xfs: add full xfs_dqblk verifier
[linux/fpc-iii.git] / kernel / sched / wait.c
blob928be527477eb8b1e7e04bbf7d3cea0dbde7316f
1 /*
2 * Generic waiting primitives.
4 * (C) 2004 Nadia Yvette Chambers, Oracle
5 */
6 #include "sched.h"
8 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
10 spin_lock_init(&wq_head->lock);
11 lockdep_set_class_and_name(&wq_head->lock, key, name);
12 INIT_LIST_HEAD(&wq_head->head);
15 EXPORT_SYMBOL(__init_waitqueue_head);
17 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
19 unsigned long flags;
21 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
22 spin_lock_irqsave(&wq_head->lock, flags);
23 __add_wait_queue(wq_head, wq_entry);
24 spin_unlock_irqrestore(&wq_head->lock, flags);
26 EXPORT_SYMBOL(add_wait_queue);
28 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
30 unsigned long flags;
32 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
33 spin_lock_irqsave(&wq_head->lock, flags);
34 __add_wait_queue_entry_tail(wq_head, wq_entry);
35 spin_unlock_irqrestore(&wq_head->lock, flags);
37 EXPORT_SYMBOL(add_wait_queue_exclusive);
39 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
41 unsigned long flags;
43 spin_lock_irqsave(&wq_head->lock, flags);
44 __remove_wait_queue(wq_head, wq_entry);
45 spin_unlock_irqrestore(&wq_head->lock, flags);
47 EXPORT_SYMBOL(remove_wait_queue);
50 * Scan threshold to break wait queue walk.
51 * This allows a waker to take a break from holding the
52 * wait queue lock during the wait queue walk.
54 #define WAITQUEUE_WALK_BREAK_CNT 64
57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
59 * number) then we wake all the non-exclusive tasks and one exclusive task.
61 * There are circumstances in which we can try to wake a task which has already
62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
65 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
66 int nr_exclusive, int wake_flags, void *key,
67 wait_queue_entry_t *bookmark)
69 wait_queue_entry_t *curr, *next;
70 int cnt = 0;
72 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
73 curr = list_next_entry(bookmark, entry);
75 list_del(&bookmark->entry);
76 bookmark->flags = 0;
77 } else
78 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
80 if (&curr->entry == &wq_head->head)
81 return nr_exclusive;
83 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
84 unsigned flags = curr->flags;
85 int ret;
87 if (flags & WQ_FLAG_BOOKMARK)
88 continue;
90 ret = curr->func(curr, mode, wake_flags, key);
91 if (ret < 0)
92 break;
93 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
94 break;
96 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
97 (&next->entry != &wq_head->head)) {
98 bookmark->flags = WQ_FLAG_BOOKMARK;
99 list_add_tail(&bookmark->entry, &next->entry);
100 break;
104 return nr_exclusive;
107 static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
108 int nr_exclusive, int wake_flags, void *key)
110 unsigned long flags;
111 wait_queue_entry_t bookmark;
113 bookmark.flags = 0;
114 bookmark.private = NULL;
115 bookmark.func = NULL;
116 INIT_LIST_HEAD(&bookmark.entry);
118 spin_lock_irqsave(&wq_head->lock, flags);
119 nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, key, &bookmark);
120 spin_unlock_irqrestore(&wq_head->lock, flags);
122 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
123 spin_lock_irqsave(&wq_head->lock, flags);
124 nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
125 wake_flags, key, &bookmark);
126 spin_unlock_irqrestore(&wq_head->lock, flags);
131 * __wake_up - wake up threads blocked on a waitqueue.
132 * @wq_head: the waitqueue
133 * @mode: which threads
134 * @nr_exclusive: how many wake-one or wake-many threads to wake up
135 * @key: is directly passed to the wakeup function
137 * It may be assumed that this function implies a write memory barrier before
138 * changing the task state if and only if any tasks are woken up.
140 void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
141 int nr_exclusive, void *key)
143 __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
145 EXPORT_SYMBOL(__wake_up);
148 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
150 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
152 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
154 EXPORT_SYMBOL_GPL(__wake_up_locked);
156 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
158 __wake_up_common(wq_head, mode, 1, 0, key, NULL);
160 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
162 void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
163 unsigned int mode, void *key, wait_queue_entry_t *bookmark)
165 __wake_up_common(wq_head, mode, 1, 0, key, bookmark);
167 EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
170 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
171 * @wq_head: the waitqueue
172 * @mode: which threads
173 * @nr_exclusive: how many wake-one or wake-many threads to wake up
174 * @key: opaque value to be passed to wakeup targets
176 * The sync wakeup differs that the waker knows that it will schedule
177 * away soon, so while the target thread will be woken up, it will not
178 * be migrated to another CPU - ie. the two threads are 'synchronized'
179 * with each other. This can prevent needless bouncing between CPUs.
181 * On UP it can prevent extra preemption.
183 * It may be assumed that this function implies a write memory barrier before
184 * changing the task state if and only if any tasks are woken up.
186 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
187 int nr_exclusive, void *key)
189 int wake_flags = 1; /* XXX WF_SYNC */
191 if (unlikely(!wq_head))
192 return;
194 if (unlikely(nr_exclusive != 1))
195 wake_flags = 0;
197 __wake_up_common_lock(wq_head, mode, nr_exclusive, wake_flags, key);
199 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
202 * __wake_up_sync - see __wake_up_sync_key()
204 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive)
206 __wake_up_sync_key(wq_head, mode, nr_exclusive, NULL);
208 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
211 * Note: we use "set_current_state()" _after_ the wait-queue add,
212 * because we need a memory barrier there on SMP, so that any
213 * wake-function that tests for the wait-queue being active
214 * will be guaranteed to see waitqueue addition _or_ subsequent
215 * tests in this thread will see the wakeup having taken place.
217 * The spin_unlock() itself is semi-permeable and only protects
218 * one way (it only protects stuff inside the critical region and
219 * stops them from bleeding out - it would still allow subsequent
220 * loads to move into the critical region).
222 void
223 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
225 unsigned long flags;
227 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
228 spin_lock_irqsave(&wq_head->lock, flags);
229 if (list_empty(&wq_entry->entry))
230 __add_wait_queue(wq_head, wq_entry);
231 set_current_state(state);
232 spin_unlock_irqrestore(&wq_head->lock, flags);
234 EXPORT_SYMBOL(prepare_to_wait);
236 void
237 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
239 unsigned long flags;
241 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
242 spin_lock_irqsave(&wq_head->lock, flags);
243 if (list_empty(&wq_entry->entry))
244 __add_wait_queue_entry_tail(wq_head, wq_entry);
245 set_current_state(state);
246 spin_unlock_irqrestore(&wq_head->lock, flags);
248 EXPORT_SYMBOL(prepare_to_wait_exclusive);
250 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
252 wq_entry->flags = flags;
253 wq_entry->private = current;
254 wq_entry->func = autoremove_wake_function;
255 INIT_LIST_HEAD(&wq_entry->entry);
257 EXPORT_SYMBOL(init_wait_entry);
259 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
261 unsigned long flags;
262 long ret = 0;
264 spin_lock_irqsave(&wq_head->lock, flags);
265 if (unlikely(signal_pending_state(state, current))) {
267 * Exclusive waiter must not fail if it was selected by wakeup,
268 * it should "consume" the condition we were waiting for.
270 * The caller will recheck the condition and return success if
271 * we were already woken up, we can not miss the event because
272 * wakeup locks/unlocks the same wq_head->lock.
274 * But we need to ensure that set-condition + wakeup after that
275 * can't see us, it should wake up another exclusive waiter if
276 * we fail.
278 list_del_init(&wq_entry->entry);
279 ret = -ERESTARTSYS;
280 } else {
281 if (list_empty(&wq_entry->entry)) {
282 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
283 __add_wait_queue_entry_tail(wq_head, wq_entry);
284 else
285 __add_wait_queue(wq_head, wq_entry);
287 set_current_state(state);
289 spin_unlock_irqrestore(&wq_head->lock, flags);
291 return ret;
293 EXPORT_SYMBOL(prepare_to_wait_event);
296 * Note! These two wait functions are entered with the
297 * wait-queue lock held (and interrupts off in the _irq
298 * case), so there is no race with testing the wakeup
299 * condition in the caller before they add the wait
300 * entry to the wake queue.
302 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
304 if (likely(list_empty(&wait->entry)))
305 __add_wait_queue_entry_tail(wq, wait);
307 set_current_state(TASK_INTERRUPTIBLE);
308 if (signal_pending(current))
309 return -ERESTARTSYS;
311 spin_unlock(&wq->lock);
312 schedule();
313 spin_lock(&wq->lock);
315 return 0;
317 EXPORT_SYMBOL(do_wait_intr);
319 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
321 if (likely(list_empty(&wait->entry)))
322 __add_wait_queue_entry_tail(wq, wait);
324 set_current_state(TASK_INTERRUPTIBLE);
325 if (signal_pending(current))
326 return -ERESTARTSYS;
328 spin_unlock_irq(&wq->lock);
329 schedule();
330 spin_lock_irq(&wq->lock);
332 return 0;
334 EXPORT_SYMBOL(do_wait_intr_irq);
337 * finish_wait - clean up after waiting in a queue
338 * @wq_head: waitqueue waited on
339 * @wq_entry: wait descriptor
341 * Sets current thread back to running state and removes
342 * the wait descriptor from the given waitqueue if still
343 * queued.
345 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
347 unsigned long flags;
349 __set_current_state(TASK_RUNNING);
351 * We can check for list emptiness outside the lock
352 * IFF:
353 * - we use the "careful" check that verifies both
354 * the next and prev pointers, so that there cannot
355 * be any half-pending updates in progress on other
356 * CPU's that we haven't seen yet (and that might
357 * still change the stack area.
358 * and
359 * - all other users take the lock (ie we can only
360 * have _one_ other CPU that looks at or modifies
361 * the list).
363 if (!list_empty_careful(&wq_entry->entry)) {
364 spin_lock_irqsave(&wq_head->lock, flags);
365 list_del_init(&wq_entry->entry);
366 spin_unlock_irqrestore(&wq_head->lock, flags);
369 EXPORT_SYMBOL(finish_wait);
371 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
373 int ret = default_wake_function(wq_entry, mode, sync, key);
375 if (ret)
376 list_del_init(&wq_entry->entry);
378 return ret;
380 EXPORT_SYMBOL(autoremove_wake_function);
382 static inline bool is_kthread_should_stop(void)
384 return (current->flags & PF_KTHREAD) && kthread_should_stop();
388 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
390 * add_wait_queue(&wq_head, &wait);
391 * for (;;) {
392 * if (condition)
393 * break;
395 * p->state = mode; condition = true;
396 * smp_mb(); // A smp_wmb(); // C
397 * if (!wq_entry->flags & WQ_FLAG_WOKEN) wq_entry->flags |= WQ_FLAG_WOKEN;
398 * schedule() try_to_wake_up();
399 * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~
400 * wq_entry->flags &= ~WQ_FLAG_WOKEN; condition = true;
401 * smp_mb() // B smp_wmb(); // C
402 * wq_entry->flags |= WQ_FLAG_WOKEN;
404 * remove_wait_queue(&wq_head, &wait);
407 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
409 set_current_state(mode); /* A */
411 * The above implies an smp_mb(), which matches with the smp_wmb() from
412 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
413 * also observe all state before the wakeup.
415 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
416 timeout = schedule_timeout(timeout);
417 __set_current_state(TASK_RUNNING);
420 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
421 * woken_wake_function() such that we must either observe the wait
422 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
423 * an event.
425 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
427 return timeout;
429 EXPORT_SYMBOL(wait_woken);
431 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
434 * Although this function is called under waitqueue lock, LOCK
435 * doesn't imply write barrier and the users expects write
436 * barrier semantics on wakeup functions. The following
437 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
438 * and is paired with smp_store_mb() in wait_woken().
440 smp_wmb(); /* C */
441 wq_entry->flags |= WQ_FLAG_WOKEN;
443 return default_wake_function(wq_entry, mode, sync, key);
445 EXPORT_SYMBOL(woken_wake_function);