mm: revert "page-writeback.c: subtract min_free_kbytes from dirtyable memory"
[linux/fpc-iii.git] / kernel / exit.c
bloba949819055d51d5d4335544f81016770af6b687e
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct * tsk);
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 list_del_rcu(&p->thread_group);
80 * This function expects the tasklist_lock write-locked.
82 static void __exit_signal(struct task_struct *tsk)
84 struct signal_struct *sig = tsk->signal;
85 bool group_dead = thread_group_leader(tsk);
86 struct sighand_struct *sighand;
87 struct tty_struct *uninitialized_var(tty);
88 cputime_t utime, stime;
90 sighand = rcu_dereference_check(tsk->sighand,
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand->siglock);
94 posix_cpu_timers_exit(tsk);
95 if (group_dead) {
96 posix_cpu_timers_exit_group(tsk);
97 tty = sig->tty;
98 sig->tty = NULL;
99 } else {
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
105 if (unlikely(has_group_leader_pid(tsk)))
106 posix_cpu_timers_exit_group(tsk);
109 * If there is any task waiting for the group exit
110 * then notify it:
112 if (sig->notify_count > 0 && !--sig->notify_count)
113 wake_up_process(sig->group_exit_task);
115 if (tsk == sig->curr_target)
116 sig->curr_target = next_thread(tsk);
118 * Accumulate here the counters for all threads but the
119 * group leader as they die, so they can be added into
120 * the process-wide totals when those are taken.
121 * The group leader stays around as a zombie as long
122 * as there are other threads. When it gets reaped,
123 * the exit.c code will add its counts into these totals.
124 * We won't ever get here for the group leader, since it
125 * will have been the last reference on the signal_struct.
127 task_cputime(tsk, &utime, &stime);
128 sig->utime += utime;
129 sig->stime += stime;
130 sig->gtime += task_gtime(tsk);
131 sig->min_flt += tsk->min_flt;
132 sig->maj_flt += tsk->maj_flt;
133 sig->nvcsw += tsk->nvcsw;
134 sig->nivcsw += tsk->nivcsw;
135 sig->inblock += task_io_get_inblock(tsk);
136 sig->oublock += task_io_get_oublock(tsk);
137 task_io_accounting_add(&sig->ioac, &tsk->ioac);
138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
141 sig->nr_threads--;
142 __unhash_process(tsk, group_dead);
145 * Do this under ->siglock, we can race with another thread
146 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 flush_sigqueue(&tsk->pending);
149 tsk->sighand = NULL;
150 spin_unlock(&sighand->siglock);
152 __cleanup_sighand(sighand);
153 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
154 if (group_dead) {
155 flush_sigqueue(&sig->shared_pending);
156 tty_kref_put(tty);
160 static void delayed_put_task_struct(struct rcu_head *rhp)
162 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
164 perf_event_delayed_put(tsk);
165 trace_sched_process_free(tsk);
166 put_task_struct(tsk);
170 void release_task(struct task_struct * p)
172 struct task_struct *leader;
173 int zap_leader;
174 repeat:
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials. But shut RCU-lockdep up */
177 rcu_read_lock();
178 atomic_dec(&__task_cred(p)->user->processes);
179 rcu_read_unlock();
181 proc_flush_task(p);
183 write_lock_irq(&tasklist_lock);
184 ptrace_release_task(p);
185 __exit_signal(p);
188 * If we are the last non-leader member of the thread
189 * group, and the leader is zombie, then notify the
190 * group leader's parent process. (if it wants notification.)
192 zap_leader = 0;
193 leader = p->group_leader;
194 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 zap_leader = do_notify_parent(leader, leader->exit_signal);
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
215 * This checks not only the pgrp, but falls back on the pid if no
216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
217 * without this...
219 * The caller must hold rcu lock or the tasklist lock.
221 struct pid *session_of_pgrp(struct pid *pgrp)
223 struct task_struct *p;
224 struct pid *sid = NULL;
226 p = pid_task(pgrp, PIDTYPE_PGID);
227 if (p == NULL)
228 p = pid_task(pgrp, PIDTYPE_PID);
229 if (p != NULL)
230 sid = task_session(p);
232 return sid;
236 * Determine if a process group is "orphaned", according to the POSIX
237 * definition in 2.2.2.52. Orphaned process groups are not to be affected
238 * by terminal-generated stop signals. Newly orphaned process groups are
239 * to receive a SIGHUP and a SIGCONT.
241 * "I ask you, have you ever known what it is to be an orphan?"
243 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 struct task_struct *p;
247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
248 if ((p == ignored_task) ||
249 (p->exit_state && thread_group_empty(p)) ||
250 is_global_init(p->real_parent))
251 continue;
253 if (task_pgrp(p->real_parent) != pgrp &&
254 task_session(p->real_parent) == task_session(p))
255 return 0;
256 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258 return 1;
261 int is_current_pgrp_orphaned(void)
263 int retval;
265 read_lock(&tasklist_lock);
266 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
267 read_unlock(&tasklist_lock);
269 return retval;
272 static bool has_stopped_jobs(struct pid *pgrp)
274 struct task_struct *p;
276 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
277 if (p->signal->flags & SIGNAL_STOP_STOPPED)
278 return true;
279 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
281 return false;
285 * Check to see if any process groups have become orphaned as
286 * a result of our exiting, and if they have any stopped jobs,
287 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
289 static void
290 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
292 struct pid *pgrp = task_pgrp(tsk);
293 struct task_struct *ignored_task = tsk;
295 if (!parent)
296 /* exit: our father is in a different pgrp than
297 * we are and we were the only connection outside.
299 parent = tsk->real_parent;
300 else
301 /* reparent: our child is in a different pgrp than
302 * we are, and it was the only connection outside.
304 ignored_task = NULL;
306 if (task_pgrp(parent) != pgrp &&
307 task_session(parent) == task_session(tsk) &&
308 will_become_orphaned_pgrp(pgrp, ignored_task) &&
309 has_stopped_jobs(pgrp)) {
310 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
311 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
316 * Let kernel threads use this to say that they allow a certain signal.
317 * Must not be used if kthread was cloned with CLONE_SIGHAND.
319 int allow_signal(int sig)
321 if (!valid_signal(sig) || sig < 1)
322 return -EINVAL;
324 spin_lock_irq(&current->sighand->siglock);
325 /* This is only needed for daemonize()'ed kthreads */
326 sigdelset(&current->blocked, sig);
328 * Kernel threads handle their own signals. Let the signal code
329 * know it'll be handled, so that they don't get converted to
330 * SIGKILL or just silently dropped.
332 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
333 recalc_sigpending();
334 spin_unlock_irq(&current->sighand->siglock);
335 return 0;
338 EXPORT_SYMBOL(allow_signal);
340 int disallow_signal(int sig)
342 if (!valid_signal(sig) || sig < 1)
343 return -EINVAL;
345 spin_lock_irq(&current->sighand->siglock);
346 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
347 recalc_sigpending();
348 spin_unlock_irq(&current->sighand->siglock);
349 return 0;
352 EXPORT_SYMBOL(disallow_signal);
354 #ifdef CONFIG_MM_OWNER
356 * A task is exiting. If it owned this mm, find a new owner for the mm.
358 void mm_update_next_owner(struct mm_struct *mm)
360 struct task_struct *c, *g, *p = current;
362 retry:
364 * If the exiting or execing task is not the owner, it's
365 * someone else's problem.
367 if (mm->owner != p)
368 return;
370 * The current owner is exiting/execing and there are no other
371 * candidates. Do not leave the mm pointing to a possibly
372 * freed task structure.
374 if (atomic_read(&mm->mm_users) <= 1) {
375 mm->owner = NULL;
376 return;
379 read_lock(&tasklist_lock);
381 * Search in the children
383 list_for_each_entry(c, &p->children, sibling) {
384 if (c->mm == mm)
385 goto assign_new_owner;
389 * Search in the siblings
391 list_for_each_entry(c, &p->real_parent->children, sibling) {
392 if (c->mm == mm)
393 goto assign_new_owner;
397 * Search through everything else. We should not get
398 * here often
400 do_each_thread(g, c) {
401 if (c->mm == mm)
402 goto assign_new_owner;
403 } while_each_thread(g, c);
405 read_unlock(&tasklist_lock);
407 * We found no owner yet mm_users > 1: this implies that we are
408 * most likely racing with swapoff (try_to_unuse()) or /proc or
409 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
411 mm->owner = NULL;
412 return;
414 assign_new_owner:
415 BUG_ON(c == p);
416 get_task_struct(c);
418 * The task_lock protects c->mm from changing.
419 * We always want mm->owner->mm == mm
421 task_lock(c);
423 * Delay read_unlock() till we have the task_lock()
424 * to ensure that c does not slip away underneath us
426 read_unlock(&tasklist_lock);
427 if (c->mm != mm) {
428 task_unlock(c);
429 put_task_struct(c);
430 goto retry;
432 mm->owner = c;
433 task_unlock(c);
434 put_task_struct(c);
436 #endif /* CONFIG_MM_OWNER */
439 * Turn us into a lazy TLB process if we
440 * aren't already..
442 static void exit_mm(struct task_struct * tsk)
444 struct mm_struct *mm = tsk->mm;
445 struct core_state *core_state;
447 mm_release(tsk, mm);
448 if (!mm)
449 return;
450 sync_mm_rss(mm);
452 * Serialize with any possible pending coredump.
453 * We must hold mmap_sem around checking core_state
454 * and clearing tsk->mm. The core-inducing thread
455 * will increment ->nr_threads for each thread in the
456 * group with ->mm != NULL.
458 down_read(&mm->mmap_sem);
459 core_state = mm->core_state;
460 if (core_state) {
461 struct core_thread self;
462 up_read(&mm->mmap_sem);
464 self.task = tsk;
465 self.next = xchg(&core_state->dumper.next, &self);
467 * Implies mb(), the result of xchg() must be visible
468 * to core_state->dumper.
470 if (atomic_dec_and_test(&core_state->nr_threads))
471 complete(&core_state->startup);
473 for (;;) {
474 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
475 if (!self.task) /* see coredump_finish() */
476 break;
477 freezable_schedule();
479 __set_task_state(tsk, TASK_RUNNING);
480 down_read(&mm->mmap_sem);
482 atomic_inc(&mm->mm_count);
483 BUG_ON(mm != tsk->active_mm);
484 /* more a memory barrier than a real lock */
485 task_lock(tsk);
486 tsk->mm = NULL;
487 up_read(&mm->mmap_sem);
488 enter_lazy_tlb(mm, current);
489 task_unlock(tsk);
490 mm_update_next_owner(mm);
491 mmput(mm);
495 * When we die, we re-parent all our children, and try to:
496 * 1. give them to another thread in our thread group, if such a member exists
497 * 2. give it to the first ancestor process which prctl'd itself as a
498 * child_subreaper for its children (like a service manager)
499 * 3. give it to the init process (PID 1) in our pid namespace
501 static struct task_struct *find_new_reaper(struct task_struct *father)
502 __releases(&tasklist_lock)
503 __acquires(&tasklist_lock)
505 struct pid_namespace *pid_ns = task_active_pid_ns(father);
506 struct task_struct *thread;
508 thread = father;
509 while_each_thread(father, thread) {
510 if (thread->flags & PF_EXITING)
511 continue;
512 if (unlikely(pid_ns->child_reaper == father))
513 pid_ns->child_reaper = thread;
514 return thread;
517 if (unlikely(pid_ns->child_reaper == father)) {
518 write_unlock_irq(&tasklist_lock);
519 if (unlikely(pid_ns == &init_pid_ns)) {
520 panic("Attempted to kill init! exitcode=0x%08x\n",
521 father->signal->group_exit_code ?:
522 father->exit_code);
525 zap_pid_ns_processes(pid_ns);
526 write_lock_irq(&tasklist_lock);
527 } else if (father->signal->has_child_subreaper) {
528 struct task_struct *reaper;
531 * Find the first ancestor marked as child_subreaper.
532 * Note that the code below checks same_thread_group(reaper,
533 * pid_ns->child_reaper). This is what we need to DTRT in a
534 * PID namespace. However we still need the check above, see
535 * http://marc.info/?l=linux-kernel&m=131385460420380
537 for (reaper = father->real_parent;
538 reaper != &init_task;
539 reaper = reaper->real_parent) {
540 if (same_thread_group(reaper, pid_ns->child_reaper))
541 break;
542 if (!reaper->signal->is_child_subreaper)
543 continue;
544 thread = reaper;
545 do {
546 if (!(thread->flags & PF_EXITING))
547 return reaper;
548 } while_each_thread(reaper, thread);
552 return pid_ns->child_reaper;
556 * Any that need to be release_task'd are put on the @dead list.
558 static void reparent_leader(struct task_struct *father, struct task_struct *p,
559 struct list_head *dead)
561 list_move_tail(&p->sibling, &p->real_parent->children);
563 if (p->exit_state == EXIT_DEAD)
564 return;
566 * If this is a threaded reparent there is no need to
567 * notify anyone anything has happened.
569 if (same_thread_group(p->real_parent, father))
570 return;
572 /* We don't want people slaying init. */
573 p->exit_signal = SIGCHLD;
575 /* If it has exited notify the new parent about this child's death. */
576 if (!p->ptrace &&
577 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
578 if (do_notify_parent(p, p->exit_signal)) {
579 p->exit_state = EXIT_DEAD;
580 list_move_tail(&p->sibling, dead);
584 kill_orphaned_pgrp(p, father);
587 static void forget_original_parent(struct task_struct *father)
589 struct task_struct *p, *n, *reaper;
590 LIST_HEAD(dead_children);
592 write_lock_irq(&tasklist_lock);
594 * Note that exit_ptrace() and find_new_reaper() might
595 * drop tasklist_lock and reacquire it.
597 exit_ptrace(father);
598 reaper = find_new_reaper(father);
600 list_for_each_entry_safe(p, n, &father->children, sibling) {
601 struct task_struct *t = p;
602 do {
603 t->real_parent = reaper;
604 if (t->parent == father) {
605 BUG_ON(t->ptrace);
606 t->parent = t->real_parent;
608 if (t->pdeath_signal)
609 group_send_sig_info(t->pdeath_signal,
610 SEND_SIG_NOINFO, t);
611 } while_each_thread(p, t);
612 reparent_leader(father, p, &dead_children);
614 write_unlock_irq(&tasklist_lock);
616 BUG_ON(!list_empty(&father->children));
618 list_for_each_entry_safe(p, n, &dead_children, sibling) {
619 list_del_init(&p->sibling);
620 release_task(p);
625 * Send signals to all our closest relatives so that they know
626 * to properly mourn us..
628 static void exit_notify(struct task_struct *tsk, int group_dead)
630 bool autoreap;
633 * This does two things:
635 * A. Make init inherit all the child processes
636 * B. Check to see if any process groups have become orphaned
637 * as a result of our exiting, and if they have any stopped
638 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
640 forget_original_parent(tsk);
642 write_lock_irq(&tasklist_lock);
643 if (group_dead)
644 kill_orphaned_pgrp(tsk->group_leader, NULL);
646 if (unlikely(tsk->ptrace)) {
647 int sig = thread_group_leader(tsk) &&
648 thread_group_empty(tsk) &&
649 !ptrace_reparented(tsk) ?
650 tsk->exit_signal : SIGCHLD;
651 autoreap = do_notify_parent(tsk, sig);
652 } else if (thread_group_leader(tsk)) {
653 autoreap = thread_group_empty(tsk) &&
654 do_notify_parent(tsk, tsk->exit_signal);
655 } else {
656 autoreap = true;
659 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
661 /* mt-exec, de_thread() is waiting for group leader */
662 if (unlikely(tsk->signal->notify_count < 0))
663 wake_up_process(tsk->signal->group_exit_task);
664 write_unlock_irq(&tasklist_lock);
666 /* If the process is dead, release it - nobody will wait for it */
667 if (autoreap)
668 release_task(tsk);
671 #ifdef CONFIG_DEBUG_STACK_USAGE
672 static void check_stack_usage(void)
674 static DEFINE_SPINLOCK(low_water_lock);
675 static int lowest_to_date = THREAD_SIZE;
676 unsigned long free;
678 free = stack_not_used(current);
680 if (free >= lowest_to_date)
681 return;
683 spin_lock(&low_water_lock);
684 if (free < lowest_to_date) {
685 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
686 "%lu bytes left\n",
687 current->comm, task_pid_nr(current), free);
688 lowest_to_date = free;
690 spin_unlock(&low_water_lock);
692 #else
693 static inline void check_stack_usage(void) {}
694 #endif
696 void do_exit(long code)
698 struct task_struct *tsk = current;
699 int group_dead;
701 profile_task_exit(tsk);
703 WARN_ON(blk_needs_flush_plug(tsk));
705 if (unlikely(in_interrupt()))
706 panic("Aiee, killing interrupt handler!");
707 if (unlikely(!tsk->pid))
708 panic("Attempted to kill the idle task!");
711 * If do_exit is called because this processes oopsed, it's possible
712 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
713 * continuing. Amongst other possible reasons, this is to prevent
714 * mm_release()->clear_child_tid() from writing to a user-controlled
715 * kernel address.
717 set_fs(USER_DS);
719 ptrace_event(PTRACE_EVENT_EXIT, code);
721 validate_creds_for_do_exit(tsk);
724 * We're taking recursive faults here in do_exit. Safest is to just
725 * leave this task alone and wait for reboot.
727 if (unlikely(tsk->flags & PF_EXITING)) {
728 printk(KERN_ALERT
729 "Fixing recursive fault but reboot is needed!\n");
731 * We can do this unlocked here. The futex code uses
732 * this flag just to verify whether the pi state
733 * cleanup has been done or not. In the worst case it
734 * loops once more. We pretend that the cleanup was
735 * done as there is no way to return. Either the
736 * OWNER_DIED bit is set by now or we push the blocked
737 * task into the wait for ever nirwana as well.
739 tsk->flags |= PF_EXITPIDONE;
740 set_current_state(TASK_UNINTERRUPTIBLE);
741 schedule();
744 exit_signals(tsk); /* sets PF_EXITING */
746 * tsk->flags are checked in the futex code to protect against
747 * an exiting task cleaning up the robust pi futexes.
749 smp_mb();
750 raw_spin_unlock_wait(&tsk->pi_lock);
752 if (unlikely(in_atomic()))
753 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
754 current->comm, task_pid_nr(current),
755 preempt_count());
757 acct_update_integrals(tsk);
758 /* sync mm's RSS info before statistics gathering */
759 if (tsk->mm)
760 sync_mm_rss(tsk->mm);
761 group_dead = atomic_dec_and_test(&tsk->signal->live);
762 if (group_dead) {
763 hrtimer_cancel(&tsk->signal->real_timer);
764 exit_itimers(tsk->signal);
765 if (tsk->mm)
766 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
768 acct_collect(code, group_dead);
769 if (group_dead)
770 tty_audit_exit();
771 audit_free(tsk);
773 tsk->exit_code = code;
774 taskstats_exit(tsk, group_dead);
776 exit_mm(tsk);
778 if (group_dead)
779 acct_process();
780 trace_sched_process_exit(tsk);
782 exit_sem(tsk);
783 exit_shm(tsk);
784 exit_files(tsk);
785 exit_fs(tsk);
786 exit_task_namespaces(tsk);
787 exit_task_work(tsk);
788 check_stack_usage();
789 exit_thread();
792 * Flush inherited counters to the parent - before the parent
793 * gets woken up by child-exit notifications.
795 * because of cgroup mode, must be called before cgroup_exit()
797 perf_event_exit_task(tsk);
799 cgroup_exit(tsk, 1);
801 if (group_dead)
802 disassociate_ctty(1);
804 module_put(task_thread_info(tsk)->exec_domain->module);
806 proc_exit_connector(tsk);
809 * FIXME: do that only when needed, using sched_exit tracepoint
811 flush_ptrace_hw_breakpoint(tsk);
813 exit_notify(tsk, group_dead);
814 #ifdef CONFIG_NUMA
815 task_lock(tsk);
816 mpol_put(tsk->mempolicy);
817 tsk->mempolicy = NULL;
818 task_unlock(tsk);
819 #endif
820 #ifdef CONFIG_FUTEX
821 if (unlikely(current->pi_state_cache))
822 kfree(current->pi_state_cache);
823 #endif
825 * Make sure we are holding no locks:
827 debug_check_no_locks_held();
829 * We can do this unlocked here. The futex code uses this flag
830 * just to verify whether the pi state cleanup has been done
831 * or not. In the worst case it loops once more.
833 tsk->flags |= PF_EXITPIDONE;
835 if (tsk->io_context)
836 exit_io_context(tsk);
838 if (tsk->splice_pipe)
839 free_pipe_info(tsk->splice_pipe);
841 if (tsk->task_frag.page)
842 put_page(tsk->task_frag.page);
844 validate_creds_for_do_exit(tsk);
846 preempt_disable();
847 if (tsk->nr_dirtied)
848 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
849 exit_rcu();
852 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
853 * when the following two conditions become true.
854 * - There is race condition of mmap_sem (It is acquired by
855 * exit_mm()), and
856 * - SMI occurs before setting TASK_RUNINNG.
857 * (or hypervisor of virtual machine switches to other guest)
858 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
860 * To avoid it, we have to wait for releasing tsk->pi_lock which
861 * is held by try_to_wake_up()
863 smp_mb();
864 raw_spin_unlock_wait(&tsk->pi_lock);
866 /* causes final put_task_struct in finish_task_switch(). */
867 tsk->state = TASK_DEAD;
868 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
869 schedule();
870 BUG();
871 /* Avoid "noreturn function does return". */
872 for (;;)
873 cpu_relax(); /* For when BUG is null */
876 EXPORT_SYMBOL_GPL(do_exit);
878 void complete_and_exit(struct completion *comp, long code)
880 if (comp)
881 complete(comp);
883 do_exit(code);
886 EXPORT_SYMBOL(complete_and_exit);
888 SYSCALL_DEFINE1(exit, int, error_code)
890 do_exit((error_code&0xff)<<8);
894 * Take down every thread in the group. This is called by fatal signals
895 * as well as by sys_exit_group (below).
897 void
898 do_group_exit(int exit_code)
900 struct signal_struct *sig = current->signal;
902 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
904 if (signal_group_exit(sig))
905 exit_code = sig->group_exit_code;
906 else if (!thread_group_empty(current)) {
907 struct sighand_struct *const sighand = current->sighand;
908 spin_lock_irq(&sighand->siglock);
909 if (signal_group_exit(sig))
910 /* Another thread got here before we took the lock. */
911 exit_code = sig->group_exit_code;
912 else {
913 sig->group_exit_code = exit_code;
914 sig->flags = SIGNAL_GROUP_EXIT;
915 zap_other_threads(current);
917 spin_unlock_irq(&sighand->siglock);
920 do_exit(exit_code);
921 /* NOTREACHED */
925 * this kills every thread in the thread group. Note that any externally
926 * wait4()-ing process will get the correct exit code - even if this
927 * thread is not the thread group leader.
929 SYSCALL_DEFINE1(exit_group, int, error_code)
931 do_group_exit((error_code & 0xff) << 8);
932 /* NOTREACHED */
933 return 0;
936 struct wait_opts {
937 enum pid_type wo_type;
938 int wo_flags;
939 struct pid *wo_pid;
941 struct siginfo __user *wo_info;
942 int __user *wo_stat;
943 struct rusage __user *wo_rusage;
945 wait_queue_t child_wait;
946 int notask_error;
949 static inline
950 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
952 if (type != PIDTYPE_PID)
953 task = task->group_leader;
954 return task->pids[type].pid;
957 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
959 return wo->wo_type == PIDTYPE_MAX ||
960 task_pid_type(p, wo->wo_type) == wo->wo_pid;
963 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
965 if (!eligible_pid(wo, p))
966 return 0;
967 /* Wait for all children (clone and not) if __WALL is set;
968 * otherwise, wait for clone children *only* if __WCLONE is
969 * set; otherwise, wait for non-clone children *only*. (Note:
970 * A "clone" child here is one that reports to its parent
971 * using a signal other than SIGCHLD.) */
972 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
973 && !(wo->wo_flags & __WALL))
974 return 0;
976 return 1;
979 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
980 pid_t pid, uid_t uid, int why, int status)
982 struct siginfo __user *infop;
983 int retval = wo->wo_rusage
984 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
986 put_task_struct(p);
987 infop = wo->wo_info;
988 if (infop) {
989 if (!retval)
990 retval = put_user(SIGCHLD, &infop->si_signo);
991 if (!retval)
992 retval = put_user(0, &infop->si_errno);
993 if (!retval)
994 retval = put_user((short)why, &infop->si_code);
995 if (!retval)
996 retval = put_user(pid, &infop->si_pid);
997 if (!retval)
998 retval = put_user(uid, &infop->si_uid);
999 if (!retval)
1000 retval = put_user(status, &infop->si_status);
1002 if (!retval)
1003 retval = pid;
1004 return retval;
1008 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1009 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1010 * the lock and this task is uninteresting. If we return nonzero, we have
1011 * released the lock and the system call should return.
1013 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1015 unsigned long state;
1016 int retval, status, traced;
1017 pid_t pid = task_pid_vnr(p);
1018 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1019 struct siginfo __user *infop;
1021 if (!likely(wo->wo_flags & WEXITED))
1022 return 0;
1024 if (unlikely(wo->wo_flags & WNOWAIT)) {
1025 int exit_code = p->exit_code;
1026 int why;
1028 get_task_struct(p);
1029 read_unlock(&tasklist_lock);
1030 if ((exit_code & 0x7f) == 0) {
1031 why = CLD_EXITED;
1032 status = exit_code >> 8;
1033 } else {
1034 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1035 status = exit_code & 0x7f;
1037 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1041 * Try to move the task's state to DEAD
1042 * only one thread is allowed to do this:
1044 state = xchg(&p->exit_state, EXIT_DEAD);
1045 if (state != EXIT_ZOMBIE) {
1046 BUG_ON(state != EXIT_DEAD);
1047 return 0;
1050 traced = ptrace_reparented(p);
1052 * It can be ptraced but not reparented, check
1053 * thread_group_leader() to filter out sub-threads.
1055 if (likely(!traced) && thread_group_leader(p)) {
1056 struct signal_struct *psig;
1057 struct signal_struct *sig;
1058 unsigned long maxrss;
1059 cputime_t tgutime, tgstime;
1062 * The resource counters for the group leader are in its
1063 * own task_struct. Those for dead threads in the group
1064 * are in its signal_struct, as are those for the child
1065 * processes it has previously reaped. All these
1066 * accumulate in the parent's signal_struct c* fields.
1068 * We don't bother to take a lock here to protect these
1069 * p->signal fields, because they are only touched by
1070 * __exit_signal, which runs with tasklist_lock
1071 * write-locked anyway, and so is excluded here. We do
1072 * need to protect the access to parent->signal fields,
1073 * as other threads in the parent group can be right
1074 * here reaping other children at the same time.
1076 * We use thread_group_cputime_adjusted() to get times for the thread
1077 * group, which consolidates times for all threads in the
1078 * group including the group leader.
1080 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1081 spin_lock_irq(&p->real_parent->sighand->siglock);
1082 psig = p->real_parent->signal;
1083 sig = p->signal;
1084 psig->cutime += tgutime + sig->cutime;
1085 psig->cstime += tgstime + sig->cstime;
1086 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1087 psig->cmin_flt +=
1088 p->min_flt + sig->min_flt + sig->cmin_flt;
1089 psig->cmaj_flt +=
1090 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1091 psig->cnvcsw +=
1092 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1093 psig->cnivcsw +=
1094 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1095 psig->cinblock +=
1096 task_io_get_inblock(p) +
1097 sig->inblock + sig->cinblock;
1098 psig->coublock +=
1099 task_io_get_oublock(p) +
1100 sig->oublock + sig->coublock;
1101 maxrss = max(sig->maxrss, sig->cmaxrss);
1102 if (psig->cmaxrss < maxrss)
1103 psig->cmaxrss = maxrss;
1104 task_io_accounting_add(&psig->ioac, &p->ioac);
1105 task_io_accounting_add(&psig->ioac, &sig->ioac);
1106 spin_unlock_irq(&p->real_parent->sighand->siglock);
1110 * Now we are sure this task is interesting, and no other
1111 * thread can reap it because we set its state to EXIT_DEAD.
1113 read_unlock(&tasklist_lock);
1115 retval = wo->wo_rusage
1116 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1117 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1118 ? p->signal->group_exit_code : p->exit_code;
1119 if (!retval && wo->wo_stat)
1120 retval = put_user(status, wo->wo_stat);
1122 infop = wo->wo_info;
1123 if (!retval && infop)
1124 retval = put_user(SIGCHLD, &infop->si_signo);
1125 if (!retval && infop)
1126 retval = put_user(0, &infop->si_errno);
1127 if (!retval && infop) {
1128 int why;
1130 if ((status & 0x7f) == 0) {
1131 why = CLD_EXITED;
1132 status >>= 8;
1133 } else {
1134 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1135 status &= 0x7f;
1137 retval = put_user((short)why, &infop->si_code);
1138 if (!retval)
1139 retval = put_user(status, &infop->si_status);
1141 if (!retval && infop)
1142 retval = put_user(pid, &infop->si_pid);
1143 if (!retval && infop)
1144 retval = put_user(uid, &infop->si_uid);
1145 if (!retval)
1146 retval = pid;
1148 if (traced) {
1149 write_lock_irq(&tasklist_lock);
1150 /* We dropped tasklist, ptracer could die and untrace */
1151 ptrace_unlink(p);
1153 * If this is not a sub-thread, notify the parent.
1154 * If parent wants a zombie, don't release it now.
1156 if (thread_group_leader(p) &&
1157 !do_notify_parent(p, p->exit_signal)) {
1158 p->exit_state = EXIT_ZOMBIE;
1159 p = NULL;
1161 write_unlock_irq(&tasklist_lock);
1163 if (p != NULL)
1164 release_task(p);
1166 return retval;
1169 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1171 if (ptrace) {
1172 if (task_is_stopped_or_traced(p) &&
1173 !(p->jobctl & JOBCTL_LISTENING))
1174 return &p->exit_code;
1175 } else {
1176 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1177 return &p->signal->group_exit_code;
1179 return NULL;
1183 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1184 * @wo: wait options
1185 * @ptrace: is the wait for ptrace
1186 * @p: task to wait for
1188 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1190 * CONTEXT:
1191 * read_lock(&tasklist_lock), which is released if return value is
1192 * non-zero. Also, grabs and releases @p->sighand->siglock.
1194 * RETURNS:
1195 * 0 if wait condition didn't exist and search for other wait conditions
1196 * should continue. Non-zero return, -errno on failure and @p's pid on
1197 * success, implies that tasklist_lock is released and wait condition
1198 * search should terminate.
1200 static int wait_task_stopped(struct wait_opts *wo,
1201 int ptrace, struct task_struct *p)
1203 struct siginfo __user *infop;
1204 int retval, exit_code, *p_code, why;
1205 uid_t uid = 0; /* unneeded, required by compiler */
1206 pid_t pid;
1209 * Traditionally we see ptrace'd stopped tasks regardless of options.
1211 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1212 return 0;
1214 if (!task_stopped_code(p, ptrace))
1215 return 0;
1217 exit_code = 0;
1218 spin_lock_irq(&p->sighand->siglock);
1220 p_code = task_stopped_code(p, ptrace);
1221 if (unlikely(!p_code))
1222 goto unlock_sig;
1224 exit_code = *p_code;
1225 if (!exit_code)
1226 goto unlock_sig;
1228 if (!unlikely(wo->wo_flags & WNOWAIT))
1229 *p_code = 0;
1231 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1232 unlock_sig:
1233 spin_unlock_irq(&p->sighand->siglock);
1234 if (!exit_code)
1235 return 0;
1238 * Now we are pretty sure this task is interesting.
1239 * Make sure it doesn't get reaped out from under us while we
1240 * give up the lock and then examine it below. We don't want to
1241 * keep holding onto the tasklist_lock while we call getrusage and
1242 * possibly take page faults for user memory.
1244 get_task_struct(p);
1245 pid = task_pid_vnr(p);
1246 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1247 read_unlock(&tasklist_lock);
1249 if (unlikely(wo->wo_flags & WNOWAIT))
1250 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1252 retval = wo->wo_rusage
1253 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1254 if (!retval && wo->wo_stat)
1255 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1257 infop = wo->wo_info;
1258 if (!retval && infop)
1259 retval = put_user(SIGCHLD, &infop->si_signo);
1260 if (!retval && infop)
1261 retval = put_user(0, &infop->si_errno);
1262 if (!retval && infop)
1263 retval = put_user((short)why, &infop->si_code);
1264 if (!retval && infop)
1265 retval = put_user(exit_code, &infop->si_status);
1266 if (!retval && infop)
1267 retval = put_user(pid, &infop->si_pid);
1268 if (!retval && infop)
1269 retval = put_user(uid, &infop->si_uid);
1270 if (!retval)
1271 retval = pid;
1272 put_task_struct(p);
1274 BUG_ON(!retval);
1275 return retval;
1279 * Handle do_wait work for one task in a live, non-stopped state.
1280 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1281 * the lock and this task is uninteresting. If we return nonzero, we have
1282 * released the lock and the system call should return.
1284 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1286 int retval;
1287 pid_t pid;
1288 uid_t uid;
1290 if (!unlikely(wo->wo_flags & WCONTINUED))
1291 return 0;
1293 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1294 return 0;
1296 spin_lock_irq(&p->sighand->siglock);
1297 /* Re-check with the lock held. */
1298 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1299 spin_unlock_irq(&p->sighand->siglock);
1300 return 0;
1302 if (!unlikely(wo->wo_flags & WNOWAIT))
1303 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1304 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1305 spin_unlock_irq(&p->sighand->siglock);
1307 pid = task_pid_vnr(p);
1308 get_task_struct(p);
1309 read_unlock(&tasklist_lock);
1311 if (!wo->wo_info) {
1312 retval = wo->wo_rusage
1313 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1314 put_task_struct(p);
1315 if (!retval && wo->wo_stat)
1316 retval = put_user(0xffff, wo->wo_stat);
1317 if (!retval)
1318 retval = pid;
1319 } else {
1320 retval = wait_noreap_copyout(wo, p, pid, uid,
1321 CLD_CONTINUED, SIGCONT);
1322 BUG_ON(retval == 0);
1325 return retval;
1329 * Consider @p for a wait by @parent.
1331 * -ECHILD should be in ->notask_error before the first call.
1332 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1333 * Returns zero if the search for a child should continue;
1334 * then ->notask_error is 0 if @p is an eligible child,
1335 * or another error from security_task_wait(), or still -ECHILD.
1337 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1338 struct task_struct *p)
1340 int ret = eligible_child(wo, p);
1341 if (!ret)
1342 return ret;
1344 ret = security_task_wait(p);
1345 if (unlikely(ret < 0)) {
1347 * If we have not yet seen any eligible child,
1348 * then let this error code replace -ECHILD.
1349 * A permission error will give the user a clue
1350 * to look for security policy problems, rather
1351 * than for mysterious wait bugs.
1353 if (wo->notask_error)
1354 wo->notask_error = ret;
1355 return 0;
1358 /* dead body doesn't have much to contribute */
1359 if (unlikely(p->exit_state == EXIT_DEAD)) {
1361 * But do not ignore this task until the tracer does
1362 * wait_task_zombie()->do_notify_parent().
1364 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1365 wo->notask_error = 0;
1366 return 0;
1369 /* slay zombie? */
1370 if (p->exit_state == EXIT_ZOMBIE) {
1372 * A zombie ptracee is only visible to its ptracer.
1373 * Notification and reaping will be cascaded to the real
1374 * parent when the ptracer detaches.
1376 if (likely(!ptrace) && unlikely(p->ptrace)) {
1377 /* it will become visible, clear notask_error */
1378 wo->notask_error = 0;
1379 return 0;
1382 /* we don't reap group leaders with subthreads */
1383 if (!delay_group_leader(p))
1384 return wait_task_zombie(wo, p);
1387 * Allow access to stopped/continued state via zombie by
1388 * falling through. Clearing of notask_error is complex.
1390 * When !@ptrace:
1392 * If WEXITED is set, notask_error should naturally be
1393 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1394 * so, if there are live subthreads, there are events to
1395 * wait for. If all subthreads are dead, it's still safe
1396 * to clear - this function will be called again in finite
1397 * amount time once all the subthreads are released and
1398 * will then return without clearing.
1400 * When @ptrace:
1402 * Stopped state is per-task and thus can't change once the
1403 * target task dies. Only continued and exited can happen.
1404 * Clear notask_error if WCONTINUED | WEXITED.
1406 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1407 wo->notask_error = 0;
1408 } else {
1410 * If @p is ptraced by a task in its real parent's group,
1411 * hide group stop/continued state when looking at @p as
1412 * the real parent; otherwise, a single stop can be
1413 * reported twice as group and ptrace stops.
1415 * If a ptracer wants to distinguish the two events for its
1416 * own children, it should create a separate process which
1417 * takes the role of real parent.
1419 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1420 return 0;
1423 * @p is alive and it's gonna stop, continue or exit, so
1424 * there always is something to wait for.
1426 wo->notask_error = 0;
1430 * Wait for stopped. Depending on @ptrace, different stopped state
1431 * is used and the two don't interact with each other.
1433 ret = wait_task_stopped(wo, ptrace, p);
1434 if (ret)
1435 return ret;
1438 * Wait for continued. There's only one continued state and the
1439 * ptracer can consume it which can confuse the real parent. Don't
1440 * use WCONTINUED from ptracer. You don't need or want it.
1442 return wait_task_continued(wo, p);
1446 * Do the work of do_wait() for one thread in the group, @tsk.
1448 * -ECHILD should be in ->notask_error before the first call.
1449 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1450 * Returns zero if the search for a child should continue; then
1451 * ->notask_error is 0 if there were any eligible children,
1452 * or another error from security_task_wait(), or still -ECHILD.
1454 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1456 struct task_struct *p;
1458 list_for_each_entry(p, &tsk->children, sibling) {
1459 int ret = wait_consider_task(wo, 0, p);
1460 if (ret)
1461 return ret;
1464 return 0;
1467 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1469 struct task_struct *p;
1471 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1472 int ret = wait_consider_task(wo, 1, p);
1473 if (ret)
1474 return ret;
1477 return 0;
1480 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1481 int sync, void *key)
1483 struct wait_opts *wo = container_of(wait, struct wait_opts,
1484 child_wait);
1485 struct task_struct *p = key;
1487 if (!eligible_pid(wo, p))
1488 return 0;
1490 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1491 return 0;
1493 return default_wake_function(wait, mode, sync, key);
1496 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1498 __wake_up_sync_key(&parent->signal->wait_chldexit,
1499 TASK_INTERRUPTIBLE, 1, p);
1502 static long do_wait(struct wait_opts *wo)
1504 struct task_struct *tsk;
1505 int retval;
1507 trace_sched_process_wait(wo->wo_pid);
1509 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1510 wo->child_wait.private = current;
1511 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1512 repeat:
1514 * If there is nothing that can match our critiera just get out.
1515 * We will clear ->notask_error to zero if we see any child that
1516 * might later match our criteria, even if we are not able to reap
1517 * it yet.
1519 wo->notask_error = -ECHILD;
1520 if ((wo->wo_type < PIDTYPE_MAX) &&
1521 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1522 goto notask;
1524 set_current_state(TASK_INTERRUPTIBLE);
1525 read_lock(&tasklist_lock);
1526 tsk = current;
1527 do {
1528 retval = do_wait_thread(wo, tsk);
1529 if (retval)
1530 goto end;
1532 retval = ptrace_do_wait(wo, tsk);
1533 if (retval)
1534 goto end;
1536 if (wo->wo_flags & __WNOTHREAD)
1537 break;
1538 } while_each_thread(current, tsk);
1539 read_unlock(&tasklist_lock);
1541 notask:
1542 retval = wo->notask_error;
1543 if (!retval && !(wo->wo_flags & WNOHANG)) {
1544 retval = -ERESTARTSYS;
1545 if (!signal_pending(current)) {
1546 schedule();
1547 goto repeat;
1550 end:
1551 __set_current_state(TASK_RUNNING);
1552 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1553 return retval;
1556 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1557 infop, int, options, struct rusage __user *, ru)
1559 struct wait_opts wo;
1560 struct pid *pid = NULL;
1561 enum pid_type type;
1562 long ret;
1564 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1565 return -EINVAL;
1566 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1567 return -EINVAL;
1569 switch (which) {
1570 case P_ALL:
1571 type = PIDTYPE_MAX;
1572 break;
1573 case P_PID:
1574 type = PIDTYPE_PID;
1575 if (upid <= 0)
1576 return -EINVAL;
1577 break;
1578 case P_PGID:
1579 type = PIDTYPE_PGID;
1580 if (upid <= 0)
1581 return -EINVAL;
1582 break;
1583 default:
1584 return -EINVAL;
1587 if (type < PIDTYPE_MAX)
1588 pid = find_get_pid(upid);
1590 wo.wo_type = type;
1591 wo.wo_pid = pid;
1592 wo.wo_flags = options;
1593 wo.wo_info = infop;
1594 wo.wo_stat = NULL;
1595 wo.wo_rusage = ru;
1596 ret = do_wait(&wo);
1598 if (ret > 0) {
1599 ret = 0;
1600 } else if (infop) {
1602 * For a WNOHANG return, clear out all the fields
1603 * we would set so the user can easily tell the
1604 * difference.
1606 if (!ret)
1607 ret = put_user(0, &infop->si_signo);
1608 if (!ret)
1609 ret = put_user(0, &infop->si_errno);
1610 if (!ret)
1611 ret = put_user(0, &infop->si_code);
1612 if (!ret)
1613 ret = put_user(0, &infop->si_pid);
1614 if (!ret)
1615 ret = put_user(0, &infop->si_uid);
1616 if (!ret)
1617 ret = put_user(0, &infop->si_status);
1620 put_pid(pid);
1621 return ret;
1624 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1625 int, options, struct rusage __user *, ru)
1627 struct wait_opts wo;
1628 struct pid *pid = NULL;
1629 enum pid_type type;
1630 long ret;
1632 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1633 __WNOTHREAD|__WCLONE|__WALL))
1634 return -EINVAL;
1636 if (upid == -1)
1637 type = PIDTYPE_MAX;
1638 else if (upid < 0) {
1639 type = PIDTYPE_PGID;
1640 pid = find_get_pid(-upid);
1641 } else if (upid == 0) {
1642 type = PIDTYPE_PGID;
1643 pid = get_task_pid(current, PIDTYPE_PGID);
1644 } else /* upid > 0 */ {
1645 type = PIDTYPE_PID;
1646 pid = find_get_pid(upid);
1649 wo.wo_type = type;
1650 wo.wo_pid = pid;
1651 wo.wo_flags = options | WEXITED;
1652 wo.wo_info = NULL;
1653 wo.wo_stat = stat_addr;
1654 wo.wo_rusage = ru;
1655 ret = do_wait(&wo);
1656 put_pid(pid);
1658 return ret;
1661 #ifdef __ARCH_WANT_SYS_WAITPID
1664 * sys_waitpid() remains for compatibility. waitpid() should be
1665 * implemented by calling sys_wait4() from libc.a.
1667 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1669 return sys_wait4(pid, stat_addr, options, NULL);
1672 #endif