1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
64 #include <linux/kmsg_dump.h>
65 /* Move somewhere else to avoid recompiling? */
66 #include <generated/utsrelease.h>
68 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
74 #ifndef SET_UNALIGN_CTL
75 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
77 #ifndef GET_UNALIGN_CTL
78 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
81 # define SET_FPEMU_CTL(a, b) (-EINVAL)
84 # define GET_FPEMU_CTL(a, b) (-EINVAL)
87 # define SET_FPEXC_CTL(a, b) (-EINVAL)
90 # define GET_FPEXC_CTL(a, b) (-EINVAL)
93 # define GET_ENDIAN(a, b) (-EINVAL)
96 # define SET_ENDIAN(a, b) (-EINVAL)
99 # define GET_TSC_CTL(a) (-EINVAL)
102 # define SET_TSC_CTL(a) (-EINVAL)
104 #ifndef MPX_ENABLE_MANAGEMENT
105 # define MPX_ENABLE_MANAGEMENT() (-EINVAL)
107 #ifndef MPX_DISABLE_MANAGEMENT
108 # define MPX_DISABLE_MANAGEMENT() (-EINVAL)
111 # define GET_FP_MODE(a) (-EINVAL)
114 # define SET_FP_MODE(a,b) (-EINVAL)
117 # define SVE_SET_VL(a) (-EINVAL)
120 # define SVE_GET_VL() (-EINVAL)
124 * this is where the system-wide overflow UID and GID are defined, for
125 * architectures that now have 32-bit UID/GID but didn't in the past
128 int overflowuid
= DEFAULT_OVERFLOWUID
;
129 int overflowgid
= DEFAULT_OVERFLOWGID
;
131 EXPORT_SYMBOL(overflowuid
);
132 EXPORT_SYMBOL(overflowgid
);
135 * the same as above, but for filesystems which can only store a 16-bit
136 * UID and GID. as such, this is needed on all architectures
139 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
140 int fs_overflowgid
= DEFAULT_FS_OVERFLOWGID
;
142 EXPORT_SYMBOL(fs_overflowuid
);
143 EXPORT_SYMBOL(fs_overflowgid
);
146 * Returns true if current's euid is same as p's uid or euid,
147 * or has CAP_SYS_NICE to p's user_ns.
149 * Called with rcu_read_lock, creds are safe
151 static bool set_one_prio_perm(struct task_struct
*p
)
153 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
155 if (uid_eq(pcred
->uid
, cred
->euid
) ||
156 uid_eq(pcred
->euid
, cred
->euid
))
158 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
164 * set the priority of a task
165 * - the caller must hold the RCU read lock
167 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
171 if (!set_one_prio_perm(p
)) {
175 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
179 no_nice
= security_task_setnice(p
, niceval
);
186 set_user_nice(p
, niceval
);
191 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
193 struct task_struct
*g
, *p
;
194 struct user_struct
*user
;
195 const struct cred
*cred
= current_cred();
200 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
203 /* normalize: avoid signed division (rounding problems) */
205 if (niceval
< MIN_NICE
)
207 if (niceval
> MAX_NICE
)
211 read_lock(&tasklist_lock
);
215 p
= find_task_by_vpid(who
);
219 error
= set_one_prio(p
, niceval
, error
);
223 pgrp
= find_vpid(who
);
225 pgrp
= task_pgrp(current
);
226 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
227 error
= set_one_prio(p
, niceval
, error
);
228 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
231 uid
= make_kuid(cred
->user_ns
, who
);
235 else if (!uid_eq(uid
, cred
->uid
)) {
236 user
= find_user(uid
);
238 goto out_unlock
; /* No processes for this user */
240 do_each_thread(g
, p
) {
241 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
242 error
= set_one_prio(p
, niceval
, error
);
243 } while_each_thread(g
, p
);
244 if (!uid_eq(uid
, cred
->uid
))
245 free_uid(user
); /* For find_user() */
249 read_unlock(&tasklist_lock
);
256 * Ugh. To avoid negative return values, "getpriority()" will
257 * not return the normal nice-value, but a negated value that
258 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
259 * to stay compatible.
261 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
263 struct task_struct
*g
, *p
;
264 struct user_struct
*user
;
265 const struct cred
*cred
= current_cred();
266 long niceval
, retval
= -ESRCH
;
270 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
274 read_lock(&tasklist_lock
);
278 p
= find_task_by_vpid(who
);
282 niceval
= nice_to_rlimit(task_nice(p
));
283 if (niceval
> retval
)
289 pgrp
= find_vpid(who
);
291 pgrp
= task_pgrp(current
);
292 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
293 niceval
= nice_to_rlimit(task_nice(p
));
294 if (niceval
> retval
)
296 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
299 uid
= make_kuid(cred
->user_ns
, who
);
303 else if (!uid_eq(uid
, cred
->uid
)) {
304 user
= find_user(uid
);
306 goto out_unlock
; /* No processes for this user */
308 do_each_thread(g
, p
) {
309 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
310 niceval
= nice_to_rlimit(task_nice(p
));
311 if (niceval
> retval
)
314 } while_each_thread(g
, p
);
315 if (!uid_eq(uid
, cred
->uid
))
316 free_uid(user
); /* for find_user() */
320 read_unlock(&tasklist_lock
);
327 * Unprivileged users may change the real gid to the effective gid
328 * or vice versa. (BSD-style)
330 * If you set the real gid at all, or set the effective gid to a value not
331 * equal to the real gid, then the saved gid is set to the new effective gid.
333 * This makes it possible for a setgid program to completely drop its
334 * privileges, which is often a useful assertion to make when you are doing
335 * a security audit over a program.
337 * The general idea is that a program which uses just setregid() will be
338 * 100% compatible with BSD. A program which uses just setgid() will be
339 * 100% compatible with POSIX with saved IDs.
341 * SMP: There are not races, the GIDs are checked only by filesystem
342 * operations (as far as semantic preservation is concerned).
344 #ifdef CONFIG_MULTIUSER
345 long __sys_setregid(gid_t rgid
, gid_t egid
)
347 struct user_namespace
*ns
= current_user_ns();
348 const struct cred
*old
;
353 krgid
= make_kgid(ns
, rgid
);
354 kegid
= make_kgid(ns
, egid
);
356 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
358 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
361 new = prepare_creds();
364 old
= current_cred();
367 if (rgid
!= (gid_t
) -1) {
368 if (gid_eq(old
->gid
, krgid
) ||
369 gid_eq(old
->egid
, krgid
) ||
370 ns_capable(old
->user_ns
, CAP_SETGID
))
375 if (egid
!= (gid_t
) -1) {
376 if (gid_eq(old
->gid
, kegid
) ||
377 gid_eq(old
->egid
, kegid
) ||
378 gid_eq(old
->sgid
, kegid
) ||
379 ns_capable(old
->user_ns
, CAP_SETGID
))
385 if (rgid
!= (gid_t
) -1 ||
386 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
387 new->sgid
= new->egid
;
388 new->fsgid
= new->egid
;
390 return commit_creds(new);
397 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
399 return __sys_setregid(rgid
, egid
);
403 * setgid() is implemented like SysV w/ SAVED_IDS
405 * SMP: Same implicit races as above.
407 long __sys_setgid(gid_t gid
)
409 struct user_namespace
*ns
= current_user_ns();
410 const struct cred
*old
;
415 kgid
= make_kgid(ns
, gid
);
416 if (!gid_valid(kgid
))
419 new = prepare_creds();
422 old
= current_cred();
425 if (ns_capable(old
->user_ns
, CAP_SETGID
))
426 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
427 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
428 new->egid
= new->fsgid
= kgid
;
432 return commit_creds(new);
439 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
441 return __sys_setgid(gid
);
445 * change the user struct in a credentials set to match the new UID
447 static int set_user(struct cred
*new)
449 struct user_struct
*new_user
;
451 new_user
= alloc_uid(new->uid
);
456 * We don't fail in case of NPROC limit excess here because too many
457 * poorly written programs don't check set*uid() return code, assuming
458 * it never fails if called by root. We may still enforce NPROC limit
459 * for programs doing set*uid()+execve() by harmlessly deferring the
460 * failure to the execve() stage.
462 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
463 new_user
!= INIT_USER
)
464 current
->flags
|= PF_NPROC_EXCEEDED
;
466 current
->flags
&= ~PF_NPROC_EXCEEDED
;
469 new->user
= new_user
;
474 * Unprivileged users may change the real uid to the effective uid
475 * or vice versa. (BSD-style)
477 * If you set the real uid at all, or set the effective uid to a value not
478 * equal to the real uid, then the saved uid is set to the new effective uid.
480 * This makes it possible for a setuid program to completely drop its
481 * privileges, which is often a useful assertion to make when you are doing
482 * a security audit over a program.
484 * The general idea is that a program which uses just setreuid() will be
485 * 100% compatible with BSD. A program which uses just setuid() will be
486 * 100% compatible with POSIX with saved IDs.
488 long __sys_setreuid(uid_t ruid
, uid_t euid
)
490 struct user_namespace
*ns
= current_user_ns();
491 const struct cred
*old
;
496 kruid
= make_kuid(ns
, ruid
);
497 keuid
= make_kuid(ns
, euid
);
499 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
501 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
504 new = prepare_creds();
507 old
= current_cred();
510 if (ruid
!= (uid_t
) -1) {
512 if (!uid_eq(old
->uid
, kruid
) &&
513 !uid_eq(old
->euid
, kruid
) &&
514 !ns_capable(old
->user_ns
, CAP_SETUID
))
518 if (euid
!= (uid_t
) -1) {
520 if (!uid_eq(old
->uid
, keuid
) &&
521 !uid_eq(old
->euid
, keuid
) &&
522 !uid_eq(old
->suid
, keuid
) &&
523 !ns_capable(old
->user_ns
, CAP_SETUID
))
527 if (!uid_eq(new->uid
, old
->uid
)) {
528 retval
= set_user(new);
532 if (ruid
!= (uid_t
) -1 ||
533 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
534 new->suid
= new->euid
;
535 new->fsuid
= new->euid
;
537 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
541 return commit_creds(new);
548 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
550 return __sys_setreuid(ruid
, euid
);
554 * setuid() is implemented like SysV with SAVED_IDS
556 * Note that SAVED_ID's is deficient in that a setuid root program
557 * like sendmail, for example, cannot set its uid to be a normal
558 * user and then switch back, because if you're root, setuid() sets
559 * the saved uid too. If you don't like this, blame the bright people
560 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
561 * will allow a root program to temporarily drop privileges and be able to
562 * regain them by swapping the real and effective uid.
564 long __sys_setuid(uid_t uid
)
566 struct user_namespace
*ns
= current_user_ns();
567 const struct cred
*old
;
572 kuid
= make_kuid(ns
, uid
);
573 if (!uid_valid(kuid
))
576 new = prepare_creds();
579 old
= current_cred();
582 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
583 new->suid
= new->uid
= kuid
;
584 if (!uid_eq(kuid
, old
->uid
)) {
585 retval
= set_user(new);
589 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
593 new->fsuid
= new->euid
= kuid
;
595 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
599 return commit_creds(new);
606 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
608 return __sys_setuid(uid
);
613 * This function implements a generic ability to update ruid, euid,
614 * and suid. This allows you to implement the 4.4 compatible seteuid().
616 long __sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
618 struct user_namespace
*ns
= current_user_ns();
619 const struct cred
*old
;
622 kuid_t kruid
, keuid
, ksuid
;
624 kruid
= make_kuid(ns
, ruid
);
625 keuid
= make_kuid(ns
, euid
);
626 ksuid
= make_kuid(ns
, suid
);
628 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
631 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
634 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
637 new = prepare_creds();
641 old
= current_cred();
644 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
645 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
646 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
648 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
649 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
651 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
652 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
656 if (ruid
!= (uid_t
) -1) {
658 if (!uid_eq(kruid
, old
->uid
)) {
659 retval
= set_user(new);
664 if (euid
!= (uid_t
) -1)
666 if (suid
!= (uid_t
) -1)
668 new->fsuid
= new->euid
;
670 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
674 return commit_creds(new);
681 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
683 return __sys_setresuid(ruid
, euid
, suid
);
686 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
688 const struct cred
*cred
= current_cred();
690 uid_t ruid
, euid
, suid
;
692 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
693 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
694 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
696 retval
= put_user(ruid
, ruidp
);
698 retval
= put_user(euid
, euidp
);
700 return put_user(suid
, suidp
);
706 * Same as above, but for rgid, egid, sgid.
708 long __sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
710 struct user_namespace
*ns
= current_user_ns();
711 const struct cred
*old
;
714 kgid_t krgid
, kegid
, ksgid
;
716 krgid
= make_kgid(ns
, rgid
);
717 kegid
= make_kgid(ns
, egid
);
718 ksgid
= make_kgid(ns
, sgid
);
720 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
722 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
724 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
727 new = prepare_creds();
730 old
= current_cred();
733 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
734 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
735 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
737 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
738 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
740 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
741 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
745 if (rgid
!= (gid_t
) -1)
747 if (egid
!= (gid_t
) -1)
749 if (sgid
!= (gid_t
) -1)
751 new->fsgid
= new->egid
;
753 return commit_creds(new);
760 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
762 return __sys_setresgid(rgid
, egid
, sgid
);
765 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
767 const struct cred
*cred
= current_cred();
769 gid_t rgid
, egid
, sgid
;
771 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
772 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
773 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
775 retval
= put_user(rgid
, rgidp
);
777 retval
= put_user(egid
, egidp
);
779 retval
= put_user(sgid
, sgidp
);
787 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
788 * is used for "access()" and for the NFS daemon (letting nfsd stay at
789 * whatever uid it wants to). It normally shadows "euid", except when
790 * explicitly set by setfsuid() or for access..
792 long __sys_setfsuid(uid_t uid
)
794 const struct cred
*old
;
799 old
= current_cred();
800 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
802 kuid
= make_kuid(old
->user_ns
, uid
);
803 if (!uid_valid(kuid
))
806 new = prepare_creds();
810 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
811 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
812 ns_capable(old
->user_ns
, CAP_SETUID
)) {
813 if (!uid_eq(kuid
, old
->fsuid
)) {
815 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
828 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
830 return __sys_setfsuid(uid
);
834 * Samma på svenska..
836 long __sys_setfsgid(gid_t gid
)
838 const struct cred
*old
;
843 old
= current_cred();
844 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
846 kgid
= make_kgid(old
->user_ns
, gid
);
847 if (!gid_valid(kgid
))
850 new = prepare_creds();
854 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
855 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
856 ns_capable(old
->user_ns
, CAP_SETGID
)) {
857 if (!gid_eq(kgid
, old
->fsgid
)) {
871 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
873 return __sys_setfsgid(gid
);
875 #endif /* CONFIG_MULTIUSER */
878 * sys_getpid - return the thread group id of the current process
880 * Note, despite the name, this returns the tgid not the pid. The tgid and
881 * the pid are identical unless CLONE_THREAD was specified on clone() in
882 * which case the tgid is the same in all threads of the same group.
884 * This is SMP safe as current->tgid does not change.
886 SYSCALL_DEFINE0(getpid
)
888 return task_tgid_vnr(current
);
891 /* Thread ID - the internal kernel "pid" */
892 SYSCALL_DEFINE0(gettid
)
894 return task_pid_vnr(current
);
898 * Accessing ->real_parent is not SMP-safe, it could
899 * change from under us. However, we can use a stale
900 * value of ->real_parent under rcu_read_lock(), see
901 * release_task()->call_rcu(delayed_put_task_struct).
903 SYSCALL_DEFINE0(getppid
)
908 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
914 SYSCALL_DEFINE0(getuid
)
916 /* Only we change this so SMP safe */
917 return from_kuid_munged(current_user_ns(), current_uid());
920 SYSCALL_DEFINE0(geteuid
)
922 /* Only we change this so SMP safe */
923 return from_kuid_munged(current_user_ns(), current_euid());
926 SYSCALL_DEFINE0(getgid
)
928 /* Only we change this so SMP safe */
929 return from_kgid_munged(current_user_ns(), current_gid());
932 SYSCALL_DEFINE0(getegid
)
934 /* Only we change this so SMP safe */
935 return from_kgid_munged(current_user_ns(), current_egid());
938 static void do_sys_times(struct tms
*tms
)
940 u64 tgutime
, tgstime
, cutime
, cstime
;
942 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
943 cutime
= current
->signal
->cutime
;
944 cstime
= current
->signal
->cstime
;
945 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
946 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
947 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
948 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
951 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
957 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
960 force_successful_syscall_return();
961 return (long) jiffies_64_to_clock_t(get_jiffies_64());
965 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
967 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
970 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
974 struct compat_tms tmp
;
977 /* Convert our struct tms to the compat version. */
978 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
979 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
980 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
981 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
982 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
985 force_successful_syscall_return();
986 return compat_jiffies_to_clock_t(jiffies
);
991 * This needs some heavy checking ...
992 * I just haven't the stomach for it. I also don't fully
993 * understand sessions/pgrp etc. Let somebody who does explain it.
995 * OK, I think I have the protection semantics right.... this is really
996 * only important on a multi-user system anyway, to make sure one user
997 * can't send a signal to a process owned by another. -TYT, 12/12/91
999 * !PF_FORKNOEXEC check to conform completely to POSIX.
1001 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1003 struct task_struct
*p
;
1004 struct task_struct
*group_leader
= current
->group_leader
;
1009 pid
= task_pid_vnr(group_leader
);
1016 /* From this point forward we keep holding onto the tasklist lock
1017 * so that our parent does not change from under us. -DaveM
1019 write_lock_irq(&tasklist_lock
);
1022 p
= find_task_by_vpid(pid
);
1027 if (!thread_group_leader(p
))
1030 if (same_thread_group(p
->real_parent
, group_leader
)) {
1032 if (task_session(p
) != task_session(group_leader
))
1035 if (!(p
->flags
& PF_FORKNOEXEC
))
1039 if (p
!= group_leader
)
1044 if (p
->signal
->leader
)
1049 struct task_struct
*g
;
1051 pgrp
= find_vpid(pgid
);
1052 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1053 if (!g
|| task_session(g
) != task_session(group_leader
))
1057 err
= security_task_setpgid(p
, pgid
);
1061 if (task_pgrp(p
) != pgrp
)
1062 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1066 /* All paths lead to here, thus we are safe. -DaveM */
1067 write_unlock_irq(&tasklist_lock
);
1072 static int do_getpgid(pid_t pid
)
1074 struct task_struct
*p
;
1080 grp
= task_pgrp(current
);
1083 p
= find_task_by_vpid(pid
);
1090 retval
= security_task_getpgid(p
);
1094 retval
= pid_vnr(grp
);
1100 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1102 return do_getpgid(pid
);
1105 #ifdef __ARCH_WANT_SYS_GETPGRP
1107 SYSCALL_DEFINE0(getpgrp
)
1109 return do_getpgid(0);
1114 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1116 struct task_struct
*p
;
1122 sid
= task_session(current
);
1125 p
= find_task_by_vpid(pid
);
1128 sid
= task_session(p
);
1132 retval
= security_task_getsid(p
);
1136 retval
= pid_vnr(sid
);
1142 static void set_special_pids(struct pid
*pid
)
1144 struct task_struct
*curr
= current
->group_leader
;
1146 if (task_session(curr
) != pid
)
1147 change_pid(curr
, PIDTYPE_SID
, pid
);
1149 if (task_pgrp(curr
) != pid
)
1150 change_pid(curr
, PIDTYPE_PGID
, pid
);
1153 int ksys_setsid(void)
1155 struct task_struct
*group_leader
= current
->group_leader
;
1156 struct pid
*sid
= task_pid(group_leader
);
1157 pid_t session
= pid_vnr(sid
);
1160 write_lock_irq(&tasklist_lock
);
1161 /* Fail if I am already a session leader */
1162 if (group_leader
->signal
->leader
)
1165 /* Fail if a process group id already exists that equals the
1166 * proposed session id.
1168 if (pid_task(sid
, PIDTYPE_PGID
))
1171 group_leader
->signal
->leader
= 1;
1172 set_special_pids(sid
);
1174 proc_clear_tty(group_leader
);
1178 write_unlock_irq(&tasklist_lock
);
1180 proc_sid_connector(group_leader
);
1181 sched_autogroup_create_attach(group_leader
);
1186 SYSCALL_DEFINE0(setsid
)
1188 return ksys_setsid();
1191 DECLARE_RWSEM(uts_sem
);
1193 #ifdef COMPAT_UTS_MACHINE
1194 #define override_architecture(name) \
1195 (personality(current->personality) == PER_LINUX32 && \
1196 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1197 sizeof(COMPAT_UTS_MACHINE)))
1199 #define override_architecture(name) 0
1203 * Work around broken programs that cannot handle "Linux 3.0".
1204 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1205 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1207 static int override_release(char __user
*release
, size_t len
)
1211 if (current
->personality
& UNAME26
) {
1212 const char *rest
= UTS_RELEASE
;
1213 char buf
[65] = { 0 };
1219 if (*rest
== '.' && ++ndots
>= 3)
1221 if (!isdigit(*rest
) && *rest
!= '.')
1225 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1226 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1227 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1228 ret
= copy_to_user(release
, buf
, copy
+ 1);
1233 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1237 down_read(&uts_sem
);
1238 if (copy_to_user(name
, utsname(), sizeof *name
))
1242 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1244 if (!errno
&& override_architecture(name
))
1249 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1253 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1260 down_read(&uts_sem
);
1261 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1265 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1267 if (!error
&& override_architecture(name
))
1272 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1278 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1281 down_read(&uts_sem
);
1282 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1284 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1285 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1287 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1288 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1290 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1291 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1293 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1294 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1296 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1299 if (!error
&& override_architecture(name
))
1301 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1303 return error
? -EFAULT
: 0;
1307 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1310 char tmp
[__NEW_UTS_LEN
];
1312 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1315 if (len
< 0 || len
> __NEW_UTS_LEN
)
1317 down_write(&uts_sem
);
1319 if (!copy_from_user(tmp
, name
, len
)) {
1320 struct new_utsname
*u
= utsname();
1322 memcpy(u
->nodename
, tmp
, len
);
1323 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1325 uts_proc_notify(UTS_PROC_HOSTNAME
);
1331 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1333 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1336 struct new_utsname
*u
;
1340 down_read(&uts_sem
);
1342 i
= 1 + strlen(u
->nodename
);
1346 if (copy_to_user(name
, u
->nodename
, i
))
1355 * Only setdomainname; getdomainname can be implemented by calling
1358 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1361 char tmp
[__NEW_UTS_LEN
];
1363 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1365 if (len
< 0 || len
> __NEW_UTS_LEN
)
1368 down_write(&uts_sem
);
1370 if (!copy_from_user(tmp
, name
, len
)) {
1371 struct new_utsname
*u
= utsname();
1373 memcpy(u
->domainname
, tmp
, len
);
1374 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1376 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1382 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1384 struct rlimit value
;
1387 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1389 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1394 #ifdef CONFIG_COMPAT
1396 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1397 struct compat_rlimit __user
*, rlim
)
1400 struct compat_rlimit r32
;
1402 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1405 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1406 r
.rlim_cur
= RLIM_INFINITY
;
1408 r
.rlim_cur
= r32
.rlim_cur
;
1409 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1410 r
.rlim_max
= RLIM_INFINITY
;
1412 r
.rlim_max
= r32
.rlim_max
;
1413 return do_prlimit(current
, resource
, &r
, NULL
);
1416 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1417 struct compat_rlimit __user
*, rlim
)
1422 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1424 struct compat_rlimit r32
;
1425 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1426 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1428 r32
.rlim_cur
= r
.rlim_cur
;
1429 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1430 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1432 r32
.rlim_max
= r
.rlim_max
;
1434 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1442 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1445 * Back compatibility for getrlimit. Needed for some apps.
1447 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1448 struct rlimit __user
*, rlim
)
1451 if (resource
>= RLIM_NLIMITS
)
1454 task_lock(current
->group_leader
);
1455 x
= current
->signal
->rlim
[resource
];
1456 task_unlock(current
->group_leader
);
1457 if (x
.rlim_cur
> 0x7FFFFFFF)
1458 x
.rlim_cur
= 0x7FFFFFFF;
1459 if (x
.rlim_max
> 0x7FFFFFFF)
1460 x
.rlim_max
= 0x7FFFFFFF;
1461 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1464 #ifdef CONFIG_COMPAT
1465 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1466 struct compat_rlimit __user
*, rlim
)
1470 if (resource
>= RLIM_NLIMITS
)
1473 task_lock(current
->group_leader
);
1474 r
= current
->signal
->rlim
[resource
];
1475 task_unlock(current
->group_leader
);
1476 if (r
.rlim_cur
> 0x7FFFFFFF)
1477 r
.rlim_cur
= 0x7FFFFFFF;
1478 if (r
.rlim_max
> 0x7FFFFFFF)
1479 r
.rlim_max
= 0x7FFFFFFF;
1481 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1482 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1490 static inline bool rlim64_is_infinity(__u64 rlim64
)
1492 #if BITS_PER_LONG < 64
1493 return rlim64
>= ULONG_MAX
;
1495 return rlim64
== RLIM64_INFINITY
;
1499 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1501 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1502 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1504 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1505 if (rlim
->rlim_max
== RLIM_INFINITY
)
1506 rlim64
->rlim_max
= RLIM64_INFINITY
;
1508 rlim64
->rlim_max
= rlim
->rlim_max
;
1511 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1513 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1514 rlim
->rlim_cur
= RLIM_INFINITY
;
1516 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1517 if (rlim64_is_infinity(rlim64
->rlim_max
))
1518 rlim
->rlim_max
= RLIM_INFINITY
;
1520 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1523 /* make sure you are allowed to change @tsk limits before calling this */
1524 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1525 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1527 struct rlimit
*rlim
;
1530 if (resource
>= RLIM_NLIMITS
)
1533 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1535 if (resource
== RLIMIT_NOFILE
&&
1536 new_rlim
->rlim_max
> sysctl_nr_open
)
1540 /* protect tsk->signal and tsk->sighand from disappearing */
1541 read_lock(&tasklist_lock
);
1542 if (!tsk
->sighand
) {
1547 rlim
= tsk
->signal
->rlim
+ resource
;
1548 task_lock(tsk
->group_leader
);
1550 /* Keep the capable check against init_user_ns until
1551 cgroups can contain all limits */
1552 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1553 !capable(CAP_SYS_RESOURCE
))
1556 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1557 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1559 * The caller is asking for an immediate RLIMIT_CPU
1560 * expiry. But we use the zero value to mean "it was
1561 * never set". So let's cheat and make it one second
1564 new_rlim
->rlim_cur
= 1;
1573 task_unlock(tsk
->group_leader
);
1576 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1577 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1578 * very long-standing error, and fixing it now risks breakage of
1579 * applications, so we live with it
1581 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1582 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1583 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1584 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1586 read_unlock(&tasklist_lock
);
1590 /* rcu lock must be held */
1591 static int check_prlimit_permission(struct task_struct
*task
,
1594 const struct cred
*cred
= current_cred(), *tcred
;
1597 if (current
== task
)
1600 tcred
= __task_cred(task
);
1601 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1602 uid_eq(cred
->uid
, tcred
->suid
) &&
1603 uid_eq(cred
->uid
, tcred
->uid
) &&
1604 gid_eq(cred
->gid
, tcred
->egid
) &&
1605 gid_eq(cred
->gid
, tcred
->sgid
) &&
1606 gid_eq(cred
->gid
, tcred
->gid
));
1607 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1610 return security_task_prlimit(cred
, tcred
, flags
);
1613 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1614 const struct rlimit64 __user
*, new_rlim
,
1615 struct rlimit64 __user
*, old_rlim
)
1617 struct rlimit64 old64
, new64
;
1618 struct rlimit old
, new;
1619 struct task_struct
*tsk
;
1620 unsigned int checkflags
= 0;
1624 checkflags
|= LSM_PRLIMIT_READ
;
1627 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1629 rlim64_to_rlim(&new64
, &new);
1630 checkflags
|= LSM_PRLIMIT_WRITE
;
1634 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1639 ret
= check_prlimit_permission(tsk
, checkflags
);
1644 get_task_struct(tsk
);
1647 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1648 old_rlim
? &old
: NULL
);
1650 if (!ret
&& old_rlim
) {
1651 rlim_to_rlim64(&old
, &old64
);
1652 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1656 put_task_struct(tsk
);
1660 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1662 struct rlimit new_rlim
;
1664 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1666 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1670 * It would make sense to put struct rusage in the task_struct,
1671 * except that would make the task_struct be *really big*. After
1672 * task_struct gets moved into malloc'ed memory, it would
1673 * make sense to do this. It will make moving the rest of the information
1674 * a lot simpler! (Which we're not doing right now because we're not
1675 * measuring them yet).
1677 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1678 * races with threads incrementing their own counters. But since word
1679 * reads are atomic, we either get new values or old values and we don't
1680 * care which for the sums. We always take the siglock to protect reading
1681 * the c* fields from p->signal from races with exit.c updating those
1682 * fields when reaping, so a sample either gets all the additions of a
1683 * given child after it's reaped, or none so this sample is before reaping.
1686 * We need to take the siglock for CHILDEREN, SELF and BOTH
1687 * for the cases current multithreaded, non-current single threaded
1688 * non-current multithreaded. Thread traversal is now safe with
1690 * Strictly speaking, we donot need to take the siglock if we are current and
1691 * single threaded, as no one else can take our signal_struct away, no one
1692 * else can reap the children to update signal->c* counters, and no one else
1693 * can race with the signal-> fields. If we do not take any lock, the
1694 * signal-> fields could be read out of order while another thread was just
1695 * exiting. So we should place a read memory barrier when we avoid the lock.
1696 * On the writer side, write memory barrier is implied in __exit_signal
1697 * as __exit_signal releases the siglock spinlock after updating the signal->
1698 * fields. But we don't do this yet to keep things simple.
1702 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1704 r
->ru_nvcsw
+= t
->nvcsw
;
1705 r
->ru_nivcsw
+= t
->nivcsw
;
1706 r
->ru_minflt
+= t
->min_flt
;
1707 r
->ru_majflt
+= t
->maj_flt
;
1708 r
->ru_inblock
+= task_io_get_inblock(t
);
1709 r
->ru_oublock
+= task_io_get_oublock(t
);
1712 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1714 struct task_struct
*t
;
1715 unsigned long flags
;
1716 u64 tgutime
, tgstime
, utime
, stime
;
1717 unsigned long maxrss
= 0;
1719 memset((char *)r
, 0, sizeof (*r
));
1722 if (who
== RUSAGE_THREAD
) {
1723 task_cputime_adjusted(current
, &utime
, &stime
);
1724 accumulate_thread_rusage(p
, r
);
1725 maxrss
= p
->signal
->maxrss
;
1729 if (!lock_task_sighand(p
, &flags
))
1734 case RUSAGE_CHILDREN
:
1735 utime
= p
->signal
->cutime
;
1736 stime
= p
->signal
->cstime
;
1737 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1738 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1739 r
->ru_minflt
= p
->signal
->cmin_flt
;
1740 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1741 r
->ru_inblock
= p
->signal
->cinblock
;
1742 r
->ru_oublock
= p
->signal
->coublock
;
1743 maxrss
= p
->signal
->cmaxrss
;
1745 if (who
== RUSAGE_CHILDREN
)
1749 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1752 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1753 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1754 r
->ru_minflt
+= p
->signal
->min_flt
;
1755 r
->ru_majflt
+= p
->signal
->maj_flt
;
1756 r
->ru_inblock
+= p
->signal
->inblock
;
1757 r
->ru_oublock
+= p
->signal
->oublock
;
1758 if (maxrss
< p
->signal
->maxrss
)
1759 maxrss
= p
->signal
->maxrss
;
1762 accumulate_thread_rusage(t
, r
);
1763 } while_each_thread(p
, t
);
1769 unlock_task_sighand(p
, &flags
);
1772 r
->ru_utime
= ns_to_timeval(utime
);
1773 r
->ru_stime
= ns_to_timeval(stime
);
1775 if (who
!= RUSAGE_CHILDREN
) {
1776 struct mm_struct
*mm
= get_task_mm(p
);
1779 setmax_mm_hiwater_rss(&maxrss
, mm
);
1783 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1786 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1790 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1791 who
!= RUSAGE_THREAD
)
1794 getrusage(current
, who
, &r
);
1795 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1798 #ifdef CONFIG_COMPAT
1799 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1803 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1804 who
!= RUSAGE_THREAD
)
1807 getrusage(current
, who
, &r
);
1808 return put_compat_rusage(&r
, ru
);
1812 SYSCALL_DEFINE1(umask
, int, mask
)
1814 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1818 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1821 struct file
*old_exe
, *exe_file
;
1822 struct inode
*inode
;
1829 inode
= file_inode(exe
.file
);
1832 * Because the original mm->exe_file points to executable file, make
1833 * sure that this one is executable as well, to avoid breaking an
1837 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1840 err
= inode_permission(inode
, MAY_EXEC
);
1845 * Forbid mm->exe_file change if old file still mapped.
1847 exe_file
= get_mm_exe_file(mm
);
1850 struct vm_area_struct
*vma
;
1852 down_read(&mm
->mmap_sem
);
1853 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1856 if (path_equal(&vma
->vm_file
->f_path
,
1861 up_read(&mm
->mmap_sem
);
1866 /* set the new file, lockless */
1868 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1875 up_read(&mm
->mmap_sem
);
1881 * WARNING: we don't require any capability here so be very careful
1882 * in what is allowed for modification from userspace.
1884 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1886 unsigned long mmap_max_addr
= TASK_SIZE
;
1887 struct mm_struct
*mm
= current
->mm
;
1888 int error
= -EINVAL
, i
;
1890 static const unsigned char offsets
[] = {
1891 offsetof(struct prctl_mm_map
, start_code
),
1892 offsetof(struct prctl_mm_map
, end_code
),
1893 offsetof(struct prctl_mm_map
, start_data
),
1894 offsetof(struct prctl_mm_map
, end_data
),
1895 offsetof(struct prctl_mm_map
, start_brk
),
1896 offsetof(struct prctl_mm_map
, brk
),
1897 offsetof(struct prctl_mm_map
, start_stack
),
1898 offsetof(struct prctl_mm_map
, arg_start
),
1899 offsetof(struct prctl_mm_map
, arg_end
),
1900 offsetof(struct prctl_mm_map
, env_start
),
1901 offsetof(struct prctl_mm_map
, env_end
),
1905 * Make sure the members are not somewhere outside
1906 * of allowed address space.
1908 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1909 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1911 if ((unsigned long)val
>= mmap_max_addr
||
1912 (unsigned long)val
< mmap_min_addr
)
1917 * Make sure the pairs are ordered.
1919 #define __prctl_check_order(__m1, __op, __m2) \
1920 ((unsigned long)prctl_map->__m1 __op \
1921 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1922 error
= __prctl_check_order(start_code
, <, end_code
);
1923 error
|= __prctl_check_order(start_data
, <, end_data
);
1924 error
|= __prctl_check_order(start_brk
, <=, brk
);
1925 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1926 error
|= __prctl_check_order(env_start
, <=, env_end
);
1929 #undef __prctl_check_order
1934 * @brk should be after @end_data in traditional maps.
1936 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1937 prctl_map
->brk
<= prctl_map
->end_data
)
1941 * Neither we should allow to override limits if they set.
1943 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1944 prctl_map
->start_brk
, prctl_map
->end_data
,
1945 prctl_map
->start_data
))
1949 * Someone is trying to cheat the auxv vector.
1951 if (prctl_map
->auxv_size
) {
1952 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1957 * Finally, make sure the caller has the rights to
1958 * change /proc/pid/exe link: only local sys admin should
1961 if (prctl_map
->exe_fd
!= (u32
)-1) {
1962 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
1971 #ifdef CONFIG_CHECKPOINT_RESTORE
1972 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1974 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1975 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1976 struct mm_struct
*mm
= current
->mm
;
1979 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1980 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1982 if (opt
== PR_SET_MM_MAP_SIZE
)
1983 return put_user((unsigned int)sizeof(prctl_map
),
1984 (unsigned int __user
*)addr
);
1986 if (data_size
!= sizeof(prctl_map
))
1989 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1992 error
= validate_prctl_map(&prctl_map
);
1996 if (prctl_map
.auxv_size
) {
1997 memset(user_auxv
, 0, sizeof(user_auxv
));
1998 if (copy_from_user(user_auxv
,
1999 (const void __user
*)prctl_map
.auxv
,
2000 prctl_map
.auxv_size
))
2003 /* Last entry must be AT_NULL as specification requires */
2004 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
2005 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
2008 if (prctl_map
.exe_fd
!= (u32
)-1) {
2009 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
2014 down_write(&mm
->mmap_sem
);
2017 * We don't validate if these members are pointing to
2018 * real present VMAs because application may have correspond
2019 * VMAs already unmapped and kernel uses these members for statistics
2020 * output in procfs mostly, except
2022 * - @start_brk/@brk which are used in do_brk but kernel lookups
2023 * for VMAs when updating these memvers so anything wrong written
2024 * here cause kernel to swear at userspace program but won't lead
2025 * to any problem in kernel itself
2028 mm
->start_code
= prctl_map
.start_code
;
2029 mm
->end_code
= prctl_map
.end_code
;
2030 mm
->start_data
= prctl_map
.start_data
;
2031 mm
->end_data
= prctl_map
.end_data
;
2032 mm
->start_brk
= prctl_map
.start_brk
;
2033 mm
->brk
= prctl_map
.brk
;
2034 mm
->start_stack
= prctl_map
.start_stack
;
2035 mm
->arg_start
= prctl_map
.arg_start
;
2036 mm
->arg_end
= prctl_map
.arg_end
;
2037 mm
->env_start
= prctl_map
.env_start
;
2038 mm
->env_end
= prctl_map
.env_end
;
2041 * Note this update of @saved_auxv is lockless thus
2042 * if someone reads this member in procfs while we're
2043 * updating -- it may get partly updated results. It's
2044 * known and acceptable trade off: we leave it as is to
2045 * not introduce additional locks here making the kernel
2048 if (prctl_map
.auxv_size
)
2049 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
2051 up_write(&mm
->mmap_sem
);
2054 #endif /* CONFIG_CHECKPOINT_RESTORE */
2056 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2060 * This doesn't move the auxiliary vector itself since it's pinned to
2061 * mm_struct, but it permits filling the vector with new values. It's
2062 * up to the caller to provide sane values here, otherwise userspace
2063 * tools which use this vector might be unhappy.
2065 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2067 if (len
> sizeof(user_auxv
))
2070 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2073 /* Make sure the last entry is always AT_NULL */
2074 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2075 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2077 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2080 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2081 task_unlock(current
);
2086 static int prctl_set_mm(int opt
, unsigned long addr
,
2087 unsigned long arg4
, unsigned long arg5
)
2089 struct mm_struct
*mm
= current
->mm
;
2090 struct prctl_mm_map prctl_map
;
2091 struct vm_area_struct
*vma
;
2094 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2095 opt
!= PR_SET_MM_MAP
&&
2096 opt
!= PR_SET_MM_MAP_SIZE
)))
2099 #ifdef CONFIG_CHECKPOINT_RESTORE
2100 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2101 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2104 if (!capable(CAP_SYS_RESOURCE
))
2107 if (opt
== PR_SET_MM_EXE_FILE
)
2108 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2110 if (opt
== PR_SET_MM_AUXV
)
2111 return prctl_set_auxv(mm
, addr
, arg4
);
2113 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2118 down_write(&mm
->mmap_sem
);
2119 vma
= find_vma(mm
, addr
);
2121 prctl_map
.start_code
= mm
->start_code
;
2122 prctl_map
.end_code
= mm
->end_code
;
2123 prctl_map
.start_data
= mm
->start_data
;
2124 prctl_map
.end_data
= mm
->end_data
;
2125 prctl_map
.start_brk
= mm
->start_brk
;
2126 prctl_map
.brk
= mm
->brk
;
2127 prctl_map
.start_stack
= mm
->start_stack
;
2128 prctl_map
.arg_start
= mm
->arg_start
;
2129 prctl_map
.arg_end
= mm
->arg_end
;
2130 prctl_map
.env_start
= mm
->env_start
;
2131 prctl_map
.env_end
= mm
->env_end
;
2132 prctl_map
.auxv
= NULL
;
2133 prctl_map
.auxv_size
= 0;
2134 prctl_map
.exe_fd
= -1;
2137 case PR_SET_MM_START_CODE
:
2138 prctl_map
.start_code
= addr
;
2140 case PR_SET_MM_END_CODE
:
2141 prctl_map
.end_code
= addr
;
2143 case PR_SET_MM_START_DATA
:
2144 prctl_map
.start_data
= addr
;
2146 case PR_SET_MM_END_DATA
:
2147 prctl_map
.end_data
= addr
;
2149 case PR_SET_MM_START_STACK
:
2150 prctl_map
.start_stack
= addr
;
2152 case PR_SET_MM_START_BRK
:
2153 prctl_map
.start_brk
= addr
;
2156 prctl_map
.brk
= addr
;
2158 case PR_SET_MM_ARG_START
:
2159 prctl_map
.arg_start
= addr
;
2161 case PR_SET_MM_ARG_END
:
2162 prctl_map
.arg_end
= addr
;
2164 case PR_SET_MM_ENV_START
:
2165 prctl_map
.env_start
= addr
;
2167 case PR_SET_MM_ENV_END
:
2168 prctl_map
.env_end
= addr
;
2174 error
= validate_prctl_map(&prctl_map
);
2180 * If command line arguments and environment
2181 * are placed somewhere else on stack, we can
2182 * set them up here, ARG_START/END to setup
2183 * command line argumets and ENV_START/END
2186 case PR_SET_MM_START_STACK
:
2187 case PR_SET_MM_ARG_START
:
2188 case PR_SET_MM_ARG_END
:
2189 case PR_SET_MM_ENV_START
:
2190 case PR_SET_MM_ENV_END
:
2197 mm
->start_code
= prctl_map
.start_code
;
2198 mm
->end_code
= prctl_map
.end_code
;
2199 mm
->start_data
= prctl_map
.start_data
;
2200 mm
->end_data
= prctl_map
.end_data
;
2201 mm
->start_brk
= prctl_map
.start_brk
;
2202 mm
->brk
= prctl_map
.brk
;
2203 mm
->start_stack
= prctl_map
.start_stack
;
2204 mm
->arg_start
= prctl_map
.arg_start
;
2205 mm
->arg_end
= prctl_map
.arg_end
;
2206 mm
->env_start
= prctl_map
.env_start
;
2207 mm
->env_end
= prctl_map
.env_end
;
2211 up_write(&mm
->mmap_sem
);
2215 #ifdef CONFIG_CHECKPOINT_RESTORE
2216 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2218 return put_user(me
->clear_child_tid
, tid_addr
);
2221 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2227 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2230 * If task has has_child_subreaper - all its decendants
2231 * already have these flag too and new decendants will
2232 * inherit it on fork, skip them.
2234 * If we've found child_reaper - skip descendants in
2235 * it's subtree as they will never get out pidns.
2237 if (p
->signal
->has_child_subreaper
||
2238 is_child_reaper(task_pid(p
)))
2241 p
->signal
->has_child_subreaper
= 1;
2245 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2246 unsigned long, arg4
, unsigned long, arg5
)
2248 struct task_struct
*me
= current
;
2249 unsigned char comm
[sizeof(me
->comm
)];
2252 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2253 if (error
!= -ENOSYS
)
2258 case PR_SET_PDEATHSIG
:
2259 if (!valid_signal(arg2
)) {
2263 me
->pdeath_signal
= arg2
;
2265 case PR_GET_PDEATHSIG
:
2266 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2268 case PR_GET_DUMPABLE
:
2269 error
= get_dumpable(me
->mm
);
2271 case PR_SET_DUMPABLE
:
2272 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2276 set_dumpable(me
->mm
, arg2
);
2279 case PR_SET_UNALIGN
:
2280 error
= SET_UNALIGN_CTL(me
, arg2
);
2282 case PR_GET_UNALIGN
:
2283 error
= GET_UNALIGN_CTL(me
, arg2
);
2286 error
= SET_FPEMU_CTL(me
, arg2
);
2289 error
= GET_FPEMU_CTL(me
, arg2
);
2292 error
= SET_FPEXC_CTL(me
, arg2
);
2295 error
= GET_FPEXC_CTL(me
, arg2
);
2298 error
= PR_TIMING_STATISTICAL
;
2301 if (arg2
!= PR_TIMING_STATISTICAL
)
2305 comm
[sizeof(me
->comm
) - 1] = 0;
2306 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2307 sizeof(me
->comm
) - 1) < 0)
2309 set_task_comm(me
, comm
);
2310 proc_comm_connector(me
);
2313 get_task_comm(comm
, me
);
2314 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2318 error
= GET_ENDIAN(me
, arg2
);
2321 error
= SET_ENDIAN(me
, arg2
);
2323 case PR_GET_SECCOMP
:
2324 error
= prctl_get_seccomp();
2326 case PR_SET_SECCOMP
:
2327 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2330 error
= GET_TSC_CTL(arg2
);
2333 error
= SET_TSC_CTL(arg2
);
2335 case PR_TASK_PERF_EVENTS_DISABLE
:
2336 error
= perf_event_task_disable();
2338 case PR_TASK_PERF_EVENTS_ENABLE
:
2339 error
= perf_event_task_enable();
2341 case PR_GET_TIMERSLACK
:
2342 if (current
->timer_slack_ns
> ULONG_MAX
)
2345 error
= current
->timer_slack_ns
;
2347 case PR_SET_TIMERSLACK
:
2349 current
->timer_slack_ns
=
2350 current
->default_timer_slack_ns
;
2352 current
->timer_slack_ns
= arg2
;
2358 case PR_MCE_KILL_CLEAR
:
2361 current
->flags
&= ~PF_MCE_PROCESS
;
2363 case PR_MCE_KILL_SET
:
2364 current
->flags
|= PF_MCE_PROCESS
;
2365 if (arg3
== PR_MCE_KILL_EARLY
)
2366 current
->flags
|= PF_MCE_EARLY
;
2367 else if (arg3
== PR_MCE_KILL_LATE
)
2368 current
->flags
&= ~PF_MCE_EARLY
;
2369 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2371 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2379 case PR_MCE_KILL_GET
:
2380 if (arg2
| arg3
| arg4
| arg5
)
2382 if (current
->flags
& PF_MCE_PROCESS
)
2383 error
= (current
->flags
& PF_MCE_EARLY
) ?
2384 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2386 error
= PR_MCE_KILL_DEFAULT
;
2389 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2391 case PR_GET_TID_ADDRESS
:
2392 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2394 case PR_SET_CHILD_SUBREAPER
:
2395 me
->signal
->is_child_subreaper
= !!arg2
;
2399 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2401 case PR_GET_CHILD_SUBREAPER
:
2402 error
= put_user(me
->signal
->is_child_subreaper
,
2403 (int __user
*)arg2
);
2405 case PR_SET_NO_NEW_PRIVS
:
2406 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2409 task_set_no_new_privs(current
);
2411 case PR_GET_NO_NEW_PRIVS
:
2412 if (arg2
|| arg3
|| arg4
|| arg5
)
2414 return task_no_new_privs(current
) ? 1 : 0;
2415 case PR_GET_THP_DISABLE
:
2416 if (arg2
|| arg3
|| arg4
|| arg5
)
2418 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2420 case PR_SET_THP_DISABLE
:
2421 if (arg3
|| arg4
|| arg5
)
2423 if (down_write_killable(&me
->mm
->mmap_sem
))
2426 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2428 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2429 up_write(&me
->mm
->mmap_sem
);
2431 case PR_MPX_ENABLE_MANAGEMENT
:
2432 if (arg2
|| arg3
|| arg4
|| arg5
)
2434 error
= MPX_ENABLE_MANAGEMENT();
2436 case PR_MPX_DISABLE_MANAGEMENT
:
2437 if (arg2
|| arg3
|| arg4
|| arg5
)
2439 error
= MPX_DISABLE_MANAGEMENT();
2441 case PR_SET_FP_MODE
:
2442 error
= SET_FP_MODE(me
, arg2
);
2444 case PR_GET_FP_MODE
:
2445 error
= GET_FP_MODE(me
);
2448 error
= SVE_SET_VL(arg2
);
2451 error
= SVE_GET_VL();
2460 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2461 struct getcpu_cache __user
*, unused
)
2464 int cpu
= raw_smp_processor_id();
2467 err
|= put_user(cpu
, cpup
);
2469 err
|= put_user(cpu_to_node(cpu
), nodep
);
2470 return err
? -EFAULT
: 0;
2474 * do_sysinfo - fill in sysinfo struct
2475 * @info: pointer to buffer to fill
2477 static int do_sysinfo(struct sysinfo
*info
)
2479 unsigned long mem_total
, sav_total
;
2480 unsigned int mem_unit
, bitcount
;
2483 memset(info
, 0, sizeof(struct sysinfo
));
2485 get_monotonic_boottime(&tp
);
2486 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2488 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2490 info
->procs
= nr_threads
;
2496 * If the sum of all the available memory (i.e. ram + swap)
2497 * is less than can be stored in a 32 bit unsigned long then
2498 * we can be binary compatible with 2.2.x kernels. If not,
2499 * well, in that case 2.2.x was broken anyways...
2501 * -Erik Andersen <andersee@debian.org>
2504 mem_total
= info
->totalram
+ info
->totalswap
;
2505 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2508 mem_unit
= info
->mem_unit
;
2509 while (mem_unit
> 1) {
2512 sav_total
= mem_total
;
2514 if (mem_total
< sav_total
)
2519 * If mem_total did not overflow, multiply all memory values by
2520 * info->mem_unit and set it to 1. This leaves things compatible
2521 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2526 info
->totalram
<<= bitcount
;
2527 info
->freeram
<<= bitcount
;
2528 info
->sharedram
<<= bitcount
;
2529 info
->bufferram
<<= bitcount
;
2530 info
->totalswap
<<= bitcount
;
2531 info
->freeswap
<<= bitcount
;
2532 info
->totalhigh
<<= bitcount
;
2533 info
->freehigh
<<= bitcount
;
2539 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2545 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2551 #ifdef CONFIG_COMPAT
2552 struct compat_sysinfo
{
2566 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2569 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2575 /* Check to see if any memory value is too large for 32-bit and scale
2578 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2581 while (s
.mem_unit
< PAGE_SIZE
) {
2586 s
.totalram
>>= bitcount
;
2587 s
.freeram
>>= bitcount
;
2588 s
.sharedram
>>= bitcount
;
2589 s
.bufferram
>>= bitcount
;
2590 s
.totalswap
>>= bitcount
;
2591 s
.freeswap
>>= bitcount
;
2592 s
.totalhigh
>>= bitcount
;
2593 s
.freehigh
>>= bitcount
;
2596 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2597 __put_user(s
.uptime
, &info
->uptime
) ||
2598 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2599 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2600 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2601 __put_user(s
.totalram
, &info
->totalram
) ||
2602 __put_user(s
.freeram
, &info
->freeram
) ||
2603 __put_user(s
.sharedram
, &info
->sharedram
) ||
2604 __put_user(s
.bufferram
, &info
->bufferram
) ||
2605 __put_user(s
.totalswap
, &info
->totalswap
) ||
2606 __put_user(s
.freeswap
, &info
->freeswap
) ||
2607 __put_user(s
.procs
, &info
->procs
) ||
2608 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2609 __put_user(s
.freehigh
, &info
->freehigh
) ||
2610 __put_user(s
.mem_unit
, &info
->mem_unit
))
2615 #endif /* CONFIG_COMPAT */