1 // SPDX-License-Identifier: GPL-2.0
3 * Deadline Scheduling Class (SCHED_DEADLINE)
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
20 struct dl_bandwidth def_dl_bandwidth
;
22 static inline struct task_struct
*dl_task_of(struct sched_dl_entity
*dl_se
)
24 return container_of(dl_se
, struct task_struct
, dl
);
27 static inline struct rq
*rq_of_dl_rq(struct dl_rq
*dl_rq
)
29 return container_of(dl_rq
, struct rq
, dl
);
32 static inline struct dl_rq
*dl_rq_of_se(struct sched_dl_entity
*dl_se
)
34 struct task_struct
*p
= dl_task_of(dl_se
);
35 struct rq
*rq
= task_rq(p
);
40 static inline int on_dl_rq(struct sched_dl_entity
*dl_se
)
42 return !RB_EMPTY_NODE(&dl_se
->rb_node
);
46 static inline struct dl_bw
*dl_bw_of(int i
)
48 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
49 "sched RCU must be held");
50 return &cpu_rq(i
)->rd
->dl_bw
;
53 static inline int dl_bw_cpus(int i
)
55 struct root_domain
*rd
= cpu_rq(i
)->rd
;
58 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
59 "sched RCU must be held");
60 for_each_cpu_and(i
, rd
->span
, cpu_active_mask
)
66 static inline struct dl_bw
*dl_bw_of(int i
)
68 return &cpu_rq(i
)->dl
.dl_bw
;
71 static inline int dl_bw_cpus(int i
)
78 void __add_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
80 u64 old
= dl_rq
->running_bw
;
82 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
83 dl_rq
->running_bw
+= dl_bw
;
84 SCHED_WARN_ON(dl_rq
->running_bw
< old
); /* overflow */
85 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
86 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
87 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
91 void __sub_running_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
93 u64 old
= dl_rq
->running_bw
;
95 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
96 dl_rq
->running_bw
-= dl_bw
;
97 SCHED_WARN_ON(dl_rq
->running_bw
> old
); /* underflow */
98 if (dl_rq
->running_bw
> old
)
99 dl_rq
->running_bw
= 0;
100 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
101 cpufreq_update_util(rq_of_dl_rq(dl_rq
), 0);
105 void __add_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
107 u64 old
= dl_rq
->this_bw
;
109 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
110 dl_rq
->this_bw
+= dl_bw
;
111 SCHED_WARN_ON(dl_rq
->this_bw
< old
); /* overflow */
115 void __sub_rq_bw(u64 dl_bw
, struct dl_rq
*dl_rq
)
117 u64 old
= dl_rq
->this_bw
;
119 lockdep_assert_held(&(rq_of_dl_rq(dl_rq
))->lock
);
120 dl_rq
->this_bw
-= dl_bw
;
121 SCHED_WARN_ON(dl_rq
->this_bw
> old
); /* underflow */
122 if (dl_rq
->this_bw
> old
)
124 SCHED_WARN_ON(dl_rq
->running_bw
> dl_rq
->this_bw
);
128 void add_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
130 if (!dl_entity_is_special(dl_se
))
131 __add_rq_bw(dl_se
->dl_bw
, dl_rq
);
135 void sub_rq_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
137 if (!dl_entity_is_special(dl_se
))
138 __sub_rq_bw(dl_se
->dl_bw
, dl_rq
);
142 void add_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
144 if (!dl_entity_is_special(dl_se
))
145 __add_running_bw(dl_se
->dl_bw
, dl_rq
);
149 void sub_running_bw(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
151 if (!dl_entity_is_special(dl_se
))
152 __sub_running_bw(dl_se
->dl_bw
, dl_rq
);
155 void dl_change_utilization(struct task_struct
*p
, u64 new_bw
)
159 BUG_ON(p
->dl
.flags
& SCHED_FLAG_SUGOV
);
161 if (task_on_rq_queued(p
))
165 if (p
->dl
.dl_non_contending
) {
166 sub_running_bw(&p
->dl
, &rq
->dl
);
167 p
->dl
.dl_non_contending
= 0;
169 * If the timer handler is currently running and the
170 * timer cannot be cancelled, inactive_task_timer()
171 * will see that dl_not_contending is not set, and
172 * will not touch the rq's active utilization,
173 * so we are still safe.
175 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
178 __sub_rq_bw(p
->dl
.dl_bw
, &rq
->dl
);
179 __add_rq_bw(new_bw
, &rq
->dl
);
183 * The utilization of a task cannot be immediately removed from
184 * the rq active utilization (running_bw) when the task blocks.
185 * Instead, we have to wait for the so called "0-lag time".
187 * If a task blocks before the "0-lag time", a timer (the inactive
188 * timer) is armed, and running_bw is decreased when the timer
191 * If the task wakes up again before the inactive timer fires,
192 * the timer is cancelled, whereas if the task wakes up after the
193 * inactive timer fired (and running_bw has been decreased) the
194 * task's utilization has to be added to running_bw again.
195 * A flag in the deadline scheduling entity (dl_non_contending)
196 * is used to avoid race conditions between the inactive timer handler
199 * The following diagram shows how running_bw is updated. A task is
200 * "ACTIVE" when its utilization contributes to running_bw; an
201 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
202 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
203 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
204 * time already passed, which does not contribute to running_bw anymore.
205 * +------------------+
207 * +------------------>+ contending |
208 * | add_running_bw | |
209 * | +----+------+------+
212 * +--------+-------+ | |
213 * | | t >= 0-lag | | wakeup
214 * | INACTIVE |<---------------+ |
215 * | | sub_running_bw | |
216 * +--------+-------+ | |
221 * | +----+------+------+
222 * | sub_running_bw | ACTIVE |
223 * +-------------------+ |
224 * inactive timer | non contending |
225 * fired +------------------+
227 * The task_non_contending() function is invoked when a task
228 * blocks, and checks if the 0-lag time already passed or
229 * not (in the first case, it directly updates running_bw;
230 * in the second case, it arms the inactive timer).
232 * The task_contending() function is invoked when a task wakes
233 * up, and checks if the task is still in the "ACTIVE non contending"
234 * state or not (in the second case, it updates running_bw).
236 static void task_non_contending(struct task_struct
*p
)
238 struct sched_dl_entity
*dl_se
= &p
->dl
;
239 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
240 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
241 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
245 * If this is a non-deadline task that has been boosted,
248 if (dl_se
->dl_runtime
== 0)
251 if (dl_entity_is_special(dl_se
))
254 WARN_ON(hrtimer_active(&dl_se
->inactive_timer
));
255 WARN_ON(dl_se
->dl_non_contending
);
257 zerolag_time
= dl_se
->deadline
-
258 div64_long((dl_se
->runtime
* dl_se
->dl_period
),
262 * Using relative times instead of the absolute "0-lag time"
263 * allows to simplify the code
265 zerolag_time
-= rq_clock(rq
);
268 * If the "0-lag time" already passed, decrease the active
269 * utilization now, instead of starting a timer
271 if (zerolag_time
< 0) {
273 sub_running_bw(dl_se
, dl_rq
);
274 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
275 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
277 if (p
->state
== TASK_DEAD
)
278 sub_rq_bw(&p
->dl
, &rq
->dl
);
279 raw_spin_lock(&dl_b
->lock
);
280 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
281 __dl_clear_params(p
);
282 raw_spin_unlock(&dl_b
->lock
);
288 dl_se
->dl_non_contending
= 1;
290 hrtimer_start(timer
, ns_to_ktime(zerolag_time
), HRTIMER_MODE_REL
);
293 static void task_contending(struct sched_dl_entity
*dl_se
, int flags
)
295 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
298 * If this is a non-deadline task that has been boosted,
301 if (dl_se
->dl_runtime
== 0)
304 if (flags
& ENQUEUE_MIGRATED
)
305 add_rq_bw(dl_se
, dl_rq
);
307 if (dl_se
->dl_non_contending
) {
308 dl_se
->dl_non_contending
= 0;
310 * If the timer handler is currently running and the
311 * timer cannot be cancelled, inactive_task_timer()
312 * will see that dl_not_contending is not set, and
313 * will not touch the rq's active utilization,
314 * so we are still safe.
316 if (hrtimer_try_to_cancel(&dl_se
->inactive_timer
) == 1)
317 put_task_struct(dl_task_of(dl_se
));
320 * Since "dl_non_contending" is not set, the
321 * task's utilization has already been removed from
322 * active utilization (either when the task blocked,
323 * when the "inactive timer" fired).
326 add_running_bw(dl_se
, dl_rq
);
330 static inline int is_leftmost(struct task_struct
*p
, struct dl_rq
*dl_rq
)
332 struct sched_dl_entity
*dl_se
= &p
->dl
;
334 return dl_rq
->root
.rb_leftmost
== &dl_se
->rb_node
;
337 void init_dl_bandwidth(struct dl_bandwidth
*dl_b
, u64 period
, u64 runtime
)
339 raw_spin_lock_init(&dl_b
->dl_runtime_lock
);
340 dl_b
->dl_period
= period
;
341 dl_b
->dl_runtime
= runtime
;
344 void init_dl_bw(struct dl_bw
*dl_b
)
346 raw_spin_lock_init(&dl_b
->lock
);
347 raw_spin_lock(&def_dl_bandwidth
.dl_runtime_lock
);
348 if (global_rt_runtime() == RUNTIME_INF
)
351 dl_b
->bw
= to_ratio(global_rt_period(), global_rt_runtime());
352 raw_spin_unlock(&def_dl_bandwidth
.dl_runtime_lock
);
356 void init_dl_rq(struct dl_rq
*dl_rq
)
358 dl_rq
->root
= RB_ROOT_CACHED
;
361 /* zero means no -deadline tasks */
362 dl_rq
->earliest_dl
.curr
= dl_rq
->earliest_dl
.next
= 0;
364 dl_rq
->dl_nr_migratory
= 0;
365 dl_rq
->overloaded
= 0;
366 dl_rq
->pushable_dl_tasks_root
= RB_ROOT_CACHED
;
368 init_dl_bw(&dl_rq
->dl_bw
);
371 dl_rq
->running_bw
= 0;
373 init_dl_rq_bw_ratio(dl_rq
);
378 static inline int dl_overloaded(struct rq
*rq
)
380 return atomic_read(&rq
->rd
->dlo_count
);
383 static inline void dl_set_overload(struct rq
*rq
)
388 cpumask_set_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
390 * Must be visible before the overload count is
391 * set (as in sched_rt.c).
393 * Matched by the barrier in pull_dl_task().
396 atomic_inc(&rq
->rd
->dlo_count
);
399 static inline void dl_clear_overload(struct rq
*rq
)
404 atomic_dec(&rq
->rd
->dlo_count
);
405 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->dlo_mask
);
408 static void update_dl_migration(struct dl_rq
*dl_rq
)
410 if (dl_rq
->dl_nr_migratory
&& dl_rq
->dl_nr_running
> 1) {
411 if (!dl_rq
->overloaded
) {
412 dl_set_overload(rq_of_dl_rq(dl_rq
));
413 dl_rq
->overloaded
= 1;
415 } else if (dl_rq
->overloaded
) {
416 dl_clear_overload(rq_of_dl_rq(dl_rq
));
417 dl_rq
->overloaded
= 0;
421 static void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
423 struct task_struct
*p
= dl_task_of(dl_se
);
425 if (p
->nr_cpus_allowed
> 1)
426 dl_rq
->dl_nr_migratory
++;
428 update_dl_migration(dl_rq
);
431 static void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
433 struct task_struct
*p
= dl_task_of(dl_se
);
435 if (p
->nr_cpus_allowed
> 1)
436 dl_rq
->dl_nr_migratory
--;
438 update_dl_migration(dl_rq
);
442 * The list of pushable -deadline task is not a plist, like in
443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
445 static void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
447 struct dl_rq
*dl_rq
= &rq
->dl
;
448 struct rb_node
**link
= &dl_rq
->pushable_dl_tasks_root
.rb_root
.rb_node
;
449 struct rb_node
*parent
= NULL
;
450 struct task_struct
*entry
;
451 bool leftmost
= true;
453 BUG_ON(!RB_EMPTY_NODE(&p
->pushable_dl_tasks
));
457 entry
= rb_entry(parent
, struct task_struct
,
459 if (dl_entity_preempt(&p
->dl
, &entry
->dl
))
460 link
= &parent
->rb_left
;
462 link
= &parent
->rb_right
;
468 dl_rq
->earliest_dl
.next
= p
->dl
.deadline
;
470 rb_link_node(&p
->pushable_dl_tasks
, parent
, link
);
471 rb_insert_color_cached(&p
->pushable_dl_tasks
,
472 &dl_rq
->pushable_dl_tasks_root
, leftmost
);
475 static void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
477 struct dl_rq
*dl_rq
= &rq
->dl
;
479 if (RB_EMPTY_NODE(&p
->pushable_dl_tasks
))
482 if (dl_rq
->pushable_dl_tasks_root
.rb_leftmost
== &p
->pushable_dl_tasks
) {
483 struct rb_node
*next_node
;
485 next_node
= rb_next(&p
->pushable_dl_tasks
);
487 dl_rq
->earliest_dl
.next
= rb_entry(next_node
,
488 struct task_struct
, pushable_dl_tasks
)->dl
.deadline
;
492 rb_erase_cached(&p
->pushable_dl_tasks
, &dl_rq
->pushable_dl_tasks_root
);
493 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
496 static inline int has_pushable_dl_tasks(struct rq
*rq
)
498 return !RB_EMPTY_ROOT(&rq
->dl
.pushable_dl_tasks_root
.rb_root
);
501 static int push_dl_task(struct rq
*rq
);
503 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
505 return dl_task(prev
);
508 static DEFINE_PER_CPU(struct callback_head
, dl_push_head
);
509 static DEFINE_PER_CPU(struct callback_head
, dl_pull_head
);
511 static void push_dl_tasks(struct rq
*);
512 static void pull_dl_task(struct rq
*);
514 static inline void deadline_queue_push_tasks(struct rq
*rq
)
516 if (!has_pushable_dl_tasks(rq
))
519 queue_balance_callback(rq
, &per_cpu(dl_push_head
, rq
->cpu
), push_dl_tasks
);
522 static inline void deadline_queue_pull_task(struct rq
*rq
)
524 queue_balance_callback(rq
, &per_cpu(dl_pull_head
, rq
->cpu
), pull_dl_task
);
527 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
);
529 static struct rq
*dl_task_offline_migration(struct rq
*rq
, struct task_struct
*p
)
531 struct rq
*later_rq
= NULL
;
533 later_rq
= find_lock_later_rq(p
, rq
);
538 * If we cannot preempt any rq, fall back to pick any
541 cpu
= cpumask_any_and(cpu_active_mask
, &p
->cpus_allowed
);
542 if (cpu
>= nr_cpu_ids
) {
544 * Failed to find any suitable CPU.
545 * The task will never come back!
547 BUG_ON(dl_bandwidth_enabled());
550 * If admission control is disabled we
551 * try a little harder to let the task
554 cpu
= cpumask_any(cpu_active_mask
);
556 later_rq
= cpu_rq(cpu
);
557 double_lock_balance(rq
, later_rq
);
560 set_task_cpu(p
, later_rq
->cpu
);
561 double_unlock_balance(later_rq
, rq
);
569 void enqueue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
574 void dequeue_pushable_dl_task(struct rq
*rq
, struct task_struct
*p
)
579 void inc_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
584 void dec_dl_migration(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
588 static inline bool need_pull_dl_task(struct rq
*rq
, struct task_struct
*prev
)
593 static inline void pull_dl_task(struct rq
*rq
)
597 static inline void deadline_queue_push_tasks(struct rq
*rq
)
601 static inline void deadline_queue_pull_task(struct rq
*rq
)
604 #endif /* CONFIG_SMP */
606 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
607 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
608 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
, int flags
);
611 * We are being explicitly informed that a new instance is starting,
612 * and this means that:
613 * - the absolute deadline of the entity has to be placed at
614 * current time + relative deadline;
615 * - the runtime of the entity has to be set to the maximum value.
617 * The capability of specifying such event is useful whenever a -deadline
618 * entity wants to (try to!) synchronize its behaviour with the scheduler's
619 * one, and to (try to!) reconcile itself with its own scheduling
622 static inline void setup_new_dl_entity(struct sched_dl_entity
*dl_se
)
624 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
625 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
627 WARN_ON(dl_se
->dl_boosted
);
628 WARN_ON(dl_time_before(rq_clock(rq
), dl_se
->deadline
));
631 * We are racing with the deadline timer. So, do nothing because
632 * the deadline timer handler will take care of properly recharging
633 * the runtime and postponing the deadline
635 if (dl_se
->dl_throttled
)
639 * We use the regular wall clock time to set deadlines in the
640 * future; in fact, we must consider execution overheads (time
641 * spent on hardirq context, etc.).
643 dl_se
->deadline
= rq_clock(rq
) + dl_se
->dl_deadline
;
644 dl_se
->runtime
= dl_se
->dl_runtime
;
648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
649 * possibility of a entity lasting more than what it declared, and thus
650 * exhausting its runtime.
652 * Here we are interested in making runtime overrun possible, but we do
653 * not want a entity which is misbehaving to affect the scheduling of all
655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
656 * is used, in order to confine each entity within its own bandwidth.
658 * This function deals exactly with that, and ensures that when the runtime
659 * of a entity is replenished, its deadline is also postponed. That ensures
660 * the overrunning entity can't interfere with other entity in the system and
661 * can't make them miss their deadlines. Reasons why this kind of overruns
662 * could happen are, typically, a entity voluntarily trying to overcome its
663 * runtime, or it just underestimated it during sched_setattr().
665 static void replenish_dl_entity(struct sched_dl_entity
*dl_se
,
666 struct sched_dl_entity
*pi_se
)
668 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
669 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
671 BUG_ON(pi_se
->dl_runtime
<= 0);
674 * This could be the case for a !-dl task that is boosted.
675 * Just go with full inherited parameters.
677 if (dl_se
->dl_deadline
== 0) {
678 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
679 dl_se
->runtime
= pi_se
->dl_runtime
;
682 if (dl_se
->dl_yielded
&& dl_se
->runtime
> 0)
686 * We keep moving the deadline away until we get some
687 * available runtime for the entity. This ensures correct
688 * handling of situations where the runtime overrun is
691 while (dl_se
->runtime
<= 0) {
692 dl_se
->deadline
+= pi_se
->dl_period
;
693 dl_se
->runtime
+= pi_se
->dl_runtime
;
697 * At this point, the deadline really should be "in
698 * the future" with respect to rq->clock. If it's
699 * not, we are, for some reason, lagging too much!
700 * Anyway, after having warn userspace abut that,
701 * we still try to keep the things running by
702 * resetting the deadline and the budget of the
705 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
))) {
706 printk_deferred_once("sched: DL replenish lagged too much\n");
707 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
708 dl_se
->runtime
= pi_se
->dl_runtime
;
711 if (dl_se
->dl_yielded
)
712 dl_se
->dl_yielded
= 0;
713 if (dl_se
->dl_throttled
)
714 dl_se
->dl_throttled
= 0;
718 * Here we check if --at time t-- an entity (which is probably being
719 * [re]activated or, in general, enqueued) can use its remaining runtime
720 * and its current deadline _without_ exceeding the bandwidth it is
721 * assigned (function returns true if it can't). We are in fact applying
722 * one of the CBS rules: when a task wakes up, if the residual runtime
723 * over residual deadline fits within the allocated bandwidth, then we
724 * can keep the current (absolute) deadline and residual budget without
725 * disrupting the schedulability of the system. Otherwise, we should
726 * refill the runtime and set the deadline a period in the future,
727 * because keeping the current (absolute) deadline of the task would
728 * result in breaking guarantees promised to other tasks (refer to
729 * Documentation/scheduler/sched-deadline.txt for more informations).
731 * This function returns true if:
733 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
735 * IOW we can't recycle current parameters.
737 * Notice that the bandwidth check is done against the deadline. For
738 * task with deadline equal to period this is the same of using
739 * dl_period instead of dl_deadline in the equation above.
741 static bool dl_entity_overflow(struct sched_dl_entity
*dl_se
,
742 struct sched_dl_entity
*pi_se
, u64 t
)
747 * left and right are the two sides of the equation above,
748 * after a bit of shuffling to use multiplications instead
751 * Note that none of the time values involved in the two
752 * multiplications are absolute: dl_deadline and dl_runtime
753 * are the relative deadline and the maximum runtime of each
754 * instance, runtime is the runtime left for the last instance
755 * and (deadline - t), since t is rq->clock, is the time left
756 * to the (absolute) deadline. Even if overflowing the u64 type
757 * is very unlikely to occur in both cases, here we scale down
758 * as we want to avoid that risk at all. Scaling down by 10
759 * means that we reduce granularity to 1us. We are fine with it,
760 * since this is only a true/false check and, anyway, thinking
761 * of anything below microseconds resolution is actually fiction
762 * (but still we want to give the user that illusion >;).
764 left
= (pi_se
->dl_deadline
>> DL_SCALE
) * (dl_se
->runtime
>> DL_SCALE
);
765 right
= ((dl_se
->deadline
- t
) >> DL_SCALE
) *
766 (pi_se
->dl_runtime
>> DL_SCALE
);
768 return dl_time_before(right
, left
);
772 * Revised wakeup rule [1]: For self-suspending tasks, rather then
773 * re-initializing task's runtime and deadline, the revised wakeup
774 * rule adjusts the task's runtime to avoid the task to overrun its
777 * Reasoning: a task may overrun the density if:
778 * runtime / (deadline - t) > dl_runtime / dl_deadline
780 * Therefore, runtime can be adjusted to:
781 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
783 * In such way that runtime will be equal to the maximum density
784 * the task can use without breaking any rule.
786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
790 update_dl_revised_wakeup(struct sched_dl_entity
*dl_se
, struct rq
*rq
)
792 u64 laxity
= dl_se
->deadline
- rq_clock(rq
);
795 * If the task has deadline < period, and the deadline is in the past,
796 * it should already be throttled before this check.
798 * See update_dl_entity() comments for further details.
800 WARN_ON(dl_time_before(dl_se
->deadline
, rq_clock(rq
)));
802 dl_se
->runtime
= (dl_se
->dl_density
* laxity
) >> BW_SHIFT
;
806 * Regarding the deadline, a task with implicit deadline has a relative
807 * deadline == relative period. A task with constrained deadline has a
808 * relative deadline <= relative period.
810 * We support constrained deadline tasks. However, there are some restrictions
811 * applied only for tasks which do not have an implicit deadline. See
812 * update_dl_entity() to know more about such restrictions.
814 * The dl_is_implicit() returns true if the task has an implicit deadline.
816 static inline bool dl_is_implicit(struct sched_dl_entity
*dl_se
)
818 return dl_se
->dl_deadline
== dl_se
->dl_period
;
822 * When a deadline entity is placed in the runqueue, its runtime and deadline
823 * might need to be updated. This is done by a CBS wake up rule. There are two
824 * different rules: 1) the original CBS; and 2) the Revisited CBS.
826 * When the task is starting a new period, the Original CBS is used. In this
827 * case, the runtime is replenished and a new absolute deadline is set.
829 * When a task is queued before the begin of the next period, using the
830 * remaining runtime and deadline could make the entity to overflow, see
831 * dl_entity_overflow() to find more about runtime overflow. When such case
832 * is detected, the runtime and deadline need to be updated.
834 * If the task has an implicit deadline, i.e., deadline == period, the Original
835 * CBS is applied. the runtime is replenished and a new absolute deadline is
836 * set, as in the previous cases.
838 * However, the Original CBS does not work properly for tasks with
839 * deadline < period, which are said to have a constrained deadline. By
840 * applying the Original CBS, a constrained deadline task would be able to run
841 * runtime/deadline in a period. With deadline < period, the task would
842 * overrun the runtime/period allowed bandwidth, breaking the admission test.
844 * In order to prevent this misbehave, the Revisited CBS is used for
845 * constrained deadline tasks when a runtime overflow is detected. In the
846 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
847 * the remaining runtime of the task is reduced to avoid runtime overflow.
848 * Please refer to the comments update_dl_revised_wakeup() function to find
849 * more about the Revised CBS rule.
851 static void update_dl_entity(struct sched_dl_entity
*dl_se
,
852 struct sched_dl_entity
*pi_se
)
854 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
855 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
857 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) ||
858 dl_entity_overflow(dl_se
, pi_se
, rq_clock(rq
))) {
860 if (unlikely(!dl_is_implicit(dl_se
) &&
861 !dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
862 !dl_se
->dl_boosted
)){
863 update_dl_revised_wakeup(dl_se
, rq
);
867 dl_se
->deadline
= rq_clock(rq
) + pi_se
->dl_deadline
;
868 dl_se
->runtime
= pi_se
->dl_runtime
;
872 static inline u64
dl_next_period(struct sched_dl_entity
*dl_se
)
874 return dl_se
->deadline
- dl_se
->dl_deadline
+ dl_se
->dl_period
;
878 * If the entity depleted all its runtime, and if we want it to sleep
879 * while waiting for some new execution time to become available, we
880 * set the bandwidth replenishment timer to the replenishment instant
881 * and try to activate it.
883 * Notice that it is important for the caller to know if the timer
884 * actually started or not (i.e., the replenishment instant is in
885 * the future or in the past).
887 static int start_dl_timer(struct task_struct
*p
)
889 struct sched_dl_entity
*dl_se
= &p
->dl
;
890 struct hrtimer
*timer
= &dl_se
->dl_timer
;
891 struct rq
*rq
= task_rq(p
);
895 lockdep_assert_held(&rq
->lock
);
898 * We want the timer to fire at the deadline, but considering
899 * that it is actually coming from rq->clock and not from
900 * hrtimer's time base reading.
902 act
= ns_to_ktime(dl_next_period(dl_se
));
903 now
= hrtimer_cb_get_time(timer
);
904 delta
= ktime_to_ns(now
) - rq_clock(rq
);
905 act
= ktime_add_ns(act
, delta
);
908 * If the expiry time already passed, e.g., because the value
909 * chosen as the deadline is too small, don't even try to
910 * start the timer in the past!
912 if (ktime_us_delta(act
, now
) < 0)
916 * !enqueued will guarantee another callback; even if one is already in
917 * progress. This ensures a balanced {get,put}_task_struct().
919 * The race against __run_timer() clearing the enqueued state is
920 * harmless because we're holding task_rq()->lock, therefore the timer
921 * expiring after we've done the check will wait on its task_rq_lock()
922 * and observe our state.
924 if (!hrtimer_is_queued(timer
)) {
926 hrtimer_start(timer
, act
, HRTIMER_MODE_ABS
);
933 * This is the bandwidth enforcement timer callback. If here, we know
934 * a task is not on its dl_rq, since the fact that the timer was running
935 * means the task is throttled and needs a runtime replenishment.
937 * However, what we actually do depends on the fact the task is active,
938 * (it is on its rq) or has been removed from there by a call to
939 * dequeue_task_dl(). In the former case we must issue the runtime
940 * replenishment and add the task back to the dl_rq; in the latter, we just
941 * do nothing but clearing dl_throttled, so that runtime and deadline
942 * updating (and the queueing back to dl_rq) will be done by the
943 * next call to enqueue_task_dl().
945 static enum hrtimer_restart
dl_task_timer(struct hrtimer
*timer
)
947 struct sched_dl_entity
*dl_se
= container_of(timer
,
948 struct sched_dl_entity
,
950 struct task_struct
*p
= dl_task_of(dl_se
);
954 rq
= task_rq_lock(p
, &rf
);
957 * The task might have changed its scheduling policy to something
958 * different than SCHED_DEADLINE (through switched_from_dl()).
964 * The task might have been boosted by someone else and might be in the
965 * boosting/deboosting path, its not throttled.
967 if (dl_se
->dl_boosted
)
971 * Spurious timer due to start_dl_timer() race; or we already received
972 * a replenishment from rt_mutex_setprio().
974 if (!dl_se
->dl_throttled
)
981 * If the throttle happened during sched-out; like:
988 * __dequeue_task_dl()
991 * We can be both throttled and !queued. Replenish the counter
992 * but do not enqueue -- wait for our wakeup to do that.
994 if (!task_on_rq_queued(p
)) {
995 replenish_dl_entity(dl_se
, dl_se
);
1000 if (unlikely(!rq
->online
)) {
1002 * If the runqueue is no longer available, migrate the
1003 * task elsewhere. This necessarily changes rq.
1005 lockdep_unpin_lock(&rq
->lock
, rf
.cookie
);
1006 rq
= dl_task_offline_migration(rq
, p
);
1007 rf
.cookie
= lockdep_pin_lock(&rq
->lock
);
1008 update_rq_clock(rq
);
1011 * Now that the task has been migrated to the new RQ and we
1012 * have that locked, proceed as normal and enqueue the task
1018 enqueue_task_dl(rq
, p
, ENQUEUE_REPLENISH
);
1019 if (dl_task(rq
->curr
))
1020 check_preempt_curr_dl(rq
, p
, 0);
1026 * Queueing this task back might have overloaded rq, check if we need
1027 * to kick someone away.
1029 if (has_pushable_dl_tasks(rq
)) {
1031 * Nothing relies on rq->lock after this, so its safe to drop
1034 rq_unpin_lock(rq
, &rf
);
1036 rq_repin_lock(rq
, &rf
);
1041 task_rq_unlock(rq
, p
, &rf
);
1044 * This can free the task_struct, including this hrtimer, do not touch
1045 * anything related to that after this.
1049 return HRTIMER_NORESTART
;
1052 void init_dl_task_timer(struct sched_dl_entity
*dl_se
)
1054 struct hrtimer
*timer
= &dl_se
->dl_timer
;
1056 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1057 timer
->function
= dl_task_timer
;
1061 * During the activation, CBS checks if it can reuse the current task's
1062 * runtime and period. If the deadline of the task is in the past, CBS
1063 * cannot use the runtime, and so it replenishes the task. This rule
1064 * works fine for implicit deadline tasks (deadline == period), and the
1065 * CBS was designed for implicit deadline tasks. However, a task with
1066 * constrained deadline (deadine < period) might be awakened after the
1067 * deadline, but before the next period. In this case, replenishing the
1068 * task would allow it to run for runtime / deadline. As in this case
1069 * deadline < period, CBS enables a task to run for more than the
1070 * runtime / period. In a very loaded system, this can cause a domino
1071 * effect, making other tasks miss their deadlines.
1073 * To avoid this problem, in the activation of a constrained deadline
1074 * task after the deadline but before the next period, throttle the
1075 * task and set the replenishing timer to the begin of the next period,
1076 * unless it is boosted.
1078 static inline void dl_check_constrained_dl(struct sched_dl_entity
*dl_se
)
1080 struct task_struct
*p
= dl_task_of(dl_se
);
1081 struct rq
*rq
= rq_of_dl_rq(dl_rq_of_se(dl_se
));
1083 if (dl_time_before(dl_se
->deadline
, rq_clock(rq
)) &&
1084 dl_time_before(rq_clock(rq
), dl_next_period(dl_se
))) {
1085 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(p
)))
1087 dl_se
->dl_throttled
= 1;
1088 if (dl_se
->runtime
> 0)
1094 int dl_runtime_exceeded(struct sched_dl_entity
*dl_se
)
1096 return (dl_se
->runtime
<= 0);
1099 extern bool sched_rt_bandwidth_account(struct rt_rq
*rt_rq
);
1102 * This function implements the GRUB accounting rule:
1103 * according to the GRUB reclaiming algorithm, the runtime is
1104 * not decreased as "dq = -dt", but as
1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106 * where u is the utilization of the task, Umax is the maximum reclaimable
1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108 * as the difference between the "total runqueue utilization" and the
1109 * runqueue active utilization, and Uextra is the (per runqueue) extra
1110 * reclaimable utilization.
1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116 * Since delta is a 64 bit variable, to have an overflow its value
1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118 * So, overflow is not an issue here.
1120 u64
grub_reclaim(u64 delta
, struct rq
*rq
, struct sched_dl_entity
*dl_se
)
1122 u64 u_inact
= rq
->dl
.this_bw
- rq
->dl
.running_bw
; /* Utot - Uact */
1124 u64 u_act_min
= (dl_se
->dl_bw
* rq
->dl
.bw_ratio
) >> RATIO_SHIFT
;
1127 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128 * we compare u_inact + rq->dl.extra_bw with
1129 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130 * u_inact + rq->dl.extra_bw can be larger than
1131 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132 * leading to wrong results)
1134 if (u_inact
+ rq
->dl
.extra_bw
> BW_UNIT
- u_act_min
)
1137 u_act
= BW_UNIT
- u_inact
- rq
->dl
.extra_bw
;
1139 return (delta
* u_act
) >> BW_SHIFT
;
1143 * Update the current task's runtime statistics (provided it is still
1144 * a -deadline task and has not been removed from the dl_rq).
1146 static void update_curr_dl(struct rq
*rq
)
1148 struct task_struct
*curr
= rq
->curr
;
1149 struct sched_dl_entity
*dl_se
= &curr
->dl
;
1150 u64 delta_exec
, scaled_delta_exec
;
1151 int cpu
= cpu_of(rq
);
1154 if (!dl_task(curr
) || !on_dl_rq(dl_se
))
1158 * Consumed budget is computed considering the time as
1159 * observed by schedulable tasks (excluding time spent
1160 * in hardirq context, etc.). Deadlines are instead
1161 * computed using hard walltime. This seems to be the more
1162 * natural solution, but the full ramifications of this
1163 * approach need further study.
1165 now
= rq_clock_task(rq
);
1166 delta_exec
= now
- curr
->se
.exec_start
;
1167 if (unlikely((s64
)delta_exec
<= 0)) {
1168 if (unlikely(dl_se
->dl_yielded
))
1173 schedstat_set(curr
->se
.statistics
.exec_max
,
1174 max(curr
->se
.statistics
.exec_max
, delta_exec
));
1176 curr
->se
.sum_exec_runtime
+= delta_exec
;
1177 account_group_exec_runtime(curr
, delta_exec
);
1179 curr
->se
.exec_start
= now
;
1180 cgroup_account_cputime(curr
, delta_exec
);
1182 sched_rt_avg_update(rq
, delta_exec
);
1184 if (dl_entity_is_special(dl_se
))
1188 * For tasks that participate in GRUB, we implement GRUB-PA: the
1189 * spare reclaimed bandwidth is used to clock down frequency.
1191 * For the others, we still need to scale reservation parameters
1192 * according to current frequency and CPU maximum capacity.
1194 if (unlikely(dl_se
->flags
& SCHED_FLAG_RECLAIM
)) {
1195 scaled_delta_exec
= grub_reclaim(delta_exec
,
1199 unsigned long scale_freq
= arch_scale_freq_capacity(cpu
);
1200 unsigned long scale_cpu
= arch_scale_cpu_capacity(NULL
, cpu
);
1202 scaled_delta_exec
= cap_scale(delta_exec
, scale_freq
);
1203 scaled_delta_exec
= cap_scale(scaled_delta_exec
, scale_cpu
);
1206 dl_se
->runtime
-= scaled_delta_exec
;
1209 if (dl_runtime_exceeded(dl_se
) || dl_se
->dl_yielded
) {
1210 dl_se
->dl_throttled
= 1;
1212 /* If requested, inform the user about runtime overruns. */
1213 if (dl_runtime_exceeded(dl_se
) &&
1214 (dl_se
->flags
& SCHED_FLAG_DL_OVERRUN
))
1215 dl_se
->dl_overrun
= 1;
1217 __dequeue_task_dl(rq
, curr
, 0);
1218 if (unlikely(dl_se
->dl_boosted
|| !start_dl_timer(curr
)))
1219 enqueue_task_dl(rq
, curr
, ENQUEUE_REPLENISH
);
1221 if (!is_leftmost(curr
, &rq
->dl
))
1226 * Because -- for now -- we share the rt bandwidth, we need to
1227 * account our runtime there too, otherwise actual rt tasks
1228 * would be able to exceed the shared quota.
1230 * Account to the root rt group for now.
1232 * The solution we're working towards is having the RT groups scheduled
1233 * using deadline servers -- however there's a few nasties to figure
1234 * out before that can happen.
1236 if (rt_bandwidth_enabled()) {
1237 struct rt_rq
*rt_rq
= &rq
->rt
;
1239 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
1241 * We'll let actual RT tasks worry about the overflow here, we
1242 * have our own CBS to keep us inline; only account when RT
1243 * bandwidth is relevant.
1245 if (sched_rt_bandwidth_account(rt_rq
))
1246 rt_rq
->rt_time
+= delta_exec
;
1247 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
1251 static enum hrtimer_restart
inactive_task_timer(struct hrtimer
*timer
)
1253 struct sched_dl_entity
*dl_se
= container_of(timer
,
1254 struct sched_dl_entity
,
1256 struct task_struct
*p
= dl_task_of(dl_se
);
1260 rq
= task_rq_lock(p
, &rf
);
1262 if (!dl_task(p
) || p
->state
== TASK_DEAD
) {
1263 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
1265 if (p
->state
== TASK_DEAD
&& dl_se
->dl_non_contending
) {
1266 sub_running_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1267 sub_rq_bw(&p
->dl
, dl_rq_of_se(&p
->dl
));
1268 dl_se
->dl_non_contending
= 0;
1271 raw_spin_lock(&dl_b
->lock
);
1272 __dl_sub(dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
1273 raw_spin_unlock(&dl_b
->lock
);
1274 __dl_clear_params(p
);
1278 if (dl_se
->dl_non_contending
== 0)
1282 update_rq_clock(rq
);
1284 sub_running_bw(dl_se
, &rq
->dl
);
1285 dl_se
->dl_non_contending
= 0;
1287 task_rq_unlock(rq
, p
, &rf
);
1290 return HRTIMER_NORESTART
;
1293 void init_dl_inactive_task_timer(struct sched_dl_entity
*dl_se
)
1295 struct hrtimer
*timer
= &dl_se
->inactive_timer
;
1297 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1298 timer
->function
= inactive_task_timer
;
1303 static void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1305 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1307 if (dl_rq
->earliest_dl
.curr
== 0 ||
1308 dl_time_before(deadline
, dl_rq
->earliest_dl
.curr
)) {
1309 dl_rq
->earliest_dl
.curr
= deadline
;
1310 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, deadline
);
1314 static void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
)
1316 struct rq
*rq
= rq_of_dl_rq(dl_rq
);
1319 * Since we may have removed our earliest (and/or next earliest)
1320 * task we must recompute them.
1322 if (!dl_rq
->dl_nr_running
) {
1323 dl_rq
->earliest_dl
.curr
= 0;
1324 dl_rq
->earliest_dl
.next
= 0;
1325 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
1327 struct rb_node
*leftmost
= dl_rq
->root
.rb_leftmost
;
1328 struct sched_dl_entity
*entry
;
1330 entry
= rb_entry(leftmost
, struct sched_dl_entity
, rb_node
);
1331 dl_rq
->earliest_dl
.curr
= entry
->deadline
;
1332 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, entry
->deadline
);
1338 static inline void inc_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1339 static inline void dec_dl_deadline(struct dl_rq
*dl_rq
, u64 deadline
) {}
1341 #endif /* CONFIG_SMP */
1344 void inc_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1346 int prio
= dl_task_of(dl_se
)->prio
;
1347 u64 deadline
= dl_se
->deadline
;
1349 WARN_ON(!dl_prio(prio
));
1350 dl_rq
->dl_nr_running
++;
1351 add_nr_running(rq_of_dl_rq(dl_rq
), 1);
1353 inc_dl_deadline(dl_rq
, deadline
);
1354 inc_dl_migration(dl_se
, dl_rq
);
1358 void dec_dl_tasks(struct sched_dl_entity
*dl_se
, struct dl_rq
*dl_rq
)
1360 int prio
= dl_task_of(dl_se
)->prio
;
1362 WARN_ON(!dl_prio(prio
));
1363 WARN_ON(!dl_rq
->dl_nr_running
);
1364 dl_rq
->dl_nr_running
--;
1365 sub_nr_running(rq_of_dl_rq(dl_rq
), 1);
1367 dec_dl_deadline(dl_rq
, dl_se
->deadline
);
1368 dec_dl_migration(dl_se
, dl_rq
);
1371 static void __enqueue_dl_entity(struct sched_dl_entity
*dl_se
)
1373 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1374 struct rb_node
**link
= &dl_rq
->root
.rb_root
.rb_node
;
1375 struct rb_node
*parent
= NULL
;
1376 struct sched_dl_entity
*entry
;
1379 BUG_ON(!RB_EMPTY_NODE(&dl_se
->rb_node
));
1383 entry
= rb_entry(parent
, struct sched_dl_entity
, rb_node
);
1384 if (dl_time_before(dl_se
->deadline
, entry
->deadline
))
1385 link
= &parent
->rb_left
;
1387 link
= &parent
->rb_right
;
1392 rb_link_node(&dl_se
->rb_node
, parent
, link
);
1393 rb_insert_color_cached(&dl_se
->rb_node
, &dl_rq
->root
, leftmost
);
1395 inc_dl_tasks(dl_se
, dl_rq
);
1398 static void __dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1400 struct dl_rq
*dl_rq
= dl_rq_of_se(dl_se
);
1402 if (RB_EMPTY_NODE(&dl_se
->rb_node
))
1405 rb_erase_cached(&dl_se
->rb_node
, &dl_rq
->root
);
1406 RB_CLEAR_NODE(&dl_se
->rb_node
);
1408 dec_dl_tasks(dl_se
, dl_rq
);
1412 enqueue_dl_entity(struct sched_dl_entity
*dl_se
,
1413 struct sched_dl_entity
*pi_se
, int flags
)
1415 BUG_ON(on_dl_rq(dl_se
));
1418 * If this is a wakeup or a new instance, the scheduling
1419 * parameters of the task might need updating. Otherwise,
1420 * we want a replenishment of its runtime.
1422 if (flags
& ENQUEUE_WAKEUP
) {
1423 task_contending(dl_se
, flags
);
1424 update_dl_entity(dl_se
, pi_se
);
1425 } else if (flags
& ENQUEUE_REPLENISH
) {
1426 replenish_dl_entity(dl_se
, pi_se
);
1427 } else if ((flags
& ENQUEUE_RESTORE
) &&
1428 dl_time_before(dl_se
->deadline
,
1429 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se
))))) {
1430 setup_new_dl_entity(dl_se
);
1433 __enqueue_dl_entity(dl_se
);
1436 static void dequeue_dl_entity(struct sched_dl_entity
*dl_se
)
1438 __dequeue_dl_entity(dl_se
);
1441 static void enqueue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1443 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
1444 struct sched_dl_entity
*pi_se
= &p
->dl
;
1447 * Use the scheduling parameters of the top pi-waiter task if:
1448 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1449 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1450 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1451 * boosted due to a SCHED_DEADLINE pi-waiter).
1452 * Otherwise we keep our runtime and deadline.
1454 if (pi_task
&& dl_prio(pi_task
->normal_prio
) && p
->dl
.dl_boosted
) {
1455 pi_se
= &pi_task
->dl
;
1456 } else if (!dl_prio(p
->normal_prio
)) {
1458 * Special case in which we have a !SCHED_DEADLINE task
1459 * that is going to be deboosted, but exceeds its
1460 * runtime while doing so. No point in replenishing
1461 * it, as it's going to return back to its original
1462 * scheduling class after this.
1464 BUG_ON(!p
->dl
.dl_boosted
|| flags
!= ENQUEUE_REPLENISH
);
1469 * Check if a constrained deadline task was activated
1470 * after the deadline but before the next period.
1471 * If that is the case, the task will be throttled and
1472 * the replenishment timer will be set to the next period.
1474 if (!p
->dl
.dl_throttled
&& !dl_is_implicit(&p
->dl
))
1475 dl_check_constrained_dl(&p
->dl
);
1477 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& ENQUEUE_RESTORE
) {
1478 add_rq_bw(&p
->dl
, &rq
->dl
);
1479 add_running_bw(&p
->dl
, &rq
->dl
);
1483 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1484 * its budget it needs a replenishment and, since it now is on
1485 * its rq, the bandwidth timer callback (which clearly has not
1486 * run yet) will take care of this.
1487 * However, the active utilization does not depend on the fact
1488 * that the task is on the runqueue or not (but depends on the
1489 * task's state - in GRUB parlance, "inactive" vs "active contending").
1490 * In other words, even if a task is throttled its utilization must
1491 * be counted in the active utilization; hence, we need to call
1494 if (p
->dl
.dl_throttled
&& !(flags
& ENQUEUE_REPLENISH
)) {
1495 if (flags
& ENQUEUE_WAKEUP
)
1496 task_contending(&p
->dl
, flags
);
1501 enqueue_dl_entity(&p
->dl
, pi_se
, flags
);
1503 if (!task_current(rq
, p
) && p
->nr_cpus_allowed
> 1)
1504 enqueue_pushable_dl_task(rq
, p
);
1507 static void __dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1509 dequeue_dl_entity(&p
->dl
);
1510 dequeue_pushable_dl_task(rq
, p
);
1513 static void dequeue_task_dl(struct rq
*rq
, struct task_struct
*p
, int flags
)
1516 __dequeue_task_dl(rq
, p
, flags
);
1518 if (p
->on_rq
== TASK_ON_RQ_MIGRATING
|| flags
& DEQUEUE_SAVE
) {
1519 sub_running_bw(&p
->dl
, &rq
->dl
);
1520 sub_rq_bw(&p
->dl
, &rq
->dl
);
1524 * This check allows to start the inactive timer (or to immediately
1525 * decrease the active utilization, if needed) in two cases:
1526 * when the task blocks and when it is terminating
1527 * (p->state == TASK_DEAD). We can handle the two cases in the same
1528 * way, because from GRUB's point of view the same thing is happening
1529 * (the task moves from "active contending" to "active non contending"
1532 if (flags
& DEQUEUE_SLEEP
)
1533 task_non_contending(p
);
1537 * Yield task semantic for -deadline tasks is:
1539 * get off from the CPU until our next instance, with
1540 * a new runtime. This is of little use now, since we
1541 * don't have a bandwidth reclaiming mechanism. Anyway,
1542 * bandwidth reclaiming is planned for the future, and
1543 * yield_task_dl will indicate that some spare budget
1544 * is available for other task instances to use it.
1546 static void yield_task_dl(struct rq
*rq
)
1549 * We make the task go to sleep until its current deadline by
1550 * forcing its runtime to zero. This way, update_curr_dl() stops
1551 * it and the bandwidth timer will wake it up and will give it
1552 * new scheduling parameters (thanks to dl_yielded=1).
1554 rq
->curr
->dl
.dl_yielded
= 1;
1556 update_rq_clock(rq
);
1559 * Tell update_rq_clock() that we've just updated,
1560 * so we don't do microscopic update in schedule()
1561 * and double the fastpath cost.
1563 rq_clock_skip_update(rq
);
1568 static int find_later_rq(struct task_struct
*task
);
1571 select_task_rq_dl(struct task_struct
*p
, int cpu
, int sd_flag
, int flags
)
1573 struct task_struct
*curr
;
1576 if (sd_flag
!= SD_BALANCE_WAKE
)
1582 curr
= READ_ONCE(rq
->curr
); /* unlocked access */
1585 * If we are dealing with a -deadline task, we must
1586 * decide where to wake it up.
1587 * If it has a later deadline and the current task
1588 * on this rq can't move (provided the waking task
1589 * can!) we prefer to send it somewhere else. On the
1590 * other hand, if it has a shorter deadline, we
1591 * try to make it stay here, it might be important.
1593 if (unlikely(dl_task(curr
)) &&
1594 (curr
->nr_cpus_allowed
< 2 ||
1595 !dl_entity_preempt(&p
->dl
, &curr
->dl
)) &&
1596 (p
->nr_cpus_allowed
> 1)) {
1597 int target
= find_later_rq(p
);
1600 (dl_time_before(p
->dl
.deadline
,
1601 cpu_rq(target
)->dl
.earliest_dl
.curr
) ||
1602 (cpu_rq(target
)->dl
.dl_nr_running
== 0)))
1611 static void migrate_task_rq_dl(struct task_struct
*p
)
1615 if (p
->state
!= TASK_WAKING
)
1620 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1621 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1622 * rq->lock is not... So, lock it
1624 raw_spin_lock(&rq
->lock
);
1625 if (p
->dl
.dl_non_contending
) {
1626 sub_running_bw(&p
->dl
, &rq
->dl
);
1627 p
->dl
.dl_non_contending
= 0;
1629 * If the timer handler is currently running and the
1630 * timer cannot be cancelled, inactive_task_timer()
1631 * will see that dl_not_contending is not set, and
1632 * will not touch the rq's active utilization,
1633 * so we are still safe.
1635 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
1638 sub_rq_bw(&p
->dl
, &rq
->dl
);
1639 raw_spin_unlock(&rq
->lock
);
1642 static void check_preempt_equal_dl(struct rq
*rq
, struct task_struct
*p
)
1645 * Current can't be migrated, useless to reschedule,
1646 * let's hope p can move out.
1648 if (rq
->curr
->nr_cpus_allowed
== 1 ||
1649 !cpudl_find(&rq
->rd
->cpudl
, rq
->curr
, NULL
))
1653 * p is migratable, so let's not schedule it and
1654 * see if it is pushed or pulled somewhere else.
1656 if (p
->nr_cpus_allowed
!= 1 &&
1657 cpudl_find(&rq
->rd
->cpudl
, p
, NULL
))
1663 #endif /* CONFIG_SMP */
1666 * Only called when both the current and waking task are -deadline
1669 static void check_preempt_curr_dl(struct rq
*rq
, struct task_struct
*p
,
1672 if (dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
)) {
1679 * In the unlikely case current and p have the same deadline
1680 * let us try to decide what's the best thing to do...
1682 if ((p
->dl
.deadline
== rq
->curr
->dl
.deadline
) &&
1683 !test_tsk_need_resched(rq
->curr
))
1684 check_preempt_equal_dl(rq
, p
);
1685 #endif /* CONFIG_SMP */
1688 #ifdef CONFIG_SCHED_HRTICK
1689 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1691 hrtick_start(rq
, p
->dl
.runtime
);
1693 #else /* !CONFIG_SCHED_HRTICK */
1694 static void start_hrtick_dl(struct rq
*rq
, struct task_struct
*p
)
1699 static struct sched_dl_entity
*pick_next_dl_entity(struct rq
*rq
,
1700 struct dl_rq
*dl_rq
)
1702 struct rb_node
*left
= rb_first_cached(&dl_rq
->root
);
1707 return rb_entry(left
, struct sched_dl_entity
, rb_node
);
1710 static struct task_struct
*
1711 pick_next_task_dl(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
1713 struct sched_dl_entity
*dl_se
;
1714 struct task_struct
*p
;
1715 struct dl_rq
*dl_rq
;
1719 if (need_pull_dl_task(rq
, prev
)) {
1721 * This is OK, because current is on_cpu, which avoids it being
1722 * picked for load-balance and preemption/IRQs are still
1723 * disabled avoiding further scheduler activity on it and we're
1724 * being very careful to re-start the picking loop.
1726 rq_unpin_lock(rq
, rf
);
1728 rq_repin_lock(rq
, rf
);
1730 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1731 * means a stop task can slip in, in which case we need to
1732 * re-start task selection.
1734 if (rq
->stop
&& task_on_rq_queued(rq
->stop
))
1739 * When prev is DL, we may throttle it in put_prev_task().
1740 * So, we update time before we check for dl_nr_running.
1742 if (prev
->sched_class
== &dl_sched_class
)
1745 if (unlikely(!dl_rq
->dl_nr_running
))
1748 put_prev_task(rq
, prev
);
1750 dl_se
= pick_next_dl_entity(rq
, dl_rq
);
1753 p
= dl_task_of(dl_se
);
1754 p
->se
.exec_start
= rq_clock_task(rq
);
1756 /* Running task will never be pushed. */
1757 dequeue_pushable_dl_task(rq
, p
);
1759 if (hrtick_enabled(rq
))
1760 start_hrtick_dl(rq
, p
);
1762 deadline_queue_push_tasks(rq
);
1767 static void put_prev_task_dl(struct rq
*rq
, struct task_struct
*p
)
1771 if (on_dl_rq(&p
->dl
) && p
->nr_cpus_allowed
> 1)
1772 enqueue_pushable_dl_task(rq
, p
);
1776 * scheduler tick hitting a task of our scheduling class.
1778 * NOTE: This function can be called remotely by the tick offload that
1779 * goes along full dynticks. Therefore no local assumption can be made
1780 * and everything must be accessed through the @rq and @curr passed in
1783 static void task_tick_dl(struct rq
*rq
, struct task_struct
*p
, int queued
)
1788 * Even when we have runtime, update_curr_dl() might have resulted in us
1789 * not being the leftmost task anymore. In that case NEED_RESCHED will
1790 * be set and schedule() will start a new hrtick for the next task.
1792 if (hrtick_enabled(rq
) && queued
&& p
->dl
.runtime
> 0 &&
1793 is_leftmost(p
, &rq
->dl
))
1794 start_hrtick_dl(rq
, p
);
1797 static void task_fork_dl(struct task_struct
*p
)
1800 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1805 static void set_curr_task_dl(struct rq
*rq
)
1807 struct task_struct
*p
= rq
->curr
;
1809 p
->se
.exec_start
= rq_clock_task(rq
);
1811 /* You can't push away the running task */
1812 dequeue_pushable_dl_task(rq
, p
);
1817 /* Only try algorithms three times */
1818 #define DL_MAX_TRIES 3
1820 static int pick_dl_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1822 if (!task_running(rq
, p
) &&
1823 cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1829 * Return the earliest pushable rq's task, which is suitable to be executed
1830 * on the CPU, NULL otherwise:
1832 static struct task_struct
*pick_earliest_pushable_dl_task(struct rq
*rq
, int cpu
)
1834 struct rb_node
*next_node
= rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
;
1835 struct task_struct
*p
= NULL
;
1837 if (!has_pushable_dl_tasks(rq
))
1842 p
= rb_entry(next_node
, struct task_struct
, pushable_dl_tasks
);
1844 if (pick_dl_task(rq
, p
, cpu
))
1847 next_node
= rb_next(next_node
);
1854 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask_dl
);
1856 static int find_later_rq(struct task_struct
*task
)
1858 struct sched_domain
*sd
;
1859 struct cpumask
*later_mask
= this_cpu_cpumask_var_ptr(local_cpu_mask_dl
);
1860 int this_cpu
= smp_processor_id();
1861 int cpu
= task_cpu(task
);
1863 /* Make sure the mask is initialized first */
1864 if (unlikely(!later_mask
))
1867 if (task
->nr_cpus_allowed
== 1)
1871 * We have to consider system topology and task affinity
1872 * first, then we can look for a suitable CPU.
1874 if (!cpudl_find(&task_rq(task
)->rd
->cpudl
, task
, later_mask
))
1878 * If we are here, some targets have been found, including
1879 * the most suitable which is, among the runqueues where the
1880 * current tasks have later deadlines than the task's one, the
1881 * rq with the latest possible one.
1883 * Now we check how well this matches with task's
1884 * affinity and system topology.
1886 * The last CPU where the task run is our first
1887 * guess, since it is most likely cache-hot there.
1889 if (cpumask_test_cpu(cpu
, later_mask
))
1892 * Check if this_cpu is to be skipped (i.e., it is
1893 * not in the mask) or not.
1895 if (!cpumask_test_cpu(this_cpu
, later_mask
))
1899 for_each_domain(cpu
, sd
) {
1900 if (sd
->flags
& SD_WAKE_AFFINE
) {
1904 * If possible, preempting this_cpu is
1905 * cheaper than migrating.
1907 if (this_cpu
!= -1 &&
1908 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1913 best_cpu
= cpumask_first_and(later_mask
,
1914 sched_domain_span(sd
));
1916 * Last chance: if a CPU being in both later_mask
1917 * and current sd span is valid, that becomes our
1918 * choice. Of course, the latest possible CPU is
1919 * already under consideration through later_mask.
1921 if (best_cpu
< nr_cpu_ids
) {
1930 * At this point, all our guesses failed, we just return
1931 * 'something', and let the caller sort the things out.
1936 cpu
= cpumask_any(later_mask
);
1937 if (cpu
< nr_cpu_ids
)
1943 /* Locks the rq it finds */
1944 static struct rq
*find_lock_later_rq(struct task_struct
*task
, struct rq
*rq
)
1946 struct rq
*later_rq
= NULL
;
1950 for (tries
= 0; tries
< DL_MAX_TRIES
; tries
++) {
1951 cpu
= find_later_rq(task
);
1953 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1956 later_rq
= cpu_rq(cpu
);
1958 if (later_rq
->dl
.dl_nr_running
&&
1959 !dl_time_before(task
->dl
.deadline
,
1960 later_rq
->dl
.earliest_dl
.curr
)) {
1962 * Target rq has tasks of equal or earlier deadline,
1963 * retrying does not release any lock and is unlikely
1964 * to yield a different result.
1970 /* Retry if something changed. */
1971 if (double_lock_balance(rq
, later_rq
)) {
1972 if (unlikely(task_rq(task
) != rq
||
1973 !cpumask_test_cpu(later_rq
->cpu
, &task
->cpus_allowed
) ||
1974 task_running(rq
, task
) ||
1976 !task_on_rq_queued(task
))) {
1977 double_unlock_balance(rq
, later_rq
);
1984 * If the rq we found has no -deadline task, or
1985 * its earliest one has a later deadline than our
1986 * task, the rq is a good one.
1988 if (!later_rq
->dl
.dl_nr_running
||
1989 dl_time_before(task
->dl
.deadline
,
1990 later_rq
->dl
.earliest_dl
.curr
))
1993 /* Otherwise we try again. */
1994 double_unlock_balance(rq
, later_rq
);
2001 static struct task_struct
*pick_next_pushable_dl_task(struct rq
*rq
)
2003 struct task_struct
*p
;
2005 if (!has_pushable_dl_tasks(rq
))
2008 p
= rb_entry(rq
->dl
.pushable_dl_tasks_root
.rb_leftmost
,
2009 struct task_struct
, pushable_dl_tasks
);
2011 BUG_ON(rq
->cpu
!= task_cpu(p
));
2012 BUG_ON(task_current(rq
, p
));
2013 BUG_ON(p
->nr_cpus_allowed
<= 1);
2015 BUG_ON(!task_on_rq_queued(p
));
2016 BUG_ON(!dl_task(p
));
2022 * See if the non running -deadline tasks on this rq
2023 * can be sent to some other CPU where they can preempt
2024 * and start executing.
2026 static int push_dl_task(struct rq
*rq
)
2028 struct task_struct
*next_task
;
2029 struct rq
*later_rq
;
2032 if (!rq
->dl
.overloaded
)
2035 next_task
= pick_next_pushable_dl_task(rq
);
2040 if (unlikely(next_task
== rq
->curr
)) {
2046 * If next_task preempts rq->curr, and rq->curr
2047 * can move away, it makes sense to just reschedule
2048 * without going further in pushing next_task.
2050 if (dl_task(rq
->curr
) &&
2051 dl_time_before(next_task
->dl
.deadline
, rq
->curr
->dl
.deadline
) &&
2052 rq
->curr
->nr_cpus_allowed
> 1) {
2057 /* We might release rq lock */
2058 get_task_struct(next_task
);
2060 /* Will lock the rq it'll find */
2061 later_rq
= find_lock_later_rq(next_task
, rq
);
2063 struct task_struct
*task
;
2066 * We must check all this again, since
2067 * find_lock_later_rq releases rq->lock and it is
2068 * then possible that next_task has migrated.
2070 task
= pick_next_pushable_dl_task(rq
);
2071 if (task
== next_task
) {
2073 * The task is still there. We don't try
2074 * again, some other CPU will pull it when ready.
2083 put_task_struct(next_task
);
2088 deactivate_task(rq
, next_task
, 0);
2089 sub_running_bw(&next_task
->dl
, &rq
->dl
);
2090 sub_rq_bw(&next_task
->dl
, &rq
->dl
);
2091 set_task_cpu(next_task
, later_rq
->cpu
);
2092 add_rq_bw(&next_task
->dl
, &later_rq
->dl
);
2093 add_running_bw(&next_task
->dl
, &later_rq
->dl
);
2094 activate_task(later_rq
, next_task
, 0);
2097 resched_curr(later_rq
);
2099 double_unlock_balance(rq
, later_rq
);
2102 put_task_struct(next_task
);
2107 static void push_dl_tasks(struct rq
*rq
)
2109 /* push_dl_task() will return true if it moved a -deadline task */
2110 while (push_dl_task(rq
))
2114 static void pull_dl_task(struct rq
*this_rq
)
2116 int this_cpu
= this_rq
->cpu
, cpu
;
2117 struct task_struct
*p
;
2118 bool resched
= false;
2120 u64 dmin
= LONG_MAX
;
2122 if (likely(!dl_overloaded(this_rq
)))
2126 * Match the barrier from dl_set_overloaded; this guarantees that if we
2127 * see overloaded we must also see the dlo_mask bit.
2131 for_each_cpu(cpu
, this_rq
->rd
->dlo_mask
) {
2132 if (this_cpu
== cpu
)
2135 src_rq
= cpu_rq(cpu
);
2138 * It looks racy, abd it is! However, as in sched_rt.c,
2139 * we are fine with this.
2141 if (this_rq
->dl
.dl_nr_running
&&
2142 dl_time_before(this_rq
->dl
.earliest_dl
.curr
,
2143 src_rq
->dl
.earliest_dl
.next
))
2146 /* Might drop this_rq->lock */
2147 double_lock_balance(this_rq
, src_rq
);
2150 * If there are no more pullable tasks on the
2151 * rq, we're done with it.
2153 if (src_rq
->dl
.dl_nr_running
<= 1)
2156 p
= pick_earliest_pushable_dl_task(src_rq
, this_cpu
);
2159 * We found a task to be pulled if:
2160 * - it preempts our current (if there's one),
2161 * - it will preempt the last one we pulled (if any).
2163 if (p
&& dl_time_before(p
->dl
.deadline
, dmin
) &&
2164 (!this_rq
->dl
.dl_nr_running
||
2165 dl_time_before(p
->dl
.deadline
,
2166 this_rq
->dl
.earliest_dl
.curr
))) {
2167 WARN_ON(p
== src_rq
->curr
);
2168 WARN_ON(!task_on_rq_queued(p
));
2171 * Then we pull iff p has actually an earlier
2172 * deadline than the current task of its runqueue.
2174 if (dl_time_before(p
->dl
.deadline
,
2175 src_rq
->curr
->dl
.deadline
))
2180 deactivate_task(src_rq
, p
, 0);
2181 sub_running_bw(&p
->dl
, &src_rq
->dl
);
2182 sub_rq_bw(&p
->dl
, &src_rq
->dl
);
2183 set_task_cpu(p
, this_cpu
);
2184 add_rq_bw(&p
->dl
, &this_rq
->dl
);
2185 add_running_bw(&p
->dl
, &this_rq
->dl
);
2186 activate_task(this_rq
, p
, 0);
2187 dmin
= p
->dl
.deadline
;
2189 /* Is there any other task even earlier? */
2192 double_unlock_balance(this_rq
, src_rq
);
2196 resched_curr(this_rq
);
2200 * Since the task is not running and a reschedule is not going to happen
2201 * anytime soon on its runqueue, we try pushing it away now.
2203 static void task_woken_dl(struct rq
*rq
, struct task_struct
*p
)
2205 if (!task_running(rq
, p
) &&
2206 !test_tsk_need_resched(rq
->curr
) &&
2207 p
->nr_cpus_allowed
> 1 &&
2208 dl_task(rq
->curr
) &&
2209 (rq
->curr
->nr_cpus_allowed
< 2 ||
2210 !dl_entity_preempt(&p
->dl
, &rq
->curr
->dl
))) {
2215 static void set_cpus_allowed_dl(struct task_struct
*p
,
2216 const struct cpumask
*new_mask
)
2218 struct root_domain
*src_rd
;
2221 BUG_ON(!dl_task(p
));
2226 * Migrating a SCHED_DEADLINE task between exclusive
2227 * cpusets (different root_domains) entails a bandwidth
2228 * update. We already made space for us in the destination
2229 * domain (see cpuset_can_attach()).
2231 if (!cpumask_intersects(src_rd
->span
, new_mask
)) {
2232 struct dl_bw
*src_dl_b
;
2234 src_dl_b
= dl_bw_of(cpu_of(rq
));
2236 * We now free resources of the root_domain we are migrating
2237 * off. In the worst case, sched_setattr() may temporary fail
2238 * until we complete the update.
2240 raw_spin_lock(&src_dl_b
->lock
);
2241 __dl_sub(src_dl_b
, p
->dl
.dl_bw
, dl_bw_cpus(task_cpu(p
)));
2242 raw_spin_unlock(&src_dl_b
->lock
);
2245 set_cpus_allowed_common(p
, new_mask
);
2248 /* Assumes rq->lock is held */
2249 static void rq_online_dl(struct rq
*rq
)
2251 if (rq
->dl
.overloaded
)
2252 dl_set_overload(rq
);
2254 cpudl_set_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2255 if (rq
->dl
.dl_nr_running
> 0)
2256 cpudl_set(&rq
->rd
->cpudl
, rq
->cpu
, rq
->dl
.earliest_dl
.curr
);
2259 /* Assumes rq->lock is held */
2260 static void rq_offline_dl(struct rq
*rq
)
2262 if (rq
->dl
.overloaded
)
2263 dl_clear_overload(rq
);
2265 cpudl_clear(&rq
->rd
->cpudl
, rq
->cpu
);
2266 cpudl_clear_freecpu(&rq
->rd
->cpudl
, rq
->cpu
);
2269 void __init
init_sched_dl_class(void)
2273 for_each_possible_cpu(i
)
2274 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl
, i
),
2275 GFP_KERNEL
, cpu_to_node(i
));
2278 #endif /* CONFIG_SMP */
2280 static void switched_from_dl(struct rq
*rq
, struct task_struct
*p
)
2283 * task_non_contending() can start the "inactive timer" (if the 0-lag
2284 * time is in the future). If the task switches back to dl before
2285 * the "inactive timer" fires, it can continue to consume its current
2286 * runtime using its current deadline. If it stays outside of
2287 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2288 * will reset the task parameters.
2290 if (task_on_rq_queued(p
) && p
->dl
.dl_runtime
)
2291 task_non_contending(p
);
2293 if (!task_on_rq_queued(p
))
2294 sub_rq_bw(&p
->dl
, &rq
->dl
);
2297 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2298 * at the 0-lag time, because the task could have been migrated
2299 * while SCHED_OTHER in the meanwhile.
2301 if (p
->dl
.dl_non_contending
)
2302 p
->dl
.dl_non_contending
= 0;
2305 * Since this might be the only -deadline task on the rq,
2306 * this is the right place to try to pull some other one
2307 * from an overloaded CPU, if any.
2309 if (!task_on_rq_queued(p
) || rq
->dl
.dl_nr_running
)
2312 deadline_queue_pull_task(rq
);
2316 * When switching to -deadline, we may overload the rq, then
2317 * we try to push someone off, if possible.
2319 static void switched_to_dl(struct rq
*rq
, struct task_struct
*p
)
2321 if (hrtimer_try_to_cancel(&p
->dl
.inactive_timer
) == 1)
2324 /* If p is not queued we will update its parameters at next wakeup. */
2325 if (!task_on_rq_queued(p
)) {
2326 add_rq_bw(&p
->dl
, &rq
->dl
);
2331 if (rq
->curr
!= p
) {
2333 if (p
->nr_cpus_allowed
> 1 && rq
->dl
.overloaded
)
2334 deadline_queue_push_tasks(rq
);
2336 if (dl_task(rq
->curr
))
2337 check_preempt_curr_dl(rq
, p
, 0);
2344 * If the scheduling parameters of a -deadline task changed,
2345 * a push or pull operation might be needed.
2347 static void prio_changed_dl(struct rq
*rq
, struct task_struct
*p
,
2350 if (task_on_rq_queued(p
) || rq
->curr
== p
) {
2353 * This might be too much, but unfortunately
2354 * we don't have the old deadline value, and
2355 * we can't argue if the task is increasing
2356 * or lowering its prio, so...
2358 if (!rq
->dl
.overloaded
)
2359 deadline_queue_pull_task(rq
);
2362 * If we now have a earlier deadline task than p,
2363 * then reschedule, provided p is still on this
2366 if (dl_time_before(rq
->dl
.earliest_dl
.curr
, p
->dl
.deadline
))
2370 * Again, we don't know if p has a earlier
2371 * or later deadline, so let's blindly set a
2372 * (maybe not needed) rescheduling point.
2375 #endif /* CONFIG_SMP */
2379 const struct sched_class dl_sched_class
= {
2380 .next
= &rt_sched_class
,
2381 .enqueue_task
= enqueue_task_dl
,
2382 .dequeue_task
= dequeue_task_dl
,
2383 .yield_task
= yield_task_dl
,
2385 .check_preempt_curr
= check_preempt_curr_dl
,
2387 .pick_next_task
= pick_next_task_dl
,
2388 .put_prev_task
= put_prev_task_dl
,
2391 .select_task_rq
= select_task_rq_dl
,
2392 .migrate_task_rq
= migrate_task_rq_dl
,
2393 .set_cpus_allowed
= set_cpus_allowed_dl
,
2394 .rq_online
= rq_online_dl
,
2395 .rq_offline
= rq_offline_dl
,
2396 .task_woken
= task_woken_dl
,
2399 .set_curr_task
= set_curr_task_dl
,
2400 .task_tick
= task_tick_dl
,
2401 .task_fork
= task_fork_dl
,
2403 .prio_changed
= prio_changed_dl
,
2404 .switched_from
= switched_from_dl
,
2405 .switched_to
= switched_to_dl
,
2407 .update_curr
= update_curr_dl
,
2410 int sched_dl_global_validate(void)
2412 u64 runtime
= global_rt_runtime();
2413 u64 period
= global_rt_period();
2414 u64 new_bw
= to_ratio(period
, runtime
);
2417 unsigned long flags
;
2420 * Here we want to check the bandwidth not being set to some
2421 * value smaller than the currently allocated bandwidth in
2422 * any of the root_domains.
2424 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2425 * cycling on root_domains... Discussion on different/better
2426 * solutions is welcome!
2428 for_each_possible_cpu(cpu
) {
2429 rcu_read_lock_sched();
2430 dl_b
= dl_bw_of(cpu
);
2432 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2433 if (new_bw
< dl_b
->total_bw
)
2435 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2437 rcu_read_unlock_sched();
2446 void init_dl_rq_bw_ratio(struct dl_rq
*dl_rq
)
2448 if (global_rt_runtime() == RUNTIME_INF
) {
2449 dl_rq
->bw_ratio
= 1 << RATIO_SHIFT
;
2450 dl_rq
->extra_bw
= 1 << BW_SHIFT
;
2452 dl_rq
->bw_ratio
= to_ratio(global_rt_runtime(),
2453 global_rt_period()) >> (BW_SHIFT
- RATIO_SHIFT
);
2454 dl_rq
->extra_bw
= to_ratio(global_rt_period(),
2455 global_rt_runtime());
2459 void sched_dl_do_global(void)
2464 unsigned long flags
;
2466 def_dl_bandwidth
.dl_period
= global_rt_period();
2467 def_dl_bandwidth
.dl_runtime
= global_rt_runtime();
2469 if (global_rt_runtime() != RUNTIME_INF
)
2470 new_bw
= to_ratio(global_rt_period(), global_rt_runtime());
2473 * FIXME: As above...
2475 for_each_possible_cpu(cpu
) {
2476 rcu_read_lock_sched();
2477 dl_b
= dl_bw_of(cpu
);
2479 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2481 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2483 rcu_read_unlock_sched();
2484 init_dl_rq_bw_ratio(&cpu_rq(cpu
)->dl
);
2489 * We must be sure that accepting a new task (or allowing changing the
2490 * parameters of an existing one) is consistent with the bandwidth
2491 * constraints. If yes, this function also accordingly updates the currently
2492 * allocated bandwidth to reflect the new situation.
2494 * This function is called while holding p's rq->lock.
2496 int sched_dl_overflow(struct task_struct
*p
, int policy
,
2497 const struct sched_attr
*attr
)
2499 struct dl_bw
*dl_b
= dl_bw_of(task_cpu(p
));
2500 u64 period
= attr
->sched_period
?: attr
->sched_deadline
;
2501 u64 runtime
= attr
->sched_runtime
;
2502 u64 new_bw
= dl_policy(policy
) ? to_ratio(period
, runtime
) : 0;
2505 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
2508 /* !deadline task may carry old deadline bandwidth */
2509 if (new_bw
== p
->dl
.dl_bw
&& task_has_dl_policy(p
))
2513 * Either if a task, enters, leave, or stays -deadline but changes
2514 * its parameters, we may need to update accordingly the total
2515 * allocated bandwidth of the container.
2517 raw_spin_lock(&dl_b
->lock
);
2518 cpus
= dl_bw_cpus(task_cpu(p
));
2519 if (dl_policy(policy
) && !task_has_dl_policy(p
) &&
2520 !__dl_overflow(dl_b
, cpus
, 0, new_bw
)) {
2521 if (hrtimer_active(&p
->dl
.inactive_timer
))
2522 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2523 __dl_add(dl_b
, new_bw
, cpus
);
2525 } else if (dl_policy(policy
) && task_has_dl_policy(p
) &&
2526 !__dl_overflow(dl_b
, cpus
, p
->dl
.dl_bw
, new_bw
)) {
2528 * XXX this is slightly incorrect: when the task
2529 * utilization decreases, we should delay the total
2530 * utilization change until the task's 0-lag point.
2531 * But this would require to set the task's "inactive
2532 * timer" when the task is not inactive.
2534 __dl_sub(dl_b
, p
->dl
.dl_bw
, cpus
);
2535 __dl_add(dl_b
, new_bw
, cpus
);
2536 dl_change_utilization(p
, new_bw
);
2538 } else if (!dl_policy(policy
) && task_has_dl_policy(p
)) {
2540 * Do not decrease the total deadline utilization here,
2541 * switched_from_dl() will take care to do it at the correct
2546 raw_spin_unlock(&dl_b
->lock
);
2552 * This function initializes the sched_dl_entity of a newly becoming
2553 * SCHED_DEADLINE task.
2555 * Only the static values are considered here, the actual runtime and the
2556 * absolute deadline will be properly calculated when the task is enqueued
2557 * for the first time with its new policy.
2559 void __setparam_dl(struct task_struct
*p
, const struct sched_attr
*attr
)
2561 struct sched_dl_entity
*dl_se
= &p
->dl
;
2563 dl_se
->dl_runtime
= attr
->sched_runtime
;
2564 dl_se
->dl_deadline
= attr
->sched_deadline
;
2565 dl_se
->dl_period
= attr
->sched_period
?: dl_se
->dl_deadline
;
2566 dl_se
->flags
= attr
->sched_flags
;
2567 dl_se
->dl_bw
= to_ratio(dl_se
->dl_period
, dl_se
->dl_runtime
);
2568 dl_se
->dl_density
= to_ratio(dl_se
->dl_deadline
, dl_se
->dl_runtime
);
2571 void __getparam_dl(struct task_struct
*p
, struct sched_attr
*attr
)
2573 struct sched_dl_entity
*dl_se
= &p
->dl
;
2575 attr
->sched_priority
= p
->rt_priority
;
2576 attr
->sched_runtime
= dl_se
->dl_runtime
;
2577 attr
->sched_deadline
= dl_se
->dl_deadline
;
2578 attr
->sched_period
= dl_se
->dl_period
;
2579 attr
->sched_flags
= dl_se
->flags
;
2583 * This function validates the new parameters of a -deadline task.
2584 * We ask for the deadline not being zero, and greater or equal
2585 * than the runtime, as well as the period of being zero or
2586 * greater than deadline. Furthermore, we have to be sure that
2587 * user parameters are above the internal resolution of 1us (we
2588 * check sched_runtime only since it is always the smaller one) and
2589 * below 2^63 ns (we have to check both sched_deadline and
2590 * sched_period, as the latter can be zero).
2592 bool __checkparam_dl(const struct sched_attr
*attr
)
2594 /* special dl tasks don't actually use any parameter */
2595 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
2599 if (attr
->sched_deadline
== 0)
2603 * Since we truncate DL_SCALE bits, make sure we're at least
2606 if (attr
->sched_runtime
< (1ULL << DL_SCALE
))
2610 * Since we use the MSB for wrap-around and sign issues, make
2611 * sure it's not set (mind that period can be equal to zero).
2613 if (attr
->sched_deadline
& (1ULL << 63) ||
2614 attr
->sched_period
& (1ULL << 63))
2617 /* runtime <= deadline <= period (if period != 0) */
2618 if ((attr
->sched_period
!= 0 &&
2619 attr
->sched_period
< attr
->sched_deadline
) ||
2620 attr
->sched_deadline
< attr
->sched_runtime
)
2627 * This function clears the sched_dl_entity static params.
2629 void __dl_clear_params(struct task_struct
*p
)
2631 struct sched_dl_entity
*dl_se
= &p
->dl
;
2633 dl_se
->dl_runtime
= 0;
2634 dl_se
->dl_deadline
= 0;
2635 dl_se
->dl_period
= 0;
2638 dl_se
->dl_density
= 0;
2640 dl_se
->dl_throttled
= 0;
2641 dl_se
->dl_yielded
= 0;
2642 dl_se
->dl_non_contending
= 0;
2643 dl_se
->dl_overrun
= 0;
2646 bool dl_param_changed(struct task_struct
*p
, const struct sched_attr
*attr
)
2648 struct sched_dl_entity
*dl_se
= &p
->dl
;
2650 if (dl_se
->dl_runtime
!= attr
->sched_runtime
||
2651 dl_se
->dl_deadline
!= attr
->sched_deadline
||
2652 dl_se
->dl_period
!= attr
->sched_period
||
2653 dl_se
->flags
!= attr
->sched_flags
)
2660 int dl_task_can_attach(struct task_struct
*p
, const struct cpumask
*cs_cpus_allowed
)
2662 unsigned int dest_cpu
;
2666 unsigned long flags
;
2668 dest_cpu
= cpumask_any_and(cpu_active_mask
, cs_cpus_allowed
);
2670 rcu_read_lock_sched();
2671 dl_b
= dl_bw_of(dest_cpu
);
2672 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2673 cpus
= dl_bw_cpus(dest_cpu
);
2674 overflow
= __dl_overflow(dl_b
, cpus
, 0, p
->dl
.dl_bw
);
2679 * We reserve space for this task in the destination
2680 * root_domain, as we can't fail after this point.
2681 * We will free resources in the source root_domain
2682 * later on (see set_cpus_allowed_dl()).
2684 __dl_add(dl_b
, p
->dl
.dl_bw
, cpus
);
2687 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2688 rcu_read_unlock_sched();
2693 int dl_cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
2694 const struct cpumask
*trial
)
2696 int ret
= 1, trial_cpus
;
2697 struct dl_bw
*cur_dl_b
;
2698 unsigned long flags
;
2700 rcu_read_lock_sched();
2701 cur_dl_b
= dl_bw_of(cpumask_any(cur
));
2702 trial_cpus
= cpumask_weight(trial
);
2704 raw_spin_lock_irqsave(&cur_dl_b
->lock
, flags
);
2705 if (cur_dl_b
->bw
!= -1 &&
2706 cur_dl_b
->bw
* trial_cpus
< cur_dl_b
->total_bw
)
2708 raw_spin_unlock_irqrestore(&cur_dl_b
->lock
, flags
);
2709 rcu_read_unlock_sched();
2714 bool dl_cpu_busy(unsigned int cpu
)
2716 unsigned long flags
;
2721 rcu_read_lock_sched();
2722 dl_b
= dl_bw_of(cpu
);
2723 raw_spin_lock_irqsave(&dl_b
->lock
, flags
);
2724 cpus
= dl_bw_cpus(cpu
);
2725 overflow
= __dl_overflow(dl_b
, cpus
, 0, 0);
2726 raw_spin_unlock_irqrestore(&dl_b
->lock
, flags
);
2727 rcu_read_unlock_sched();
2733 #ifdef CONFIG_SCHED_DEBUG
2734 extern void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
);
2736 void print_dl_stats(struct seq_file
*m
, int cpu
)
2738 print_dl_rq(m
, cpu
, &cpu_rq(cpu
)->dl
);
2740 #endif /* CONFIG_SCHED_DEBUG */