2 * sched_clock() for unstable CPU clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
14 * What this file implements:
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23 * ####################################################################
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current CPU.
33 * How it is implemented:
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
40 * Otherwise it tries to create a semi stable clock from a mixture of other
43 * - GTOD (clock monotomic)
45 * - explicit idle events
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
58 * Scheduler clock - returns current time in nanosec units.
59 * This is default implementation.
60 * Architectures and sub-architectures can override this.
62 unsigned long long __weak
sched_clock(void)
64 return (unsigned long long)(jiffies
- INITIAL_JIFFIES
)
65 * (NSEC_PER_SEC
/ HZ
);
67 EXPORT_SYMBOL_GPL(sched_clock
);
69 __read_mostly
int sched_clock_running
;
71 void sched_clock_init(void)
73 sched_clock_running
= 1;
76 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
78 * We must start with !__sched_clock_stable because the unstable -> stable
79 * transition is accurate, while the stable -> unstable transition is not.
81 * Similarly we start with __sched_clock_stable_early, thereby assuming we
82 * will become stable, such that there's only a single 1 -> 0 transition.
84 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable
);
85 static int __sched_clock_stable_early
= 1;
88 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
90 __read_mostly u64 __sched_clock_offset
;
91 static __read_mostly u64 __gtod_offset
;
93 struct sched_clock_data
{
99 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data
, sched_clock_data
);
101 static inline struct sched_clock_data
*this_scd(void)
103 return this_cpu_ptr(&sched_clock_data
);
106 static inline struct sched_clock_data
*cpu_sdc(int cpu
)
108 return &per_cpu(sched_clock_data
, cpu
);
111 int sched_clock_stable(void)
113 return static_branch_likely(&__sched_clock_stable
);
116 static void __scd_stamp(struct sched_clock_data
*scd
)
118 scd
->tick_gtod
= ktime_get_ns();
119 scd
->tick_raw
= sched_clock();
122 static void __set_sched_clock_stable(void)
124 struct sched_clock_data
*scd
;
127 * Since we're still unstable and the tick is already running, we have
128 * to disable IRQs in order to get a consistent scd->tick* reading.
133 * Attempt to make the (initial) unstable->stable transition continuous.
135 __sched_clock_offset
= (scd
->tick_gtod
+ __gtod_offset
) - (scd
->tick_raw
);
138 printk(KERN_INFO
"sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
139 scd
->tick_gtod
, __gtod_offset
,
140 scd
->tick_raw
, __sched_clock_offset
);
142 static_branch_enable(&__sched_clock_stable
);
143 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE
);
147 * If we ever get here, we're screwed, because we found out -- typically after
148 * the fact -- that TSC wasn't good. This means all our clocksources (including
149 * ktime) could have reported wrong values.
151 * What we do here is an attempt to fix up and continue sort of where we left
152 * off in a coherent manner.
154 * The only way to fully avoid random clock jumps is to boot with:
157 static void __sched_clock_work(struct work_struct
*work
)
159 struct sched_clock_data
*scd
;
162 /* take a current timestamp and set 'now' */
166 scd
->clock
= scd
->tick_gtod
+ __gtod_offset
;
169 /* clone to all CPUs */
170 for_each_possible_cpu(cpu
)
171 per_cpu(sched_clock_data
, cpu
) = *scd
;
173 printk(KERN_WARNING
"TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
174 printk(KERN_INFO
"sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
175 scd
->tick_gtod
, __gtod_offset
,
176 scd
->tick_raw
, __sched_clock_offset
);
178 static_branch_disable(&__sched_clock_stable
);
181 static DECLARE_WORK(sched_clock_work
, __sched_clock_work
);
183 static void __clear_sched_clock_stable(void)
185 if (!sched_clock_stable())
188 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE
);
189 schedule_work(&sched_clock_work
);
192 void clear_sched_clock_stable(void)
194 __sched_clock_stable_early
= 0;
196 smp_mb(); /* matches sched_clock_init_late() */
198 if (sched_clock_running
== 2)
199 __clear_sched_clock_stable();
203 * We run this as late_initcall() such that it runs after all built-in drivers,
204 * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
206 static int __init
sched_clock_init_late(void)
208 sched_clock_running
= 2;
210 * Ensure that it is impossible to not do a static_key update.
212 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
213 * and do the update, or we must see their __sched_clock_stable_early
214 * and do the update, or both.
216 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
218 if (__sched_clock_stable_early
)
219 __set_sched_clock_stable();
223 late_initcall(sched_clock_init_late
);
226 * min, max except they take wrapping into account
229 static inline u64
wrap_min(u64 x
, u64 y
)
231 return (s64
)(x
- y
) < 0 ? x
: y
;
234 static inline u64
wrap_max(u64 x
, u64 y
)
236 return (s64
)(x
- y
) > 0 ? x
: y
;
240 * update the percpu scd from the raw @now value
242 * - filter out backward motion
243 * - use the GTOD tick value to create a window to filter crazy TSC values
245 static u64
sched_clock_local(struct sched_clock_data
*scd
)
247 u64 now
, clock
, old_clock
, min_clock
, max_clock
, gtod
;
252 delta
= now
- scd
->tick_raw
;
253 if (unlikely(delta
< 0))
256 old_clock
= scd
->clock
;
259 * scd->clock = clamp(scd->tick_gtod + delta,
260 * max(scd->tick_gtod, scd->clock),
261 * scd->tick_gtod + TICK_NSEC);
264 gtod
= scd
->tick_gtod
+ __gtod_offset
;
265 clock
= gtod
+ delta
;
266 min_clock
= wrap_max(gtod
, old_clock
);
267 max_clock
= wrap_max(old_clock
, gtod
+ TICK_NSEC
);
269 clock
= wrap_max(clock
, min_clock
);
270 clock
= wrap_min(clock
, max_clock
);
272 if (cmpxchg64(&scd
->clock
, old_clock
, clock
) != old_clock
)
278 static u64
sched_clock_remote(struct sched_clock_data
*scd
)
280 struct sched_clock_data
*my_scd
= this_scd();
281 u64 this_clock
, remote_clock
;
282 u64
*ptr
, old_val
, val
;
284 #if BITS_PER_LONG != 64
287 * Careful here: The local and the remote clock values need to
288 * be read out atomic as we need to compare the values and
289 * then update either the local or the remote side. So the
290 * cmpxchg64 below only protects one readout.
292 * We must reread via sched_clock_local() in the retry case on
293 * 32-bit kernels as an NMI could use sched_clock_local() via the
294 * tracer and hit between the readout of
295 * the low 32-bit and the high 32-bit portion.
297 this_clock
= sched_clock_local(my_scd
);
299 * We must enforce atomic readout on 32-bit, otherwise the
300 * update on the remote CPU can hit inbetween the readout of
301 * the low 32-bit and the high 32-bit portion.
303 remote_clock
= cmpxchg64(&scd
->clock
, 0, 0);
306 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
307 * update, so we can avoid the above 32-bit dance.
309 sched_clock_local(my_scd
);
311 this_clock
= my_scd
->clock
;
312 remote_clock
= scd
->clock
;
316 * Use the opportunity that we have both locks
317 * taken to couple the two clocks: we take the
318 * larger time as the latest time for both
319 * runqueues. (this creates monotonic movement)
321 if (likely((s64
)(remote_clock
- this_clock
) < 0)) {
323 old_val
= remote_clock
;
327 * Should be rare, but possible:
329 ptr
= &my_scd
->clock
;
330 old_val
= this_clock
;
334 if (cmpxchg64(ptr
, old_val
, val
) != old_val
)
341 * Similar to cpu_clock(), but requires local IRQs to be disabled.
345 u64
sched_clock_cpu(int cpu
)
347 struct sched_clock_data
*scd
;
350 if (sched_clock_stable())
351 return sched_clock() + __sched_clock_offset
;
353 if (unlikely(!sched_clock_running
))
356 preempt_disable_notrace();
359 if (cpu
!= smp_processor_id())
360 clock
= sched_clock_remote(scd
);
362 clock
= sched_clock_local(scd
);
363 preempt_enable_notrace();
367 EXPORT_SYMBOL_GPL(sched_clock_cpu
);
369 void sched_clock_tick(void)
371 struct sched_clock_data
*scd
;
373 if (sched_clock_stable())
376 if (unlikely(!sched_clock_running
))
379 lockdep_assert_irqs_disabled();
383 sched_clock_local(scd
);
386 void sched_clock_tick_stable(void)
390 if (!sched_clock_stable())
394 * Called under watchdog_lock.
396 * The watchdog just found this TSC to (still) be stable, so now is a
397 * good moment to update our __gtod_offset. Because once we find the
398 * TSC to be unstable, any computation will be computing crap.
401 gtod
= ktime_get_ns();
402 clock
= sched_clock();
403 __gtod_offset
= (clock
+ __sched_clock_offset
) - gtod
;
408 * We are going deep-idle (irqs are disabled):
410 void sched_clock_idle_sleep_event(void)
412 sched_clock_cpu(smp_processor_id());
414 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
417 * We just idled; resync with ktime.
419 void sched_clock_idle_wakeup_event(void)
423 if (sched_clock_stable())
426 if (unlikely(timekeeping_suspended
))
429 local_irq_save(flags
);
431 local_irq_restore(flags
);
433 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
435 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
437 u64
sched_clock_cpu(int cpu
)
439 if (unlikely(!sched_clock_running
))
442 return sched_clock();
445 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
448 * Running clock - returns the time that has elapsed while a guest has been
450 * On a guest this value should be local_clock minus the time the guest was
451 * suspended by the hypervisor (for any reason).
452 * On bare metal this function should return the same as local_clock.
453 * Architectures and sub-architectures can override this.
455 u64 __weak
running_clock(void)
457 return local_clock();