4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/oom.h>
27 #include <asm/local.h>
29 static void update_pages_handler(struct work_struct
*work
);
32 * The ring buffer header is special. We must manually up keep it.
34 int ring_buffer_print_entry_header(struct trace_seq
*s
)
36 trace_seq_puts(s
, "# compressed entry header\n");
37 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
38 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
39 trace_seq_puts(s
, "\tarray : 32 bits\n");
40 trace_seq_putc(s
, '\n');
41 trace_seq_printf(s
, "\tpadding : type == %d\n",
42 RINGBUF_TYPE_PADDING
);
43 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
44 RINGBUF_TYPE_TIME_EXTEND
);
45 trace_seq_printf(s
, "\ttime_stamp : type == %d\n",
46 RINGBUF_TYPE_TIME_STAMP
);
47 trace_seq_printf(s
, "\tdata max type_len == %d\n",
48 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
50 return !trace_seq_has_overflowed(s
);
54 * The ring buffer is made up of a list of pages. A separate list of pages is
55 * allocated for each CPU. A writer may only write to a buffer that is
56 * associated with the CPU it is currently executing on. A reader may read
57 * from any per cpu buffer.
59 * The reader is special. For each per cpu buffer, the reader has its own
60 * reader page. When a reader has read the entire reader page, this reader
61 * page is swapped with another page in the ring buffer.
63 * Now, as long as the writer is off the reader page, the reader can do what
64 * ever it wants with that page. The writer will never write to that page
65 * again (as long as it is out of the ring buffer).
67 * Here's some silly ASCII art.
70 * |reader| RING BUFFER
72 * +------+ +---+ +---+ +---+
81 * |reader| RING BUFFER
82 * |page |------------------v
83 * +------+ +---+ +---+ +---+
92 * |reader| RING BUFFER
93 * |page |------------------v
94 * +------+ +---+ +---+ +---+
99 * +------------------------------+
103 * |buffer| RING BUFFER
104 * |page |------------------v
105 * +------+ +---+ +---+ +---+
107 * | New +---+ +---+ +---+
110 * +------------------------------+
113 * After we make this swap, the reader can hand this page off to the splice
114 * code and be done with it. It can even allocate a new page if it needs to
115 * and swap that into the ring buffer.
117 * We will be using cmpxchg soon to make all this lockless.
121 /* Used for individual buffers (after the counter) */
122 #define RB_BUFFER_OFF (1 << 20)
124 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
127 #define RB_ALIGNMENT 4U
128 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
129 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
131 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
132 # define RB_FORCE_8BYTE_ALIGNMENT 0
133 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
135 # define RB_FORCE_8BYTE_ALIGNMENT 1
136 # define RB_ARCH_ALIGNMENT 8U
139 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
141 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
142 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
145 RB_LEN_TIME_EXTEND
= 8,
146 RB_LEN_TIME_STAMP
= 8,
149 #define skip_time_extend(event) \
150 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152 #define extended_time(event) \
153 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155 static inline int rb_null_event(struct ring_buffer_event
*event
)
157 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
160 static void rb_event_set_padding(struct ring_buffer_event
*event
)
162 /* padding has a NULL time_delta */
163 event
->type_len
= RINGBUF_TYPE_PADDING
;
164 event
->time_delta
= 0;
168 rb_event_data_length(struct ring_buffer_event
*event
)
173 length
= event
->type_len
* RB_ALIGNMENT
;
175 length
= event
->array
[0];
176 return length
+ RB_EVNT_HDR_SIZE
;
180 * Return the length of the given event. Will return
181 * the length of the time extend if the event is a
184 static inline unsigned
185 rb_event_length(struct ring_buffer_event
*event
)
187 switch (event
->type_len
) {
188 case RINGBUF_TYPE_PADDING
:
189 if (rb_null_event(event
))
192 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
194 case RINGBUF_TYPE_TIME_EXTEND
:
195 return RB_LEN_TIME_EXTEND
;
197 case RINGBUF_TYPE_TIME_STAMP
:
198 return RB_LEN_TIME_STAMP
;
200 case RINGBUF_TYPE_DATA
:
201 return rb_event_data_length(event
);
210 * Return total length of time extend and data,
211 * or just the event length for all other events.
213 static inline unsigned
214 rb_event_ts_length(struct ring_buffer_event
*event
)
218 if (extended_time(event
)) {
219 /* time extends include the data event after it */
220 len
= RB_LEN_TIME_EXTEND
;
221 event
= skip_time_extend(event
);
223 return len
+ rb_event_length(event
);
227 * ring_buffer_event_length - return the length of the event
228 * @event: the event to get the length of
230 * Returns the size of the data load of a data event.
231 * If the event is something other than a data event, it
232 * returns the size of the event itself. With the exception
233 * of a TIME EXTEND, where it still returns the size of the
234 * data load of the data event after it.
236 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
240 if (extended_time(event
))
241 event
= skip_time_extend(event
);
243 length
= rb_event_length(event
);
244 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
246 length
-= RB_EVNT_HDR_SIZE
;
247 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
248 length
-= sizeof(event
->array
[0]);
251 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
253 /* inline for ring buffer fast paths */
254 static __always_inline
void *
255 rb_event_data(struct ring_buffer_event
*event
)
257 if (extended_time(event
))
258 event
= skip_time_extend(event
);
259 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
260 /* If length is in len field, then array[0] has the data */
262 return (void *)&event
->array
[0];
263 /* Otherwise length is in array[0] and array[1] has the data */
264 return (void *)&event
->array
[1];
268 * ring_buffer_event_data - return the data of the event
269 * @event: the event to get the data from
271 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
273 return rb_event_data(event
);
275 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
277 #define for_each_buffer_cpu(buffer, cpu) \
278 for_each_cpu(cpu, buffer->cpumask)
281 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
282 #define TS_DELTA_TEST (~TS_MASK)
285 * ring_buffer_event_time_stamp - return the event's extended timestamp
286 * @event: the event to get the timestamp of
288 * Returns the extended timestamp associated with a data event.
289 * An extended time_stamp is a 64-bit timestamp represented
290 * internally in a special way that makes the best use of space
291 * contained within a ring buffer event. This function decodes
292 * it and maps it to a straight u64 value.
294 u64
ring_buffer_event_time_stamp(struct ring_buffer_event
*event
)
298 ts
= event
->array
[0];
300 ts
+= event
->time_delta
;
305 /* Flag when events were overwritten */
306 #define RB_MISSED_EVENTS (1 << 31)
307 /* Missed count stored at end */
308 #define RB_MISSED_STORED (1 << 30)
310 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
312 struct buffer_data_page
{
313 u64 time_stamp
; /* page time stamp */
314 local_t commit
; /* write committed index */
315 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
319 * Note, the buffer_page list must be first. The buffer pages
320 * are allocated in cache lines, which means that each buffer
321 * page will be at the beginning of a cache line, and thus
322 * the least significant bits will be zero. We use this to
323 * add flags in the list struct pointers, to make the ring buffer
327 struct list_head list
; /* list of buffer pages */
328 local_t write
; /* index for next write */
329 unsigned read
; /* index for next read */
330 local_t entries
; /* entries on this page */
331 unsigned long real_end
; /* real end of data */
332 struct buffer_data_page
*page
; /* Actual data page */
336 * The buffer page counters, write and entries, must be reset
337 * atomically when crossing page boundaries. To synchronize this
338 * update, two counters are inserted into the number. One is
339 * the actual counter for the write position or count on the page.
341 * The other is a counter of updaters. Before an update happens
342 * the update partition of the counter is incremented. This will
343 * allow the updater to update the counter atomically.
345 * The counter is 20 bits, and the state data is 12.
347 #define RB_WRITE_MASK 0xfffff
348 #define RB_WRITE_INTCNT (1 << 20)
350 static void rb_init_page(struct buffer_data_page
*bpage
)
352 local_set(&bpage
->commit
, 0);
356 * ring_buffer_page_len - the size of data on the page.
357 * @page: The page to read
359 * Returns the amount of data on the page, including buffer page header.
361 size_t ring_buffer_page_len(void *page
)
363 struct buffer_data_page
*bpage
= page
;
365 return (local_read(&bpage
->commit
) & ~RB_MISSED_FLAGS
)
370 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
373 static void free_buffer_page(struct buffer_page
*bpage
)
375 free_page((unsigned long)bpage
->page
);
380 * We need to fit the time_stamp delta into 27 bits.
382 static inline int test_time_stamp(u64 delta
)
384 if (delta
& TS_DELTA_TEST
)
389 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
392 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394 int ring_buffer_print_page_header(struct trace_seq
*s
)
396 struct buffer_data_page field
;
398 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
399 "offset:0;\tsize:%u;\tsigned:%u;\n",
400 (unsigned int)sizeof(field
.time_stamp
),
401 (unsigned int)is_signed_type(u64
));
403 trace_seq_printf(s
, "\tfield: local_t commit;\t"
404 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 (unsigned int)offsetof(typeof(field
), commit
),
406 (unsigned int)sizeof(field
.commit
),
407 (unsigned int)is_signed_type(long));
409 trace_seq_printf(s
, "\tfield: int overwrite;\t"
410 "offset:%u;\tsize:%u;\tsigned:%u;\n",
411 (unsigned int)offsetof(typeof(field
), commit
),
413 (unsigned int)is_signed_type(long));
415 trace_seq_printf(s
, "\tfield: char data;\t"
416 "offset:%u;\tsize:%u;\tsigned:%u;\n",
417 (unsigned int)offsetof(typeof(field
), data
),
418 (unsigned int)BUF_PAGE_SIZE
,
419 (unsigned int)is_signed_type(char));
421 return !trace_seq_has_overflowed(s
);
425 struct irq_work work
;
426 wait_queue_head_t waiters
;
427 wait_queue_head_t full_waiters
;
428 bool waiters_pending
;
429 bool full_waiters_pending
;
434 * Structure to hold event state and handle nested events.
436 struct rb_event_info
{
439 unsigned long length
;
440 struct buffer_page
*tail_page
;
445 * Used for which event context the event is in.
451 * See trace_recursive_lock() comment below for more details.
462 * head_page == tail_page && head == tail then buffer is empty.
464 struct ring_buffer_per_cpu
{
466 atomic_t record_disabled
;
467 struct ring_buffer
*buffer
;
468 raw_spinlock_t reader_lock
; /* serialize readers */
469 arch_spinlock_t lock
;
470 struct lock_class_key lock_key
;
471 struct buffer_data_page
*free_page
;
472 unsigned long nr_pages
;
473 unsigned int current_context
;
474 struct list_head
*pages
;
475 struct buffer_page
*head_page
; /* read from head */
476 struct buffer_page
*tail_page
; /* write to tail */
477 struct buffer_page
*commit_page
; /* committed pages */
478 struct buffer_page
*reader_page
;
479 unsigned long lost_events
;
480 unsigned long last_overrun
;
482 local_t entries_bytes
;
485 local_t commit_overrun
;
486 local_t dropped_events
;
490 unsigned long read_bytes
;
493 /* ring buffer pages to update, > 0 to add, < 0 to remove */
494 long nr_pages_to_update
;
495 struct list_head new_pages
; /* new pages to add */
496 struct work_struct update_pages_work
;
497 struct completion update_done
;
499 struct rb_irq_work irq_work
;
505 atomic_t record_disabled
;
506 atomic_t resize_disabled
;
507 cpumask_var_t cpumask
;
509 struct lock_class_key
*reader_lock_key
;
513 struct ring_buffer_per_cpu
**buffers
;
515 struct hlist_node node
;
518 struct rb_irq_work irq_work
;
522 struct ring_buffer_iter
{
523 struct ring_buffer_per_cpu
*cpu_buffer
;
525 struct buffer_page
*head_page
;
526 struct buffer_page
*cache_reader_page
;
527 unsigned long cache_read
;
532 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
534 * Schedules a delayed work to wake up any task that is blocked on the
535 * ring buffer waiters queue.
537 static void rb_wake_up_waiters(struct irq_work
*work
)
539 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
541 wake_up_all(&rbwork
->waiters
);
542 if (rbwork
->wakeup_full
) {
543 rbwork
->wakeup_full
= false;
544 wake_up_all(&rbwork
->full_waiters
);
549 * ring_buffer_wait - wait for input to the ring buffer
550 * @buffer: buffer to wait on
551 * @cpu: the cpu buffer to wait on
552 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
554 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
555 * as data is added to any of the @buffer's cpu buffers. Otherwise
556 * it will wait for data to be added to a specific cpu buffer.
558 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, bool full
)
560 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
562 struct rb_irq_work
*work
;
566 * Depending on what the caller is waiting for, either any
567 * data in any cpu buffer, or a specific buffer, put the
568 * caller on the appropriate wait queue.
570 if (cpu
== RING_BUFFER_ALL_CPUS
) {
571 work
= &buffer
->irq_work
;
572 /* Full only makes sense on per cpu reads */
575 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
577 cpu_buffer
= buffer
->buffers
[cpu
];
578 work
= &cpu_buffer
->irq_work
;
584 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
586 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
589 * The events can happen in critical sections where
590 * checking a work queue can cause deadlocks.
591 * After adding a task to the queue, this flag is set
592 * only to notify events to try to wake up the queue
595 * We don't clear it even if the buffer is no longer
596 * empty. The flag only causes the next event to run
597 * irq_work to do the work queue wake up. The worse
598 * that can happen if we race with !trace_empty() is that
599 * an event will cause an irq_work to try to wake up
602 * There's no reason to protect this flag either, as
603 * the work queue and irq_work logic will do the necessary
604 * synchronization for the wake ups. The only thing
605 * that is necessary is that the wake up happens after
606 * a task has been queued. It's OK for spurious wake ups.
609 work
->full_waiters_pending
= true;
611 work
->waiters_pending
= true;
613 if (signal_pending(current
)) {
618 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
621 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
622 !ring_buffer_empty_cpu(buffer
, cpu
)) {
629 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
630 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
631 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
641 finish_wait(&work
->full_waiters
, &wait
);
643 finish_wait(&work
->waiters
, &wait
);
649 * ring_buffer_poll_wait - poll on buffer input
650 * @buffer: buffer to wait on
651 * @cpu: the cpu buffer to wait on
652 * @filp: the file descriptor
653 * @poll_table: The poll descriptor
655 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
656 * as data is added to any of the @buffer's cpu buffers. Otherwise
657 * it will wait for data to be added to a specific cpu buffer.
659 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
662 __poll_t
ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
663 struct file
*filp
, poll_table
*poll_table
)
665 struct ring_buffer_per_cpu
*cpu_buffer
;
666 struct rb_irq_work
*work
;
668 if (cpu
== RING_BUFFER_ALL_CPUS
)
669 work
= &buffer
->irq_work
;
671 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
674 cpu_buffer
= buffer
->buffers
[cpu
];
675 work
= &cpu_buffer
->irq_work
;
678 poll_wait(filp
, &work
->waiters
, poll_table
);
679 work
->waiters_pending
= true;
681 * There's a tight race between setting the waiters_pending and
682 * checking if the ring buffer is empty. Once the waiters_pending bit
683 * is set, the next event will wake the task up, but we can get stuck
684 * if there's only a single event in.
686 * FIXME: Ideally, we need a memory barrier on the writer side as well,
687 * but adding a memory barrier to all events will cause too much of a
688 * performance hit in the fast path. We only need a memory barrier when
689 * the buffer goes from empty to having content. But as this race is
690 * extremely small, and it's not a problem if another event comes in, we
695 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
696 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
697 return EPOLLIN
| EPOLLRDNORM
;
701 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
702 #define RB_WARN_ON(b, cond) \
704 int _____ret = unlikely(cond); \
706 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
707 struct ring_buffer_per_cpu *__b = \
709 atomic_inc(&__b->buffer->record_disabled); \
711 atomic_inc(&b->record_disabled); \
717 /* Up this if you want to test the TIME_EXTENTS and normalization */
718 #define DEBUG_SHIFT 0
720 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
722 /* shift to debug/test normalization and TIME_EXTENTS */
723 return buffer
->clock() << DEBUG_SHIFT
;
726 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
730 preempt_disable_notrace();
731 time
= rb_time_stamp(buffer
);
732 preempt_enable_no_resched_notrace();
736 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
738 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
741 /* Just stupid testing the normalize function and deltas */
744 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
747 * Making the ring buffer lockless makes things tricky.
748 * Although writes only happen on the CPU that they are on,
749 * and they only need to worry about interrupts. Reads can
752 * The reader page is always off the ring buffer, but when the
753 * reader finishes with a page, it needs to swap its page with
754 * a new one from the buffer. The reader needs to take from
755 * the head (writes go to the tail). But if a writer is in overwrite
756 * mode and wraps, it must push the head page forward.
758 * Here lies the problem.
760 * The reader must be careful to replace only the head page, and
761 * not another one. As described at the top of the file in the
762 * ASCII art, the reader sets its old page to point to the next
763 * page after head. It then sets the page after head to point to
764 * the old reader page. But if the writer moves the head page
765 * during this operation, the reader could end up with the tail.
767 * We use cmpxchg to help prevent this race. We also do something
768 * special with the page before head. We set the LSB to 1.
770 * When the writer must push the page forward, it will clear the
771 * bit that points to the head page, move the head, and then set
772 * the bit that points to the new head page.
774 * We also don't want an interrupt coming in and moving the head
775 * page on another writer. Thus we use the second LSB to catch
778 * head->list->prev->next bit 1 bit 0
781 * Points to head page 0 1
784 * Note we can not trust the prev pointer of the head page, because:
786 * +----+ +-----+ +-----+
787 * | |------>| T |---X--->| N |
789 * +----+ +-----+ +-----+
792 * +----------| R |----------+ |
796 * Key: ---X--> HEAD flag set in pointer
801 * (see __rb_reserve_next() to see where this happens)
803 * What the above shows is that the reader just swapped out
804 * the reader page with a page in the buffer, but before it
805 * could make the new header point back to the new page added
806 * it was preempted by a writer. The writer moved forward onto
807 * the new page added by the reader and is about to move forward
810 * You can see, it is legitimate for the previous pointer of
811 * the head (or any page) not to point back to itself. But only
815 #define RB_PAGE_NORMAL 0UL
816 #define RB_PAGE_HEAD 1UL
817 #define RB_PAGE_UPDATE 2UL
820 #define RB_FLAG_MASK 3UL
822 /* PAGE_MOVED is not part of the mask */
823 #define RB_PAGE_MOVED 4UL
826 * rb_list_head - remove any bit
828 static struct list_head
*rb_list_head(struct list_head
*list
)
830 unsigned long val
= (unsigned long)list
;
832 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
836 * rb_is_head_page - test if the given page is the head page
838 * Because the reader may move the head_page pointer, we can
839 * not trust what the head page is (it may be pointing to
840 * the reader page). But if the next page is a header page,
841 * its flags will be non zero.
844 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
845 struct buffer_page
*page
, struct list_head
*list
)
849 val
= (unsigned long)list
->next
;
851 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
852 return RB_PAGE_MOVED
;
854 return val
& RB_FLAG_MASK
;
860 * The unique thing about the reader page, is that, if the
861 * writer is ever on it, the previous pointer never points
862 * back to the reader page.
864 static bool rb_is_reader_page(struct buffer_page
*page
)
866 struct list_head
*list
= page
->list
.prev
;
868 return rb_list_head(list
->next
) != &page
->list
;
872 * rb_set_list_to_head - set a list_head to be pointing to head.
874 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
875 struct list_head
*list
)
879 ptr
= (unsigned long *)&list
->next
;
880 *ptr
|= RB_PAGE_HEAD
;
881 *ptr
&= ~RB_PAGE_UPDATE
;
885 * rb_head_page_activate - sets up head page
887 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
889 struct buffer_page
*head
;
891 head
= cpu_buffer
->head_page
;
896 * Set the previous list pointer to have the HEAD flag.
898 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
901 static void rb_list_head_clear(struct list_head
*list
)
903 unsigned long *ptr
= (unsigned long *)&list
->next
;
905 *ptr
&= ~RB_FLAG_MASK
;
909 * rb_head_page_dactivate - clears head page ptr (for free list)
912 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
914 struct list_head
*hd
;
916 /* Go through the whole list and clear any pointers found. */
917 rb_list_head_clear(cpu_buffer
->pages
);
919 list_for_each(hd
, cpu_buffer
->pages
)
920 rb_list_head_clear(hd
);
923 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
924 struct buffer_page
*head
,
925 struct buffer_page
*prev
,
926 int old_flag
, int new_flag
)
928 struct list_head
*list
;
929 unsigned long val
= (unsigned long)&head
->list
;
934 val
&= ~RB_FLAG_MASK
;
936 ret
= cmpxchg((unsigned long *)&list
->next
,
937 val
| old_flag
, val
| new_flag
);
939 /* check if the reader took the page */
940 if ((ret
& ~RB_FLAG_MASK
) != val
)
941 return RB_PAGE_MOVED
;
943 return ret
& RB_FLAG_MASK
;
946 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
947 struct buffer_page
*head
,
948 struct buffer_page
*prev
,
951 return rb_head_page_set(cpu_buffer
, head
, prev
,
952 old_flag
, RB_PAGE_UPDATE
);
955 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
956 struct buffer_page
*head
,
957 struct buffer_page
*prev
,
960 return rb_head_page_set(cpu_buffer
, head
, prev
,
961 old_flag
, RB_PAGE_HEAD
);
964 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
965 struct buffer_page
*head
,
966 struct buffer_page
*prev
,
969 return rb_head_page_set(cpu_buffer
, head
, prev
,
970 old_flag
, RB_PAGE_NORMAL
);
973 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
974 struct buffer_page
**bpage
)
976 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
978 *bpage
= list_entry(p
, struct buffer_page
, list
);
981 static struct buffer_page
*
982 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
984 struct buffer_page
*head
;
985 struct buffer_page
*page
;
986 struct list_head
*list
;
989 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
993 list
= cpu_buffer
->pages
;
994 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
997 page
= head
= cpu_buffer
->head_page
;
999 * It is possible that the writer moves the header behind
1000 * where we started, and we miss in one loop.
1001 * A second loop should grab the header, but we'll do
1002 * three loops just because I'm paranoid.
1004 for (i
= 0; i
< 3; i
++) {
1006 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
1007 cpu_buffer
->head_page
= page
;
1010 rb_inc_page(cpu_buffer
, &page
);
1011 } while (page
!= head
);
1014 RB_WARN_ON(cpu_buffer
, 1);
1019 static int rb_head_page_replace(struct buffer_page
*old
,
1020 struct buffer_page
*new)
1022 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
1026 val
= *ptr
& ~RB_FLAG_MASK
;
1027 val
|= RB_PAGE_HEAD
;
1029 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1035 * rb_tail_page_update - move the tail page forward
1037 static void rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1038 struct buffer_page
*tail_page
,
1039 struct buffer_page
*next_page
)
1041 unsigned long old_entries
;
1042 unsigned long old_write
;
1045 * The tail page now needs to be moved forward.
1047 * We need to reset the tail page, but without messing
1048 * with possible erasing of data brought in by interrupts
1049 * that have moved the tail page and are currently on it.
1051 * We add a counter to the write field to denote this.
1053 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1054 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1057 * Just make sure we have seen our old_write and synchronize
1058 * with any interrupts that come in.
1063 * If the tail page is still the same as what we think
1064 * it is, then it is up to us to update the tail
1067 if (tail_page
== READ_ONCE(cpu_buffer
->tail_page
)) {
1068 /* Zero the write counter */
1069 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1070 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1073 * This will only succeed if an interrupt did
1074 * not come in and change it. In which case, we
1075 * do not want to modify it.
1077 * We add (void) to let the compiler know that we do not care
1078 * about the return value of these functions. We use the
1079 * cmpxchg to only update if an interrupt did not already
1080 * do it for us. If the cmpxchg fails, we don't care.
1082 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1083 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1086 * No need to worry about races with clearing out the commit.
1087 * it only can increment when a commit takes place. But that
1088 * only happens in the outer most nested commit.
1090 local_set(&next_page
->page
->commit
, 0);
1092 /* Again, either we update tail_page or an interrupt does */
1093 (void)cmpxchg(&cpu_buffer
->tail_page
, tail_page
, next_page
);
1097 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1098 struct buffer_page
*bpage
)
1100 unsigned long val
= (unsigned long)bpage
;
1102 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1109 * rb_check_list - make sure a pointer to a list has the last bits zero
1111 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1112 struct list_head
*list
)
1114 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1116 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1122 * rb_check_pages - integrity check of buffer pages
1123 * @cpu_buffer: CPU buffer with pages to test
1125 * As a safety measure we check to make sure the data pages have not
1128 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1130 struct list_head
*head
= cpu_buffer
->pages
;
1131 struct buffer_page
*bpage
, *tmp
;
1133 /* Reset the head page if it exists */
1134 if (cpu_buffer
->head_page
)
1135 rb_set_head_page(cpu_buffer
);
1137 rb_head_page_deactivate(cpu_buffer
);
1139 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1141 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1144 if (rb_check_list(cpu_buffer
, head
))
1147 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1148 if (RB_WARN_ON(cpu_buffer
,
1149 bpage
->list
.next
->prev
!= &bpage
->list
))
1151 if (RB_WARN_ON(cpu_buffer
,
1152 bpage
->list
.prev
->next
!= &bpage
->list
))
1154 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1158 rb_head_page_activate(cpu_buffer
);
1163 static int __rb_allocate_pages(long nr_pages
, struct list_head
*pages
, int cpu
)
1165 struct buffer_page
*bpage
, *tmp
;
1166 bool user_thread
= current
->mm
!= NULL
;
1171 * Check if the available memory is there first.
1172 * Note, si_mem_available() only gives us a rough estimate of available
1173 * memory. It may not be accurate. But we don't care, we just want
1174 * to prevent doing any allocation when it is obvious that it is
1175 * not going to succeed.
1177 i
= si_mem_available();
1182 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1183 * gracefully without invoking oom-killer and the system is not
1186 mflags
= GFP_KERNEL
| __GFP_RETRY_MAYFAIL
;
1189 * If a user thread allocates too much, and si_mem_available()
1190 * reports there's enough memory, even though there is not.
1191 * Make sure the OOM killer kills this thread. This can happen
1192 * even with RETRY_MAYFAIL because another task may be doing
1193 * an allocation after this task has taken all memory.
1194 * This is the task the OOM killer needs to take out during this
1195 * loop, even if it was triggered by an allocation somewhere else.
1198 set_current_oom_origin();
1199 for (i
= 0; i
< nr_pages
; i
++) {
1202 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1203 mflags
, cpu_to_node(cpu
));
1207 list_add(&bpage
->list
, pages
);
1209 page
= alloc_pages_node(cpu_to_node(cpu
), mflags
, 0);
1212 bpage
->page
= page_address(page
);
1213 rb_init_page(bpage
->page
);
1215 if (user_thread
&& fatal_signal_pending(current
))
1219 clear_current_oom_origin();
1224 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1225 list_del_init(&bpage
->list
);
1226 free_buffer_page(bpage
);
1229 clear_current_oom_origin();
1234 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1235 unsigned long nr_pages
)
1241 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1245 * The ring buffer page list is a circular list that does not
1246 * start and end with a list head. All page list items point to
1249 cpu_buffer
->pages
= pages
.next
;
1252 cpu_buffer
->nr_pages
= nr_pages
;
1254 rb_check_pages(cpu_buffer
);
1259 static struct ring_buffer_per_cpu
*
1260 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, long nr_pages
, int cpu
)
1262 struct ring_buffer_per_cpu
*cpu_buffer
;
1263 struct buffer_page
*bpage
;
1267 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1268 GFP_KERNEL
, cpu_to_node(cpu
));
1272 cpu_buffer
->cpu
= cpu
;
1273 cpu_buffer
->buffer
= buffer
;
1274 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1275 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1276 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1277 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1278 init_completion(&cpu_buffer
->update_done
);
1279 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1280 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1281 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1283 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1284 GFP_KERNEL
, cpu_to_node(cpu
));
1286 goto fail_free_buffer
;
1288 rb_check_bpage(cpu_buffer
, bpage
);
1290 cpu_buffer
->reader_page
= bpage
;
1291 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1293 goto fail_free_reader
;
1294 bpage
->page
= page_address(page
);
1295 rb_init_page(bpage
->page
);
1297 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1298 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1300 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1302 goto fail_free_reader
;
1304 cpu_buffer
->head_page
1305 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1306 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1308 rb_head_page_activate(cpu_buffer
);
1313 free_buffer_page(cpu_buffer
->reader_page
);
1320 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1322 struct list_head
*head
= cpu_buffer
->pages
;
1323 struct buffer_page
*bpage
, *tmp
;
1325 free_buffer_page(cpu_buffer
->reader_page
);
1327 rb_head_page_deactivate(cpu_buffer
);
1330 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1331 list_del_init(&bpage
->list
);
1332 free_buffer_page(bpage
);
1334 bpage
= list_entry(head
, struct buffer_page
, list
);
1335 free_buffer_page(bpage
);
1342 * __ring_buffer_alloc - allocate a new ring_buffer
1343 * @size: the size in bytes per cpu that is needed.
1344 * @flags: attributes to set for the ring buffer.
1346 * Currently the only flag that is available is the RB_FL_OVERWRITE
1347 * flag. This flag means that the buffer will overwrite old data
1348 * when the buffer wraps. If this flag is not set, the buffer will
1349 * drop data when the tail hits the head.
1351 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1352 struct lock_class_key
*key
)
1354 struct ring_buffer
*buffer
;
1360 /* keep it in its own cache line */
1361 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1366 if (!zalloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1367 goto fail_free_buffer
;
1369 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1370 buffer
->flags
= flags
;
1371 buffer
->clock
= trace_clock_local
;
1372 buffer
->reader_lock_key
= key
;
1374 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1375 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1377 /* need at least two pages */
1381 buffer
->cpus
= nr_cpu_ids
;
1383 bsize
= sizeof(void *) * nr_cpu_ids
;
1384 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1386 if (!buffer
->buffers
)
1387 goto fail_free_cpumask
;
1389 cpu
= raw_smp_processor_id();
1390 cpumask_set_cpu(cpu
, buffer
->cpumask
);
1391 buffer
->buffers
[cpu
] = rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1392 if (!buffer
->buffers
[cpu
])
1393 goto fail_free_buffers
;
1395 ret
= cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1397 goto fail_free_buffers
;
1399 mutex_init(&buffer
->mutex
);
1404 for_each_buffer_cpu(buffer
, cpu
) {
1405 if (buffer
->buffers
[cpu
])
1406 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1408 kfree(buffer
->buffers
);
1411 free_cpumask_var(buffer
->cpumask
);
1417 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1420 * ring_buffer_free - free a ring buffer.
1421 * @buffer: the buffer to free.
1424 ring_buffer_free(struct ring_buffer
*buffer
)
1428 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1430 for_each_buffer_cpu(buffer
, cpu
)
1431 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1433 kfree(buffer
->buffers
);
1434 free_cpumask_var(buffer
->cpumask
);
1438 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1440 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1443 buffer
->clock
= clock
;
1446 void ring_buffer_set_time_stamp_abs(struct ring_buffer
*buffer
, bool abs
)
1448 buffer
->time_stamp_abs
= abs
;
1451 bool ring_buffer_time_stamp_abs(struct ring_buffer
*buffer
)
1453 return buffer
->time_stamp_abs
;
1456 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1458 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1460 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1463 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1465 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1469 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned long nr_pages
)
1471 struct list_head
*tail_page
, *to_remove
, *next_page
;
1472 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1473 struct buffer_page
*last_page
, *first_page
;
1474 unsigned long nr_removed
;
1475 unsigned long head_bit
;
1480 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1481 atomic_inc(&cpu_buffer
->record_disabled
);
1483 * We don't race with the readers since we have acquired the reader
1484 * lock. We also don't race with writers after disabling recording.
1485 * This makes it easy to figure out the first and the last page to be
1486 * removed from the list. We unlink all the pages in between including
1487 * the first and last pages. This is done in a busy loop so that we
1488 * lose the least number of traces.
1489 * The pages are freed after we restart recording and unlock readers.
1491 tail_page
= &cpu_buffer
->tail_page
->list
;
1494 * tail page might be on reader page, we remove the next page
1495 * from the ring buffer
1497 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1498 tail_page
= rb_list_head(tail_page
->next
);
1499 to_remove
= tail_page
;
1501 /* start of pages to remove */
1502 first_page
= list_entry(rb_list_head(to_remove
->next
),
1503 struct buffer_page
, list
);
1505 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1506 to_remove
= rb_list_head(to_remove
)->next
;
1507 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1510 next_page
= rb_list_head(to_remove
)->next
;
1513 * Now we remove all pages between tail_page and next_page.
1514 * Make sure that we have head_bit value preserved for the
1517 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1519 next_page
= rb_list_head(next_page
);
1520 next_page
->prev
= tail_page
;
1522 /* make sure pages points to a valid page in the ring buffer */
1523 cpu_buffer
->pages
= next_page
;
1525 /* update head page */
1527 cpu_buffer
->head_page
= list_entry(next_page
,
1528 struct buffer_page
, list
);
1531 * change read pointer to make sure any read iterators reset
1534 cpu_buffer
->read
= 0;
1536 /* pages are removed, resume tracing and then free the pages */
1537 atomic_dec(&cpu_buffer
->record_disabled
);
1538 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1540 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1542 /* last buffer page to remove */
1543 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1545 tmp_iter_page
= first_page
;
1548 to_remove_page
= tmp_iter_page
;
1549 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1551 /* update the counters */
1552 page_entries
= rb_page_entries(to_remove_page
);
1555 * If something was added to this page, it was full
1556 * since it is not the tail page. So we deduct the
1557 * bytes consumed in ring buffer from here.
1558 * Increment overrun to account for the lost events.
1560 local_add(page_entries
, &cpu_buffer
->overrun
);
1561 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1565 * We have already removed references to this list item, just
1566 * free up the buffer_page and its page
1568 free_buffer_page(to_remove_page
);
1571 } while (to_remove_page
!= last_page
);
1573 RB_WARN_ON(cpu_buffer
, nr_removed
);
1575 return nr_removed
== 0;
1579 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1581 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1582 int retries
, success
;
1584 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1586 * We are holding the reader lock, so the reader page won't be swapped
1587 * in the ring buffer. Now we are racing with the writer trying to
1588 * move head page and the tail page.
1589 * We are going to adapt the reader page update process where:
1590 * 1. We first splice the start and end of list of new pages between
1591 * the head page and its previous page.
1592 * 2. We cmpxchg the prev_page->next to point from head page to the
1593 * start of new pages list.
1594 * 3. Finally, we update the head->prev to the end of new list.
1596 * We will try this process 10 times, to make sure that we don't keep
1602 struct list_head
*head_page
, *prev_page
, *r
;
1603 struct list_head
*last_page
, *first_page
;
1604 struct list_head
*head_page_with_bit
;
1606 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1609 prev_page
= head_page
->prev
;
1611 first_page
= pages
->next
;
1612 last_page
= pages
->prev
;
1614 head_page_with_bit
= (struct list_head
*)
1615 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1617 last_page
->next
= head_page_with_bit
;
1618 first_page
->prev
= prev_page
;
1620 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1622 if (r
== head_page_with_bit
) {
1624 * yay, we replaced the page pointer to our new list,
1625 * now, we just have to update to head page's prev
1626 * pointer to point to end of list
1628 head_page
->prev
= last_page
;
1635 INIT_LIST_HEAD(pages
);
1637 * If we weren't successful in adding in new pages, warn and stop
1640 RB_WARN_ON(cpu_buffer
, !success
);
1641 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1643 /* free pages if they weren't inserted */
1645 struct buffer_page
*bpage
, *tmp
;
1646 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1648 list_del_init(&bpage
->list
);
1649 free_buffer_page(bpage
);
1655 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1659 if (cpu_buffer
->nr_pages_to_update
> 0)
1660 success
= rb_insert_pages(cpu_buffer
);
1662 success
= rb_remove_pages(cpu_buffer
,
1663 -cpu_buffer
->nr_pages_to_update
);
1666 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1669 static void update_pages_handler(struct work_struct
*work
)
1671 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1672 struct ring_buffer_per_cpu
, update_pages_work
);
1673 rb_update_pages(cpu_buffer
);
1674 complete(&cpu_buffer
->update_done
);
1678 * ring_buffer_resize - resize the ring buffer
1679 * @buffer: the buffer to resize.
1680 * @size: the new size.
1681 * @cpu_id: the cpu buffer to resize
1683 * Minimum size is 2 * BUF_PAGE_SIZE.
1685 * Returns 0 on success and < 0 on failure.
1687 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1690 struct ring_buffer_per_cpu
*cpu_buffer
;
1691 unsigned long nr_pages
;
1695 * Always succeed at resizing a non-existent buffer:
1700 /* Make sure the requested buffer exists */
1701 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1702 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1705 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1707 /* we need a minimum of two pages */
1711 size
= nr_pages
* BUF_PAGE_SIZE
;
1714 * Don't succeed if resizing is disabled, as a reader might be
1715 * manipulating the ring buffer and is expecting a sane state while
1718 if (atomic_read(&buffer
->resize_disabled
))
1721 /* prevent another thread from changing buffer sizes */
1722 mutex_lock(&buffer
->mutex
);
1724 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1725 /* calculate the pages to update */
1726 for_each_buffer_cpu(buffer
, cpu
) {
1727 cpu_buffer
= buffer
->buffers
[cpu
];
1729 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1730 cpu_buffer
->nr_pages
;
1732 * nothing more to do for removing pages or no update
1734 if (cpu_buffer
->nr_pages_to_update
<= 0)
1737 * to add pages, make sure all new pages can be
1738 * allocated without receiving ENOMEM
1740 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1741 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1742 &cpu_buffer
->new_pages
, cpu
)) {
1743 /* not enough memory for new pages */
1751 * Fire off all the required work handlers
1752 * We can't schedule on offline CPUs, but it's not necessary
1753 * since we can change their buffer sizes without any race.
1755 for_each_buffer_cpu(buffer
, cpu
) {
1756 cpu_buffer
= buffer
->buffers
[cpu
];
1757 if (!cpu_buffer
->nr_pages_to_update
)
1760 /* Can't run something on an offline CPU. */
1761 if (!cpu_online(cpu
)) {
1762 rb_update_pages(cpu_buffer
);
1763 cpu_buffer
->nr_pages_to_update
= 0;
1765 schedule_work_on(cpu
,
1766 &cpu_buffer
->update_pages_work
);
1770 /* wait for all the updates to complete */
1771 for_each_buffer_cpu(buffer
, cpu
) {
1772 cpu_buffer
= buffer
->buffers
[cpu
];
1773 if (!cpu_buffer
->nr_pages_to_update
)
1776 if (cpu_online(cpu
))
1777 wait_for_completion(&cpu_buffer
->update_done
);
1778 cpu_buffer
->nr_pages_to_update
= 0;
1783 /* Make sure this CPU has been intitialized */
1784 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1787 cpu_buffer
= buffer
->buffers
[cpu_id
];
1789 if (nr_pages
== cpu_buffer
->nr_pages
)
1792 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1793 cpu_buffer
->nr_pages
;
1795 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1796 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1797 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1798 &cpu_buffer
->new_pages
, cpu_id
)) {
1805 /* Can't run something on an offline CPU. */
1806 if (!cpu_online(cpu_id
))
1807 rb_update_pages(cpu_buffer
);
1809 schedule_work_on(cpu_id
,
1810 &cpu_buffer
->update_pages_work
);
1811 wait_for_completion(&cpu_buffer
->update_done
);
1814 cpu_buffer
->nr_pages_to_update
= 0;
1820 * The ring buffer resize can happen with the ring buffer
1821 * enabled, so that the update disturbs the tracing as little
1822 * as possible. But if the buffer is disabled, we do not need
1823 * to worry about that, and we can take the time to verify
1824 * that the buffer is not corrupt.
1826 if (atomic_read(&buffer
->record_disabled
)) {
1827 atomic_inc(&buffer
->record_disabled
);
1829 * Even though the buffer was disabled, we must make sure
1830 * that it is truly disabled before calling rb_check_pages.
1831 * There could have been a race between checking
1832 * record_disable and incrementing it.
1834 synchronize_sched();
1835 for_each_buffer_cpu(buffer
, cpu
) {
1836 cpu_buffer
= buffer
->buffers
[cpu
];
1837 rb_check_pages(cpu_buffer
);
1839 atomic_dec(&buffer
->record_disabled
);
1842 mutex_unlock(&buffer
->mutex
);
1846 for_each_buffer_cpu(buffer
, cpu
) {
1847 struct buffer_page
*bpage
, *tmp
;
1849 cpu_buffer
= buffer
->buffers
[cpu
];
1850 cpu_buffer
->nr_pages_to_update
= 0;
1852 if (list_empty(&cpu_buffer
->new_pages
))
1855 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1857 list_del_init(&bpage
->list
);
1858 free_buffer_page(bpage
);
1861 mutex_unlock(&buffer
->mutex
);
1864 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1866 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1868 mutex_lock(&buffer
->mutex
);
1870 buffer
->flags
|= RB_FL_OVERWRITE
;
1872 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1873 mutex_unlock(&buffer
->mutex
);
1875 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1877 static __always_inline
void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1879 return bpage
->page
->data
+ index
;
1882 static __always_inline
struct ring_buffer_event
*
1883 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1885 return __rb_page_index(cpu_buffer
->reader_page
,
1886 cpu_buffer
->reader_page
->read
);
1889 static __always_inline
struct ring_buffer_event
*
1890 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1892 return __rb_page_index(iter
->head_page
, iter
->head
);
1895 static __always_inline
unsigned rb_page_commit(struct buffer_page
*bpage
)
1897 return local_read(&bpage
->page
->commit
);
1900 /* Size is determined by what has been committed */
1901 static __always_inline
unsigned rb_page_size(struct buffer_page
*bpage
)
1903 return rb_page_commit(bpage
);
1906 static __always_inline
unsigned
1907 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1909 return rb_page_commit(cpu_buffer
->commit_page
);
1912 static __always_inline
unsigned
1913 rb_event_index(struct ring_buffer_event
*event
)
1915 unsigned long addr
= (unsigned long)event
;
1917 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1920 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1922 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1925 * The iterator could be on the reader page (it starts there).
1926 * But the head could have moved, since the reader was
1927 * found. Check for this case and assign the iterator
1928 * to the head page instead of next.
1930 if (iter
->head_page
== cpu_buffer
->reader_page
)
1931 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1933 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1935 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1940 * rb_handle_head_page - writer hit the head page
1942 * Returns: +1 to retry page
1947 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1948 struct buffer_page
*tail_page
,
1949 struct buffer_page
*next_page
)
1951 struct buffer_page
*new_head
;
1956 entries
= rb_page_entries(next_page
);
1959 * The hard part is here. We need to move the head
1960 * forward, and protect against both readers on
1961 * other CPUs and writers coming in via interrupts.
1963 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1967 * type can be one of four:
1968 * NORMAL - an interrupt already moved it for us
1969 * HEAD - we are the first to get here.
1970 * UPDATE - we are the interrupt interrupting
1972 * MOVED - a reader on another CPU moved the next
1973 * pointer to its reader page. Give up
1980 * We changed the head to UPDATE, thus
1981 * it is our responsibility to update
1984 local_add(entries
, &cpu_buffer
->overrun
);
1985 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1988 * The entries will be zeroed out when we move the
1992 /* still more to do */
1995 case RB_PAGE_UPDATE
:
1997 * This is an interrupt that interrupt the
1998 * previous update. Still more to do.
2001 case RB_PAGE_NORMAL
:
2003 * An interrupt came in before the update
2004 * and processed this for us.
2005 * Nothing left to do.
2010 * The reader is on another CPU and just did
2011 * a swap with our next_page.
2016 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2021 * Now that we are here, the old head pointer is
2022 * set to UPDATE. This will keep the reader from
2023 * swapping the head page with the reader page.
2024 * The reader (on another CPU) will spin till
2027 * We just need to protect against interrupts
2028 * doing the job. We will set the next pointer
2029 * to HEAD. After that, we set the old pointer
2030 * to NORMAL, but only if it was HEAD before.
2031 * otherwise we are an interrupt, and only
2032 * want the outer most commit to reset it.
2034 new_head
= next_page
;
2035 rb_inc_page(cpu_buffer
, &new_head
);
2037 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2041 * Valid returns are:
2042 * HEAD - an interrupt came in and already set it.
2043 * NORMAL - One of two things:
2044 * 1) We really set it.
2045 * 2) A bunch of interrupts came in and moved
2046 * the page forward again.
2050 case RB_PAGE_NORMAL
:
2054 RB_WARN_ON(cpu_buffer
, 1);
2059 * It is possible that an interrupt came in,
2060 * set the head up, then more interrupts came in
2061 * and moved it again. When we get back here,
2062 * the page would have been set to NORMAL but we
2063 * just set it back to HEAD.
2065 * How do you detect this? Well, if that happened
2066 * the tail page would have moved.
2068 if (ret
== RB_PAGE_NORMAL
) {
2069 struct buffer_page
*buffer_tail_page
;
2071 buffer_tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2073 * If the tail had moved passed next, then we need
2074 * to reset the pointer.
2076 if (buffer_tail_page
!= tail_page
&&
2077 buffer_tail_page
!= next_page
)
2078 rb_head_page_set_normal(cpu_buffer
, new_head
,
2084 * If this was the outer most commit (the one that
2085 * changed the original pointer from HEAD to UPDATE),
2086 * then it is up to us to reset it to NORMAL.
2088 if (type
== RB_PAGE_HEAD
) {
2089 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2092 if (RB_WARN_ON(cpu_buffer
,
2093 ret
!= RB_PAGE_UPDATE
))
2101 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2102 unsigned long tail
, struct rb_event_info
*info
)
2104 struct buffer_page
*tail_page
= info
->tail_page
;
2105 struct ring_buffer_event
*event
;
2106 unsigned long length
= info
->length
;
2109 * Only the event that crossed the page boundary
2110 * must fill the old tail_page with padding.
2112 if (tail
>= BUF_PAGE_SIZE
) {
2114 * If the page was filled, then we still need
2115 * to update the real_end. Reset it to zero
2116 * and the reader will ignore it.
2118 if (tail
== BUF_PAGE_SIZE
)
2119 tail_page
->real_end
= 0;
2121 local_sub(length
, &tail_page
->write
);
2125 event
= __rb_page_index(tail_page
, tail
);
2127 /* account for padding bytes */
2128 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2131 * Save the original length to the meta data.
2132 * This will be used by the reader to add lost event
2135 tail_page
->real_end
= tail
;
2138 * If this event is bigger than the minimum size, then
2139 * we need to be careful that we don't subtract the
2140 * write counter enough to allow another writer to slip
2142 * We put in a discarded commit instead, to make sure
2143 * that this space is not used again.
2145 * If we are less than the minimum size, we don't need to
2148 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2149 /* No room for any events */
2151 /* Mark the rest of the page with padding */
2152 rb_event_set_padding(event
);
2154 /* Set the write back to the previous setting */
2155 local_sub(length
, &tail_page
->write
);
2159 /* Put in a discarded event */
2160 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2161 event
->type_len
= RINGBUF_TYPE_PADDING
;
2162 /* time delta must be non zero */
2163 event
->time_delta
= 1;
2165 /* Set write to end of buffer */
2166 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2167 local_sub(length
, &tail_page
->write
);
2170 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
);
2173 * This is the slow path, force gcc not to inline it.
2175 static noinline
struct ring_buffer_event
*
2176 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2177 unsigned long tail
, struct rb_event_info
*info
)
2179 struct buffer_page
*tail_page
= info
->tail_page
;
2180 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2181 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2182 struct buffer_page
*next_page
;
2185 next_page
= tail_page
;
2187 rb_inc_page(cpu_buffer
, &next_page
);
2190 * If for some reason, we had an interrupt storm that made
2191 * it all the way around the buffer, bail, and warn
2194 if (unlikely(next_page
== commit_page
)) {
2195 local_inc(&cpu_buffer
->commit_overrun
);
2200 * This is where the fun begins!
2202 * We are fighting against races between a reader that
2203 * could be on another CPU trying to swap its reader
2204 * page with the buffer head.
2206 * We are also fighting against interrupts coming in and
2207 * moving the head or tail on us as well.
2209 * If the next page is the head page then we have filled
2210 * the buffer, unless the commit page is still on the
2213 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2216 * If the commit is not on the reader page, then
2217 * move the header page.
2219 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2221 * If we are not in overwrite mode,
2222 * this is easy, just stop here.
2224 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2225 local_inc(&cpu_buffer
->dropped_events
);
2229 ret
= rb_handle_head_page(cpu_buffer
,
2238 * We need to be careful here too. The
2239 * commit page could still be on the reader
2240 * page. We could have a small buffer, and
2241 * have filled up the buffer with events
2242 * from interrupts and such, and wrapped.
2244 * Note, if the tail page is also the on the
2245 * reader_page, we let it move out.
2247 if (unlikely((cpu_buffer
->commit_page
!=
2248 cpu_buffer
->tail_page
) &&
2249 (cpu_buffer
->commit_page
==
2250 cpu_buffer
->reader_page
))) {
2251 local_inc(&cpu_buffer
->commit_overrun
);
2257 rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2261 rb_reset_tail(cpu_buffer
, tail
, info
);
2263 /* Commit what we have for now. */
2264 rb_end_commit(cpu_buffer
);
2265 /* rb_end_commit() decs committing */
2266 local_inc(&cpu_buffer
->committing
);
2268 /* fail and let the caller try again */
2269 return ERR_PTR(-EAGAIN
);
2273 rb_reset_tail(cpu_buffer
, tail
, info
);
2278 /* Slow path, do not inline */
2279 static noinline
struct ring_buffer_event
*
2280 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
, bool abs
)
2283 event
->type_len
= RINGBUF_TYPE_TIME_STAMP
;
2285 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2287 /* Not the first event on the page, or not delta? */
2288 if (abs
|| rb_event_index(event
)) {
2289 event
->time_delta
= delta
& TS_MASK
;
2290 event
->array
[0] = delta
>> TS_SHIFT
;
2292 /* nope, just zero it */
2293 event
->time_delta
= 0;
2294 event
->array
[0] = 0;
2297 return skip_time_extend(event
);
2300 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2301 struct ring_buffer_event
*event
);
2304 * rb_update_event - update event type and data
2305 * @event: the event to update
2306 * @type: the type of event
2307 * @length: the size of the event field in the ring buffer
2309 * Update the type and data fields of the event. The length
2310 * is the actual size that is written to the ring buffer,
2311 * and with this, we can determine what to place into the
2315 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2316 struct ring_buffer_event
*event
,
2317 struct rb_event_info
*info
)
2319 unsigned length
= info
->length
;
2320 u64 delta
= info
->delta
;
2322 /* Only a commit updates the timestamp */
2323 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2327 * If we need to add a timestamp, then we
2328 * add it to the start of the resevered space.
2330 if (unlikely(info
->add_timestamp
)) {
2331 bool abs
= ring_buffer_time_stamp_abs(cpu_buffer
->buffer
);
2333 event
= rb_add_time_stamp(event
, info
->delta
, abs
);
2334 length
-= RB_LEN_TIME_EXTEND
;
2338 event
->time_delta
= delta
;
2339 length
-= RB_EVNT_HDR_SIZE
;
2340 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2341 event
->type_len
= 0;
2342 event
->array
[0] = length
;
2344 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2347 static unsigned rb_calculate_event_length(unsigned length
)
2349 struct ring_buffer_event event
; /* Used only for sizeof array */
2351 /* zero length can cause confusions */
2355 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2356 length
+= sizeof(event
.array
[0]);
2358 length
+= RB_EVNT_HDR_SIZE
;
2359 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2362 * In case the time delta is larger than the 27 bits for it
2363 * in the header, we need to add a timestamp. If another
2364 * event comes in when trying to discard this one to increase
2365 * the length, then the timestamp will be added in the allocated
2366 * space of this event. If length is bigger than the size needed
2367 * for the TIME_EXTEND, then padding has to be used. The events
2368 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2369 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2370 * As length is a multiple of 4, we only need to worry if it
2371 * is 12 (RB_LEN_TIME_EXTEND + 4).
2373 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
2374 length
+= RB_ALIGNMENT
;
2379 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2380 static inline bool sched_clock_stable(void)
2387 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2388 struct ring_buffer_event
*event
)
2390 unsigned long new_index
, old_index
;
2391 struct buffer_page
*bpage
;
2392 unsigned long index
;
2395 new_index
= rb_event_index(event
);
2396 old_index
= new_index
+ rb_event_ts_length(event
);
2397 addr
= (unsigned long)event
;
2400 bpage
= READ_ONCE(cpu_buffer
->tail_page
);
2402 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2403 unsigned long write_mask
=
2404 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2405 unsigned long event_length
= rb_event_length(event
);
2407 * This is on the tail page. It is possible that
2408 * a write could come in and move the tail page
2409 * and write to the next page. That is fine
2410 * because we just shorten what is on this page.
2412 old_index
+= write_mask
;
2413 new_index
+= write_mask
;
2414 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2415 if (index
== old_index
) {
2416 /* update counters */
2417 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2422 /* could not discard */
2426 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2428 local_inc(&cpu_buffer
->committing
);
2429 local_inc(&cpu_buffer
->commits
);
2432 static __always_inline
void
2433 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
2435 unsigned long max_count
;
2438 * We only race with interrupts and NMIs on this CPU.
2439 * If we own the commit event, then we can commit
2440 * all others that interrupted us, since the interruptions
2441 * are in stack format (they finish before they come
2442 * back to us). This allows us to do a simple loop to
2443 * assign the commit to the tail.
2446 max_count
= cpu_buffer
->nr_pages
* 100;
2448 while (cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)) {
2449 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
2451 if (RB_WARN_ON(cpu_buffer
,
2452 rb_is_reader_page(cpu_buffer
->tail_page
)))
2454 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2455 rb_page_write(cpu_buffer
->commit_page
));
2456 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
2457 /* Only update the write stamp if the page has an event */
2458 if (rb_page_write(cpu_buffer
->commit_page
))
2459 cpu_buffer
->write_stamp
=
2460 cpu_buffer
->commit_page
->page
->time_stamp
;
2461 /* add barrier to keep gcc from optimizing too much */
2464 while (rb_commit_index(cpu_buffer
) !=
2465 rb_page_write(cpu_buffer
->commit_page
)) {
2467 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2468 rb_page_write(cpu_buffer
->commit_page
));
2469 RB_WARN_ON(cpu_buffer
,
2470 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
2475 /* again, keep gcc from optimizing */
2479 * If an interrupt came in just after the first while loop
2480 * and pushed the tail page forward, we will be left with
2481 * a dangling commit that will never go forward.
2483 if (unlikely(cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)))
2487 static __always_inline
void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2489 unsigned long commits
;
2491 if (RB_WARN_ON(cpu_buffer
,
2492 !local_read(&cpu_buffer
->committing
)))
2496 commits
= local_read(&cpu_buffer
->commits
);
2497 /* synchronize with interrupts */
2499 if (local_read(&cpu_buffer
->committing
) == 1)
2500 rb_set_commit_to_write(cpu_buffer
);
2502 local_dec(&cpu_buffer
->committing
);
2504 /* synchronize with interrupts */
2508 * Need to account for interrupts coming in between the
2509 * updating of the commit page and the clearing of the
2510 * committing counter.
2512 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2513 !local_read(&cpu_buffer
->committing
)) {
2514 local_inc(&cpu_buffer
->committing
);
2519 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2521 if (extended_time(event
))
2522 event
= skip_time_extend(event
);
2524 /* array[0] holds the actual length for the discarded event */
2525 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2526 event
->type_len
= RINGBUF_TYPE_PADDING
;
2527 /* time delta must be non zero */
2528 if (!event
->time_delta
)
2529 event
->time_delta
= 1;
2532 static __always_inline
bool
2533 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2534 struct ring_buffer_event
*event
)
2536 unsigned long addr
= (unsigned long)event
;
2537 unsigned long index
;
2539 index
= rb_event_index(event
);
2542 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
2543 rb_commit_index(cpu_buffer
) == index
;
2546 static __always_inline
void
2547 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2548 struct ring_buffer_event
*event
)
2553 * The event first in the commit queue updates the
2556 if (rb_event_is_commit(cpu_buffer
, event
)) {
2558 * A commit event that is first on a page
2559 * updates the write timestamp with the page stamp
2561 if (!rb_event_index(event
))
2562 cpu_buffer
->write_stamp
=
2563 cpu_buffer
->commit_page
->page
->time_stamp
;
2564 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2565 delta
= ring_buffer_event_time_stamp(event
);
2566 cpu_buffer
->write_stamp
+= delta
;
2567 } else if (event
->type_len
== RINGBUF_TYPE_TIME_STAMP
) {
2568 delta
= ring_buffer_event_time_stamp(event
);
2569 cpu_buffer
->write_stamp
= delta
;
2571 cpu_buffer
->write_stamp
+= event
->time_delta
;
2575 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2576 struct ring_buffer_event
*event
)
2578 local_inc(&cpu_buffer
->entries
);
2579 rb_update_write_stamp(cpu_buffer
, event
);
2580 rb_end_commit(cpu_buffer
);
2583 static __always_inline
void
2584 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2588 if (buffer
->irq_work
.waiters_pending
) {
2589 buffer
->irq_work
.waiters_pending
= false;
2590 /* irq_work_queue() supplies it's own memory barriers */
2591 irq_work_queue(&buffer
->irq_work
.work
);
2594 if (cpu_buffer
->irq_work
.waiters_pending
) {
2595 cpu_buffer
->irq_work
.waiters_pending
= false;
2596 /* irq_work_queue() supplies it's own memory barriers */
2597 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2600 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
2602 if (!pagebusy
&& cpu_buffer
->irq_work
.full_waiters_pending
) {
2603 cpu_buffer
->irq_work
.wakeup_full
= true;
2604 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2605 /* irq_work_queue() supplies it's own memory barriers */
2606 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2611 * The lock and unlock are done within a preempt disable section.
2612 * The current_context per_cpu variable can only be modified
2613 * by the current task between lock and unlock. But it can
2614 * be modified more than once via an interrupt. To pass this
2615 * information from the lock to the unlock without having to
2616 * access the 'in_interrupt()' functions again (which do show
2617 * a bit of overhead in something as critical as function tracing,
2618 * we use a bitmask trick.
2620 * bit 0 = NMI context
2621 * bit 1 = IRQ context
2622 * bit 2 = SoftIRQ context
2623 * bit 3 = normal context.
2625 * This works because this is the order of contexts that can
2626 * preempt other contexts. A SoftIRQ never preempts an IRQ
2629 * When the context is determined, the corresponding bit is
2630 * checked and set (if it was set, then a recursion of that context
2633 * On unlock, we need to clear this bit. To do so, just subtract
2634 * 1 from the current_context and AND it to itself.
2638 * 101 & 100 = 100 (clearing bit zero)
2641 * 1010 & 1001 = 1000 (clearing bit 1)
2643 * The least significant bit can be cleared this way, and it
2644 * just so happens that it is the same bit corresponding to
2645 * the current context.
2648 static __always_inline
int
2649 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2651 unsigned int val
= cpu_buffer
->current_context
;
2652 unsigned long pc
= preempt_count();
2655 if (!(pc
& (NMI_MASK
| HARDIRQ_MASK
| SOFTIRQ_OFFSET
)))
2656 bit
= RB_CTX_NORMAL
;
2658 bit
= pc
& NMI_MASK
? RB_CTX_NMI
:
2659 pc
& HARDIRQ_MASK
? RB_CTX_IRQ
: RB_CTX_SOFTIRQ
;
2661 if (unlikely(val
& (1 << (bit
+ cpu_buffer
->nest
))))
2664 val
|= (1 << (bit
+ cpu_buffer
->nest
));
2665 cpu_buffer
->current_context
= val
;
2670 static __always_inline
void
2671 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2673 cpu_buffer
->current_context
&=
2674 cpu_buffer
->current_context
- (1 << cpu_buffer
->nest
);
2677 /* The recursive locking above uses 4 bits */
2678 #define NESTED_BITS 4
2681 * ring_buffer_nest_start - Allow to trace while nested
2682 * @buffer: The ring buffer to modify
2684 * The ring buffer has a safty mechanism to prevent recursion.
2685 * But there may be a case where a trace needs to be done while
2686 * tracing something else. In this case, calling this function
2687 * will allow this function to nest within a currently active
2688 * ring_buffer_lock_reserve().
2690 * Call this function before calling another ring_buffer_lock_reserve() and
2691 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2693 void ring_buffer_nest_start(struct ring_buffer
*buffer
)
2695 struct ring_buffer_per_cpu
*cpu_buffer
;
2698 /* Enabled by ring_buffer_nest_end() */
2699 preempt_disable_notrace();
2700 cpu
= raw_smp_processor_id();
2701 cpu_buffer
= buffer
->buffers
[cpu
];
2702 /* This is the shift value for the above recusive locking */
2703 cpu_buffer
->nest
+= NESTED_BITS
;
2707 * ring_buffer_nest_end - Allow to trace while nested
2708 * @buffer: The ring buffer to modify
2710 * Must be called after ring_buffer_nest_start() and after the
2711 * ring_buffer_unlock_commit().
2713 void ring_buffer_nest_end(struct ring_buffer
*buffer
)
2715 struct ring_buffer_per_cpu
*cpu_buffer
;
2718 /* disabled by ring_buffer_nest_start() */
2719 cpu
= raw_smp_processor_id();
2720 cpu_buffer
= buffer
->buffers
[cpu
];
2721 /* This is the shift value for the above recusive locking */
2722 cpu_buffer
->nest
-= NESTED_BITS
;
2723 preempt_enable_notrace();
2727 * ring_buffer_unlock_commit - commit a reserved
2728 * @buffer: The buffer to commit to
2729 * @event: The event pointer to commit.
2731 * This commits the data to the ring buffer, and releases any locks held.
2733 * Must be paired with ring_buffer_lock_reserve.
2735 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2736 struct ring_buffer_event
*event
)
2738 struct ring_buffer_per_cpu
*cpu_buffer
;
2739 int cpu
= raw_smp_processor_id();
2741 cpu_buffer
= buffer
->buffers
[cpu
];
2743 rb_commit(cpu_buffer
, event
);
2745 rb_wakeups(buffer
, cpu_buffer
);
2747 trace_recursive_unlock(cpu_buffer
);
2749 preempt_enable_notrace();
2753 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2755 static noinline
void
2756 rb_handle_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2757 struct rb_event_info
*info
)
2759 WARN_ONCE(info
->delta
> (1ULL << 59),
2760 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2761 (unsigned long long)info
->delta
,
2762 (unsigned long long)info
->ts
,
2763 (unsigned long long)cpu_buffer
->write_stamp
,
2764 sched_clock_stable() ? "" :
2765 "If you just came from a suspend/resume,\n"
2766 "please switch to the trace global clock:\n"
2767 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2768 "or add trace_clock=global to the kernel command line\n");
2769 info
->add_timestamp
= 1;
2772 static struct ring_buffer_event
*
2773 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2774 struct rb_event_info
*info
)
2776 struct ring_buffer_event
*event
;
2777 struct buffer_page
*tail_page
;
2778 unsigned long tail
, write
;
2781 * If the time delta since the last event is too big to
2782 * hold in the time field of the event, then we append a
2783 * TIME EXTEND event ahead of the data event.
2785 if (unlikely(info
->add_timestamp
))
2786 info
->length
+= RB_LEN_TIME_EXTEND
;
2788 /* Don't let the compiler play games with cpu_buffer->tail_page */
2789 tail_page
= info
->tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2790 write
= local_add_return(info
->length
, &tail_page
->write
);
2792 /* set write to only the index of the write */
2793 write
&= RB_WRITE_MASK
;
2794 tail
= write
- info
->length
;
2797 * If this is the first commit on the page, then it has the same
2798 * timestamp as the page itself.
2800 if (!tail
&& !ring_buffer_time_stamp_abs(cpu_buffer
->buffer
))
2803 /* See if we shot pass the end of this buffer page */
2804 if (unlikely(write
> BUF_PAGE_SIZE
))
2805 return rb_move_tail(cpu_buffer
, tail
, info
);
2807 /* We reserved something on the buffer */
2809 event
= __rb_page_index(tail_page
, tail
);
2810 rb_update_event(cpu_buffer
, event
, info
);
2812 local_inc(&tail_page
->entries
);
2815 * If this is the first commit on the page, then update
2819 tail_page
->page
->time_stamp
= info
->ts
;
2821 /* account for these added bytes */
2822 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
2827 static __always_inline
struct ring_buffer_event
*
2828 rb_reserve_next_event(struct ring_buffer
*buffer
,
2829 struct ring_buffer_per_cpu
*cpu_buffer
,
2830 unsigned long length
)
2832 struct ring_buffer_event
*event
;
2833 struct rb_event_info info
;
2837 rb_start_commit(cpu_buffer
);
2839 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2841 * Due to the ability to swap a cpu buffer from a buffer
2842 * it is possible it was swapped before we committed.
2843 * (committing stops a swap). We check for it here and
2844 * if it happened, we have to fail the write.
2847 if (unlikely(READ_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2848 local_dec(&cpu_buffer
->committing
);
2849 local_dec(&cpu_buffer
->commits
);
2854 info
.length
= rb_calculate_event_length(length
);
2856 info
.add_timestamp
= 0;
2860 * We allow for interrupts to reenter here and do a trace.
2861 * If one does, it will cause this original code to loop
2862 * back here. Even with heavy interrupts happening, this
2863 * should only happen a few times in a row. If this happens
2864 * 1000 times in a row, there must be either an interrupt
2865 * storm or we have something buggy.
2868 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2871 info
.ts
= rb_time_stamp(cpu_buffer
->buffer
);
2872 diff
= info
.ts
- cpu_buffer
->write_stamp
;
2874 /* make sure this diff is calculated here */
2877 if (ring_buffer_time_stamp_abs(buffer
)) {
2878 info
.delta
= info
.ts
;
2879 rb_handle_timestamp(cpu_buffer
, &info
);
2880 } else /* Did the write stamp get updated already? */
2881 if (likely(info
.ts
>= cpu_buffer
->write_stamp
)) {
2883 if (unlikely(test_time_stamp(info
.delta
)))
2884 rb_handle_timestamp(cpu_buffer
, &info
);
2887 event
= __rb_reserve_next(cpu_buffer
, &info
);
2889 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
2890 if (info
.add_timestamp
)
2891 info
.length
-= RB_LEN_TIME_EXTEND
;
2901 rb_end_commit(cpu_buffer
);
2906 * ring_buffer_lock_reserve - reserve a part of the buffer
2907 * @buffer: the ring buffer to reserve from
2908 * @length: the length of the data to reserve (excluding event header)
2910 * Returns a reseverd event on the ring buffer to copy directly to.
2911 * The user of this interface will need to get the body to write into
2912 * and can use the ring_buffer_event_data() interface.
2914 * The length is the length of the data needed, not the event length
2915 * which also includes the event header.
2917 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2918 * If NULL is returned, then nothing has been allocated or locked.
2920 struct ring_buffer_event
*
2921 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2923 struct ring_buffer_per_cpu
*cpu_buffer
;
2924 struct ring_buffer_event
*event
;
2927 /* If we are tracing schedule, we don't want to recurse */
2928 preempt_disable_notrace();
2930 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2933 cpu
= raw_smp_processor_id();
2935 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2938 cpu_buffer
= buffer
->buffers
[cpu
];
2940 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2943 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2946 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2949 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2956 trace_recursive_unlock(cpu_buffer
);
2958 preempt_enable_notrace();
2961 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2964 * Decrement the entries to the page that an event is on.
2965 * The event does not even need to exist, only the pointer
2966 * to the page it is on. This may only be called before the commit
2970 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2971 struct ring_buffer_event
*event
)
2973 unsigned long addr
= (unsigned long)event
;
2974 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2975 struct buffer_page
*start
;
2979 /* Do the likely case first */
2980 if (likely(bpage
->page
== (void *)addr
)) {
2981 local_dec(&bpage
->entries
);
2986 * Because the commit page may be on the reader page we
2987 * start with the next page and check the end loop there.
2989 rb_inc_page(cpu_buffer
, &bpage
);
2992 if (bpage
->page
== (void *)addr
) {
2993 local_dec(&bpage
->entries
);
2996 rb_inc_page(cpu_buffer
, &bpage
);
2997 } while (bpage
!= start
);
2999 /* commit not part of this buffer?? */
3000 RB_WARN_ON(cpu_buffer
, 1);
3004 * ring_buffer_commit_discard - discard an event that has not been committed
3005 * @buffer: the ring buffer
3006 * @event: non committed event to discard
3008 * Sometimes an event that is in the ring buffer needs to be ignored.
3009 * This function lets the user discard an event in the ring buffer
3010 * and then that event will not be read later.
3012 * This function only works if it is called before the the item has been
3013 * committed. It will try to free the event from the ring buffer
3014 * if another event has not been added behind it.
3016 * If another event has been added behind it, it will set the event
3017 * up as discarded, and perform the commit.
3019 * If this function is called, do not call ring_buffer_unlock_commit on
3022 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
3023 struct ring_buffer_event
*event
)
3025 struct ring_buffer_per_cpu
*cpu_buffer
;
3028 /* The event is discarded regardless */
3029 rb_event_discard(event
);
3031 cpu
= smp_processor_id();
3032 cpu_buffer
= buffer
->buffers
[cpu
];
3035 * This must only be called if the event has not been
3036 * committed yet. Thus we can assume that preemption
3037 * is still disabled.
3039 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
3041 rb_decrement_entry(cpu_buffer
, event
);
3042 if (rb_try_to_discard(cpu_buffer
, event
))
3046 * The commit is still visible by the reader, so we
3047 * must still update the timestamp.
3049 rb_update_write_stamp(cpu_buffer
, event
);
3051 rb_end_commit(cpu_buffer
);
3053 trace_recursive_unlock(cpu_buffer
);
3055 preempt_enable_notrace();
3058 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
3061 * ring_buffer_write - write data to the buffer without reserving
3062 * @buffer: The ring buffer to write to.
3063 * @length: The length of the data being written (excluding the event header)
3064 * @data: The data to write to the buffer.
3066 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3067 * one function. If you already have the data to write to the buffer, it
3068 * may be easier to simply call this function.
3070 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3071 * and not the length of the event which would hold the header.
3073 int ring_buffer_write(struct ring_buffer
*buffer
,
3074 unsigned long length
,
3077 struct ring_buffer_per_cpu
*cpu_buffer
;
3078 struct ring_buffer_event
*event
;
3083 preempt_disable_notrace();
3085 if (atomic_read(&buffer
->record_disabled
))
3088 cpu
= raw_smp_processor_id();
3090 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3093 cpu_buffer
= buffer
->buffers
[cpu
];
3095 if (atomic_read(&cpu_buffer
->record_disabled
))
3098 if (length
> BUF_MAX_DATA_SIZE
)
3101 if (unlikely(trace_recursive_lock(cpu_buffer
)))
3104 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3108 body
= rb_event_data(event
);
3110 memcpy(body
, data
, length
);
3112 rb_commit(cpu_buffer
, event
);
3114 rb_wakeups(buffer
, cpu_buffer
);
3119 trace_recursive_unlock(cpu_buffer
);
3122 preempt_enable_notrace();
3126 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3128 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3130 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3131 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3132 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3134 /* In case of error, head will be NULL */
3135 if (unlikely(!head
))
3138 return reader
->read
== rb_page_commit(reader
) &&
3139 (commit
== reader
||
3141 head
->read
== rb_page_commit(commit
)));
3145 * ring_buffer_record_disable - stop all writes into the buffer
3146 * @buffer: The ring buffer to stop writes to.
3148 * This prevents all writes to the buffer. Any attempt to write
3149 * to the buffer after this will fail and return NULL.
3151 * The caller should call synchronize_sched() after this.
3153 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3155 atomic_inc(&buffer
->record_disabled
);
3157 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3160 * ring_buffer_record_enable - enable writes to the buffer
3161 * @buffer: The ring buffer to enable writes
3163 * Note, multiple disables will need the same number of enables
3164 * to truly enable the writing (much like preempt_disable).
3166 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3168 atomic_dec(&buffer
->record_disabled
);
3170 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3173 * ring_buffer_record_off - stop all writes into the buffer
3174 * @buffer: The ring buffer to stop writes to.
3176 * This prevents all writes to the buffer. Any attempt to write
3177 * to the buffer after this will fail and return NULL.
3179 * This is different than ring_buffer_record_disable() as
3180 * it works like an on/off switch, where as the disable() version
3181 * must be paired with a enable().
3183 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3186 unsigned int new_rd
;
3189 rd
= atomic_read(&buffer
->record_disabled
);
3190 new_rd
= rd
| RB_BUFFER_OFF
;
3191 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3193 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3196 * ring_buffer_record_on - restart writes into the buffer
3197 * @buffer: The ring buffer to start writes to.
3199 * This enables all writes to the buffer that was disabled by
3200 * ring_buffer_record_off().
3202 * This is different than ring_buffer_record_enable() as
3203 * it works like an on/off switch, where as the enable() version
3204 * must be paired with a disable().
3206 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3209 unsigned int new_rd
;
3212 rd
= atomic_read(&buffer
->record_disabled
);
3213 new_rd
= rd
& ~RB_BUFFER_OFF
;
3214 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3216 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3219 * ring_buffer_record_is_on - return true if the ring buffer can write
3220 * @buffer: The ring buffer to see if write is enabled
3222 * Returns true if the ring buffer is in a state that it accepts writes.
3224 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3226 return !atomic_read(&buffer
->record_disabled
);
3230 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3231 * @buffer: The ring buffer to stop writes to.
3232 * @cpu: The CPU buffer to stop
3234 * This prevents all writes to the buffer. Any attempt to write
3235 * to the buffer after this will fail and return NULL.
3237 * The caller should call synchronize_sched() after this.
3239 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3241 struct ring_buffer_per_cpu
*cpu_buffer
;
3243 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3246 cpu_buffer
= buffer
->buffers
[cpu
];
3247 atomic_inc(&cpu_buffer
->record_disabled
);
3249 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3252 * ring_buffer_record_enable_cpu - enable writes to the buffer
3253 * @buffer: The ring buffer to enable writes
3254 * @cpu: The CPU to enable.
3256 * Note, multiple disables will need the same number of enables
3257 * to truly enable the writing (much like preempt_disable).
3259 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3261 struct ring_buffer_per_cpu
*cpu_buffer
;
3263 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3266 cpu_buffer
= buffer
->buffers
[cpu
];
3267 atomic_dec(&cpu_buffer
->record_disabled
);
3269 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3272 * The total entries in the ring buffer is the running counter
3273 * of entries entered into the ring buffer, minus the sum of
3274 * the entries read from the ring buffer and the number of
3275 * entries that were overwritten.
3277 static inline unsigned long
3278 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3280 return local_read(&cpu_buffer
->entries
) -
3281 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3285 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3286 * @buffer: The ring buffer
3287 * @cpu: The per CPU buffer to read from.
3289 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3291 unsigned long flags
;
3292 struct ring_buffer_per_cpu
*cpu_buffer
;
3293 struct buffer_page
*bpage
;
3296 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3299 cpu_buffer
= buffer
->buffers
[cpu
];
3300 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3302 * if the tail is on reader_page, oldest time stamp is on the reader
3305 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3306 bpage
= cpu_buffer
->reader_page
;
3308 bpage
= rb_set_head_page(cpu_buffer
);
3310 ret
= bpage
->page
->time_stamp
;
3311 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3315 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3318 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3319 * @buffer: The ring buffer
3320 * @cpu: The per CPU buffer to read from.
3322 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3324 struct ring_buffer_per_cpu
*cpu_buffer
;
3327 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3330 cpu_buffer
= buffer
->buffers
[cpu
];
3331 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3335 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3338 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3339 * @buffer: The ring buffer
3340 * @cpu: The per CPU buffer to get the entries from.
3342 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3344 struct ring_buffer_per_cpu
*cpu_buffer
;
3346 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3349 cpu_buffer
= buffer
->buffers
[cpu
];
3351 return rb_num_of_entries(cpu_buffer
);
3353 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3356 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3357 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3358 * @buffer: The ring buffer
3359 * @cpu: The per CPU buffer to get the number of overruns from
3361 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3363 struct ring_buffer_per_cpu
*cpu_buffer
;
3366 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3369 cpu_buffer
= buffer
->buffers
[cpu
];
3370 ret
= local_read(&cpu_buffer
->overrun
);
3374 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3377 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3378 * commits failing due to the buffer wrapping around while there are uncommitted
3379 * events, such as during an interrupt storm.
3380 * @buffer: The ring buffer
3381 * @cpu: The per CPU buffer to get the number of overruns from
3384 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3386 struct ring_buffer_per_cpu
*cpu_buffer
;
3389 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3392 cpu_buffer
= buffer
->buffers
[cpu
];
3393 ret
= local_read(&cpu_buffer
->commit_overrun
);
3397 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3400 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3401 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3402 * @buffer: The ring buffer
3403 * @cpu: The per CPU buffer to get the number of overruns from
3406 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3408 struct ring_buffer_per_cpu
*cpu_buffer
;
3411 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3414 cpu_buffer
= buffer
->buffers
[cpu
];
3415 ret
= local_read(&cpu_buffer
->dropped_events
);
3419 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3422 * ring_buffer_read_events_cpu - get the number of events successfully read
3423 * @buffer: The ring buffer
3424 * @cpu: The per CPU buffer to get the number of events read
3427 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3429 struct ring_buffer_per_cpu
*cpu_buffer
;
3431 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3434 cpu_buffer
= buffer
->buffers
[cpu
];
3435 return cpu_buffer
->read
;
3437 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3440 * ring_buffer_entries - get the number of entries in a buffer
3441 * @buffer: The ring buffer
3443 * Returns the total number of entries in the ring buffer
3446 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3448 struct ring_buffer_per_cpu
*cpu_buffer
;
3449 unsigned long entries
= 0;
3452 /* if you care about this being correct, lock the buffer */
3453 for_each_buffer_cpu(buffer
, cpu
) {
3454 cpu_buffer
= buffer
->buffers
[cpu
];
3455 entries
+= rb_num_of_entries(cpu_buffer
);
3460 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3463 * ring_buffer_overruns - get the number of overruns in buffer
3464 * @buffer: The ring buffer
3466 * Returns the total number of overruns in the ring buffer
3469 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3471 struct ring_buffer_per_cpu
*cpu_buffer
;
3472 unsigned long overruns
= 0;
3475 /* if you care about this being correct, lock the buffer */
3476 for_each_buffer_cpu(buffer
, cpu
) {
3477 cpu_buffer
= buffer
->buffers
[cpu
];
3478 overruns
+= local_read(&cpu_buffer
->overrun
);
3483 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3485 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3487 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3489 /* Iterator usage is expected to have record disabled */
3490 iter
->head_page
= cpu_buffer
->reader_page
;
3491 iter
->head
= cpu_buffer
->reader_page
->read
;
3493 iter
->cache_reader_page
= iter
->head_page
;
3494 iter
->cache_read
= cpu_buffer
->read
;
3497 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3499 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3503 * ring_buffer_iter_reset - reset an iterator
3504 * @iter: The iterator to reset
3506 * Resets the iterator, so that it will start from the beginning
3509 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3511 struct ring_buffer_per_cpu
*cpu_buffer
;
3512 unsigned long flags
;
3517 cpu_buffer
= iter
->cpu_buffer
;
3519 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3520 rb_iter_reset(iter
);
3521 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3523 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3526 * ring_buffer_iter_empty - check if an iterator has no more to read
3527 * @iter: The iterator to check
3529 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3531 struct ring_buffer_per_cpu
*cpu_buffer
;
3532 struct buffer_page
*reader
;
3533 struct buffer_page
*head_page
;
3534 struct buffer_page
*commit_page
;
3537 cpu_buffer
= iter
->cpu_buffer
;
3539 /* Remember, trace recording is off when iterator is in use */
3540 reader
= cpu_buffer
->reader_page
;
3541 head_page
= cpu_buffer
->head_page
;
3542 commit_page
= cpu_buffer
->commit_page
;
3543 commit
= rb_page_commit(commit_page
);
3545 return ((iter
->head_page
== commit_page
&& iter
->head
== commit
) ||
3546 (iter
->head_page
== reader
&& commit_page
== head_page
&&
3547 head_page
->read
== commit
&&
3548 iter
->head
== rb_page_commit(cpu_buffer
->reader_page
)));
3550 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3553 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3554 struct ring_buffer_event
*event
)
3558 switch (event
->type_len
) {
3559 case RINGBUF_TYPE_PADDING
:
3562 case RINGBUF_TYPE_TIME_EXTEND
:
3563 delta
= ring_buffer_event_time_stamp(event
);
3564 cpu_buffer
->read_stamp
+= delta
;
3567 case RINGBUF_TYPE_TIME_STAMP
:
3568 delta
= ring_buffer_event_time_stamp(event
);
3569 cpu_buffer
->read_stamp
= delta
;
3572 case RINGBUF_TYPE_DATA
:
3573 cpu_buffer
->read_stamp
+= event
->time_delta
;
3583 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3584 struct ring_buffer_event
*event
)
3588 switch (event
->type_len
) {
3589 case RINGBUF_TYPE_PADDING
:
3592 case RINGBUF_TYPE_TIME_EXTEND
:
3593 delta
= ring_buffer_event_time_stamp(event
);
3594 iter
->read_stamp
+= delta
;
3597 case RINGBUF_TYPE_TIME_STAMP
:
3598 delta
= ring_buffer_event_time_stamp(event
);
3599 iter
->read_stamp
= delta
;
3602 case RINGBUF_TYPE_DATA
:
3603 iter
->read_stamp
+= event
->time_delta
;
3612 static struct buffer_page
*
3613 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3615 struct buffer_page
*reader
= NULL
;
3616 unsigned long overwrite
;
3617 unsigned long flags
;
3621 local_irq_save(flags
);
3622 arch_spin_lock(&cpu_buffer
->lock
);
3626 * This should normally only loop twice. But because the
3627 * start of the reader inserts an empty page, it causes
3628 * a case where we will loop three times. There should be no
3629 * reason to loop four times (that I know of).
3631 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3636 reader
= cpu_buffer
->reader_page
;
3638 /* If there's more to read, return this page */
3639 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3642 /* Never should we have an index greater than the size */
3643 if (RB_WARN_ON(cpu_buffer
,
3644 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3647 /* check if we caught up to the tail */
3649 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3652 /* Don't bother swapping if the ring buffer is empty */
3653 if (rb_num_of_entries(cpu_buffer
) == 0)
3657 * Reset the reader page to size zero.
3659 local_set(&cpu_buffer
->reader_page
->write
, 0);
3660 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3661 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3662 cpu_buffer
->reader_page
->real_end
= 0;
3666 * Splice the empty reader page into the list around the head.
3668 reader
= rb_set_head_page(cpu_buffer
);
3671 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3672 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3675 * cpu_buffer->pages just needs to point to the buffer, it
3676 * has no specific buffer page to point to. Lets move it out
3677 * of our way so we don't accidentally swap it.
3679 cpu_buffer
->pages
= reader
->list
.prev
;
3681 /* The reader page will be pointing to the new head */
3682 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3685 * We want to make sure we read the overruns after we set up our
3686 * pointers to the next object. The writer side does a
3687 * cmpxchg to cross pages which acts as the mb on the writer
3688 * side. Note, the reader will constantly fail the swap
3689 * while the writer is updating the pointers, so this
3690 * guarantees that the overwrite recorded here is the one we
3691 * want to compare with the last_overrun.
3694 overwrite
= local_read(&(cpu_buffer
->overrun
));
3697 * Here's the tricky part.
3699 * We need to move the pointer past the header page.
3700 * But we can only do that if a writer is not currently
3701 * moving it. The page before the header page has the
3702 * flag bit '1' set if it is pointing to the page we want.
3703 * but if the writer is in the process of moving it
3704 * than it will be '2' or already moved '0'.
3707 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3710 * If we did not convert it, then we must try again.
3716 * Yeah! We succeeded in replacing the page.
3718 * Now make the new head point back to the reader page.
3720 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3721 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3723 /* Finally update the reader page to the new head */
3724 cpu_buffer
->reader_page
= reader
;
3725 cpu_buffer
->reader_page
->read
= 0;
3727 if (overwrite
!= cpu_buffer
->last_overrun
) {
3728 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3729 cpu_buffer
->last_overrun
= overwrite
;
3735 /* Update the read_stamp on the first event */
3736 if (reader
&& reader
->read
== 0)
3737 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
3739 arch_spin_unlock(&cpu_buffer
->lock
);
3740 local_irq_restore(flags
);
3745 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3747 struct ring_buffer_event
*event
;
3748 struct buffer_page
*reader
;
3751 reader
= rb_get_reader_page(cpu_buffer
);
3753 /* This function should not be called when buffer is empty */
3754 if (RB_WARN_ON(cpu_buffer
, !reader
))
3757 event
= rb_reader_event(cpu_buffer
);
3759 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3762 rb_update_read_stamp(cpu_buffer
, event
);
3764 length
= rb_event_length(event
);
3765 cpu_buffer
->reader_page
->read
+= length
;
3768 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3770 struct ring_buffer_per_cpu
*cpu_buffer
;
3771 struct ring_buffer_event
*event
;
3774 cpu_buffer
= iter
->cpu_buffer
;
3777 * Check if we are at the end of the buffer.
3779 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3780 /* discarded commits can make the page empty */
3781 if (iter
->head_page
== cpu_buffer
->commit_page
)
3787 event
= rb_iter_head_event(iter
);
3789 length
= rb_event_length(event
);
3792 * This should not be called to advance the header if we are
3793 * at the tail of the buffer.
3795 if (RB_WARN_ON(cpu_buffer
,
3796 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3797 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3800 rb_update_iter_read_stamp(iter
, event
);
3802 iter
->head
+= length
;
3804 /* check for end of page padding */
3805 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3806 (iter
->head_page
!= cpu_buffer
->commit_page
))
3810 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3812 return cpu_buffer
->lost_events
;
3815 static struct ring_buffer_event
*
3816 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3817 unsigned long *lost_events
)
3819 struct ring_buffer_event
*event
;
3820 struct buffer_page
*reader
;
3827 * We repeat when a time extend is encountered.
3828 * Since the time extend is always attached to a data event,
3829 * we should never loop more than once.
3830 * (We never hit the following condition more than twice).
3832 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3835 reader
= rb_get_reader_page(cpu_buffer
);
3839 event
= rb_reader_event(cpu_buffer
);
3841 switch (event
->type_len
) {
3842 case RINGBUF_TYPE_PADDING
:
3843 if (rb_null_event(event
))
3844 RB_WARN_ON(cpu_buffer
, 1);
3846 * Because the writer could be discarding every
3847 * event it creates (which would probably be bad)
3848 * if we were to go back to "again" then we may never
3849 * catch up, and will trigger the warn on, or lock
3850 * the box. Return the padding, and we will release
3851 * the current locks, and try again.
3855 case RINGBUF_TYPE_TIME_EXTEND
:
3856 /* Internal data, OK to advance */
3857 rb_advance_reader(cpu_buffer
);
3860 case RINGBUF_TYPE_TIME_STAMP
:
3862 *ts
= ring_buffer_event_time_stamp(event
);
3863 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3864 cpu_buffer
->cpu
, ts
);
3866 /* Internal data, OK to advance */
3867 rb_advance_reader(cpu_buffer
);
3870 case RINGBUF_TYPE_DATA
:
3872 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3873 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3874 cpu_buffer
->cpu
, ts
);
3877 *lost_events
= rb_lost_events(cpu_buffer
);
3886 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3888 static struct ring_buffer_event
*
3889 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3891 struct ring_buffer
*buffer
;
3892 struct ring_buffer_per_cpu
*cpu_buffer
;
3893 struct ring_buffer_event
*event
;
3899 cpu_buffer
= iter
->cpu_buffer
;
3900 buffer
= cpu_buffer
->buffer
;
3903 * Check if someone performed a consuming read to
3904 * the buffer. A consuming read invalidates the iterator
3905 * and we need to reset the iterator in this case.
3907 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3908 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3909 rb_iter_reset(iter
);
3912 if (ring_buffer_iter_empty(iter
))
3916 * We repeat when a time extend is encountered or we hit
3917 * the end of the page. Since the time extend is always attached
3918 * to a data event, we should never loop more than three times.
3919 * Once for going to next page, once on time extend, and
3920 * finally once to get the event.
3921 * (We never hit the following condition more than thrice).
3923 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3926 if (rb_per_cpu_empty(cpu_buffer
))
3929 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3934 event
= rb_iter_head_event(iter
);
3936 switch (event
->type_len
) {
3937 case RINGBUF_TYPE_PADDING
:
3938 if (rb_null_event(event
)) {
3942 rb_advance_iter(iter
);
3945 case RINGBUF_TYPE_TIME_EXTEND
:
3946 /* Internal data, OK to advance */
3947 rb_advance_iter(iter
);
3950 case RINGBUF_TYPE_TIME_STAMP
:
3952 *ts
= ring_buffer_event_time_stamp(event
);
3953 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3954 cpu_buffer
->cpu
, ts
);
3956 /* Internal data, OK to advance */
3957 rb_advance_iter(iter
);
3960 case RINGBUF_TYPE_DATA
:
3962 *ts
= iter
->read_stamp
+ event
->time_delta
;
3963 ring_buffer_normalize_time_stamp(buffer
,
3964 cpu_buffer
->cpu
, ts
);
3974 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3976 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
3978 if (likely(!in_nmi())) {
3979 raw_spin_lock(&cpu_buffer
->reader_lock
);
3984 * If an NMI die dumps out the content of the ring buffer
3985 * trylock must be used to prevent a deadlock if the NMI
3986 * preempted a task that holds the ring buffer locks. If
3987 * we get the lock then all is fine, if not, then continue
3988 * to do the read, but this can corrupt the ring buffer,
3989 * so it must be permanently disabled from future writes.
3990 * Reading from NMI is a oneshot deal.
3992 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
3995 /* Continue without locking, but disable the ring buffer */
3996 atomic_inc(&cpu_buffer
->record_disabled
);
4001 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
4004 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4009 * ring_buffer_peek - peek at the next event to be read
4010 * @buffer: The ring buffer to read
4011 * @cpu: The cpu to peak at
4012 * @ts: The timestamp counter of this event.
4013 * @lost_events: a variable to store if events were lost (may be NULL)
4015 * This will return the event that will be read next, but does
4016 * not consume the data.
4018 struct ring_buffer_event
*
4019 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
4020 unsigned long *lost_events
)
4022 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4023 struct ring_buffer_event
*event
;
4024 unsigned long flags
;
4027 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4031 local_irq_save(flags
);
4032 dolock
= rb_reader_lock(cpu_buffer
);
4033 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4034 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4035 rb_advance_reader(cpu_buffer
);
4036 rb_reader_unlock(cpu_buffer
, dolock
);
4037 local_irq_restore(flags
);
4039 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4046 * ring_buffer_iter_peek - peek at the next event to be read
4047 * @iter: The ring buffer iterator
4048 * @ts: The timestamp counter of this event.
4050 * This will return the event that will be read next, but does
4051 * not increment the iterator.
4053 struct ring_buffer_event
*
4054 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
4056 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4057 struct ring_buffer_event
*event
;
4058 unsigned long flags
;
4061 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4062 event
= rb_iter_peek(iter
, ts
);
4063 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4065 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4072 * ring_buffer_consume - return an event and consume it
4073 * @buffer: The ring buffer to get the next event from
4074 * @cpu: the cpu to read the buffer from
4075 * @ts: a variable to store the timestamp (may be NULL)
4076 * @lost_events: a variable to store if events were lost (may be NULL)
4078 * Returns the next event in the ring buffer, and that event is consumed.
4079 * Meaning, that sequential reads will keep returning a different event,
4080 * and eventually empty the ring buffer if the producer is slower.
4082 struct ring_buffer_event
*
4083 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
4084 unsigned long *lost_events
)
4086 struct ring_buffer_per_cpu
*cpu_buffer
;
4087 struct ring_buffer_event
*event
= NULL
;
4088 unsigned long flags
;
4092 /* might be called in atomic */
4095 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4098 cpu_buffer
= buffer
->buffers
[cpu
];
4099 local_irq_save(flags
);
4100 dolock
= rb_reader_lock(cpu_buffer
);
4102 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4104 cpu_buffer
->lost_events
= 0;
4105 rb_advance_reader(cpu_buffer
);
4108 rb_reader_unlock(cpu_buffer
, dolock
);
4109 local_irq_restore(flags
);
4114 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4119 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
4122 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4123 * @buffer: The ring buffer to read from
4124 * @cpu: The cpu buffer to iterate over
4126 * This performs the initial preparations necessary to iterate
4127 * through the buffer. Memory is allocated, buffer recording
4128 * is disabled, and the iterator pointer is returned to the caller.
4130 * Disabling buffer recordng prevents the reading from being
4131 * corrupted. This is not a consuming read, so a producer is not
4134 * After a sequence of ring_buffer_read_prepare calls, the user is
4135 * expected to make at least one call to ring_buffer_read_prepare_sync.
4136 * Afterwards, ring_buffer_read_start is invoked to get things going
4139 * This overall must be paired with ring_buffer_read_finish.
4141 struct ring_buffer_iter
*
4142 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
4144 struct ring_buffer_per_cpu
*cpu_buffer
;
4145 struct ring_buffer_iter
*iter
;
4147 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4150 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
4154 cpu_buffer
= buffer
->buffers
[cpu
];
4156 iter
->cpu_buffer
= cpu_buffer
;
4158 atomic_inc(&buffer
->resize_disabled
);
4159 atomic_inc(&cpu_buffer
->record_disabled
);
4163 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4166 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4168 * All previously invoked ring_buffer_read_prepare calls to prepare
4169 * iterators will be synchronized. Afterwards, read_buffer_read_start
4170 * calls on those iterators are allowed.
4173 ring_buffer_read_prepare_sync(void)
4175 synchronize_sched();
4177 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4180 * ring_buffer_read_start - start a non consuming read of the buffer
4181 * @iter: The iterator returned by ring_buffer_read_prepare
4183 * This finalizes the startup of an iteration through the buffer.
4184 * The iterator comes from a call to ring_buffer_read_prepare and
4185 * an intervening ring_buffer_read_prepare_sync must have been
4188 * Must be paired with ring_buffer_read_finish.
4191 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4193 struct ring_buffer_per_cpu
*cpu_buffer
;
4194 unsigned long flags
;
4199 cpu_buffer
= iter
->cpu_buffer
;
4201 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4202 arch_spin_lock(&cpu_buffer
->lock
);
4203 rb_iter_reset(iter
);
4204 arch_spin_unlock(&cpu_buffer
->lock
);
4205 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4207 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4210 * ring_buffer_read_finish - finish reading the iterator of the buffer
4211 * @iter: The iterator retrieved by ring_buffer_start
4213 * This re-enables the recording to the buffer, and frees the
4217 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4219 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4220 unsigned long flags
;
4223 * Ring buffer is disabled from recording, here's a good place
4224 * to check the integrity of the ring buffer.
4225 * Must prevent readers from trying to read, as the check
4226 * clears the HEAD page and readers require it.
4228 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4229 rb_check_pages(cpu_buffer
);
4230 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4232 atomic_dec(&cpu_buffer
->record_disabled
);
4233 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4236 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4239 * ring_buffer_read - read the next item in the ring buffer by the iterator
4240 * @iter: The ring buffer iterator
4241 * @ts: The time stamp of the event read.
4243 * This reads the next event in the ring buffer and increments the iterator.
4245 struct ring_buffer_event
*
4246 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4248 struct ring_buffer_event
*event
;
4249 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4250 unsigned long flags
;
4252 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4254 event
= rb_iter_peek(iter
, ts
);
4258 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4261 rb_advance_iter(iter
);
4263 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4267 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4270 * ring_buffer_size - return the size of the ring buffer (in bytes)
4271 * @buffer: The ring buffer.
4273 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4276 * Earlier, this method returned
4277 * BUF_PAGE_SIZE * buffer->nr_pages
4278 * Since the nr_pages field is now removed, we have converted this to
4279 * return the per cpu buffer value.
4281 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4284 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4286 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4289 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4291 rb_head_page_deactivate(cpu_buffer
);
4293 cpu_buffer
->head_page
4294 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4295 local_set(&cpu_buffer
->head_page
->write
, 0);
4296 local_set(&cpu_buffer
->head_page
->entries
, 0);
4297 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4299 cpu_buffer
->head_page
->read
= 0;
4301 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4302 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4304 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4305 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4306 local_set(&cpu_buffer
->reader_page
->write
, 0);
4307 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4308 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4309 cpu_buffer
->reader_page
->read
= 0;
4311 local_set(&cpu_buffer
->entries_bytes
, 0);
4312 local_set(&cpu_buffer
->overrun
, 0);
4313 local_set(&cpu_buffer
->commit_overrun
, 0);
4314 local_set(&cpu_buffer
->dropped_events
, 0);
4315 local_set(&cpu_buffer
->entries
, 0);
4316 local_set(&cpu_buffer
->committing
, 0);
4317 local_set(&cpu_buffer
->commits
, 0);
4318 cpu_buffer
->read
= 0;
4319 cpu_buffer
->read_bytes
= 0;
4321 cpu_buffer
->write_stamp
= 0;
4322 cpu_buffer
->read_stamp
= 0;
4324 cpu_buffer
->lost_events
= 0;
4325 cpu_buffer
->last_overrun
= 0;
4327 rb_head_page_activate(cpu_buffer
);
4331 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4332 * @buffer: The ring buffer to reset a per cpu buffer of
4333 * @cpu: The CPU buffer to be reset
4335 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4337 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4338 unsigned long flags
;
4340 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4343 atomic_inc(&buffer
->resize_disabled
);
4344 atomic_inc(&cpu_buffer
->record_disabled
);
4346 /* Make sure all commits have finished */
4347 synchronize_sched();
4349 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4351 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4354 arch_spin_lock(&cpu_buffer
->lock
);
4356 rb_reset_cpu(cpu_buffer
);
4358 arch_spin_unlock(&cpu_buffer
->lock
);
4361 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4363 atomic_dec(&cpu_buffer
->record_disabled
);
4364 atomic_dec(&buffer
->resize_disabled
);
4366 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4369 * ring_buffer_reset - reset a ring buffer
4370 * @buffer: The ring buffer to reset all cpu buffers
4372 void ring_buffer_reset(struct ring_buffer
*buffer
)
4376 for_each_buffer_cpu(buffer
, cpu
)
4377 ring_buffer_reset_cpu(buffer
, cpu
);
4379 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4382 * rind_buffer_empty - is the ring buffer empty?
4383 * @buffer: The ring buffer to test
4385 bool ring_buffer_empty(struct ring_buffer
*buffer
)
4387 struct ring_buffer_per_cpu
*cpu_buffer
;
4388 unsigned long flags
;
4393 /* yes this is racy, but if you don't like the race, lock the buffer */
4394 for_each_buffer_cpu(buffer
, cpu
) {
4395 cpu_buffer
= buffer
->buffers
[cpu
];
4396 local_irq_save(flags
);
4397 dolock
= rb_reader_lock(cpu_buffer
);
4398 ret
= rb_per_cpu_empty(cpu_buffer
);
4399 rb_reader_unlock(cpu_buffer
, dolock
);
4400 local_irq_restore(flags
);
4408 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4411 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4412 * @buffer: The ring buffer
4413 * @cpu: The CPU buffer to test
4415 bool ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4417 struct ring_buffer_per_cpu
*cpu_buffer
;
4418 unsigned long flags
;
4422 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4425 cpu_buffer
= buffer
->buffers
[cpu
];
4426 local_irq_save(flags
);
4427 dolock
= rb_reader_lock(cpu_buffer
);
4428 ret
= rb_per_cpu_empty(cpu_buffer
);
4429 rb_reader_unlock(cpu_buffer
, dolock
);
4430 local_irq_restore(flags
);
4434 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4436 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4438 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4439 * @buffer_a: One buffer to swap with
4440 * @buffer_b: The other buffer to swap with
4442 * This function is useful for tracers that want to take a "snapshot"
4443 * of a CPU buffer and has another back up buffer lying around.
4444 * it is expected that the tracer handles the cpu buffer not being
4445 * used at the moment.
4447 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4448 struct ring_buffer
*buffer_b
, int cpu
)
4450 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4451 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4454 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4455 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4458 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4459 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4461 /* At least make sure the two buffers are somewhat the same */
4462 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4467 if (atomic_read(&buffer_a
->record_disabled
))
4470 if (atomic_read(&buffer_b
->record_disabled
))
4473 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4476 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4480 * We can't do a synchronize_sched here because this
4481 * function can be called in atomic context.
4482 * Normally this will be called from the same CPU as cpu.
4483 * If not it's up to the caller to protect this.
4485 atomic_inc(&cpu_buffer_a
->record_disabled
);
4486 atomic_inc(&cpu_buffer_b
->record_disabled
);
4489 if (local_read(&cpu_buffer_a
->committing
))
4491 if (local_read(&cpu_buffer_b
->committing
))
4494 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4495 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4497 cpu_buffer_b
->buffer
= buffer_a
;
4498 cpu_buffer_a
->buffer
= buffer_b
;
4503 atomic_dec(&cpu_buffer_a
->record_disabled
);
4504 atomic_dec(&cpu_buffer_b
->record_disabled
);
4508 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4509 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4512 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4513 * @buffer: the buffer to allocate for.
4514 * @cpu: the cpu buffer to allocate.
4516 * This function is used in conjunction with ring_buffer_read_page.
4517 * When reading a full page from the ring buffer, these functions
4518 * can be used to speed up the process. The calling function should
4519 * allocate a few pages first with this function. Then when it
4520 * needs to get pages from the ring buffer, it passes the result
4521 * of this function into ring_buffer_read_page, which will swap
4522 * the page that was allocated, with the read page of the buffer.
4525 * The page allocated, or ERR_PTR
4527 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4529 struct ring_buffer_per_cpu
*cpu_buffer
;
4530 struct buffer_data_page
*bpage
= NULL
;
4531 unsigned long flags
;
4534 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4535 return ERR_PTR(-ENODEV
);
4537 cpu_buffer
= buffer
->buffers
[cpu
];
4538 local_irq_save(flags
);
4539 arch_spin_lock(&cpu_buffer
->lock
);
4541 if (cpu_buffer
->free_page
) {
4542 bpage
= cpu_buffer
->free_page
;
4543 cpu_buffer
->free_page
= NULL
;
4546 arch_spin_unlock(&cpu_buffer
->lock
);
4547 local_irq_restore(flags
);
4552 page
= alloc_pages_node(cpu_to_node(cpu
),
4553 GFP_KERNEL
| __GFP_NORETRY
, 0);
4555 return ERR_PTR(-ENOMEM
);
4557 bpage
= page_address(page
);
4560 rb_init_page(bpage
);
4564 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4567 * ring_buffer_free_read_page - free an allocated read page
4568 * @buffer: the buffer the page was allocate for
4569 * @cpu: the cpu buffer the page came from
4570 * @data: the page to free
4572 * Free a page allocated from ring_buffer_alloc_read_page.
4574 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, int cpu
, void *data
)
4576 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4577 struct buffer_data_page
*bpage
= data
;
4578 struct page
*page
= virt_to_page(bpage
);
4579 unsigned long flags
;
4581 /* If the page is still in use someplace else, we can't reuse it */
4582 if (page_ref_count(page
) > 1)
4585 local_irq_save(flags
);
4586 arch_spin_lock(&cpu_buffer
->lock
);
4588 if (!cpu_buffer
->free_page
) {
4589 cpu_buffer
->free_page
= bpage
;
4593 arch_spin_unlock(&cpu_buffer
->lock
);
4594 local_irq_restore(flags
);
4597 free_page((unsigned long)bpage
);
4599 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4602 * ring_buffer_read_page - extract a page from the ring buffer
4603 * @buffer: buffer to extract from
4604 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4605 * @len: amount to extract
4606 * @cpu: the cpu of the buffer to extract
4607 * @full: should the extraction only happen when the page is full.
4609 * This function will pull out a page from the ring buffer and consume it.
4610 * @data_page must be the address of the variable that was returned
4611 * from ring_buffer_alloc_read_page. This is because the page might be used
4612 * to swap with a page in the ring buffer.
4615 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4616 * if (IS_ERR(rpage))
4617 * return PTR_ERR(rpage);
4618 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4620 * process_page(rpage, ret);
4622 * When @full is set, the function will not return true unless
4623 * the writer is off the reader page.
4625 * Note: it is up to the calling functions to handle sleeps and wakeups.
4626 * The ring buffer can be used anywhere in the kernel and can not
4627 * blindly call wake_up. The layer that uses the ring buffer must be
4628 * responsible for that.
4631 * >=0 if data has been transferred, returns the offset of consumed data.
4632 * <0 if no data has been transferred.
4634 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4635 void **data_page
, size_t len
, int cpu
, int full
)
4637 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4638 struct ring_buffer_event
*event
;
4639 struct buffer_data_page
*bpage
;
4640 struct buffer_page
*reader
;
4641 unsigned long missed_events
;
4642 unsigned long flags
;
4643 unsigned int commit
;
4648 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4652 * If len is not big enough to hold the page header, then
4653 * we can not copy anything.
4655 if (len
<= BUF_PAGE_HDR_SIZE
)
4658 len
-= BUF_PAGE_HDR_SIZE
;
4667 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4669 reader
= rb_get_reader_page(cpu_buffer
);
4673 event
= rb_reader_event(cpu_buffer
);
4675 read
= reader
->read
;
4676 commit
= rb_page_commit(reader
);
4678 /* Check if any events were dropped */
4679 missed_events
= cpu_buffer
->lost_events
;
4682 * If this page has been partially read or
4683 * if len is not big enough to read the rest of the page or
4684 * a writer is still on the page, then
4685 * we must copy the data from the page to the buffer.
4686 * Otherwise, we can simply swap the page with the one passed in.
4688 if (read
|| (len
< (commit
- read
)) ||
4689 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4690 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4691 unsigned int rpos
= read
;
4692 unsigned int pos
= 0;
4698 if (len
> (commit
- read
))
4699 len
= (commit
- read
);
4701 /* Always keep the time extend and data together */
4702 size
= rb_event_ts_length(event
);
4707 /* save the current timestamp, since the user will need it */
4708 save_timestamp
= cpu_buffer
->read_stamp
;
4710 /* Need to copy one event at a time */
4712 /* We need the size of one event, because
4713 * rb_advance_reader only advances by one event,
4714 * whereas rb_event_ts_length may include the size of
4715 * one or two events.
4716 * We have already ensured there's enough space if this
4717 * is a time extend. */
4718 size
= rb_event_length(event
);
4719 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4723 rb_advance_reader(cpu_buffer
);
4724 rpos
= reader
->read
;
4730 event
= rb_reader_event(cpu_buffer
);
4731 /* Always keep the time extend and data together */
4732 size
= rb_event_ts_length(event
);
4733 } while (len
>= size
);
4736 local_set(&bpage
->commit
, pos
);
4737 bpage
->time_stamp
= save_timestamp
;
4739 /* we copied everything to the beginning */
4742 /* update the entry counter */
4743 cpu_buffer
->read
+= rb_page_entries(reader
);
4744 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4746 /* swap the pages */
4747 rb_init_page(bpage
);
4748 bpage
= reader
->page
;
4749 reader
->page
= *data_page
;
4750 local_set(&reader
->write
, 0);
4751 local_set(&reader
->entries
, 0);
4756 * Use the real_end for the data size,
4757 * This gives us a chance to store the lost events
4760 if (reader
->real_end
)
4761 local_set(&bpage
->commit
, reader
->real_end
);
4765 cpu_buffer
->lost_events
= 0;
4767 commit
= local_read(&bpage
->commit
);
4769 * Set a flag in the commit field if we lost events
4771 if (missed_events
) {
4772 /* If there is room at the end of the page to save the
4773 * missed events, then record it there.
4775 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4776 memcpy(&bpage
->data
[commit
], &missed_events
,
4777 sizeof(missed_events
));
4778 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4779 commit
+= sizeof(missed_events
);
4781 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4785 * This page may be off to user land. Zero it out here.
4787 if (commit
< BUF_PAGE_SIZE
)
4788 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4791 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4796 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4799 * We only allocate new buffers, never free them if the CPU goes down.
4800 * If we were to free the buffer, then the user would lose any trace that was in
4803 int trace_rb_cpu_prepare(unsigned int cpu
, struct hlist_node
*node
)
4805 struct ring_buffer
*buffer
;
4808 unsigned long nr_pages
;
4810 buffer
= container_of(node
, struct ring_buffer
, node
);
4811 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4816 /* check if all cpu sizes are same */
4817 for_each_buffer_cpu(buffer
, cpu_i
) {
4818 /* fill in the size from first enabled cpu */
4820 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4821 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4826 /* allocate minimum pages, user can later expand it */
4829 buffer
->buffers
[cpu
] =
4830 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4831 if (!buffer
->buffers
[cpu
]) {
4832 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4837 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4841 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4843 * This is a basic integrity check of the ring buffer.
4844 * Late in the boot cycle this test will run when configured in.
4845 * It will kick off a thread per CPU that will go into a loop
4846 * writing to the per cpu ring buffer various sizes of data.
4847 * Some of the data will be large items, some small.
4849 * Another thread is created that goes into a spin, sending out
4850 * IPIs to the other CPUs to also write into the ring buffer.
4851 * this is to test the nesting ability of the buffer.
4853 * Basic stats are recorded and reported. If something in the
4854 * ring buffer should happen that's not expected, a big warning
4855 * is displayed and all ring buffers are disabled.
4857 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4859 struct rb_test_data
{
4860 struct ring_buffer
*buffer
;
4861 unsigned long events
;
4862 unsigned long bytes_written
;
4863 unsigned long bytes_alloc
;
4864 unsigned long bytes_dropped
;
4865 unsigned long events_nested
;
4866 unsigned long bytes_written_nested
;
4867 unsigned long bytes_alloc_nested
;
4868 unsigned long bytes_dropped_nested
;
4869 int min_size_nested
;
4870 int max_size_nested
;
4877 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4880 #define RB_TEST_BUFFER_SIZE 1048576
4882 static char rb_string
[] __initdata
=
4883 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4884 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4885 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4887 static bool rb_test_started __initdata
;
4894 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4896 struct ring_buffer_event
*event
;
4897 struct rb_item
*item
;
4904 /* Have nested writes different that what is written */
4905 cnt
= data
->cnt
+ (nested
? 27 : 0);
4907 /* Multiply cnt by ~e, to make some unique increment */
4908 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4910 len
= size
+ sizeof(struct rb_item
);
4912 started
= rb_test_started
;
4913 /* read rb_test_started before checking buffer enabled */
4916 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4918 /* Ignore dropped events before test starts. */
4921 data
->bytes_dropped
+= len
;
4923 data
->bytes_dropped_nested
+= len
;
4928 event_len
= ring_buffer_event_length(event
);
4930 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4933 item
= ring_buffer_event_data(event
);
4935 memcpy(item
->str
, rb_string
, size
);
4938 data
->bytes_alloc_nested
+= event_len
;
4939 data
->bytes_written_nested
+= len
;
4940 data
->events_nested
++;
4941 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4942 data
->min_size_nested
= len
;
4943 if (len
> data
->max_size_nested
)
4944 data
->max_size_nested
= len
;
4946 data
->bytes_alloc
+= event_len
;
4947 data
->bytes_written
+= len
;
4949 if (!data
->min_size
|| len
< data
->min_size
)
4950 data
->max_size
= len
;
4951 if (len
> data
->max_size
)
4952 data
->max_size
= len
;
4956 ring_buffer_unlock_commit(data
->buffer
, event
);
4961 static __init
int rb_test(void *arg
)
4963 struct rb_test_data
*data
= arg
;
4965 while (!kthread_should_stop()) {
4966 rb_write_something(data
, false);
4969 set_current_state(TASK_INTERRUPTIBLE
);
4970 /* Now sleep between a min of 100-300us and a max of 1ms */
4971 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4977 static __init
void rb_ipi(void *ignore
)
4979 struct rb_test_data
*data
;
4980 int cpu
= smp_processor_id();
4982 data
= &rb_data
[cpu
];
4983 rb_write_something(data
, true);
4986 static __init
int rb_hammer_test(void *arg
)
4988 while (!kthread_should_stop()) {
4990 /* Send an IPI to all cpus to write data! */
4991 smp_call_function(rb_ipi
, NULL
, 1);
4992 /* No sleep, but for non preempt, let others run */
4999 static __init
int test_ringbuffer(void)
5001 struct task_struct
*rb_hammer
;
5002 struct ring_buffer
*buffer
;
5006 pr_info("Running ring buffer tests...\n");
5008 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
5009 if (WARN_ON(!buffer
))
5012 /* Disable buffer so that threads can't write to it yet */
5013 ring_buffer_record_off(buffer
);
5015 for_each_online_cpu(cpu
) {
5016 rb_data
[cpu
].buffer
= buffer
;
5017 rb_data
[cpu
].cpu
= cpu
;
5018 rb_data
[cpu
].cnt
= cpu
;
5019 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
5020 "rbtester/%d", cpu
);
5021 if (WARN_ON(IS_ERR(rb_threads
[cpu
]))) {
5022 pr_cont("FAILED\n");
5023 ret
= PTR_ERR(rb_threads
[cpu
]);
5027 kthread_bind(rb_threads
[cpu
], cpu
);
5028 wake_up_process(rb_threads
[cpu
]);
5031 /* Now create the rb hammer! */
5032 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
5033 if (WARN_ON(IS_ERR(rb_hammer
))) {
5034 pr_cont("FAILED\n");
5035 ret
= PTR_ERR(rb_hammer
);
5039 ring_buffer_record_on(buffer
);
5041 * Show buffer is enabled before setting rb_test_started.
5042 * Yes there's a small race window where events could be
5043 * dropped and the thread wont catch it. But when a ring
5044 * buffer gets enabled, there will always be some kind of
5045 * delay before other CPUs see it. Thus, we don't care about
5046 * those dropped events. We care about events dropped after
5047 * the threads see that the buffer is active.
5050 rb_test_started
= true;
5052 set_current_state(TASK_INTERRUPTIBLE
);
5053 /* Just run for 10 seconds */;
5054 schedule_timeout(10 * HZ
);
5056 kthread_stop(rb_hammer
);
5059 for_each_online_cpu(cpu
) {
5060 if (!rb_threads
[cpu
])
5062 kthread_stop(rb_threads
[cpu
]);
5065 ring_buffer_free(buffer
);
5070 pr_info("finished\n");
5071 for_each_online_cpu(cpu
) {
5072 struct ring_buffer_event
*event
;
5073 struct rb_test_data
*data
= &rb_data
[cpu
];
5074 struct rb_item
*item
;
5075 unsigned long total_events
;
5076 unsigned long total_dropped
;
5077 unsigned long total_written
;
5078 unsigned long total_alloc
;
5079 unsigned long total_read
= 0;
5080 unsigned long total_size
= 0;
5081 unsigned long total_len
= 0;
5082 unsigned long total_lost
= 0;
5085 int small_event_size
;
5089 total_events
= data
->events
+ data
->events_nested
;
5090 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
5091 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
5092 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
5094 big_event_size
= data
->max_size
+ data
->max_size_nested
;
5095 small_event_size
= data
->min_size
+ data
->min_size_nested
;
5097 pr_info("CPU %d:\n", cpu
);
5098 pr_info(" events: %ld\n", total_events
);
5099 pr_info(" dropped bytes: %ld\n", total_dropped
);
5100 pr_info(" alloced bytes: %ld\n", total_alloc
);
5101 pr_info(" written bytes: %ld\n", total_written
);
5102 pr_info(" biggest event: %d\n", big_event_size
);
5103 pr_info(" smallest event: %d\n", small_event_size
);
5105 if (RB_WARN_ON(buffer
, total_dropped
))
5110 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
5112 item
= ring_buffer_event_data(event
);
5113 total_len
+= ring_buffer_event_length(event
);
5114 total_size
+= item
->size
+ sizeof(struct rb_item
);
5115 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
5116 pr_info("FAILED!\n");
5117 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
5118 pr_info("expected: %.*s\n", item
->size
, rb_string
);
5119 RB_WARN_ON(buffer
, 1);
5130 pr_info(" read events: %ld\n", total_read
);
5131 pr_info(" lost events: %ld\n", total_lost
);
5132 pr_info(" total events: %ld\n", total_lost
+ total_read
);
5133 pr_info(" recorded len bytes: %ld\n", total_len
);
5134 pr_info(" recorded size bytes: %ld\n", total_size
);
5136 pr_info(" With dropped events, record len and size may not match\n"
5137 " alloced and written from above\n");
5139 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
5140 total_size
!= total_written
))
5143 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
5149 pr_info("Ring buffer PASSED!\n");
5151 ring_buffer_free(buffer
);
5155 late_initcall(test_ringbuffer
);
5156 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */