1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
7 DEFINE_MUTEX(sched_domains_mutex
);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask
;
11 static cpumask_var_t sched_domains_tmpmask2
;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init
sched_debug_setup(char *str
)
17 sched_debug_enabled
= true;
21 early_param("sched_debug", sched_debug_setup
);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled
;
28 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
29 struct cpumask
*groupmask
)
31 struct sched_group
*group
= sd
->groups
;
33 cpumask_clear(groupmask
);
35 printk(KERN_DEBUG
"%*s domain-%d: ", level
, "", level
);
37 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
38 printk("does not load-balance\n");
40 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
44 printk(KERN_CONT
"span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
47 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
48 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
50 if (group
&& !cpumask_test_cpu(cpu
, sched_group_span(group
))) {
51 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
54 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
58 printk(KERN_ERR
"ERROR: group is NULL\n");
62 if (!cpumask_weight(sched_group_span(group
))) {
63 printk(KERN_CONT
"\n");
64 printk(KERN_ERR
"ERROR: empty group\n");
68 if (!(sd
->flags
& SD_OVERLAP
) &&
69 cpumask_intersects(groupmask
, sched_group_span(group
))) {
70 printk(KERN_CONT
"\n");
71 printk(KERN_ERR
"ERROR: repeated CPUs\n");
75 cpumask_or(groupmask
, groupmask
, sched_group_span(group
));
77 printk(KERN_CONT
" %d:{ span=%*pbl",
79 cpumask_pr_args(sched_group_span(group
)));
81 if ((sd
->flags
& SD_OVERLAP
) &&
82 !cpumask_equal(group_balance_mask(group
), sched_group_span(group
))) {
83 printk(KERN_CONT
" mask=%*pbl",
84 cpumask_pr_args(group_balance_mask(group
)));
87 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
)
88 printk(KERN_CONT
" cap=%lu", group
->sgc
->capacity
);
90 if (group
== sd
->groups
&& sd
->child
&&
91 !cpumask_equal(sched_domain_span(sd
->child
),
92 sched_group_span(group
))) {
93 printk(KERN_ERR
"ERROR: domain->groups does not match domain->child\n");
96 printk(KERN_CONT
" }");
100 if (group
!= sd
->groups
)
101 printk(KERN_CONT
",");
103 } while (group
!= sd
->groups
);
104 printk(KERN_CONT
"\n");
106 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
107 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
110 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
111 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
115 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
119 if (!sched_debug_enabled
)
123 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
127 printk(KERN_DEBUG
"CPU%d attaching sched-domain(s):\n", cpu
);
130 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
138 #else /* !CONFIG_SCHED_DEBUG */
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
146 #endif /* CONFIG_SCHED_DEBUG */
148 static int sd_degenerate(struct sched_domain
*sd
)
150 if (cpumask_weight(sched_domain_span(sd
)) == 1)
153 /* Following flags need at least 2 groups */
154 if (sd
->flags
& (SD_LOAD_BALANCE
|
158 SD_SHARE_CPUCAPACITY
|
159 SD_ASYM_CPUCAPACITY
|
160 SD_SHARE_PKG_RESOURCES
|
161 SD_SHARE_POWERDOMAIN
)) {
162 if (sd
->groups
!= sd
->groups
->next
)
166 /* Following flags don't use groups */
167 if (sd
->flags
& (SD_WAKE_AFFINE
))
174 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
176 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
178 if (sd_degenerate(parent
))
181 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent
->groups
== parent
->groups
->next
) {
186 pflags
&= ~(SD_LOAD_BALANCE
|
190 SD_ASYM_CPUCAPACITY
|
191 SD_SHARE_CPUCAPACITY
|
192 SD_SHARE_PKG_RESOURCES
|
194 SD_SHARE_POWERDOMAIN
);
195 if (nr_node_ids
== 1)
196 pflags
&= ~SD_SERIALIZE
;
198 if (~cflags
& pflags
)
204 static void free_rootdomain(struct rcu_head
*rcu
)
206 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
208 cpupri_cleanup(&rd
->cpupri
);
209 cpudl_cleanup(&rd
->cpudl
);
210 free_cpumask_var(rd
->dlo_mask
);
211 free_cpumask_var(rd
->rto_mask
);
212 free_cpumask_var(rd
->online
);
213 free_cpumask_var(rd
->span
);
217 void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
219 struct root_domain
*old_rd
= NULL
;
222 raw_spin_lock_irqsave(&rq
->lock
, flags
);
227 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
230 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
233 * If we dont want to free the old_rd yet then
234 * set old_rd to NULL to skip the freeing later
237 if (!atomic_dec_and_test(&old_rd
->refcount
))
241 atomic_inc(&rd
->refcount
);
244 cpumask_set_cpu(rq
->cpu
, rd
->span
);
245 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
248 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
251 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
254 void sched_get_rd(struct root_domain
*rd
)
256 atomic_inc(&rd
->refcount
);
259 void sched_put_rd(struct root_domain
*rd
)
261 if (!atomic_dec_and_test(&rd
->refcount
))
264 call_rcu_sched(&rd
->rcu
, free_rootdomain
);
267 static int init_rootdomain(struct root_domain
*rd
)
269 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
271 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
273 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
275 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
278 #ifdef HAVE_RT_PUSH_IPI
280 raw_spin_lock_init(&rd
->rto_lock
);
281 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
284 init_dl_bw(&rd
->dl_bw
);
285 if (cpudl_init(&rd
->cpudl
) != 0)
288 if (cpupri_init(&rd
->cpupri
) != 0)
293 cpudl_cleanup(&rd
->cpudl
);
295 free_cpumask_var(rd
->rto_mask
);
297 free_cpumask_var(rd
->dlo_mask
);
299 free_cpumask_var(rd
->online
);
301 free_cpumask_var(rd
->span
);
307 * By default the system creates a single root-domain with all CPUs as
308 * members (mimicking the global state we have today).
310 struct root_domain def_root_domain
;
312 void init_defrootdomain(void)
314 init_rootdomain(&def_root_domain
);
316 atomic_set(&def_root_domain
.refcount
, 1);
319 static struct root_domain
*alloc_rootdomain(void)
321 struct root_domain
*rd
;
323 rd
= kzalloc(sizeof(*rd
), GFP_KERNEL
);
327 if (init_rootdomain(rd
) != 0) {
335 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
337 struct sched_group
*tmp
, *first
;
346 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
349 if (atomic_dec_and_test(&sg
->ref
))
352 } while (sg
!= first
);
355 static void destroy_sched_domain(struct sched_domain
*sd
)
358 * A normal sched domain may have multiple group references, an
359 * overlapping domain, having private groups, only one. Iterate,
360 * dropping group/capacity references, freeing where none remain.
362 free_sched_groups(sd
->groups
, 1);
364 if (sd
->shared
&& atomic_dec_and_test(&sd
->shared
->ref
))
369 static void destroy_sched_domains_rcu(struct rcu_head
*rcu
)
371 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
374 struct sched_domain
*parent
= sd
->parent
;
375 destroy_sched_domain(sd
);
380 static void destroy_sched_domains(struct sched_domain
*sd
)
383 call_rcu(&sd
->rcu
, destroy_sched_domains_rcu
);
387 * Keep a special pointer to the highest sched_domain that has
388 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
389 * allows us to avoid some pointer chasing select_idle_sibling().
391 * Also keep a unique ID per domain (we use the first CPU number in
392 * the cpumask of the domain), this allows us to quickly tell if
393 * two CPUs are in the same cache domain, see cpus_share_cache().
395 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
396 DEFINE_PER_CPU(int, sd_llc_size
);
397 DEFINE_PER_CPU(int, sd_llc_id
);
398 DEFINE_PER_CPU(struct sched_domain_shared
*, sd_llc_shared
);
399 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
400 DEFINE_PER_CPU(struct sched_domain
*, sd_asym
);
401 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity
);
403 static void update_top_cache_domain(int cpu
)
405 struct sched_domain_shared
*sds
= NULL
;
406 struct sched_domain
*sd
;
410 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
412 id
= cpumask_first(sched_domain_span(sd
));
413 size
= cpumask_weight(sched_domain_span(sd
));
417 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
418 per_cpu(sd_llc_size
, cpu
) = size
;
419 per_cpu(sd_llc_id
, cpu
) = id
;
420 rcu_assign_pointer(per_cpu(sd_llc_shared
, cpu
), sds
);
422 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
423 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
425 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
426 rcu_assign_pointer(per_cpu(sd_asym
, cpu
), sd
);
430 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
431 * hold the hotplug lock.
434 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
436 struct rq
*rq
= cpu_rq(cpu
);
437 struct sched_domain
*tmp
;
439 /* Remove the sched domains which do not contribute to scheduling. */
440 for (tmp
= sd
; tmp
; ) {
441 struct sched_domain
*parent
= tmp
->parent
;
445 if (sd_parent_degenerate(tmp
, parent
)) {
446 tmp
->parent
= parent
->parent
;
448 parent
->parent
->child
= tmp
;
450 * Transfer SD_PREFER_SIBLING down in case of a
451 * degenerate parent; the spans match for this
452 * so the property transfers.
454 if (parent
->flags
& SD_PREFER_SIBLING
)
455 tmp
->flags
|= SD_PREFER_SIBLING
;
456 destroy_sched_domain(parent
);
461 if (sd
&& sd_degenerate(sd
)) {
464 destroy_sched_domain(tmp
);
469 sched_domain_debug(sd
, cpu
);
471 rq_attach_root(rq
, rd
);
473 rcu_assign_pointer(rq
->sd
, sd
);
474 dirty_sched_domain_sysctl(cpu
);
475 destroy_sched_domains(tmp
);
477 update_top_cache_domain(cpu
);
481 struct sched_domain
** __percpu sd
;
482 struct root_domain
*rd
;
493 * Return the canonical balance CPU for this group, this is the first CPU
494 * of this group that's also in the balance mask.
496 * The balance mask are all those CPUs that could actually end up at this
497 * group. See build_balance_mask().
499 * Also see should_we_balance().
501 int group_balance_cpu(struct sched_group
*sg
)
503 return cpumask_first(group_balance_mask(sg
));
508 * NUMA topology (first read the regular topology blurb below)
510 * Given a node-distance table, for example:
518 * which represents a 4 node ring topology like:
526 * We want to construct domains and groups to represent this. The way we go
527 * about doing this is to build the domains on 'hops'. For each NUMA level we
528 * construct the mask of all nodes reachable in @level hops.
530 * For the above NUMA topology that gives 3 levels:
532 * NUMA-2 0-3 0-3 0-3 0-3
533 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
535 * NUMA-1 0-1,3 0-2 1-3 0,2-3
536 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
541 * As can be seen; things don't nicely line up as with the regular topology.
542 * When we iterate a domain in child domain chunks some nodes can be
543 * represented multiple times -- hence the "overlap" naming for this part of
546 * In order to minimize this overlap, we only build enough groups to cover the
547 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
551 * - the first group of each domain is its child domain; this
552 * gets us the first 0-1,3
553 * - the only uncovered node is 2, who's child domain is 1-3.
555 * However, because of the overlap, computing a unique CPU for each group is
556 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
557 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
558 * end up at those groups (they would end up in group: 0-1,3).
560 * To correct this we have to introduce the group balance mask. This mask
561 * will contain those CPUs in the group that can reach this group given the
562 * (child) domain tree.
564 * With this we can once again compute balance_cpu and sched_group_capacity
567 * XXX include words on how balance_cpu is unique and therefore can be
568 * used for sched_group_capacity links.
571 * Another 'interesting' topology is:
579 * Which looks a little like:
587 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
590 * This leads to a few particularly weird cases where the sched_domain's are
591 * not of the same number for each CPU. Consider:
594 * groups: {0-2},{1-3} {1-3},{0-2}
596 * NUMA-1 0-2 0-3 0-3 1-3
604 * Build the balance mask; it contains only those CPUs that can arrive at this
605 * group and should be considered to continue balancing.
607 * We do this during the group creation pass, therefore the group information
608 * isn't complete yet, however since each group represents a (child) domain we
609 * can fully construct this using the sched_domain bits (which are already
613 build_balance_mask(struct sched_domain
*sd
, struct sched_group
*sg
, struct cpumask
*mask
)
615 const struct cpumask
*sg_span
= sched_group_span(sg
);
616 struct sd_data
*sdd
= sd
->private;
617 struct sched_domain
*sibling
;
622 for_each_cpu(i
, sg_span
) {
623 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
626 * Can happen in the asymmetric case, where these siblings are
627 * unused. The mask will not be empty because those CPUs that
628 * do have the top domain _should_ span the domain.
633 /* If we would not end up here, we can't continue from here */
634 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
637 cpumask_set_cpu(i
, mask
);
640 /* We must not have empty masks here */
641 WARN_ON_ONCE(cpumask_empty(mask
));
645 * XXX: This creates per-node group entries; since the load-balancer will
646 * immediately access remote memory to construct this group's load-balance
647 * statistics having the groups node local is of dubious benefit.
649 static struct sched_group
*
650 build_group_from_child_sched_domain(struct sched_domain
*sd
, int cpu
)
652 struct sched_group
*sg
;
653 struct cpumask
*sg_span
;
655 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
656 GFP_KERNEL
, cpu_to_node(cpu
));
661 sg_span
= sched_group_span(sg
);
663 cpumask_copy(sg_span
, sched_domain_span(sd
->child
));
665 cpumask_copy(sg_span
, sched_domain_span(sd
));
667 atomic_inc(&sg
->ref
);
671 static void init_overlap_sched_group(struct sched_domain
*sd
,
672 struct sched_group
*sg
)
674 struct cpumask
*mask
= sched_domains_tmpmask2
;
675 struct sd_data
*sdd
= sd
->private;
676 struct cpumask
*sg_span
;
679 build_balance_mask(sd
, sg
, mask
);
680 cpu
= cpumask_first_and(sched_group_span(sg
), mask
);
682 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
683 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
684 cpumask_copy(group_balance_mask(sg
), mask
);
686 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg
), mask
));
689 * Initialize sgc->capacity such that even if we mess up the
690 * domains and no possible iteration will get us here, we won't
693 sg_span
= sched_group_span(sg
);
694 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
695 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
696 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
700 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
702 struct sched_group
*first
= NULL
, *last
= NULL
, *sg
;
703 const struct cpumask
*span
= sched_domain_span(sd
);
704 struct cpumask
*covered
= sched_domains_tmpmask
;
705 struct sd_data
*sdd
= sd
->private;
706 struct sched_domain
*sibling
;
709 cpumask_clear(covered
);
711 for_each_cpu_wrap(i
, span
, cpu
) {
712 struct cpumask
*sg_span
;
714 if (cpumask_test_cpu(i
, covered
))
717 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
720 * Asymmetric node setups can result in situations where the
721 * domain tree is of unequal depth, make sure to skip domains
722 * that already cover the entire range.
724 * In that case build_sched_domains() will have terminated the
725 * iteration early and our sibling sd spans will be empty.
726 * Domains should always include the CPU they're built on, so
729 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
732 sg
= build_group_from_child_sched_domain(sibling
, cpu
);
736 sg_span
= sched_group_span(sg
);
737 cpumask_or(covered
, covered
, sg_span
);
739 init_overlap_sched_group(sd
, sg
);
753 free_sched_groups(first
, 0);
760 * Package topology (also see the load-balance blurb in fair.c)
762 * The scheduler builds a tree structure to represent a number of important
763 * topology features. By default (default_topology[]) these include:
765 * - Simultaneous multithreading (SMT)
766 * - Multi-Core Cache (MC)
769 * Where the last one more or less denotes everything up to a NUMA node.
771 * The tree consists of 3 primary data structures:
773 * sched_domain -> sched_group -> sched_group_capacity
777 * The sched_domains are per-CPU and have a two way link (parent & child) and
778 * denote the ever growing mask of CPUs belonging to that level of topology.
780 * Each sched_domain has a circular (double) linked list of sched_group's, each
781 * denoting the domains of the level below (or individual CPUs in case of the
782 * first domain level). The sched_group linked by a sched_domain includes the
783 * CPU of that sched_domain [*].
785 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
787 * CPU 0 1 2 3 4 5 6 7
791 * SMT [ ] [ ] [ ] [ ]
795 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
796 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
797 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
799 * CPU 0 1 2 3 4 5 6 7
801 * One way to think about it is: sched_domain moves you up and down among these
802 * topology levels, while sched_group moves you sideways through it, at child
803 * domain granularity.
805 * sched_group_capacity ensures each unique sched_group has shared storage.
807 * There are two related construction problems, both require a CPU that
808 * uniquely identify each group (for a given domain):
810 * - The first is the balance_cpu (see should_we_balance() and the
811 * load-balance blub in fair.c); for each group we only want 1 CPU to
812 * continue balancing at a higher domain.
814 * - The second is the sched_group_capacity; we want all identical groups
815 * to share a single sched_group_capacity.
817 * Since these topologies are exclusive by construction. That is, its
818 * impossible for an SMT thread to belong to multiple cores, and cores to
819 * be part of multiple caches. There is a very clear and unique location
820 * for each CPU in the hierarchy.
822 * Therefore computing a unique CPU for each group is trivial (the iteration
823 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
824 * group), we can simply pick the first CPU in each group.
827 * [*] in other words, the first group of each domain is its child domain.
830 static struct sched_group
*get_group(int cpu
, struct sd_data
*sdd
)
832 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
833 struct sched_domain
*child
= sd
->child
;
834 struct sched_group
*sg
;
837 cpu
= cpumask_first(sched_domain_span(child
));
839 sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
840 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
842 /* For claim_allocations: */
843 atomic_inc(&sg
->ref
);
844 atomic_inc(&sg
->sgc
->ref
);
847 cpumask_copy(sched_group_span(sg
), sched_domain_span(child
));
848 cpumask_copy(group_balance_mask(sg
), sched_group_span(sg
));
850 cpumask_set_cpu(cpu
, sched_group_span(sg
));
851 cpumask_set_cpu(cpu
, group_balance_mask(sg
));
854 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sched_group_span(sg
));
855 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
856 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
862 * build_sched_groups will build a circular linked list of the groups
863 * covered by the given span, and will set each group's ->cpumask correctly,
864 * and ->cpu_capacity to 0.
866 * Assumes the sched_domain tree is fully constructed
869 build_sched_groups(struct sched_domain
*sd
, int cpu
)
871 struct sched_group
*first
= NULL
, *last
= NULL
;
872 struct sd_data
*sdd
= sd
->private;
873 const struct cpumask
*span
= sched_domain_span(sd
);
874 struct cpumask
*covered
;
877 lockdep_assert_held(&sched_domains_mutex
);
878 covered
= sched_domains_tmpmask
;
880 cpumask_clear(covered
);
882 for_each_cpu_wrap(i
, span
, cpu
) {
883 struct sched_group
*sg
;
885 if (cpumask_test_cpu(i
, covered
))
888 sg
= get_group(i
, sdd
);
890 cpumask_or(covered
, covered
, sched_group_span(sg
));
905 * Initialize sched groups cpu_capacity.
907 * cpu_capacity indicates the capacity of sched group, which is used while
908 * distributing the load between different sched groups in a sched domain.
909 * Typically cpu_capacity for all the groups in a sched domain will be same
910 * unless there are asymmetries in the topology. If there are asymmetries,
911 * group having more cpu_capacity will pickup more load compared to the
912 * group having less cpu_capacity.
914 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
916 struct sched_group
*sg
= sd
->groups
;
921 int cpu
, max_cpu
= -1;
923 sg
->group_weight
= cpumask_weight(sched_group_span(sg
));
925 if (!(sd
->flags
& SD_ASYM_PACKING
))
928 for_each_cpu(cpu
, sched_group_span(sg
)) {
931 else if (sched_asym_prefer(cpu
, max_cpu
))
934 sg
->asym_prefer_cpu
= max_cpu
;
938 } while (sg
!= sd
->groups
);
940 if (cpu
!= group_balance_cpu(sg
))
943 update_group_capacity(sd
, cpu
);
947 * Initializers for schedule domains
948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
951 static int default_relax_domain_level
= -1;
952 int sched_domain_level_max
;
954 static int __init
setup_relax_domain_level(char *str
)
956 if (kstrtoint(str
, 0, &default_relax_domain_level
))
957 pr_warn("Unable to set relax_domain_level\n");
961 __setup("relax_domain_level=", setup_relax_domain_level
);
963 static void set_domain_attribute(struct sched_domain
*sd
,
964 struct sched_domain_attr
*attr
)
968 if (!attr
|| attr
->relax_domain_level
< 0) {
969 if (default_relax_domain_level
< 0)
972 request
= default_relax_domain_level
;
974 request
= attr
->relax_domain_level
;
975 if (request
< sd
->level
) {
976 /* Turn off idle balance on this domain: */
977 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
979 /* Turn on idle balance on this domain: */
980 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
984 static void __sdt_free(const struct cpumask
*cpu_map
);
985 static int __sdt_alloc(const struct cpumask
*cpu_map
);
987 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
988 const struct cpumask
*cpu_map
)
992 if (!atomic_read(&d
->rd
->refcount
))
993 free_rootdomain(&d
->rd
->rcu
);
1007 __visit_domain_allocation_hell(struct s_data
*d
, const struct cpumask
*cpu_map
)
1009 memset(d
, 0, sizeof(*d
));
1011 if (__sdt_alloc(cpu_map
))
1012 return sa_sd_storage
;
1013 d
->sd
= alloc_percpu(struct sched_domain
*);
1015 return sa_sd_storage
;
1016 d
->rd
= alloc_rootdomain();
1020 return sa_rootdomain
;
1024 * NULL the sd_data elements we've used to build the sched_domain and
1025 * sched_group structure so that the subsequent __free_domain_allocs()
1026 * will not free the data we're using.
1028 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
1030 struct sd_data
*sdd
= sd
->private;
1032 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
1033 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
1035 if (atomic_read(&(*per_cpu_ptr(sdd
->sds
, cpu
))->ref
))
1036 *per_cpu_ptr(sdd
->sds
, cpu
) = NULL
;
1038 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
1039 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
1041 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
1042 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
1046 enum numa_topology_type sched_numa_topology_type
;
1048 static int sched_domains_numa_levels
;
1049 static int sched_domains_curr_level
;
1051 int sched_max_numa_distance
;
1052 static int *sched_domains_numa_distance
;
1053 static struct cpumask
***sched_domains_numa_masks
;
1057 * SD_flags allowed in topology descriptions.
1059 * These flags are purely descriptive of the topology and do not prescribe
1060 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1063 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1064 * SD_SHARE_PKG_RESOURCES - describes shared caches
1065 * SD_NUMA - describes NUMA topologies
1066 * SD_SHARE_POWERDOMAIN - describes shared power domain
1068 * Odd one out, which beside describing the topology has a quirk also
1069 * prescribes the desired behaviour that goes along with it:
1071 * SD_ASYM_PACKING - describes SMT quirks
1073 #define TOPOLOGY_SD_FLAGS \
1074 (SD_SHARE_CPUCAPACITY | \
1075 SD_SHARE_PKG_RESOURCES | \
1078 SD_SHARE_POWERDOMAIN)
1080 static struct sched_domain
*
1081 sd_init(struct sched_domain_topology_level
*tl
,
1082 const struct cpumask
*cpu_map
,
1083 struct sched_domain
*child
, int dflags
, int cpu
)
1085 struct sd_data
*sdd
= &tl
->data
;
1086 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1087 int sd_id
, sd_weight
, sd_flags
= 0;
1091 * Ugly hack to pass state to sd_numa_mask()...
1093 sched_domains_curr_level
= tl
->numa_level
;
1096 sd_weight
= cpumask_weight(tl
->mask(cpu
));
1099 sd_flags
= (*tl
->sd_flags
)();
1100 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
1101 "wrong sd_flags in topology description\n"))
1102 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
1104 /* Apply detected topology flags */
1107 *sd
= (struct sched_domain
){
1108 .min_interval
= sd_weight
,
1109 .max_interval
= 2*sd_weight
,
1111 .imbalance_pct
= 125,
1113 .cache_nice_tries
= 0,
1120 .flags
= 1*SD_LOAD_BALANCE
1121 | 1*SD_BALANCE_NEWIDLE
1126 | 0*SD_SHARE_CPUCAPACITY
1127 | 0*SD_SHARE_PKG_RESOURCES
1129 | 1*SD_PREFER_SIBLING
1134 .last_balance
= jiffies
,
1135 .balance_interval
= sd_weight
,
1137 .max_newidle_lb_cost
= 0,
1138 .next_decay_max_lb_cost
= jiffies
,
1140 #ifdef CONFIG_SCHED_DEBUG
1145 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
1146 sd_id
= cpumask_first(sched_domain_span(sd
));
1149 * Convert topological properties into behaviour.
1152 if (sd
->flags
& SD_ASYM_CPUCAPACITY
) {
1153 struct sched_domain
*t
= sd
;
1156 * Don't attempt to spread across CPUs of different capacities.
1159 sd
->child
->flags
&= ~SD_PREFER_SIBLING
;
1161 for_each_lower_domain(t
)
1162 t
->flags
|= SD_BALANCE_WAKE
;
1165 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
1166 sd
->imbalance_pct
= 110;
1167 sd
->smt_gain
= 1178; /* ~15% */
1169 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1170 sd
->imbalance_pct
= 117;
1171 sd
->cache_nice_tries
= 1;
1175 } else if (sd
->flags
& SD_NUMA
) {
1176 sd
->cache_nice_tries
= 2;
1180 sd
->flags
&= ~SD_PREFER_SIBLING
;
1181 sd
->flags
|= SD_SERIALIZE
;
1182 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
1183 sd
->flags
&= ~(SD_BALANCE_EXEC
|
1190 sd
->cache_nice_tries
= 1;
1196 * For all levels sharing cache; connect a sched_domain_shared
1199 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1200 sd
->shared
= *per_cpu_ptr(sdd
->sds
, sd_id
);
1201 atomic_inc(&sd
->shared
->ref
);
1202 atomic_set(&sd
->shared
->nr_busy_cpus
, sd_weight
);
1211 * Topology list, bottom-up.
1213 static struct sched_domain_topology_level default_topology
[] = {
1214 #ifdef CONFIG_SCHED_SMT
1215 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
1217 #ifdef CONFIG_SCHED_MC
1218 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
1220 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
1224 static struct sched_domain_topology_level
*sched_domain_topology
=
1227 #define for_each_sd_topology(tl) \
1228 for (tl = sched_domain_topology; tl->mask; tl++)
1230 void set_sched_topology(struct sched_domain_topology_level
*tl
)
1232 if (WARN_ON_ONCE(sched_smp_initialized
))
1235 sched_domain_topology
= tl
;
1240 static const struct cpumask
*sd_numa_mask(int cpu
)
1242 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
1245 static void sched_numa_warn(const char *str
)
1247 static int done
= false;
1255 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
1257 for (i
= 0; i
< nr_node_ids
; i
++) {
1258 printk(KERN_WARNING
" ");
1259 for (j
= 0; j
< nr_node_ids
; j
++)
1260 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
1261 printk(KERN_CONT
"\n");
1263 printk(KERN_WARNING
"\n");
1266 bool find_numa_distance(int distance
)
1270 if (distance
== node_distance(0, 0))
1273 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1274 if (sched_domains_numa_distance
[i
] == distance
)
1282 * A system can have three types of NUMA topology:
1283 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1284 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1285 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1287 * The difference between a glueless mesh topology and a backplane
1288 * topology lies in whether communication between not directly
1289 * connected nodes goes through intermediary nodes (where programs
1290 * could run), or through backplane controllers. This affects
1291 * placement of programs.
1293 * The type of topology can be discerned with the following tests:
1294 * - If the maximum distance between any nodes is 1 hop, the system
1295 * is directly connected.
1296 * - If for two nodes A and B, located N > 1 hops away from each other,
1297 * there is an intermediary node C, which is < N hops away from both
1298 * nodes A and B, the system is a glueless mesh.
1300 static void init_numa_topology_type(void)
1304 n
= sched_max_numa_distance
;
1306 if (sched_domains_numa_levels
<= 2) {
1307 sched_numa_topology_type
= NUMA_DIRECT
;
1311 for_each_online_node(a
) {
1312 for_each_online_node(b
) {
1313 /* Find two nodes furthest removed from each other. */
1314 if (node_distance(a
, b
) < n
)
1317 /* Is there an intermediary node between a and b? */
1318 for_each_online_node(c
) {
1319 if (node_distance(a
, c
) < n
&&
1320 node_distance(b
, c
) < n
) {
1321 sched_numa_topology_type
=
1327 sched_numa_topology_type
= NUMA_BACKPLANE
;
1333 void sched_init_numa(void)
1335 int next_distance
, curr_distance
= node_distance(0, 0);
1336 struct sched_domain_topology_level
*tl
;
1340 sched_domains_numa_distance
= kzalloc(sizeof(int) * (nr_node_ids
+ 1), GFP_KERNEL
);
1341 if (!sched_domains_numa_distance
)
1344 /* Includes NUMA identity node at level 0. */
1345 sched_domains_numa_distance
[level
++] = curr_distance
;
1346 sched_domains_numa_levels
= level
;
1349 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1350 * unique distances in the node_distance() table.
1352 * Assumes node_distance(0,j) includes all distances in
1353 * node_distance(i,j) in order to avoid cubic time.
1355 next_distance
= curr_distance
;
1356 for (i
= 0; i
< nr_node_ids
; i
++) {
1357 for (j
= 0; j
< nr_node_ids
; j
++) {
1358 for (k
= 0; k
< nr_node_ids
; k
++) {
1359 int distance
= node_distance(i
, k
);
1361 if (distance
> curr_distance
&&
1362 (distance
< next_distance
||
1363 next_distance
== curr_distance
))
1364 next_distance
= distance
;
1367 * While not a strong assumption it would be nice to know
1368 * about cases where if node A is connected to B, B is not
1369 * equally connected to A.
1371 if (sched_debug() && node_distance(k
, i
) != distance
)
1372 sched_numa_warn("Node-distance not symmetric");
1374 if (sched_debug() && i
&& !find_numa_distance(distance
))
1375 sched_numa_warn("Node-0 not representative");
1377 if (next_distance
!= curr_distance
) {
1378 sched_domains_numa_distance
[level
++] = next_distance
;
1379 sched_domains_numa_levels
= level
;
1380 curr_distance
= next_distance
;
1385 * In case of sched_debug() we verify the above assumption.
1392 * 'level' contains the number of unique distances
1394 * The sched_domains_numa_distance[] array includes the actual distance
1399 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1400 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1401 * the array will contain less then 'level' members. This could be
1402 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1403 * in other functions.
1405 * We reset it to 'level' at the end of this function.
1407 sched_domains_numa_levels
= 0;
1409 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
1410 if (!sched_domains_numa_masks
)
1414 * Now for each level, construct a mask per node which contains all
1415 * CPUs of nodes that are that many hops away from us.
1417 for (i
= 0; i
< level
; i
++) {
1418 sched_domains_numa_masks
[i
] =
1419 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
1420 if (!sched_domains_numa_masks
[i
])
1423 for (j
= 0; j
< nr_node_ids
; j
++) {
1424 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
1428 sched_domains_numa_masks
[i
][j
] = mask
;
1431 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
1434 cpumask_or(mask
, mask
, cpumask_of_node(k
));
1439 /* Compute default topology size */
1440 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
1442 tl
= kzalloc((i
+ level
+ 1) *
1443 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
1448 * Copy the default topology bits..
1450 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
1451 tl
[i
] = sched_domain_topology
[i
];
1454 * Add the NUMA identity distance, aka single NODE.
1456 tl
[i
++] = (struct sched_domain_topology_level
){
1457 .mask
= sd_numa_mask
,
1463 * .. and append 'j' levels of NUMA goodness.
1465 for (j
= 1; j
< level
; i
++, j
++) {
1466 tl
[i
] = (struct sched_domain_topology_level
){
1467 .mask
= sd_numa_mask
,
1468 .sd_flags
= cpu_numa_flags
,
1469 .flags
= SDTL_OVERLAP
,
1475 sched_domain_topology
= tl
;
1477 sched_domains_numa_levels
= level
;
1478 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
1480 init_numa_topology_type();
1483 void sched_domains_numa_masks_set(unsigned int cpu
)
1485 int node
= cpu_to_node(cpu
);
1488 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1489 for (j
= 0; j
< nr_node_ids
; j
++) {
1490 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
1491 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1496 void sched_domains_numa_masks_clear(unsigned int cpu
)
1500 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1501 for (j
= 0; j
< nr_node_ids
; j
++)
1502 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1506 #endif /* CONFIG_NUMA */
1508 static int __sdt_alloc(const struct cpumask
*cpu_map
)
1510 struct sched_domain_topology_level
*tl
;
1513 for_each_sd_topology(tl
) {
1514 struct sd_data
*sdd
= &tl
->data
;
1516 sdd
->sd
= alloc_percpu(struct sched_domain
*);
1520 sdd
->sds
= alloc_percpu(struct sched_domain_shared
*);
1524 sdd
->sg
= alloc_percpu(struct sched_group
*);
1528 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
1532 for_each_cpu(j
, cpu_map
) {
1533 struct sched_domain
*sd
;
1534 struct sched_domain_shared
*sds
;
1535 struct sched_group
*sg
;
1536 struct sched_group_capacity
*sgc
;
1538 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
1539 GFP_KERNEL
, cpu_to_node(j
));
1543 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
1545 sds
= kzalloc_node(sizeof(struct sched_domain_shared
),
1546 GFP_KERNEL
, cpu_to_node(j
));
1550 *per_cpu_ptr(sdd
->sds
, j
) = sds
;
1552 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
1553 GFP_KERNEL
, cpu_to_node(j
));
1559 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
1561 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
1562 GFP_KERNEL
, cpu_to_node(j
));
1566 #ifdef CONFIG_SCHED_DEBUG
1570 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
1577 static void __sdt_free(const struct cpumask
*cpu_map
)
1579 struct sched_domain_topology_level
*tl
;
1582 for_each_sd_topology(tl
) {
1583 struct sd_data
*sdd
= &tl
->data
;
1585 for_each_cpu(j
, cpu_map
) {
1586 struct sched_domain
*sd
;
1589 sd
= *per_cpu_ptr(sdd
->sd
, j
);
1590 if (sd
&& (sd
->flags
& SD_OVERLAP
))
1591 free_sched_groups(sd
->groups
, 0);
1592 kfree(*per_cpu_ptr(sdd
->sd
, j
));
1596 kfree(*per_cpu_ptr(sdd
->sds
, j
));
1598 kfree(*per_cpu_ptr(sdd
->sg
, j
));
1600 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
1602 free_percpu(sdd
->sd
);
1604 free_percpu(sdd
->sds
);
1606 free_percpu(sdd
->sg
);
1608 free_percpu(sdd
->sgc
);
1613 static struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
1614 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
1615 struct sched_domain
*child
, int dflags
, int cpu
)
1617 struct sched_domain
*sd
= sd_init(tl
, cpu_map
, child
, dflags
, cpu
);
1620 sd
->level
= child
->level
+ 1;
1621 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
1624 if (!cpumask_subset(sched_domain_span(child
),
1625 sched_domain_span(sd
))) {
1626 pr_err("BUG: arch topology borken\n");
1627 #ifdef CONFIG_SCHED_DEBUG
1628 pr_err(" the %s domain not a subset of the %s domain\n",
1629 child
->name
, sd
->name
);
1631 /* Fixup, ensure @sd has at least @child CPUs. */
1632 cpumask_or(sched_domain_span(sd
),
1633 sched_domain_span(sd
),
1634 sched_domain_span(child
));
1638 set_domain_attribute(sd
, attr
);
1644 * Find the sched_domain_topology_level where all CPU capacities are visible
1647 static struct sched_domain_topology_level
1648 *asym_cpu_capacity_level(const struct cpumask
*cpu_map
)
1650 int i
, j
, asym_level
= 0;
1652 struct sched_domain_topology_level
*tl
, *asym_tl
= NULL
;
1655 /* Is there any asymmetry? */
1656 cap
= arch_scale_cpu_capacity(NULL
, cpumask_first(cpu_map
));
1658 for_each_cpu(i
, cpu_map
) {
1659 if (arch_scale_cpu_capacity(NULL
, i
) != cap
) {
1669 * Examine topology from all CPU's point of views to detect the lowest
1670 * sched_domain_topology_level where a highest capacity CPU is visible
1673 for_each_cpu(i
, cpu_map
) {
1674 unsigned long max_capacity
= arch_scale_cpu_capacity(NULL
, i
);
1677 for_each_sd_topology(tl
) {
1678 if (tl_id
< asym_level
)
1681 for_each_cpu_and(j
, tl
->mask(i
), cpu_map
) {
1682 unsigned long capacity
;
1684 capacity
= arch_scale_cpu_capacity(NULL
, j
);
1686 if (capacity
<= max_capacity
)
1689 max_capacity
= capacity
;
1703 * Build sched domains for a given set of CPUs and attach the sched domains
1704 * to the individual CPUs
1707 build_sched_domains(const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
)
1709 enum s_alloc alloc_state
;
1710 struct sched_domain
*sd
;
1712 struct rq
*rq
= NULL
;
1713 int i
, ret
= -ENOMEM
;
1714 struct sched_domain_topology_level
*tl_asym
;
1715 bool has_asym
= false;
1717 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
1718 if (alloc_state
!= sa_rootdomain
)
1721 tl_asym
= asym_cpu_capacity_level(cpu_map
);
1723 /* Set up domains for CPUs specified by the cpu_map: */
1724 for_each_cpu(i
, cpu_map
) {
1725 struct sched_domain_topology_level
*tl
;
1728 for_each_sd_topology(tl
) {
1731 if (tl
== tl_asym
) {
1732 dflags
|= SD_ASYM_CPUCAPACITY
;
1736 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, dflags
, i
);
1738 if (tl
== sched_domain_topology
)
1739 *per_cpu_ptr(d
.sd
, i
) = sd
;
1740 if (tl
->flags
& SDTL_OVERLAP
)
1741 sd
->flags
|= SD_OVERLAP
;
1742 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
1747 /* Build the groups for the domains */
1748 for_each_cpu(i
, cpu_map
) {
1749 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1750 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
1751 if (sd
->flags
& SD_OVERLAP
) {
1752 if (build_overlap_sched_groups(sd
, i
))
1755 if (build_sched_groups(sd
, i
))
1761 /* Calculate CPU capacity for physical packages and nodes */
1762 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
1763 if (!cpumask_test_cpu(i
, cpu_map
))
1766 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1767 claim_allocations(i
, sd
);
1768 init_sched_groups_capacity(i
, sd
);
1772 /* Attach the domains */
1774 for_each_cpu(i
, cpu_map
) {
1776 sd
= *per_cpu_ptr(d
.sd
, i
);
1778 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1779 if (rq
->cpu_capacity_orig
> READ_ONCE(d
.rd
->max_cpu_capacity
))
1780 WRITE_ONCE(d
.rd
->max_cpu_capacity
, rq
->cpu_capacity_orig
);
1782 cpu_attach_domain(sd
, d
.rd
, i
);
1787 static_branch_enable_cpuslocked(&sched_asym_cpucapacity
);
1789 if (rq
&& sched_debug_enabled
) {
1790 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1791 cpumask_pr_args(cpu_map
), rq
->rd
->max_cpu_capacity
);
1796 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
1801 /* Current sched domains: */
1802 static cpumask_var_t
*doms_cur
;
1804 /* Number of sched domains in 'doms_cur': */
1805 static int ndoms_cur
;
1807 /* Attribues of custom domains in 'doms_cur' */
1808 static struct sched_domain_attr
*dattr_cur
;
1811 * Special case: If a kmalloc() of a doms_cur partition (array of
1812 * cpumask) fails, then fallback to a single sched domain,
1813 * as determined by the single cpumask fallback_doms.
1815 static cpumask_var_t fallback_doms
;
1818 * arch_update_cpu_topology lets virtualized architectures update the
1819 * CPU core maps. It is supposed to return 1 if the topology changed
1820 * or 0 if it stayed the same.
1822 int __weak
arch_update_cpu_topology(void)
1827 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
1830 cpumask_var_t
*doms
;
1832 doms
= kmalloc_array(ndoms
, sizeof(*doms
), GFP_KERNEL
);
1835 for (i
= 0; i
< ndoms
; i
++) {
1836 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
1837 free_sched_domains(doms
, i
);
1844 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
1847 for (i
= 0; i
< ndoms
; i
++)
1848 free_cpumask_var(doms
[i
]);
1853 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1854 * For now this just excludes isolated CPUs, but could be used to
1855 * exclude other special cases in the future.
1857 int sched_init_domains(const struct cpumask
*cpu_map
)
1861 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_KERNEL
);
1862 zalloc_cpumask_var(&sched_domains_tmpmask2
, GFP_KERNEL
);
1863 zalloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
1865 arch_update_cpu_topology();
1867 doms_cur
= alloc_sched_domains(ndoms_cur
);
1869 doms_cur
= &fallback_doms
;
1870 cpumask_and(doms_cur
[0], cpu_map
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
1871 err
= build_sched_domains(doms_cur
[0], NULL
);
1872 register_sched_domain_sysctl();
1878 * Detach sched domains from a group of CPUs specified in cpu_map
1879 * These CPUs will now be attached to the NULL domain
1881 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
1886 for_each_cpu(i
, cpu_map
)
1887 cpu_attach_domain(NULL
, &def_root_domain
, i
);
1891 /* handle null as "default" */
1892 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
1893 struct sched_domain_attr
*new, int idx_new
)
1895 struct sched_domain_attr tmp
;
1903 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
1904 new ? (new + idx_new
) : &tmp
,
1905 sizeof(struct sched_domain_attr
));
1909 * Partition sched domains as specified by the 'ndoms_new'
1910 * cpumasks in the array doms_new[] of cpumasks. This compares
1911 * doms_new[] to the current sched domain partitioning, doms_cur[].
1912 * It destroys each deleted domain and builds each new domain.
1914 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1915 * The masks don't intersect (don't overlap.) We should setup one
1916 * sched domain for each mask. CPUs not in any of the cpumasks will
1917 * not be load balanced. If the same cpumask appears both in the
1918 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1921 * The passed in 'doms_new' should be allocated using
1922 * alloc_sched_domains. This routine takes ownership of it and will
1923 * free_sched_domains it when done with it. If the caller failed the
1924 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1925 * and partition_sched_domains() will fallback to the single partition
1926 * 'fallback_doms', it also forces the domains to be rebuilt.
1928 * If doms_new == NULL it will be replaced with cpu_online_mask.
1929 * ndoms_new == 0 is a special case for destroying existing domains,
1930 * and it will not create the default domain.
1932 * Call with hotplug lock held
1934 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
1935 struct sched_domain_attr
*dattr_new
)
1940 mutex_lock(&sched_domains_mutex
);
1942 /* Always unregister in case we don't destroy any domains: */
1943 unregister_sched_domain_sysctl();
1945 /* Let the architecture update CPU core mappings: */
1946 new_topology
= arch_update_cpu_topology();
1949 WARN_ON_ONCE(dattr_new
);
1951 doms_new
= alloc_sched_domains(1);
1954 cpumask_and(doms_new
[0], cpu_active_mask
,
1955 housekeeping_cpumask(HK_FLAG_DOMAIN
));
1961 /* Destroy deleted domains: */
1962 for (i
= 0; i
< ndoms_cur
; i
++) {
1963 for (j
= 0; j
< n
&& !new_topology
; j
++) {
1964 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
1965 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
1968 /* No match - a current sched domain not in new doms_new[] */
1969 detach_destroy_domains(doms_cur
[i
]);
1977 doms_new
= &fallback_doms
;
1978 cpumask_and(doms_new
[0], cpu_active_mask
,
1979 housekeeping_cpumask(HK_FLAG_DOMAIN
));
1982 /* Build new domains: */
1983 for (i
= 0; i
< ndoms_new
; i
++) {
1984 for (j
= 0; j
< n
&& !new_topology
; j
++) {
1985 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
1986 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
1989 /* No match - add a new doms_new */
1990 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
1995 /* Remember the new sched domains: */
1996 if (doms_cur
!= &fallback_doms
)
1997 free_sched_domains(doms_cur
, ndoms_cur
);
2000 doms_cur
= doms_new
;
2001 dattr_cur
= dattr_new
;
2002 ndoms_cur
= ndoms_new
;
2004 register_sched_domain_sysctl();
2006 mutex_unlock(&sched_domains_mutex
);