mm: revert "page-writeback.c: subtract min_free_kbytes from dirtyable memory"
[linux/fpc-iii.git] / arch / x86 / kvm / cpuid.c
blobb110fe6c03d43908146d05ad689937d3bd991bb9
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
26 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
28 struct kvm_cpuid_entry2 *best;
29 struct kvm_lapic *apic = vcpu->arch.apic;
31 best = kvm_find_cpuid_entry(vcpu, 1, 0);
32 if (!best)
33 return;
35 /* Update OSXSAVE bit */
36 if (cpu_has_xsave && best->function == 0x1) {
37 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
38 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
39 best->ecx |= bit(X86_FEATURE_OSXSAVE);
42 if (apic) {
43 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
44 apic->lapic_timer.timer_mode_mask = 3 << 17;
45 else
46 apic->lapic_timer.timer_mode_mask = 1 << 17;
49 kvm_pmu_cpuid_update(vcpu);
52 static int is_efer_nx(void)
54 unsigned long long efer = 0;
56 rdmsrl_safe(MSR_EFER, &efer);
57 return efer & EFER_NX;
60 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
62 int i;
63 struct kvm_cpuid_entry2 *e, *entry;
65 entry = NULL;
66 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
67 e = &vcpu->arch.cpuid_entries[i];
68 if (e->function == 0x80000001) {
69 entry = e;
70 break;
73 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
74 entry->edx &= ~(1 << 20);
75 printk(KERN_INFO "kvm: guest NX capability removed\n");
79 /* when an old userspace process fills a new kernel module */
80 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
81 struct kvm_cpuid *cpuid,
82 struct kvm_cpuid_entry __user *entries)
84 int r, i;
85 struct kvm_cpuid_entry *cpuid_entries;
87 r = -E2BIG;
88 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
89 goto out;
90 r = -ENOMEM;
91 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
92 if (!cpuid_entries)
93 goto out;
94 r = -EFAULT;
95 if (copy_from_user(cpuid_entries, entries,
96 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
97 goto out_free;
98 for (i = 0; i < cpuid->nent; i++) {
99 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
100 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
101 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
102 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
103 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
104 vcpu->arch.cpuid_entries[i].index = 0;
105 vcpu->arch.cpuid_entries[i].flags = 0;
106 vcpu->arch.cpuid_entries[i].padding[0] = 0;
107 vcpu->arch.cpuid_entries[i].padding[1] = 0;
108 vcpu->arch.cpuid_entries[i].padding[2] = 0;
110 vcpu->arch.cpuid_nent = cpuid->nent;
111 cpuid_fix_nx_cap(vcpu);
112 r = 0;
113 kvm_apic_set_version(vcpu);
114 kvm_x86_ops->cpuid_update(vcpu);
115 kvm_update_cpuid(vcpu);
117 out_free:
118 vfree(cpuid_entries);
119 out:
120 return r;
123 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
124 struct kvm_cpuid2 *cpuid,
125 struct kvm_cpuid_entry2 __user *entries)
127 int r;
129 r = -E2BIG;
130 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
131 goto out;
132 r = -EFAULT;
133 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
134 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
135 goto out;
136 vcpu->arch.cpuid_nent = cpuid->nent;
137 kvm_apic_set_version(vcpu);
138 kvm_x86_ops->cpuid_update(vcpu);
139 kvm_update_cpuid(vcpu);
140 return 0;
142 out:
143 return r;
146 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
147 struct kvm_cpuid2 *cpuid,
148 struct kvm_cpuid_entry2 __user *entries)
150 int r;
152 r = -E2BIG;
153 if (cpuid->nent < vcpu->arch.cpuid_nent)
154 goto out;
155 r = -EFAULT;
156 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
157 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
158 goto out;
159 return 0;
161 out:
162 cpuid->nent = vcpu->arch.cpuid_nent;
163 return r;
166 static void cpuid_mask(u32 *word, int wordnum)
168 *word &= boot_cpu_data.x86_capability[wordnum];
171 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
172 u32 index)
174 entry->function = function;
175 entry->index = index;
176 cpuid_count(entry->function, entry->index,
177 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
178 entry->flags = 0;
181 static bool supported_xcr0_bit(unsigned bit)
183 u64 mask = ((u64)1 << bit);
185 return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
188 #define F(x) bit(X86_FEATURE_##x)
190 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
191 u32 index, int *nent, int maxnent)
193 int r;
194 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
195 #ifdef CONFIG_X86_64
196 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
197 ? F(GBPAGES) : 0;
198 unsigned f_lm = F(LM);
199 #else
200 unsigned f_gbpages = 0;
201 unsigned f_lm = 0;
202 #endif
203 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
204 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
206 /* cpuid 1.edx */
207 const u32 kvm_supported_word0_x86_features =
208 F(FPU) | F(VME) | F(DE) | F(PSE) |
209 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
210 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
211 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
212 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
213 0 /* Reserved, DS, ACPI */ | F(MMX) |
214 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
215 0 /* HTT, TM, Reserved, PBE */;
216 /* cpuid 0x80000001.edx */
217 const u32 kvm_supported_word1_x86_features =
218 F(FPU) | F(VME) | F(DE) | F(PSE) |
219 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
220 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
221 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
222 F(PAT) | F(PSE36) | 0 /* Reserved */ |
223 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
224 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
225 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
226 /* cpuid 1.ecx */
227 const u32 kvm_supported_word4_x86_features =
228 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
229 0 /* DS-CPL, VMX, SMX, EST */ |
230 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
231 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
232 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
233 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
234 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
235 F(F16C) | F(RDRAND);
236 /* cpuid 0x80000001.ecx */
237 const u32 kvm_supported_word6_x86_features =
238 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
239 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
240 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
241 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
243 /* cpuid 0xC0000001.edx */
244 const u32 kvm_supported_word5_x86_features =
245 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
246 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
247 F(PMM) | F(PMM_EN);
249 /* cpuid 7.0.ebx */
250 const u32 kvm_supported_word9_x86_features =
251 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
252 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
254 /* all calls to cpuid_count() should be made on the same cpu */
255 get_cpu();
257 r = -E2BIG;
259 if (*nent >= maxnent)
260 goto out;
262 do_cpuid_1_ent(entry, function, index);
263 ++*nent;
265 switch (function) {
266 case 0:
267 entry->eax = min(entry->eax, (u32)0xd);
268 break;
269 case 1:
270 entry->edx &= kvm_supported_word0_x86_features;
271 cpuid_mask(&entry->edx, 0);
272 entry->ecx &= kvm_supported_word4_x86_features;
273 cpuid_mask(&entry->ecx, 4);
274 /* we support x2apic emulation even if host does not support
275 * it since we emulate x2apic in software */
276 entry->ecx |= F(X2APIC);
277 break;
278 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
279 * may return different values. This forces us to get_cpu() before
280 * issuing the first command, and also to emulate this annoying behavior
281 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
282 case 2: {
283 int t, times = entry->eax & 0xff;
285 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
286 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
287 for (t = 1; t < times; ++t) {
288 if (*nent >= maxnent)
289 goto out;
291 do_cpuid_1_ent(&entry[t], function, 0);
292 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
293 ++*nent;
295 break;
297 /* function 4 has additional index. */
298 case 4: {
299 int i, cache_type;
301 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
302 /* read more entries until cache_type is zero */
303 for (i = 1; ; ++i) {
304 if (*nent >= maxnent)
305 goto out;
307 cache_type = entry[i - 1].eax & 0x1f;
308 if (!cache_type)
309 break;
310 do_cpuid_1_ent(&entry[i], function, i);
311 entry[i].flags |=
312 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
313 ++*nent;
315 break;
317 case 7: {
318 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
319 /* Mask ebx against host capability word 9 */
320 if (index == 0) {
321 entry->ebx &= kvm_supported_word9_x86_features;
322 cpuid_mask(&entry->ebx, 9);
323 // TSC_ADJUST is emulated
324 entry->ebx |= F(TSC_ADJUST);
325 } else
326 entry->ebx = 0;
327 entry->eax = 0;
328 entry->ecx = 0;
329 entry->edx = 0;
330 break;
332 case 9:
333 break;
334 case 0xa: { /* Architectural Performance Monitoring */
335 struct x86_pmu_capability cap;
336 union cpuid10_eax eax;
337 union cpuid10_edx edx;
339 perf_get_x86_pmu_capability(&cap);
342 * Only support guest architectural pmu on a host
343 * with architectural pmu.
345 if (!cap.version)
346 memset(&cap, 0, sizeof(cap));
348 eax.split.version_id = min(cap.version, 2);
349 eax.split.num_counters = cap.num_counters_gp;
350 eax.split.bit_width = cap.bit_width_gp;
351 eax.split.mask_length = cap.events_mask_len;
353 edx.split.num_counters_fixed = cap.num_counters_fixed;
354 edx.split.bit_width_fixed = cap.bit_width_fixed;
355 edx.split.reserved = 0;
357 entry->eax = eax.full;
358 entry->ebx = cap.events_mask;
359 entry->ecx = 0;
360 entry->edx = edx.full;
361 break;
363 /* function 0xb has additional index. */
364 case 0xb: {
365 int i, level_type;
367 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
368 /* read more entries until level_type is zero */
369 for (i = 1; ; ++i) {
370 if (*nent >= maxnent)
371 goto out;
373 level_type = entry[i - 1].ecx & 0xff00;
374 if (!level_type)
375 break;
376 do_cpuid_1_ent(&entry[i], function, i);
377 entry[i].flags |=
378 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
379 ++*nent;
381 break;
383 case 0xd: {
384 int idx, i;
386 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387 for (idx = 1, i = 1; idx < 64; ++idx) {
388 if (*nent >= maxnent)
389 goto out;
391 do_cpuid_1_ent(&entry[i], function, idx);
392 if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
393 continue;
394 entry[i].flags |=
395 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
396 ++*nent;
397 ++i;
399 break;
401 case KVM_CPUID_SIGNATURE: {
402 static const char signature[12] = "KVMKVMKVM\0\0";
403 const u32 *sigptr = (const u32 *)signature;
404 entry->eax = KVM_CPUID_FEATURES;
405 entry->ebx = sigptr[0];
406 entry->ecx = sigptr[1];
407 entry->edx = sigptr[2];
408 break;
410 case KVM_CPUID_FEATURES:
411 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
412 (1 << KVM_FEATURE_NOP_IO_DELAY) |
413 (1 << KVM_FEATURE_CLOCKSOURCE2) |
414 (1 << KVM_FEATURE_ASYNC_PF) |
415 (1 << KVM_FEATURE_PV_EOI) |
416 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
417 (1 << KVM_FEATURE_PV_UNHALT);
419 if (sched_info_on())
420 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
422 entry->ebx = 0;
423 entry->ecx = 0;
424 entry->edx = 0;
425 break;
426 case 0x80000000:
427 entry->eax = min(entry->eax, 0x8000001a);
428 break;
429 case 0x80000001:
430 entry->edx &= kvm_supported_word1_x86_features;
431 cpuid_mask(&entry->edx, 1);
432 entry->ecx &= kvm_supported_word6_x86_features;
433 cpuid_mask(&entry->ecx, 6);
434 break;
435 case 0x80000008: {
436 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
437 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
438 unsigned phys_as = entry->eax & 0xff;
440 if (!g_phys_as)
441 g_phys_as = phys_as;
442 entry->eax = g_phys_as | (virt_as << 8);
443 entry->ebx = entry->edx = 0;
444 break;
446 case 0x80000019:
447 entry->ecx = entry->edx = 0;
448 break;
449 case 0x8000001a:
450 break;
451 case 0x8000001d:
452 break;
453 /*Add support for Centaur's CPUID instruction*/
454 case 0xC0000000:
455 /*Just support up to 0xC0000004 now*/
456 entry->eax = min(entry->eax, 0xC0000004);
457 break;
458 case 0xC0000001:
459 entry->edx &= kvm_supported_word5_x86_features;
460 cpuid_mask(&entry->edx, 5);
461 break;
462 case 3: /* Processor serial number */
463 case 5: /* MONITOR/MWAIT */
464 case 6: /* Thermal management */
465 case 0x80000007: /* Advanced power management */
466 case 0xC0000002:
467 case 0xC0000003:
468 case 0xC0000004:
469 default:
470 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
471 break;
474 kvm_x86_ops->set_supported_cpuid(function, entry);
476 r = 0;
478 out:
479 put_cpu();
481 return r;
484 #undef F
486 struct kvm_cpuid_param {
487 u32 func;
488 u32 idx;
489 bool has_leaf_count;
490 bool (*qualifier)(const struct kvm_cpuid_param *param);
493 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
495 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
498 int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
499 struct kvm_cpuid_entry2 __user *entries)
501 struct kvm_cpuid_entry2 *cpuid_entries;
502 int limit, nent = 0, r = -E2BIG, i;
503 u32 func;
504 static const struct kvm_cpuid_param param[] = {
505 { .func = 0, .has_leaf_count = true },
506 { .func = 0x80000000, .has_leaf_count = true },
507 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
508 { .func = KVM_CPUID_SIGNATURE },
509 { .func = KVM_CPUID_FEATURES },
512 if (cpuid->nent < 1)
513 goto out;
514 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
515 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
516 r = -ENOMEM;
517 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
518 if (!cpuid_entries)
519 goto out;
521 r = 0;
522 for (i = 0; i < ARRAY_SIZE(param); i++) {
523 const struct kvm_cpuid_param *ent = &param[i];
525 if (ent->qualifier && !ent->qualifier(ent))
526 continue;
528 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
529 &nent, cpuid->nent);
531 if (r)
532 goto out_free;
534 if (!ent->has_leaf_count)
535 continue;
537 limit = cpuid_entries[nent - 1].eax;
538 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
539 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
540 &nent, cpuid->nent);
542 if (r)
543 goto out_free;
546 r = -EFAULT;
547 if (copy_to_user(entries, cpuid_entries,
548 nent * sizeof(struct kvm_cpuid_entry2)))
549 goto out_free;
550 cpuid->nent = nent;
551 r = 0;
553 out_free:
554 vfree(cpuid_entries);
555 out:
556 return r;
559 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
561 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
562 int j, nent = vcpu->arch.cpuid_nent;
564 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
565 /* when no next entry is found, the current entry[i] is reselected */
566 for (j = i + 1; ; j = (j + 1) % nent) {
567 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
568 if (ej->function == e->function) {
569 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
570 return j;
573 return 0; /* silence gcc, even though control never reaches here */
576 /* find an entry with matching function, matching index (if needed), and that
577 * should be read next (if it's stateful) */
578 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
579 u32 function, u32 index)
581 if (e->function != function)
582 return 0;
583 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
584 return 0;
585 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
586 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
587 return 0;
588 return 1;
591 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
592 u32 function, u32 index)
594 int i;
595 struct kvm_cpuid_entry2 *best = NULL;
597 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
598 struct kvm_cpuid_entry2 *e;
600 e = &vcpu->arch.cpuid_entries[i];
601 if (is_matching_cpuid_entry(e, function, index)) {
602 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
603 move_to_next_stateful_cpuid_entry(vcpu, i);
604 best = e;
605 break;
608 return best;
610 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
612 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
614 struct kvm_cpuid_entry2 *best;
616 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
617 if (!best || best->eax < 0x80000008)
618 goto not_found;
619 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
620 if (best)
621 return best->eax & 0xff;
622 not_found:
623 return 36;
627 * If no match is found, check whether we exceed the vCPU's limit
628 * and return the content of the highest valid _standard_ leaf instead.
629 * This is to satisfy the CPUID specification.
631 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
632 u32 function, u32 index)
634 struct kvm_cpuid_entry2 *maxlevel;
636 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
637 if (!maxlevel || maxlevel->eax >= function)
638 return NULL;
639 if (function & 0x80000000) {
640 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
641 if (!maxlevel)
642 return NULL;
644 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
647 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
649 u32 function = *eax, index = *ecx;
650 struct kvm_cpuid_entry2 *best;
652 best = kvm_find_cpuid_entry(vcpu, function, index);
654 if (!best)
655 best = check_cpuid_limit(vcpu, function, index);
657 if (best) {
658 *eax = best->eax;
659 *ebx = best->ebx;
660 *ecx = best->ecx;
661 *edx = best->edx;
662 } else
663 *eax = *ebx = *ecx = *edx = 0;
665 EXPORT_SYMBOL_GPL(kvm_cpuid);
667 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
669 u32 function, eax, ebx, ecx, edx;
671 function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
672 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
673 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
674 kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
675 kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
676 kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
677 kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
678 kvm_x86_ops->skip_emulated_instruction(vcpu);
679 trace_kvm_cpuid(function, eax, ebx, ecx, edx);
681 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);