s
->length
= s_length
;
664 sg_dma_address(s
) = IOMMU_MAPPING_ERROR
;
668 * Now fill in the real DMA data. If...
669 * - there is a valid output segment to append to
670 * - and this segment starts on an IOVA page boundary
671 * - but doesn't fall at a segment boundary
672 * - and wouldn't make the resulting output segment too long
674 if (cur_len
&& !s_iova_off
&& (dma_addr
& seg_mask
) &&
675 (cur_len
+ s_length
<= max_len
)) {
676 /* ...then concatenate it with the previous one */
679 /* Otherwise start the next output segment */
685 sg_dma_address(cur
) = dma_addr
+ s_iova_off
;
688 sg_dma_len(cur
) = cur_len
;
689 dma_addr
+= s_iova_len
;
691 if (s_length
+ s_iova_off
< s_iova_len
)
698 * If mapping failed, then just restore the original list,
699 * but making sure the DMA fields are invalidated.
701 static void __invalidate_sg(struct scatterlist
*sg
, int nents
)
703 struct scatterlist
*s
;
706 for_each_sg(sg
, s
, nents
, i
) {
707 if (sg_dma_address(s
) != IOMMU_MAPPING_ERROR
)
708 s
->offset
+= sg_dma_address(s
);
710 s
->length
= sg_dma_len(s
);
711 sg_dma_address(s
) = IOMMU_MAPPING_ERROR
;
717 * The DMA API client is passing in a scatterlist which could describe
718 * any old buffer layout, but the IOMMU API requires everything to be
719 * aligned to IOMMU pages. Hence the need for this complicated bit of
720 * impedance-matching, to be able to hand off a suitably-aligned list,
721 * but still preserve the original offsets and sizes for the caller.
723 int iommu_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
,
726 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
727 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
728 struct iova_domain
*iovad
= &cookie
->iovad
;
729 struct scatterlist
*s
, *prev
= NULL
;
732 unsigned long mask
= dma_get_seg_boundary(dev
);
736 * Work out how much IOVA space we need, and align the segments to
737 * IOVA granules for the IOMMU driver to handle. With some clever
738 * trickery we can modify the list in-place, but reversibly, by
739 * stashing the unaligned parts in the as-yet-unused DMA fields.
741 for_each_sg(sg
, s
, nents
, i
) {
742 size_t s_iova_off
= iova_offset(iovad
, s
->offset
);
743 size_t s_length
= s
->length
;
744 size_t pad_len
= (mask
- iova_len
+ 1) & mask
;
746 sg_dma_address(s
) = s_iova_off
;
747 sg_dma_len(s
) = s_length
;
748 s
->offset
-= s_iova_off
;
749 s_length
= iova_align(iovad
, s_length
+ s_iova_off
);
750 s
->length
= s_length
;
753 * Due to the alignment of our single IOVA allocation, we can
754 * depend on these assumptions about the segment boundary mask:
755 * - If mask size >= IOVA size, then the IOVA range cannot
756 * possibly fall across a boundary, so we don't care.
757 * - If mask size < IOVA size, then the IOVA range must start
758 * exactly on a boundary, therefore we can lay things out
759 * based purely on segment lengths without needing to know
760 * the actual addresses beforehand.
761 * - The mask must be a power of 2, so pad_len == 0 if
762 * iova_len == 0, thus we cannot dereference prev the first
763 * time through here (i.e. before it has a meaningful value).
765 if (pad_len
&& pad_len
< s_length
- 1) {
766 prev
->length
+= pad_len
;
770 iova_len
+= s_length
;
774 iova
= iommu_dma_alloc_iova(domain
, iova_len
, dma_get_mask(dev
), dev
);
779 * We'll leave any physical concatenation to the IOMMU driver's
780 * implementation - it knows better than we do.
782 if (iommu_map_sg(domain
, iova
, sg
, nents
, prot
) < iova_len
)
785 return __finalise_sg(dev
, sg
, nents
, iova
);
788 iommu_dma_free_iova(cookie
, iova
, iova_len
);
790 __invalidate_sg(sg
, nents
);
794 void iommu_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
795 enum dma_data_direction dir
, unsigned long attrs
)
797 dma_addr_t start
, end
;
798 struct scatterlist
*tmp
;
801 * The scatterlist segments are mapped into a single
802 * contiguous IOVA allocation, so this is incredibly easy.
804 start
= sg_dma_address(sg
);
805 for_each_sg(sg_next(sg
), tmp
, nents
- 1, i
) {
806 if (sg_dma_len(tmp
) == 0)
810 end
= sg_dma_address(sg
) + sg_dma_len(sg
);
811 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), start
, end
- start
);
814 dma_addr_t
iommu_dma_map_resource(struct device
*dev
, phys_addr_t phys
,
815 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
817 return __iommu_dma_map(dev
, phys
, size
,
818 dma_info_to_prot(dir
, false, attrs
) | IOMMU_MMIO
);
821 void iommu_dma_unmap_resource(struct device
*dev
, dma_addr_t handle
,
822 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
824 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), handle
, size
);
827 int iommu_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
829 return dma_addr
== IOMMU_MAPPING_ERROR
;
832 static struct iommu_dma_msi_page
*iommu_dma_get_msi_page(struct device
*dev
,
833 phys_addr_t msi_addr
, struct iommu_domain
*domain
)
835 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
836 struct iommu_dma_msi_page
*msi_page
;
838 int prot
= IOMMU_WRITE
| IOMMU_NOEXEC
| IOMMU_MMIO
;
839 size_t size
= cookie_msi_granule(cookie
);
841 msi_addr
&= ~(phys_addr_t
)(size
- 1);
842 list_for_each_entry(msi_page
, &cookie
->msi_page_list
, list
)
843 if (msi_page
->phys
== msi_addr
)
846 msi_page
= kzalloc(sizeof(*msi_page
), GFP_ATOMIC
);
850 iova
= __iommu_dma_map(dev
, msi_addr
, size
, prot
);
851 if (iommu_dma_mapping_error(dev
, iova
))
854 INIT_LIST_HEAD(&msi_page
->list
);
855 msi_page
->phys
= msi_addr
;
856 msi_page
->iova
= iova
;
857 list_add(&msi_page
->list
, &cookie
->msi_page_list
);
865 void iommu_dma_map_msi_msg(int irq
, struct msi_msg
*msg
)
867 struct device
*dev
= msi_desc_to_dev(irq_get_msi_desc(irq
));
868 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
869 struct iommu_dma_cookie
*cookie
;
870 struct iommu_dma_msi_page
*msi_page
;
871 phys_addr_t msi_addr
= (u64
)msg
->address_hi
<< 32 | msg
->address_lo
;
874 if (!domain
|| !domain
->iova_cookie
)
877 cookie
= domain
->iova_cookie
;
880 * We disable IRQs to rule out a possible inversion against
881 * irq_desc_lock if, say, someone tries to retarget the affinity
882 * of an MSI from within an IPI handler.
884 spin_lock_irqsave(&cookie
->msi_lock
, flags
);
885 msi_page
= iommu_dma_get_msi_page(dev
, msi_addr
, domain
);
886 spin_unlock_irqrestore(&cookie
->msi_lock
, flags
);
888 if (WARN_ON(!msi_page
)) {
890 * We're called from a void callback, so the best we can do is
891 * 'fail' by filling the message with obviously bogus values.
892 * Since we got this far due to an IOMMU being present, it's
893 * not like the existing address would have worked anyway...
895 msg
->address_hi
= ~0U;
896 msg
->address_lo
= ~0U;
899 msg
->address_hi
= upper_32_bits(msi_page
->iova
);
900 msg
->address_lo
&= cookie_msi_granule(cookie
) - 1;
901 msg
->address_lo
+= lower_32_bits(msi_page
->iova
);