1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
7 DEFINE_MUTEX(sched_domains_mutex
);
9 /* Protected by sched_domains_mutex: */
10 cpumask_var_t sched_domains_tmpmask
;
11 cpumask_var_t sched_domains_tmpmask2
;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init
sched_debug_setup(char *str
)
17 sched_debug_enabled
= true;
21 early_param("sched_debug", sched_debug_setup
);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled
;
28 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
29 struct cpumask
*groupmask
)
31 struct sched_group
*group
= sd
->groups
;
33 cpumask_clear(groupmask
);
35 printk(KERN_DEBUG
"%*s domain-%d: ", level
, "", level
);
37 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
38 printk("does not load-balance\n");
40 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
44 printk(KERN_CONT
"span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
47 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
48 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
50 if (!cpumask_test_cpu(cpu
, sched_group_span(group
))) {
51 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
54 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
58 printk(KERN_ERR
"ERROR: group is NULL\n");
62 if (!cpumask_weight(sched_group_span(group
))) {
63 printk(KERN_CONT
"\n");
64 printk(KERN_ERR
"ERROR: empty group\n");
68 if (!(sd
->flags
& SD_OVERLAP
) &&
69 cpumask_intersects(groupmask
, sched_group_span(group
))) {
70 printk(KERN_CONT
"\n");
71 printk(KERN_ERR
"ERROR: repeated CPUs\n");
75 cpumask_or(groupmask
, groupmask
, sched_group_span(group
));
77 printk(KERN_CONT
" %d:{ span=%*pbl",
79 cpumask_pr_args(sched_group_span(group
)));
81 if ((sd
->flags
& SD_OVERLAP
) &&
82 !cpumask_equal(group_balance_mask(group
), sched_group_span(group
))) {
83 printk(KERN_CONT
" mask=%*pbl",
84 cpumask_pr_args(group_balance_mask(group
)));
87 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
)
88 printk(KERN_CONT
" cap=%lu", group
->sgc
->capacity
);
90 if (group
== sd
->groups
&& sd
->child
&&
91 !cpumask_equal(sched_domain_span(sd
->child
),
92 sched_group_span(group
))) {
93 printk(KERN_ERR
"ERROR: domain->groups does not match domain->child\n");
96 printk(KERN_CONT
" }");
100 if (group
!= sd
->groups
)
101 printk(KERN_CONT
",");
103 } while (group
!= sd
->groups
);
104 printk(KERN_CONT
"\n");
106 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
107 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
110 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
111 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
115 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
119 if (!sched_debug_enabled
)
123 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
127 printk(KERN_DEBUG
"CPU%d attaching sched-domain(s):\n", cpu
);
130 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
138 #else /* !CONFIG_SCHED_DEBUG */
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
146 #endif /* CONFIG_SCHED_DEBUG */
148 static int sd_degenerate(struct sched_domain
*sd
)
150 if (cpumask_weight(sched_domain_span(sd
)) == 1)
153 /* Following flags need at least 2 groups */
154 if (sd
->flags
& (SD_LOAD_BALANCE
|
158 SD_SHARE_CPUCAPACITY
|
159 SD_ASYM_CPUCAPACITY
|
160 SD_SHARE_PKG_RESOURCES
|
161 SD_SHARE_POWERDOMAIN
)) {
162 if (sd
->groups
!= sd
->groups
->next
)
166 /* Following flags don't use groups */
167 if (sd
->flags
& (SD_WAKE_AFFINE
))
174 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
176 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
178 if (sd_degenerate(parent
))
181 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent
->groups
== parent
->groups
->next
) {
186 pflags
&= ~(SD_LOAD_BALANCE
|
190 SD_ASYM_CPUCAPACITY
|
191 SD_SHARE_CPUCAPACITY
|
192 SD_SHARE_PKG_RESOURCES
|
194 SD_SHARE_POWERDOMAIN
);
195 if (nr_node_ids
== 1)
196 pflags
&= ~SD_SERIALIZE
;
198 if (~cflags
& pflags
)
204 static void free_rootdomain(struct rcu_head
*rcu
)
206 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
208 cpupri_cleanup(&rd
->cpupri
);
209 cpudl_cleanup(&rd
->cpudl
);
210 free_cpumask_var(rd
->dlo_mask
);
211 free_cpumask_var(rd
->rto_mask
);
212 free_cpumask_var(rd
->online
);
213 free_cpumask_var(rd
->span
);
217 void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
219 struct root_domain
*old_rd
= NULL
;
222 raw_spin_lock_irqsave(&rq
->lock
, flags
);
227 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
230 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
233 * If we dont want to free the old_rd yet then
234 * set old_rd to NULL to skip the freeing later
237 if (!atomic_dec_and_test(&old_rd
->refcount
))
241 atomic_inc(&rd
->refcount
);
244 cpumask_set_cpu(rq
->cpu
, rd
->span
);
245 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
248 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
251 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
254 void sched_get_rd(struct root_domain
*rd
)
256 atomic_inc(&rd
->refcount
);
259 void sched_put_rd(struct root_domain
*rd
)
261 if (!atomic_dec_and_test(&rd
->refcount
))
264 call_rcu_sched(&rd
->rcu
, free_rootdomain
);
267 static int init_rootdomain(struct root_domain
*rd
)
269 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
271 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
273 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
275 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
278 #ifdef HAVE_RT_PUSH_IPI
280 raw_spin_lock_init(&rd
->rto_lock
);
281 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
284 init_dl_bw(&rd
->dl_bw
);
285 if (cpudl_init(&rd
->cpudl
) != 0)
288 if (cpupri_init(&rd
->cpupri
) != 0)
293 cpudl_cleanup(&rd
->cpudl
);
295 free_cpumask_var(rd
->rto_mask
);
297 free_cpumask_var(rd
->dlo_mask
);
299 free_cpumask_var(rd
->online
);
301 free_cpumask_var(rd
->span
);
307 * By default the system creates a single root-domain with all CPUs as
308 * members (mimicking the global state we have today).
310 struct root_domain def_root_domain
;
312 void init_defrootdomain(void)
314 init_rootdomain(&def_root_domain
);
316 atomic_set(&def_root_domain
.refcount
, 1);
319 static struct root_domain
*alloc_rootdomain(void)
321 struct root_domain
*rd
;
323 rd
= kzalloc(sizeof(*rd
), GFP_KERNEL
);
327 if (init_rootdomain(rd
) != 0) {
335 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
337 struct sched_group
*tmp
, *first
;
346 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
349 if (atomic_dec_and_test(&sg
->ref
))
352 } while (sg
!= first
);
355 static void destroy_sched_domain(struct sched_domain
*sd
)
358 * A normal sched domain may have multiple group references, an
359 * overlapping domain, having private groups, only one. Iterate,
360 * dropping group/capacity references, freeing where none remain.
362 free_sched_groups(sd
->groups
, 1);
364 if (sd
->shared
&& atomic_dec_and_test(&sd
->shared
->ref
))
369 static void destroy_sched_domains_rcu(struct rcu_head
*rcu
)
371 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
374 struct sched_domain
*parent
= sd
->parent
;
375 destroy_sched_domain(sd
);
380 static void destroy_sched_domains(struct sched_domain
*sd
)
383 call_rcu(&sd
->rcu
, destroy_sched_domains_rcu
);
387 * Keep a special pointer to the highest sched_domain that has
388 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
389 * allows us to avoid some pointer chasing select_idle_sibling().
391 * Also keep a unique ID per domain (we use the first CPU number in
392 * the cpumask of the domain), this allows us to quickly tell if
393 * two CPUs are in the same cache domain, see cpus_share_cache().
395 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
396 DEFINE_PER_CPU(int, sd_llc_size
);
397 DEFINE_PER_CPU(int, sd_llc_id
);
398 DEFINE_PER_CPU(struct sched_domain_shared
*, sd_llc_shared
);
399 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
400 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
402 static void update_top_cache_domain(int cpu
)
404 struct sched_domain_shared
*sds
= NULL
;
405 struct sched_domain
*sd
;
409 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
411 id
= cpumask_first(sched_domain_span(sd
));
412 size
= cpumask_weight(sched_domain_span(sd
));
416 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
417 per_cpu(sd_llc_size
, cpu
) = size
;
418 per_cpu(sd_llc_id
, cpu
) = id
;
419 rcu_assign_pointer(per_cpu(sd_llc_shared
, cpu
), sds
);
421 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
422 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
424 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
425 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
429 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
430 * hold the hotplug lock.
433 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
435 struct rq
*rq
= cpu_rq(cpu
);
436 struct sched_domain
*tmp
;
438 /* Remove the sched domains which do not contribute to scheduling. */
439 for (tmp
= sd
; tmp
; ) {
440 struct sched_domain
*parent
= tmp
->parent
;
444 if (sd_parent_degenerate(tmp
, parent
)) {
445 tmp
->parent
= parent
->parent
;
447 parent
->parent
->child
= tmp
;
449 * Transfer SD_PREFER_SIBLING down in case of a
450 * degenerate parent; the spans match for this
451 * so the property transfers.
453 if (parent
->flags
& SD_PREFER_SIBLING
)
454 tmp
->flags
|= SD_PREFER_SIBLING
;
455 destroy_sched_domain(parent
);
460 if (sd
&& sd_degenerate(sd
)) {
463 destroy_sched_domain(tmp
);
468 sched_domain_debug(sd
, cpu
);
470 rq_attach_root(rq
, rd
);
472 rcu_assign_pointer(rq
->sd
, sd
);
473 dirty_sched_domain_sysctl(cpu
);
474 destroy_sched_domains(tmp
);
476 update_top_cache_domain(cpu
);
480 struct sched_domain
** __percpu sd
;
481 struct root_domain
*rd
;
492 * Return the canonical balance CPU for this group, this is the first CPU
493 * of this group that's also in the balance mask.
495 * The balance mask are all those CPUs that could actually end up at this
496 * group. See build_balance_mask().
498 * Also see should_we_balance().
500 int group_balance_cpu(struct sched_group
*sg
)
502 return cpumask_first(group_balance_mask(sg
));
507 * NUMA topology (first read the regular topology blurb below)
509 * Given a node-distance table, for example:
517 * which represents a 4 node ring topology like:
525 * We want to construct domains and groups to represent this. The way we go
526 * about doing this is to build the domains on 'hops'. For each NUMA level we
527 * construct the mask of all nodes reachable in @level hops.
529 * For the above NUMA topology that gives 3 levels:
531 * NUMA-2 0-3 0-3 0-3 0-3
532 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
534 * NUMA-1 0-1,3 0-2 1-3 0,2-3
535 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
540 * As can be seen; things don't nicely line up as with the regular topology.
541 * When we iterate a domain in child domain chunks some nodes can be
542 * represented multiple times -- hence the "overlap" naming for this part of
545 * In order to minimize this overlap, we only build enough groups to cover the
546 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
550 * - the first group of each domain is its child domain; this
551 * gets us the first 0-1,3
552 * - the only uncovered node is 2, who's child domain is 1-3.
554 * However, because of the overlap, computing a unique CPU for each group is
555 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
556 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
557 * end up at those groups (they would end up in group: 0-1,3).
559 * To correct this we have to introduce the group balance mask. This mask
560 * will contain those CPUs in the group that can reach this group given the
561 * (child) domain tree.
563 * With this we can once again compute balance_cpu and sched_group_capacity
566 * XXX include words on how balance_cpu is unique and therefore can be
567 * used for sched_group_capacity links.
570 * Another 'interesting' topology is:
578 * Which looks a little like:
586 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
589 * This leads to a few particularly weird cases where the sched_domain's are
590 * not of the same number for each CPU. Consider:
593 * groups: {0-2},{1-3} {1-3},{0-2}
595 * NUMA-1 0-2 0-3 0-3 1-3
603 * Build the balance mask; it contains only those CPUs that can arrive at this
604 * group and should be considered to continue balancing.
606 * We do this during the group creation pass, therefore the group information
607 * isn't complete yet, however since each group represents a (child) domain we
608 * can fully construct this using the sched_domain bits (which are already
612 build_balance_mask(struct sched_domain
*sd
, struct sched_group
*sg
, struct cpumask
*mask
)
614 const struct cpumask
*sg_span
= sched_group_span(sg
);
615 struct sd_data
*sdd
= sd
->private;
616 struct sched_domain
*sibling
;
621 for_each_cpu(i
, sg_span
) {
622 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
625 * Can happen in the asymmetric case, where these siblings are
626 * unused. The mask will not be empty because those CPUs that
627 * do have the top domain _should_ span the domain.
632 /* If we would not end up here, we can't continue from here */
633 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
636 cpumask_set_cpu(i
, mask
);
639 /* We must not have empty masks here */
640 WARN_ON_ONCE(cpumask_empty(mask
));
644 * XXX: This creates per-node group entries; since the load-balancer will
645 * immediately access remote memory to construct this group's load-balance
646 * statistics having the groups node local is of dubious benefit.
648 static struct sched_group
*
649 build_group_from_child_sched_domain(struct sched_domain
*sd
, int cpu
)
651 struct sched_group
*sg
;
652 struct cpumask
*sg_span
;
654 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
655 GFP_KERNEL
, cpu_to_node(cpu
));
660 sg_span
= sched_group_span(sg
);
662 cpumask_copy(sg_span
, sched_domain_span(sd
->child
));
664 cpumask_copy(sg_span
, sched_domain_span(sd
));
666 atomic_inc(&sg
->ref
);
670 static void init_overlap_sched_group(struct sched_domain
*sd
,
671 struct sched_group
*sg
)
673 struct cpumask
*mask
= sched_domains_tmpmask2
;
674 struct sd_data
*sdd
= sd
->private;
675 struct cpumask
*sg_span
;
678 build_balance_mask(sd
, sg
, mask
);
679 cpu
= cpumask_first_and(sched_group_span(sg
), mask
);
681 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
682 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
683 cpumask_copy(group_balance_mask(sg
), mask
);
685 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg
), mask
));
688 * Initialize sgc->capacity such that even if we mess up the
689 * domains and no possible iteration will get us here, we won't
692 sg_span
= sched_group_span(sg
);
693 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
694 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
698 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
700 struct sched_group
*first
= NULL
, *last
= NULL
, *sg
;
701 const struct cpumask
*span
= sched_domain_span(sd
);
702 struct cpumask
*covered
= sched_domains_tmpmask
;
703 struct sd_data
*sdd
= sd
->private;
704 struct sched_domain
*sibling
;
707 cpumask_clear(covered
);
709 for_each_cpu_wrap(i
, span
, cpu
) {
710 struct cpumask
*sg_span
;
712 if (cpumask_test_cpu(i
, covered
))
715 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
718 * Asymmetric node setups can result in situations where the
719 * domain tree is of unequal depth, make sure to skip domains
720 * that already cover the entire range.
722 * In that case build_sched_domains() will have terminated the
723 * iteration early and our sibling sd spans will be empty.
724 * Domains should always include the CPU they're built on, so
727 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
730 sg
= build_group_from_child_sched_domain(sibling
, cpu
);
734 sg_span
= sched_group_span(sg
);
735 cpumask_or(covered
, covered
, sg_span
);
737 init_overlap_sched_group(sd
, sg
);
751 free_sched_groups(first
, 0);
758 * Package topology (also see the load-balance blurb in fair.c)
760 * The scheduler builds a tree structure to represent a number of important
761 * topology features. By default (default_topology[]) these include:
763 * - Simultaneous multithreading (SMT)
764 * - Multi-Core Cache (MC)
767 * Where the last one more or less denotes everything up to a NUMA node.
769 * The tree consists of 3 primary data structures:
771 * sched_domain -> sched_group -> sched_group_capacity
775 * The sched_domains are per-CPU and have a two way link (parent & child) and
776 * denote the ever growing mask of CPUs belonging to that level of topology.
778 * Each sched_domain has a circular (double) linked list of sched_group's, each
779 * denoting the domains of the level below (or individual CPUs in case of the
780 * first domain level). The sched_group linked by a sched_domain includes the
781 * CPU of that sched_domain [*].
783 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
785 * CPU 0 1 2 3 4 5 6 7
789 * SMT [ ] [ ] [ ] [ ]
793 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
794 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
795 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
797 * CPU 0 1 2 3 4 5 6 7
799 * One way to think about it is: sched_domain moves you up and down among these
800 * topology levels, while sched_group moves you sideways through it, at child
801 * domain granularity.
803 * sched_group_capacity ensures each unique sched_group has shared storage.
805 * There are two related construction problems, both require a CPU that
806 * uniquely identify each group (for a given domain):
808 * - The first is the balance_cpu (see should_we_balance() and the
809 * load-balance blub in fair.c); for each group we only want 1 CPU to
810 * continue balancing at a higher domain.
812 * - The second is the sched_group_capacity; we want all identical groups
813 * to share a single sched_group_capacity.
815 * Since these topologies are exclusive by construction. That is, its
816 * impossible for an SMT thread to belong to multiple cores, and cores to
817 * be part of multiple caches. There is a very clear and unique location
818 * for each CPU in the hierarchy.
820 * Therefore computing a unique CPU for each group is trivial (the iteration
821 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
822 * group), we can simply pick the first CPU in each group.
825 * [*] in other words, the first group of each domain is its child domain.
828 static struct sched_group
*get_group(int cpu
, struct sd_data
*sdd
)
830 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
831 struct sched_domain
*child
= sd
->child
;
832 struct sched_group
*sg
;
835 cpu
= cpumask_first(sched_domain_span(child
));
837 sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
838 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
840 /* For claim_allocations: */
841 atomic_inc(&sg
->ref
);
842 atomic_inc(&sg
->sgc
->ref
);
845 cpumask_copy(sched_group_span(sg
), sched_domain_span(child
));
846 cpumask_copy(group_balance_mask(sg
), sched_group_span(sg
));
848 cpumask_set_cpu(cpu
, sched_group_span(sg
));
849 cpumask_set_cpu(cpu
, group_balance_mask(sg
));
852 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sched_group_span(sg
));
853 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
859 * build_sched_groups will build a circular linked list of the groups
860 * covered by the given span, and will set each group's ->cpumask correctly,
861 * and ->cpu_capacity to 0.
863 * Assumes the sched_domain tree is fully constructed
866 build_sched_groups(struct sched_domain
*sd
, int cpu
)
868 struct sched_group
*first
= NULL
, *last
= NULL
;
869 struct sd_data
*sdd
= sd
->private;
870 const struct cpumask
*span
= sched_domain_span(sd
);
871 struct cpumask
*covered
;
874 lockdep_assert_held(&sched_domains_mutex
);
875 covered
= sched_domains_tmpmask
;
877 cpumask_clear(covered
);
879 for_each_cpu_wrap(i
, span
, cpu
) {
880 struct sched_group
*sg
;
882 if (cpumask_test_cpu(i
, covered
))
885 sg
= get_group(i
, sdd
);
887 cpumask_or(covered
, covered
, sched_group_span(sg
));
902 * Initialize sched groups cpu_capacity.
904 * cpu_capacity indicates the capacity of sched group, which is used while
905 * distributing the load between different sched groups in a sched domain.
906 * Typically cpu_capacity for all the groups in a sched domain will be same
907 * unless there are asymmetries in the topology. If there are asymmetries,
908 * group having more cpu_capacity will pickup more load compared to the
909 * group having less cpu_capacity.
911 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
913 struct sched_group
*sg
= sd
->groups
;
918 int cpu
, max_cpu
= -1;
920 sg
->group_weight
= cpumask_weight(sched_group_span(sg
));
922 if (!(sd
->flags
& SD_ASYM_PACKING
))
925 for_each_cpu(cpu
, sched_group_span(sg
)) {
928 else if (sched_asym_prefer(cpu
, max_cpu
))
931 sg
->asym_prefer_cpu
= max_cpu
;
935 } while (sg
!= sd
->groups
);
937 if (cpu
!= group_balance_cpu(sg
))
940 update_group_capacity(sd
, cpu
);
944 * Initializers for schedule domains
945 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
948 static int default_relax_domain_level
= -1;
949 int sched_domain_level_max
;
951 static int __init
setup_relax_domain_level(char *str
)
953 if (kstrtoint(str
, 0, &default_relax_domain_level
))
954 pr_warn("Unable to set relax_domain_level\n");
958 __setup("relax_domain_level=", setup_relax_domain_level
);
960 static void set_domain_attribute(struct sched_domain
*sd
,
961 struct sched_domain_attr
*attr
)
965 if (!attr
|| attr
->relax_domain_level
< 0) {
966 if (default_relax_domain_level
< 0)
969 request
= default_relax_domain_level
;
971 request
= attr
->relax_domain_level
;
972 if (request
< sd
->level
) {
973 /* Turn off idle balance on this domain: */
974 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
976 /* Turn on idle balance on this domain: */
977 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
981 static void __sdt_free(const struct cpumask
*cpu_map
);
982 static int __sdt_alloc(const struct cpumask
*cpu_map
);
984 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
985 const struct cpumask
*cpu_map
)
989 if (!atomic_read(&d
->rd
->refcount
))
990 free_rootdomain(&d
->rd
->rcu
);
1004 __visit_domain_allocation_hell(struct s_data
*d
, const struct cpumask
*cpu_map
)
1006 memset(d
, 0, sizeof(*d
));
1008 if (__sdt_alloc(cpu_map
))
1009 return sa_sd_storage
;
1010 d
->sd
= alloc_percpu(struct sched_domain
*);
1012 return sa_sd_storage
;
1013 d
->rd
= alloc_rootdomain();
1017 return sa_rootdomain
;
1021 * NULL the sd_data elements we've used to build the sched_domain and
1022 * sched_group structure so that the subsequent __free_domain_allocs()
1023 * will not free the data we're using.
1025 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
1027 struct sd_data
*sdd
= sd
->private;
1029 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
1030 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
1032 if (atomic_read(&(*per_cpu_ptr(sdd
->sds
, cpu
))->ref
))
1033 *per_cpu_ptr(sdd
->sds
, cpu
) = NULL
;
1035 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
1036 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
1038 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
1039 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
1043 enum numa_topology_type sched_numa_topology_type
;
1045 static int sched_domains_numa_levels
;
1046 static int sched_domains_curr_level
;
1048 int sched_max_numa_distance
;
1049 static int *sched_domains_numa_distance
;
1050 static struct cpumask
***sched_domains_numa_masks
;
1054 * SD_flags allowed in topology descriptions.
1056 * These flags are purely descriptive of the topology and do not prescribe
1057 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1060 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1061 * SD_SHARE_PKG_RESOURCES - describes shared caches
1062 * SD_NUMA - describes NUMA topologies
1063 * SD_SHARE_POWERDOMAIN - describes shared power domain
1064 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
1066 * Odd one out, which beside describing the topology has a quirk also
1067 * prescribes the desired behaviour that goes along with it:
1069 * SD_ASYM_PACKING - describes SMT quirks
1071 #define TOPOLOGY_SD_FLAGS \
1072 (SD_SHARE_CPUCAPACITY | \
1073 SD_SHARE_PKG_RESOURCES | \
1076 SD_ASYM_CPUCAPACITY | \
1077 SD_SHARE_POWERDOMAIN)
1079 static struct sched_domain
*
1080 sd_init(struct sched_domain_topology_level
*tl
,
1081 const struct cpumask
*cpu_map
,
1082 struct sched_domain
*child
, int cpu
)
1084 struct sd_data
*sdd
= &tl
->data
;
1085 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1086 int sd_id
, sd_weight
, sd_flags
= 0;
1090 * Ugly hack to pass state to sd_numa_mask()...
1092 sched_domains_curr_level
= tl
->numa_level
;
1095 sd_weight
= cpumask_weight(tl
->mask(cpu
));
1098 sd_flags
= (*tl
->sd_flags
)();
1099 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
1100 "wrong sd_flags in topology description\n"))
1101 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
1103 *sd
= (struct sched_domain
){
1104 .min_interval
= sd_weight
,
1105 .max_interval
= 2*sd_weight
,
1107 .imbalance_pct
= 125,
1109 .cache_nice_tries
= 0,
1116 .flags
= 1*SD_LOAD_BALANCE
1117 | 1*SD_BALANCE_NEWIDLE
1122 | 0*SD_SHARE_CPUCAPACITY
1123 | 0*SD_SHARE_PKG_RESOURCES
1125 | 0*SD_PREFER_SIBLING
1130 .last_balance
= jiffies
,
1131 .balance_interval
= sd_weight
,
1133 .max_newidle_lb_cost
= 0,
1134 .next_decay_max_lb_cost
= jiffies
,
1136 #ifdef CONFIG_SCHED_DEBUG
1141 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
1142 sd_id
= cpumask_first(sched_domain_span(sd
));
1145 * Convert topological properties into behaviour.
1148 if (sd
->flags
& SD_ASYM_CPUCAPACITY
) {
1149 struct sched_domain
*t
= sd
;
1151 for_each_lower_domain(t
)
1152 t
->flags
|= SD_BALANCE_WAKE
;
1155 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
1156 sd
->flags
|= SD_PREFER_SIBLING
;
1157 sd
->imbalance_pct
= 110;
1158 sd
->smt_gain
= 1178; /* ~15% */
1160 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1161 sd
->flags
|= SD_PREFER_SIBLING
;
1162 sd
->imbalance_pct
= 117;
1163 sd
->cache_nice_tries
= 1;
1167 } else if (sd
->flags
& SD_NUMA
) {
1168 sd
->cache_nice_tries
= 2;
1172 sd
->flags
|= SD_SERIALIZE
;
1173 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
1174 sd
->flags
&= ~(SD_BALANCE_EXEC
|
1181 sd
->flags
|= SD_PREFER_SIBLING
;
1182 sd
->cache_nice_tries
= 1;
1188 * For all levels sharing cache; connect a sched_domain_shared
1191 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1192 sd
->shared
= *per_cpu_ptr(sdd
->sds
, sd_id
);
1193 atomic_inc(&sd
->shared
->ref
);
1194 atomic_set(&sd
->shared
->nr_busy_cpus
, sd_weight
);
1203 * Topology list, bottom-up.
1205 static struct sched_domain_topology_level default_topology
[] = {
1206 #ifdef CONFIG_SCHED_SMT
1207 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
1209 #ifdef CONFIG_SCHED_MC
1210 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
1212 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
1216 static struct sched_domain_topology_level
*sched_domain_topology
=
1219 #define for_each_sd_topology(tl) \
1220 for (tl = sched_domain_topology; tl->mask; tl++)
1222 void set_sched_topology(struct sched_domain_topology_level
*tl
)
1224 if (WARN_ON_ONCE(sched_smp_initialized
))
1227 sched_domain_topology
= tl
;
1232 static const struct cpumask
*sd_numa_mask(int cpu
)
1234 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
1237 static void sched_numa_warn(const char *str
)
1239 static int done
= false;
1247 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
1249 for (i
= 0; i
< nr_node_ids
; i
++) {
1250 printk(KERN_WARNING
" ");
1251 for (j
= 0; j
< nr_node_ids
; j
++)
1252 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
1253 printk(KERN_CONT
"\n");
1255 printk(KERN_WARNING
"\n");
1258 bool find_numa_distance(int distance
)
1262 if (distance
== node_distance(0, 0))
1265 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1266 if (sched_domains_numa_distance
[i
] == distance
)
1274 * A system can have three types of NUMA topology:
1275 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1276 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1277 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1279 * The difference between a glueless mesh topology and a backplane
1280 * topology lies in whether communication between not directly
1281 * connected nodes goes through intermediary nodes (where programs
1282 * could run), or through backplane controllers. This affects
1283 * placement of programs.
1285 * The type of topology can be discerned with the following tests:
1286 * - If the maximum distance between any nodes is 1 hop, the system
1287 * is directly connected.
1288 * - If for two nodes A and B, located N > 1 hops away from each other,
1289 * there is an intermediary node C, which is < N hops away from both
1290 * nodes A and B, the system is a glueless mesh.
1292 static void init_numa_topology_type(void)
1296 n
= sched_max_numa_distance
;
1298 if (sched_domains_numa_levels
<= 1) {
1299 sched_numa_topology_type
= NUMA_DIRECT
;
1303 for_each_online_node(a
) {
1304 for_each_online_node(b
) {
1305 /* Find two nodes furthest removed from each other. */
1306 if (node_distance(a
, b
) < n
)
1309 /* Is there an intermediary node between a and b? */
1310 for_each_online_node(c
) {
1311 if (node_distance(a
, c
) < n
&&
1312 node_distance(b
, c
) < n
) {
1313 sched_numa_topology_type
=
1319 sched_numa_topology_type
= NUMA_BACKPLANE
;
1325 void sched_init_numa(void)
1327 int next_distance
, curr_distance
= node_distance(0, 0);
1328 struct sched_domain_topology_level
*tl
;
1332 sched_domains_numa_distance
= kzalloc(sizeof(int) * nr_node_ids
, GFP_KERNEL
);
1333 if (!sched_domains_numa_distance
)
1336 /* Includes NUMA identity node at level 0. */
1337 sched_domains_numa_distance
[level
++] = curr_distance
;
1338 sched_domains_numa_levels
= level
;
1341 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1342 * unique distances in the node_distance() table.
1344 * Assumes node_distance(0,j) includes all distances in
1345 * node_distance(i,j) in order to avoid cubic time.
1347 next_distance
= curr_distance
;
1348 for (i
= 0; i
< nr_node_ids
; i
++) {
1349 for (j
= 0; j
< nr_node_ids
; j
++) {
1350 for (k
= 0; k
< nr_node_ids
; k
++) {
1351 int distance
= node_distance(i
, k
);
1353 if (distance
> curr_distance
&&
1354 (distance
< next_distance
||
1355 next_distance
== curr_distance
))
1356 next_distance
= distance
;
1359 * While not a strong assumption it would be nice to know
1360 * about cases where if node A is connected to B, B is not
1361 * equally connected to A.
1363 if (sched_debug() && node_distance(k
, i
) != distance
)
1364 sched_numa_warn("Node-distance not symmetric");
1366 if (sched_debug() && i
&& !find_numa_distance(distance
))
1367 sched_numa_warn("Node-0 not representative");
1369 if (next_distance
!= curr_distance
) {
1370 sched_domains_numa_distance
[level
++] = next_distance
;
1371 sched_domains_numa_levels
= level
;
1372 curr_distance
= next_distance
;
1377 * In case of sched_debug() we verify the above assumption.
1387 * 'level' contains the number of unique distances
1389 * The sched_domains_numa_distance[] array includes the actual distance
1394 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1395 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1396 * the array will contain less then 'level' members. This could be
1397 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1398 * in other functions.
1400 * We reset it to 'level' at the end of this function.
1402 sched_domains_numa_levels
= 0;
1404 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
1405 if (!sched_domains_numa_masks
)
1409 * Now for each level, construct a mask per node which contains all
1410 * CPUs of nodes that are that many hops away from us.
1412 for (i
= 0; i
< level
; i
++) {
1413 sched_domains_numa_masks
[i
] =
1414 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
1415 if (!sched_domains_numa_masks
[i
])
1418 for (j
= 0; j
< nr_node_ids
; j
++) {
1419 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
1423 sched_domains_numa_masks
[i
][j
] = mask
;
1426 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
1429 cpumask_or(mask
, mask
, cpumask_of_node(k
));
1434 /* Compute default topology size */
1435 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
1437 tl
= kzalloc((i
+ level
+ 1) *
1438 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
1443 * Copy the default topology bits..
1445 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
1446 tl
[i
] = sched_domain_topology
[i
];
1449 * Add the NUMA identity distance, aka single NODE.
1451 tl
[i
++] = (struct sched_domain_topology_level
){
1452 .mask
= sd_numa_mask
,
1458 * .. and append 'j' levels of NUMA goodness.
1460 for (j
= 1; j
< level
; i
++, j
++) {
1461 tl
[i
] = (struct sched_domain_topology_level
){
1462 .mask
= sd_numa_mask
,
1463 .sd_flags
= cpu_numa_flags
,
1464 .flags
= SDTL_OVERLAP
,
1470 sched_domain_topology
= tl
;
1472 sched_domains_numa_levels
= level
;
1473 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
1475 init_numa_topology_type();
1478 void sched_domains_numa_masks_set(unsigned int cpu
)
1480 int node
= cpu_to_node(cpu
);
1483 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1484 for (j
= 0; j
< nr_node_ids
; j
++) {
1485 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
1486 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1491 void sched_domains_numa_masks_clear(unsigned int cpu
)
1495 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1496 for (j
= 0; j
< nr_node_ids
; j
++)
1497 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1501 #endif /* CONFIG_NUMA */
1503 static int __sdt_alloc(const struct cpumask
*cpu_map
)
1505 struct sched_domain_topology_level
*tl
;
1508 for_each_sd_topology(tl
) {
1509 struct sd_data
*sdd
= &tl
->data
;
1511 sdd
->sd
= alloc_percpu(struct sched_domain
*);
1515 sdd
->sds
= alloc_percpu(struct sched_domain_shared
*);
1519 sdd
->sg
= alloc_percpu(struct sched_group
*);
1523 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
1527 for_each_cpu(j
, cpu_map
) {
1528 struct sched_domain
*sd
;
1529 struct sched_domain_shared
*sds
;
1530 struct sched_group
*sg
;
1531 struct sched_group_capacity
*sgc
;
1533 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
1534 GFP_KERNEL
, cpu_to_node(j
));
1538 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
1540 sds
= kzalloc_node(sizeof(struct sched_domain_shared
),
1541 GFP_KERNEL
, cpu_to_node(j
));
1545 *per_cpu_ptr(sdd
->sds
, j
) = sds
;
1547 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
1548 GFP_KERNEL
, cpu_to_node(j
));
1554 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
1556 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
1557 GFP_KERNEL
, cpu_to_node(j
));
1561 #ifdef CONFIG_SCHED_DEBUG
1565 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
1572 static void __sdt_free(const struct cpumask
*cpu_map
)
1574 struct sched_domain_topology_level
*tl
;
1577 for_each_sd_topology(tl
) {
1578 struct sd_data
*sdd
= &tl
->data
;
1580 for_each_cpu(j
, cpu_map
) {
1581 struct sched_domain
*sd
;
1584 sd
= *per_cpu_ptr(sdd
->sd
, j
);
1585 if (sd
&& (sd
->flags
& SD_OVERLAP
))
1586 free_sched_groups(sd
->groups
, 0);
1587 kfree(*per_cpu_ptr(sdd
->sd
, j
));
1591 kfree(*per_cpu_ptr(sdd
->sds
, j
));
1593 kfree(*per_cpu_ptr(sdd
->sg
, j
));
1595 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
1597 free_percpu(sdd
->sd
);
1599 free_percpu(sdd
->sds
);
1601 free_percpu(sdd
->sg
);
1603 free_percpu(sdd
->sgc
);
1608 static struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
1609 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
1610 struct sched_domain
*child
, int cpu
)
1612 struct sched_domain
*sd
= sd_init(tl
, cpu_map
, child
, cpu
);
1615 sd
->level
= child
->level
+ 1;
1616 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
1619 if (!cpumask_subset(sched_domain_span(child
),
1620 sched_domain_span(sd
))) {
1621 pr_err("BUG: arch topology borken\n");
1622 #ifdef CONFIG_SCHED_DEBUG
1623 pr_err(" the %s domain not a subset of the %s domain\n",
1624 child
->name
, sd
->name
);
1626 /* Fixup, ensure @sd has at least @child CPUs. */
1627 cpumask_or(sched_domain_span(sd
),
1628 sched_domain_span(sd
),
1629 sched_domain_span(child
));
1633 set_domain_attribute(sd
, attr
);
1639 * Build sched domains for a given set of CPUs and attach the sched domains
1640 * to the individual CPUs
1643 build_sched_domains(const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
)
1645 enum s_alloc alloc_state
;
1646 struct sched_domain
*sd
;
1648 struct rq
*rq
= NULL
;
1649 int i
, ret
= -ENOMEM
;
1651 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
1652 if (alloc_state
!= sa_rootdomain
)
1655 /* Set up domains for CPUs specified by the cpu_map: */
1656 for_each_cpu(i
, cpu_map
) {
1657 struct sched_domain_topology_level
*tl
;
1660 for_each_sd_topology(tl
) {
1661 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, i
);
1662 if (tl
== sched_domain_topology
)
1663 *per_cpu_ptr(d
.sd
, i
) = sd
;
1664 if (tl
->flags
& SDTL_OVERLAP
)
1665 sd
->flags
|= SD_OVERLAP
;
1666 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
1671 /* Build the groups for the domains */
1672 for_each_cpu(i
, cpu_map
) {
1673 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1674 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
1675 if (sd
->flags
& SD_OVERLAP
) {
1676 if (build_overlap_sched_groups(sd
, i
))
1679 if (build_sched_groups(sd
, i
))
1685 /* Calculate CPU capacity for physical packages and nodes */
1686 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
1687 if (!cpumask_test_cpu(i
, cpu_map
))
1690 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1691 claim_allocations(i
, sd
);
1692 init_sched_groups_capacity(i
, sd
);
1696 /* Attach the domains */
1698 for_each_cpu(i
, cpu_map
) {
1700 sd
= *per_cpu_ptr(d
.sd
, i
);
1702 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1703 if (rq
->cpu_capacity_orig
> READ_ONCE(d
.rd
->max_cpu_capacity
))
1704 WRITE_ONCE(d
.rd
->max_cpu_capacity
, rq
->cpu_capacity_orig
);
1706 cpu_attach_domain(sd
, d
.rd
, i
);
1710 if (rq
&& sched_debug_enabled
) {
1711 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1712 cpumask_pr_args(cpu_map
), rq
->rd
->max_cpu_capacity
);
1717 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
1722 /* Current sched domains: */
1723 static cpumask_var_t
*doms_cur
;
1725 /* Number of sched domains in 'doms_cur': */
1726 static int ndoms_cur
;
1728 /* Attribues of custom domains in 'doms_cur' */
1729 static struct sched_domain_attr
*dattr_cur
;
1732 * Special case: If a kmalloc() of a doms_cur partition (array of
1733 * cpumask) fails, then fallback to a single sched domain,
1734 * as determined by the single cpumask fallback_doms.
1736 static cpumask_var_t fallback_doms
;
1739 * arch_update_cpu_topology lets virtualized architectures update the
1740 * CPU core maps. It is supposed to return 1 if the topology changed
1741 * or 0 if it stayed the same.
1743 int __weak
arch_update_cpu_topology(void)
1748 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
1751 cpumask_var_t
*doms
;
1753 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
1756 for (i
= 0; i
< ndoms
; i
++) {
1757 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
1758 free_sched_domains(doms
, i
);
1765 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
1768 for (i
= 0; i
< ndoms
; i
++)
1769 free_cpumask_var(doms
[i
]);
1774 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1775 * For now this just excludes isolated CPUs, but could be used to
1776 * exclude other special cases in the future.
1778 int sched_init_domains(const struct cpumask
*cpu_map
)
1782 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_KERNEL
);
1783 zalloc_cpumask_var(&sched_domains_tmpmask2
, GFP_KERNEL
);
1784 zalloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
1786 arch_update_cpu_topology();
1788 doms_cur
= alloc_sched_domains(ndoms_cur
);
1790 doms_cur
= &fallback_doms
;
1791 cpumask_and(doms_cur
[0], cpu_map
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
1792 err
= build_sched_domains(doms_cur
[0], NULL
);
1793 register_sched_domain_sysctl();
1799 * Detach sched domains from a group of CPUs specified in cpu_map
1800 * These CPUs will now be attached to the NULL domain
1802 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
1807 for_each_cpu(i
, cpu_map
)
1808 cpu_attach_domain(NULL
, &def_root_domain
, i
);
1812 /* handle null as "default" */
1813 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
1814 struct sched_domain_attr
*new, int idx_new
)
1816 struct sched_domain_attr tmp
;
1824 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
1825 new ? (new + idx_new
) : &tmp
,
1826 sizeof(struct sched_domain_attr
));
1830 * Partition sched domains as specified by the 'ndoms_new'
1831 * cpumasks in the array doms_new[] of cpumasks. This compares
1832 * doms_new[] to the current sched domain partitioning, doms_cur[].
1833 * It destroys each deleted domain and builds each new domain.
1835 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1836 * The masks don't intersect (don't overlap.) We should setup one
1837 * sched domain for each mask. CPUs not in any of the cpumasks will
1838 * not be load balanced. If the same cpumask appears both in the
1839 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1842 * The passed in 'doms_new' should be allocated using
1843 * alloc_sched_domains. This routine takes ownership of it and will
1844 * free_sched_domains it when done with it. If the caller failed the
1845 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1846 * and partition_sched_domains() will fallback to the single partition
1847 * 'fallback_doms', it also forces the domains to be rebuilt.
1849 * If doms_new == NULL it will be replaced with cpu_online_mask.
1850 * ndoms_new == 0 is a special case for destroying existing domains,
1851 * and it will not create the default domain.
1853 * Call with hotplug lock held
1855 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1856 struct sched_domain_attr
*dattr_new
)
1861 mutex_lock(&sched_domains_mutex
);
1863 /* Always unregister in case we don't destroy any domains: */
1864 unregister_sched_domain_sysctl();
1866 /* Let the architecture update CPU core mappings: */
1867 new_topology
= arch_update_cpu_topology();
1870 WARN_ON_ONCE(dattr_new
);
1872 doms_new
= alloc_sched_domains(1);
1875 cpumask_and(doms_new
[0], cpu_active_mask
,
1876 housekeeping_cpumask(HK_FLAG_DOMAIN
));
1882 /* Destroy deleted domains: */
1883 for (i
= 0; i
< ndoms_cur
; i
++) {
1884 for (j
= 0; j
< n
&& !new_topology
; j
++) {
1885 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
1886 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
1889 /* No match - a current sched domain not in new doms_new[] */
1890 detach_destroy_domains(doms_cur
[i
]);
1898 doms_new
= &fallback_doms
;
1899 cpumask_and(doms_new
[0], cpu_active_mask
,
1900 housekeeping_cpumask(HK_FLAG_DOMAIN
));
1903 /* Build new domains: */
1904 for (i
= 0; i
< ndoms_new
; i
++) {
1905 for (j
= 0; j
< n
&& !new_topology
; j
++) {
1906 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
1907 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
1910 /* No match - add a new doms_new */
1911 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
1916 /* Remember the new sched domains: */
1917 if (doms_cur
!= &fallback_doms
)
1918 free_sched_domains(doms_cur
, ndoms_cur
);
1921 doms_cur
= doms_new
;
1922 dattr_cur
= dattr_new
;
1923 ndoms_cur
= ndoms_new
;
1925 register_sched_domain_sysctl();
1927 mutex_unlock(&sched_domains_mutex
);