2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
8 * This software is available to you under a choice of one of two
9 * licenses. You may choose to be licensed under the terms of the GNU
10 * General Public License (GPL) Version 2, available from the file
11 * COPYING in the main directory of this source tree, or the
12 * OpenIB.org BSD license below:
14 * Redistribution and use in source and binary forms, with or
15 * without modification, are permitted provided that the following
18 * - Redistributions of source code must retain the above
19 * copyright notice, this list of conditions and the following
22 * - Redistributions in binary form must reproduce the above
23 * copyright notice, this list of conditions and the following
24 * disclaimer in the documentation and/or other materials
25 * provided with the distribution.
27 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
28 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
29 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
30 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
31 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
32 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
33 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37 #include <linux/sched/signal.h>
38 #include <linux/module.h>
39 #include <crypto/aead.h>
41 #include <net/strparser.h>
44 #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE
46 static int tls_do_decryption(struct sock
*sk
,
47 struct scatterlist
*sgin
,
48 struct scatterlist
*sgout
,
54 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
55 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
56 struct strp_msg
*rxm
= strp_msg(skb
);
57 struct aead_request
*aead_req
;
60 unsigned int req_size
= sizeof(struct aead_request
) +
61 crypto_aead_reqsize(ctx
->aead_recv
);
63 aead_req
= kzalloc(req_size
, flags
);
67 aead_request_set_tfm(aead_req
, ctx
->aead_recv
);
68 aead_request_set_ad(aead_req
, TLS_AAD_SPACE_SIZE
);
69 aead_request_set_crypt(aead_req
, sgin
, sgout
,
70 data_len
+ tls_ctx
->rx
.tag_size
,
72 aead_request_set_callback(aead_req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
73 crypto_req_done
, &ctx
->async_wait
);
75 ret
= crypto_wait_req(crypto_aead_decrypt(aead_req
), &ctx
->async_wait
);
80 rxm
->offset
+= tls_ctx
->rx
.prepend_size
;
81 rxm
->full_len
-= tls_ctx
->rx
.overhead_size
;
82 tls_advance_record_sn(sk
, &tls_ctx
->rx
);
84 ctx
->decrypted
= true;
86 ctx
->saved_data_ready(sk
);
93 static void trim_sg(struct sock
*sk
, struct scatterlist
*sg
,
94 int *sg_num_elem
, unsigned int *sg_size
, int target_size
)
96 int i
= *sg_num_elem
- 1;
97 int trim
= *sg_size
- target_size
;
104 *sg_size
= target_size
;
105 while (trim
>= sg
[i
].length
) {
106 trim
-= sg
[i
].length
;
107 sk_mem_uncharge(sk
, sg
[i
].length
);
108 put_page(sg_page(&sg
[i
]));
115 sg
[i
].length
-= trim
;
116 sk_mem_uncharge(sk
, trim
);
119 *sg_num_elem
= i
+ 1;
122 static void trim_both_sgl(struct sock
*sk
, int target_size
)
124 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
125 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
127 trim_sg(sk
, ctx
->sg_plaintext_data
,
128 &ctx
->sg_plaintext_num_elem
,
129 &ctx
->sg_plaintext_size
,
133 target_size
+= tls_ctx
->tx
.overhead_size
;
135 trim_sg(sk
, ctx
->sg_encrypted_data
,
136 &ctx
->sg_encrypted_num_elem
,
137 &ctx
->sg_encrypted_size
,
141 static int alloc_encrypted_sg(struct sock
*sk
, int len
)
143 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
144 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
147 rc
= sk_alloc_sg(sk
, len
,
148 ctx
->sg_encrypted_data
, 0,
149 &ctx
->sg_encrypted_num_elem
,
150 &ctx
->sg_encrypted_size
, 0);
155 static int alloc_plaintext_sg(struct sock
*sk
, int len
)
157 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
158 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
161 rc
= sk_alloc_sg(sk
, len
, ctx
->sg_plaintext_data
, 0,
162 &ctx
->sg_plaintext_num_elem
, &ctx
->sg_plaintext_size
,
163 tls_ctx
->pending_open_record_frags
);
168 static void free_sg(struct sock
*sk
, struct scatterlist
*sg
,
169 int *sg_num_elem
, unsigned int *sg_size
)
171 int i
, n
= *sg_num_elem
;
173 for (i
= 0; i
< n
; ++i
) {
174 sk_mem_uncharge(sk
, sg
[i
].length
);
175 put_page(sg_page(&sg
[i
]));
181 static void tls_free_both_sg(struct sock
*sk
)
183 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
184 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
186 free_sg(sk
, ctx
->sg_encrypted_data
, &ctx
->sg_encrypted_num_elem
,
187 &ctx
->sg_encrypted_size
);
189 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
190 &ctx
->sg_plaintext_size
);
193 static int tls_do_encryption(struct tls_context
*tls_ctx
,
194 struct tls_sw_context
*ctx
, size_t data_len
,
197 unsigned int req_size
= sizeof(struct aead_request
) +
198 crypto_aead_reqsize(ctx
->aead_send
);
199 struct aead_request
*aead_req
;
202 aead_req
= kzalloc(req_size
, flags
);
206 ctx
->sg_encrypted_data
[0].offset
+= tls_ctx
->tx
.prepend_size
;
207 ctx
->sg_encrypted_data
[0].length
-= tls_ctx
->tx
.prepend_size
;
209 aead_request_set_tfm(aead_req
, ctx
->aead_send
);
210 aead_request_set_ad(aead_req
, TLS_AAD_SPACE_SIZE
);
211 aead_request_set_crypt(aead_req
, ctx
->sg_aead_in
, ctx
->sg_aead_out
,
212 data_len
, tls_ctx
->tx
.iv
);
214 aead_request_set_callback(aead_req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
215 crypto_req_done
, &ctx
->async_wait
);
217 rc
= crypto_wait_req(crypto_aead_encrypt(aead_req
), &ctx
->async_wait
);
219 ctx
->sg_encrypted_data
[0].offset
-= tls_ctx
->tx
.prepend_size
;
220 ctx
->sg_encrypted_data
[0].length
+= tls_ctx
->tx
.prepend_size
;
226 static int tls_push_record(struct sock
*sk
, int flags
,
227 unsigned char record_type
)
229 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
230 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
233 sg_mark_end(ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
- 1);
234 sg_mark_end(ctx
->sg_encrypted_data
+ ctx
->sg_encrypted_num_elem
- 1);
236 tls_make_aad(ctx
->aad_space
, ctx
->sg_plaintext_size
,
237 tls_ctx
->tx
.rec_seq
, tls_ctx
->tx
.rec_seq_size
,
240 tls_fill_prepend(tls_ctx
,
241 page_address(sg_page(&ctx
->sg_encrypted_data
[0])) +
242 ctx
->sg_encrypted_data
[0].offset
,
243 ctx
->sg_plaintext_size
, record_type
);
245 tls_ctx
->pending_open_record_frags
= 0;
246 set_bit(TLS_PENDING_CLOSED_RECORD
, &tls_ctx
->flags
);
248 rc
= tls_do_encryption(tls_ctx
, ctx
, ctx
->sg_plaintext_size
,
251 /* If we are called from write_space and
252 * we fail, we need to set this SOCK_NOSPACE
253 * to trigger another write_space in the future.
255 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
259 free_sg(sk
, ctx
->sg_plaintext_data
, &ctx
->sg_plaintext_num_elem
,
260 &ctx
->sg_plaintext_size
);
262 ctx
->sg_encrypted_num_elem
= 0;
263 ctx
->sg_encrypted_size
= 0;
265 /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */
266 rc
= tls_push_sg(sk
, tls_ctx
, ctx
->sg_encrypted_data
, 0, flags
);
267 if (rc
< 0 && rc
!= -EAGAIN
)
268 tls_err_abort(sk
, EBADMSG
);
270 tls_advance_record_sn(sk
, &tls_ctx
->tx
);
274 static int tls_sw_push_pending_record(struct sock
*sk
, int flags
)
276 return tls_push_record(sk
, flags
, TLS_RECORD_TYPE_DATA
);
279 static int zerocopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
280 int length
, int *pages_used
,
281 unsigned int *size_used
,
282 struct scatterlist
*to
, int to_max_pages
,
285 struct page
*pages
[MAX_SKB_FRAGS
];
290 unsigned int size
= *size_used
;
291 int num_elem
= *pages_used
;
297 maxpages
= to_max_pages
- num_elem
;
302 copied
= iov_iter_get_pages(from
, pages
,
310 iov_iter_advance(from
, copied
);
315 use
= min_t(int, copied
, PAGE_SIZE
- offset
);
317 sg_set_page(&to
[num_elem
],
318 pages
[i
], use
, offset
);
319 sg_unmark_end(&to
[num_elem
]);
321 sk_mem_charge(sk
, use
);
333 *pages_used
= num_elem
;
338 static int memcopy_from_iter(struct sock
*sk
, struct iov_iter
*from
,
341 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
342 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
343 struct scatterlist
*sg
= ctx
->sg_plaintext_data
;
346 for (i
= tls_ctx
->pending_open_record_frags
;
347 i
< ctx
->sg_plaintext_num_elem
; ++i
) {
350 page_address(sg_page(&sg
[i
])) + sg
[i
].offset
,
351 copy
, from
) != copy
) {
357 ++tls_ctx
->pending_open_record_frags
;
367 int tls_sw_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
369 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
370 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
373 long timeo
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
374 bool eor
= !(msg
->msg_flags
& MSG_MORE
);
375 size_t try_to_copy
, copied
= 0;
376 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
381 if (msg
->msg_flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
))
386 if (tls_complete_pending_work(sk
, tls_ctx
, msg
->msg_flags
, &timeo
))
389 if (unlikely(msg
->msg_controllen
)) {
390 ret
= tls_proccess_cmsg(sk
, msg
, &record_type
);
395 while (msg_data_left(msg
)) {
401 orig_size
= ctx
->sg_plaintext_size
;
403 try_to_copy
= msg_data_left(msg
);
404 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
405 if (try_to_copy
>= record_room
) {
406 try_to_copy
= record_room
;
410 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
+
411 tls_ctx
->tx
.overhead_size
;
413 if (!sk_stream_memory_free(sk
))
414 goto wait_for_sndbuf
;
416 ret
= alloc_encrypted_sg(sk
, required_size
);
419 goto wait_for_memory
;
421 /* Adjust try_to_copy according to the amount that was
422 * actually allocated. The difference is due
423 * to max sg elements limit
425 try_to_copy
-= required_size
- ctx
->sg_encrypted_size
;
429 if (full_record
|| eor
) {
430 ret
= zerocopy_from_iter(sk
, &msg
->msg_iter
,
431 try_to_copy
, &ctx
->sg_plaintext_num_elem
,
432 &ctx
->sg_plaintext_size
,
433 ctx
->sg_plaintext_data
,
434 ARRAY_SIZE(ctx
->sg_plaintext_data
),
437 goto fallback_to_reg_send
;
439 copied
+= try_to_copy
;
440 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
446 copied
-= try_to_copy
;
447 fallback_to_reg_send
:
448 iov_iter_revert(&msg
->msg_iter
,
449 ctx
->sg_plaintext_size
- orig_size
);
450 trim_sg(sk
, ctx
->sg_plaintext_data
,
451 &ctx
->sg_plaintext_num_elem
,
452 &ctx
->sg_plaintext_size
,
456 required_size
= ctx
->sg_plaintext_size
+ try_to_copy
;
458 ret
= alloc_plaintext_sg(sk
, required_size
);
461 goto wait_for_memory
;
463 /* Adjust try_to_copy according to the amount that was
464 * actually allocated. The difference is due
465 * to max sg elements limit
467 try_to_copy
-= required_size
- ctx
->sg_plaintext_size
;
470 trim_sg(sk
, ctx
->sg_encrypted_data
,
471 &ctx
->sg_encrypted_num_elem
,
472 &ctx
->sg_encrypted_size
,
473 ctx
->sg_plaintext_size
+
474 tls_ctx
->tx
.overhead_size
);
477 ret
= memcopy_from_iter(sk
, &msg
->msg_iter
, try_to_copy
);
481 copied
+= try_to_copy
;
482 if (full_record
|| eor
) {
484 ret
= tls_push_record(sk
, msg
->msg_flags
, record_type
);
487 goto wait_for_memory
;
496 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
498 ret
= sk_stream_wait_memory(sk
, &timeo
);
501 trim_both_sgl(sk
, orig_size
);
505 if (tls_is_pending_closed_record(tls_ctx
))
508 if (ctx
->sg_encrypted_size
< required_size
)
509 goto alloc_encrypted
;
511 goto alloc_plaintext
;
515 ret
= sk_stream_error(sk
, msg
->msg_flags
, ret
);
518 return copied
? copied
: ret
;
521 int tls_sw_sendpage(struct sock
*sk
, struct page
*page
,
522 int offset
, size_t size
, int flags
)
524 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
525 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
527 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
529 size_t orig_size
= size
;
530 unsigned char record_type
= TLS_RECORD_TYPE_DATA
;
531 struct scatterlist
*sg
;
535 if (flags
& ~(MSG_MORE
| MSG_DONTWAIT
| MSG_NOSIGNAL
|
536 MSG_SENDPAGE_NOTLAST
))
539 /* No MSG_EOR from splice, only look at MSG_MORE */
540 eor
= !(flags
& (MSG_MORE
| MSG_SENDPAGE_NOTLAST
));
544 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
546 if (tls_complete_pending_work(sk
, tls_ctx
, flags
, &timeo
))
549 /* Call the sk_stream functions to manage the sndbuf mem. */
551 size_t copy
, required_size
;
559 record_room
= TLS_MAX_PAYLOAD_SIZE
- ctx
->sg_plaintext_size
;
561 if (copy
>= record_room
) {
565 required_size
= ctx
->sg_plaintext_size
+ copy
+
566 tls_ctx
->tx
.overhead_size
;
568 if (!sk_stream_memory_free(sk
))
569 goto wait_for_sndbuf
;
571 ret
= alloc_encrypted_sg(sk
, required_size
);
574 goto wait_for_memory
;
576 /* Adjust copy according to the amount that was
577 * actually allocated. The difference is due
578 * to max sg elements limit
580 copy
-= required_size
- ctx
->sg_plaintext_size
;
585 sg
= ctx
->sg_plaintext_data
+ ctx
->sg_plaintext_num_elem
;
586 sg_set_page(sg
, page
, copy
, offset
);
589 ctx
->sg_plaintext_num_elem
++;
591 sk_mem_charge(sk
, copy
);
594 ctx
->sg_plaintext_size
+= copy
;
595 tls_ctx
->pending_open_record_frags
= ctx
->sg_plaintext_num_elem
;
597 if (full_record
|| eor
||
598 ctx
->sg_plaintext_num_elem
==
599 ARRAY_SIZE(ctx
->sg_plaintext_data
)) {
601 ret
= tls_push_record(sk
, flags
, record_type
);
604 goto wait_for_memory
;
611 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
613 ret
= sk_stream_wait_memory(sk
, &timeo
);
615 trim_both_sgl(sk
, ctx
->sg_plaintext_size
);
619 if (tls_is_pending_closed_record(tls_ctx
))
626 if (orig_size
> size
)
627 ret
= orig_size
- size
;
629 ret
= sk_stream_error(sk
, flags
, ret
);
635 static struct sk_buff
*tls_wait_data(struct sock
*sk
, int flags
,
636 long timeo
, int *err
)
638 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
639 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
641 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
643 while (!(skb
= ctx
->recv_pkt
)) {
645 *err
= sock_error(sk
);
649 if (sock_flag(sk
, SOCK_DONE
))
652 if ((flags
& MSG_DONTWAIT
) || !timeo
) {
657 add_wait_queue(sk_sleep(sk
), &wait
);
658 sk_set_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
659 sk_wait_event(sk
, &timeo
, ctx
->recv_pkt
!= skb
, &wait
);
660 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA
, sk
);
661 remove_wait_queue(sk_sleep(sk
), &wait
);
664 if (signal_pending(current
)) {
665 *err
= sock_intr_errno(timeo
);
673 static int decrypt_skb(struct sock
*sk
, struct sk_buff
*skb
,
674 struct scatterlist
*sgout
)
676 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
677 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
678 char iv
[TLS_CIPHER_AES_GCM_128_SALT_SIZE
+ MAX_IV_SIZE
];
679 struct scatterlist sgin_arr
[MAX_SKB_FRAGS
+ 2];
680 struct scatterlist
*sgin
= &sgin_arr
[0];
681 struct strp_msg
*rxm
= strp_msg(skb
);
682 int ret
, nsg
= ARRAY_SIZE(sgin_arr
);
683 char aad_recv
[TLS_AAD_SPACE_SIZE
];
684 struct sk_buff
*unused
;
686 ret
= skb_copy_bits(skb
, rxm
->offset
+ TLS_HEADER_SIZE
,
687 iv
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
,
688 tls_ctx
->rx
.iv_size
);
692 memcpy(iv
, tls_ctx
->rx
.iv
, TLS_CIPHER_AES_GCM_128_SALT_SIZE
);
694 nsg
= skb_cow_data(skb
, 0, &unused
) + 1;
695 sgin
= kmalloc_array(nsg
, sizeof(*sgin
), sk
->sk_allocation
);
700 sg_init_table(sgin
, nsg
);
701 sg_set_buf(&sgin
[0], aad_recv
, sizeof(aad_recv
));
703 nsg
= skb_to_sgvec(skb
, &sgin
[1],
704 rxm
->offset
+ tls_ctx
->rx
.prepend_size
,
705 rxm
->full_len
- tls_ctx
->rx
.prepend_size
);
707 tls_make_aad(aad_recv
,
708 rxm
->full_len
- tls_ctx
->rx
.overhead_size
,
710 tls_ctx
->rx
.rec_seq_size
,
713 ret
= tls_do_decryption(sk
, sgin
, sgout
, iv
,
714 rxm
->full_len
- tls_ctx
->rx
.overhead_size
,
715 skb
, sk
->sk_allocation
);
717 if (sgin
!= &sgin_arr
[0])
723 static bool tls_sw_advance_skb(struct sock
*sk
, struct sk_buff
*skb
,
726 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
727 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
728 struct strp_msg
*rxm
= strp_msg(skb
);
730 if (len
< rxm
->full_len
) {
732 rxm
->full_len
-= len
;
737 /* Finished with message */
738 ctx
->recv_pkt
= NULL
;
740 strp_unpause(&ctx
->strp
);
745 int tls_sw_recvmsg(struct sock
*sk
,
752 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
753 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
754 unsigned char control
;
755 struct strp_msg
*rxm
;
764 if (unlikely(flags
& MSG_ERRQUEUE
))
765 return sock_recv_errqueue(sk
, msg
, len
, SOL_IP
, IP_RECVERR
);
769 timeo
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
774 skb
= tls_wait_data(sk
, flags
, timeo
, &err
);
782 cerr
= put_cmsg(msg
, SOL_TLS
, TLS_GET_RECORD_TYPE
,
783 sizeof(ctx
->control
), &ctx
->control
);
785 control
= ctx
->control
;
786 if (ctx
->control
!= TLS_RECORD_TYPE_DATA
) {
787 if (cerr
|| msg
->msg_flags
& MSG_CTRUNC
) {
792 } else if (control
!= ctx
->control
) {
796 if (!ctx
->decrypted
) {
800 page_count
= iov_iter_npages(&msg
->msg_iter
,
802 to_copy
= rxm
->full_len
- tls_ctx
->rx
.overhead_size
;
803 if (to_copy
<= len
&& page_count
< MAX_SKB_FRAGS
&&
804 likely(!(flags
& MSG_PEEK
))) {
805 struct scatterlist sgin
[MAX_SKB_FRAGS
+ 1];
810 sg_init_table(sgin
, MAX_SKB_FRAGS
+ 1);
811 sg_set_buf(&sgin
[0], unused
, 13);
813 err
= zerocopy_from_iter(sk
, &msg
->msg_iter
,
816 MAX_SKB_FRAGS
, false);
818 goto fallback_to_reg_recv
;
820 err
= decrypt_skb(sk
, skb
, sgin
);
821 for (; pages
> 0; pages
--)
822 put_page(sg_page(&sgin
[pages
]));
824 tls_err_abort(sk
, EBADMSG
);
828 fallback_to_reg_recv
:
829 err
= decrypt_skb(sk
, skb
, NULL
);
831 tls_err_abort(sk
, EBADMSG
);
835 ctx
->decrypted
= true;
839 chunk
= min_t(unsigned int, rxm
->full_len
, len
);
840 err
= skb_copy_datagram_msg(skb
, rxm
->offset
, msg
,
848 if (likely(!(flags
& MSG_PEEK
))) {
849 u8 control
= ctx
->control
;
851 if (tls_sw_advance_skb(sk
, skb
, chunk
)) {
852 /* Return full control message to
853 * userspace before trying to parse
854 * another message type
856 msg
->msg_flags
|= MSG_EOR
;
857 if (control
!= TLS_RECORD_TYPE_DATA
)
865 return copied
? : err
;
868 ssize_t
tls_sw_splice_read(struct socket
*sock
, loff_t
*ppos
,
869 struct pipe_inode_info
*pipe
,
870 size_t len
, unsigned int flags
)
872 struct tls_context
*tls_ctx
= tls_get_ctx(sock
->sk
);
873 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
874 struct strp_msg
*rxm
= NULL
;
875 struct sock
*sk
= sock
->sk
;
884 timeo
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
886 skb
= tls_wait_data(sk
, flags
, timeo
, &err
);
888 goto splice_read_end
;
890 /* splice does not support reading control messages */
891 if (ctx
->control
!= TLS_RECORD_TYPE_DATA
) {
893 goto splice_read_end
;
896 if (!ctx
->decrypted
) {
897 err
= decrypt_skb(sk
, skb
, NULL
);
900 tls_err_abort(sk
, EBADMSG
);
901 goto splice_read_end
;
903 ctx
->decrypted
= true;
907 chunk
= min_t(unsigned int, rxm
->full_len
, len
);
908 copied
= skb_splice_bits(skb
, sk
, rxm
->offset
, pipe
, chunk
, flags
);
910 goto splice_read_end
;
912 if (likely(!(flags
& MSG_PEEK
)))
913 tls_sw_advance_skb(sk
, skb
, copied
);
917 return copied
? : err
;
920 unsigned int tls_sw_poll(struct file
*file
, struct socket
*sock
,
921 struct poll_table_struct
*wait
)
924 struct sock
*sk
= sock
->sk
;
925 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
926 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
928 /* Grab POLLOUT and POLLHUP from the underlying socket */
929 ret
= ctx
->sk_poll(file
, sock
, wait
);
931 /* Clear POLLIN bits, and set based on recv_pkt */
932 ret
&= ~(POLLIN
| POLLRDNORM
);
934 ret
|= POLLIN
| POLLRDNORM
;
939 static int tls_read_size(struct strparser
*strp
, struct sk_buff
*skb
)
941 struct tls_context
*tls_ctx
= tls_get_ctx(strp
->sk
);
942 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
943 char header
[tls_ctx
->rx
.prepend_size
];
944 struct strp_msg
*rxm
= strp_msg(skb
);
945 size_t cipher_overhead
;
949 /* Verify that we have a full TLS header, or wait for more data */
950 if (rxm
->offset
+ tls_ctx
->rx
.prepend_size
> skb
->len
)
953 /* Linearize header to local buffer */
954 ret
= skb_copy_bits(skb
, rxm
->offset
, header
, tls_ctx
->rx
.prepend_size
);
959 ctx
->control
= header
[0];
961 data_len
= ((header
[4] & 0xFF) | (header
[3] << 8));
963 cipher_overhead
= tls_ctx
->rx
.tag_size
+ tls_ctx
->rx
.iv_size
;
965 if (data_len
> TLS_MAX_PAYLOAD_SIZE
+ cipher_overhead
) {
969 if (data_len
< cipher_overhead
) {
974 if (header
[1] != TLS_VERSION_MINOR(tls_ctx
->crypto_recv
.version
) ||
975 header
[2] != TLS_VERSION_MAJOR(tls_ctx
->crypto_recv
.version
)) {
980 return data_len
+ TLS_HEADER_SIZE
;
983 tls_err_abort(strp
->sk
, ret
);
988 static void tls_queue(struct strparser
*strp
, struct sk_buff
*skb
)
990 struct tls_context
*tls_ctx
= tls_get_ctx(strp
->sk
);
991 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
992 struct strp_msg
*rxm
;
996 ctx
->decrypted
= false;
1001 strp
->sk
->sk_state_change(strp
->sk
);
1004 static void tls_data_ready(struct sock
*sk
)
1006 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
1007 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
1009 strp_data_ready(&ctx
->strp
);
1012 void tls_sw_free_resources(struct sock
*sk
)
1014 struct tls_context
*tls_ctx
= tls_get_ctx(sk
);
1015 struct tls_sw_context
*ctx
= tls_sw_ctx(tls_ctx
);
1018 crypto_free_aead(ctx
->aead_send
);
1019 if (ctx
->aead_recv
) {
1020 if (ctx
->recv_pkt
) {
1021 kfree_skb(ctx
->recv_pkt
);
1022 ctx
->recv_pkt
= NULL
;
1024 crypto_free_aead(ctx
->aead_recv
);
1025 strp_stop(&ctx
->strp
);
1026 write_lock_bh(&sk
->sk_callback_lock
);
1027 sk
->sk_data_ready
= ctx
->saved_data_ready
;
1028 write_unlock_bh(&sk
->sk_callback_lock
);
1030 strp_done(&ctx
->strp
);
1034 tls_free_both_sg(sk
);
1040 int tls_set_sw_offload(struct sock
*sk
, struct tls_context
*ctx
, int tx
)
1042 char keyval
[TLS_CIPHER_AES_GCM_128_KEY_SIZE
];
1043 struct tls_crypto_info
*crypto_info
;
1044 struct tls12_crypto_info_aes_gcm_128
*gcm_128_info
;
1045 struct tls_sw_context
*sw_ctx
;
1046 struct cipher_context
*cctx
;
1047 struct crypto_aead
**aead
;
1048 struct strp_callbacks cb
;
1049 u16 nonce_size
, tag_size
, iv_size
, rec_seq_size
;
1058 if (!ctx
->priv_ctx
) {
1059 sw_ctx
= kzalloc(sizeof(*sw_ctx
), GFP_KERNEL
);
1064 crypto_init_wait(&sw_ctx
->async_wait
);
1066 sw_ctx
= ctx
->priv_ctx
;
1069 ctx
->priv_ctx
= (struct tls_offload_context
*)sw_ctx
;
1072 crypto_info
= &ctx
->crypto_send
;
1074 aead
= &sw_ctx
->aead_send
;
1076 crypto_info
= &ctx
->crypto_recv
;
1078 aead
= &sw_ctx
->aead_recv
;
1081 switch (crypto_info
->cipher_type
) {
1082 case TLS_CIPHER_AES_GCM_128
: {
1083 nonce_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
1084 tag_size
= TLS_CIPHER_AES_GCM_128_TAG_SIZE
;
1085 iv_size
= TLS_CIPHER_AES_GCM_128_IV_SIZE
;
1086 iv
= ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->iv
;
1087 rec_seq_size
= TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE
;
1089 ((struct tls12_crypto_info_aes_gcm_128
*)crypto_info
)->rec_seq
;
1091 (struct tls12_crypto_info_aes_gcm_128
*)crypto_info
;
1099 /* Sanity-check the IV size for stack allocations. */
1100 if (iv_size
> MAX_IV_SIZE
) {
1105 cctx
->prepend_size
= TLS_HEADER_SIZE
+ nonce_size
;
1106 cctx
->tag_size
= tag_size
;
1107 cctx
->overhead_size
= cctx
->prepend_size
+ cctx
->tag_size
;
1108 cctx
->iv_size
= iv_size
;
1109 cctx
->iv
= kmalloc(iv_size
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
,
1115 memcpy(cctx
->iv
, gcm_128_info
->salt
, TLS_CIPHER_AES_GCM_128_SALT_SIZE
);
1116 memcpy(cctx
->iv
+ TLS_CIPHER_AES_GCM_128_SALT_SIZE
, iv
, iv_size
);
1117 cctx
->rec_seq_size
= rec_seq_size
;
1118 cctx
->rec_seq
= kmalloc(rec_seq_size
, GFP_KERNEL
);
1119 if (!cctx
->rec_seq
) {
1123 memcpy(cctx
->rec_seq
, rec_seq
, rec_seq_size
);
1126 sg_init_table(sw_ctx
->sg_encrypted_data
,
1127 ARRAY_SIZE(sw_ctx
->sg_encrypted_data
));
1128 sg_init_table(sw_ctx
->sg_plaintext_data
,
1129 ARRAY_SIZE(sw_ctx
->sg_plaintext_data
));
1131 sg_init_table(sw_ctx
->sg_aead_in
, 2);
1132 sg_set_buf(&sw_ctx
->sg_aead_in
[0], sw_ctx
->aad_space
,
1133 sizeof(sw_ctx
->aad_space
));
1134 sg_unmark_end(&sw_ctx
->sg_aead_in
[1]);
1135 sg_chain(sw_ctx
->sg_aead_in
, 2, sw_ctx
->sg_plaintext_data
);
1136 sg_init_table(sw_ctx
->sg_aead_out
, 2);
1137 sg_set_buf(&sw_ctx
->sg_aead_out
[0], sw_ctx
->aad_space
,
1138 sizeof(sw_ctx
->aad_space
));
1139 sg_unmark_end(&sw_ctx
->sg_aead_out
[1]);
1140 sg_chain(sw_ctx
->sg_aead_out
, 2, sw_ctx
->sg_encrypted_data
);
1144 *aead
= crypto_alloc_aead("gcm(aes)", 0, 0);
1145 if (IS_ERR(*aead
)) {
1146 rc
= PTR_ERR(*aead
);
1152 ctx
->push_pending_record
= tls_sw_push_pending_record
;
1154 memcpy(keyval
, gcm_128_info
->key
, TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
1156 rc
= crypto_aead_setkey(*aead
, keyval
,
1157 TLS_CIPHER_AES_GCM_128_KEY_SIZE
);
1161 rc
= crypto_aead_setauthsize(*aead
, cctx
->tag_size
);
1166 /* Set up strparser */
1167 memset(&cb
, 0, sizeof(cb
));
1168 cb
.rcv_msg
= tls_queue
;
1169 cb
.parse_msg
= tls_read_size
;
1171 strp_init(&sw_ctx
->strp
, sk
, &cb
);
1173 write_lock_bh(&sk
->sk_callback_lock
);
1174 sw_ctx
->saved_data_ready
= sk
->sk_data_ready
;
1175 sk
->sk_data_ready
= tls_data_ready
;
1176 write_unlock_bh(&sk
->sk_callback_lock
);
1178 sw_ctx
->sk_poll
= sk
->sk_socket
->ops
->poll
;
1180 strp_check_rcv(&sw_ctx
->strp
);
1186 crypto_free_aead(*aead
);
1189 kfree(cctx
->rec_seq
);
1190 cctx
->rec_seq
= NULL
;
1195 kfree(ctx
->priv_ctx
);
1196 ctx
->priv_ctx
= NULL
;