2 * linux/arch/parisc/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
13 #include <linux/errno.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/param.h>
18 #include <linux/string.h>
20 #include <linux/interrupt.h>
21 #include <linux/time.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/profile.h>
25 #include <linux/clocksource.h>
26 #include <linux/platform_device.h>
27 #include <linux/ftrace.h>
29 #include <asm/uaccess.h>
33 #include <asm/param.h>
37 #include <linux/timex.h>
39 static unsigned long clocktick __read_mostly
; /* timer cycles per tick */
42 * We keep time on PA-RISC Linux by using the Interval Timer which is
43 * a pair of registers; one is read-only and one is write-only; both
44 * accessed through CR16. The read-only register is 32 or 64 bits wide,
45 * and increments by 1 every CPU clock tick. The architecture only
46 * guarantees us a rate between 0.5 and 2, but all implementations use a
47 * rate of 1. The write-only register is 32-bits wide. When the lowest
48 * 32 bits of the read-only register compare equal to the write-only
49 * register, it raises a maskable external interrupt. Each processor has
50 * an Interval Timer of its own and they are not synchronised.
52 * We want to generate an interrupt every 1/HZ seconds. So we program
53 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
54 * is programmed with the intended time of the next tick. We can be
55 * held off for an arbitrarily long period of time by interrupts being
56 * disabled, so we may miss one or more ticks.
58 irqreturn_t __irq_entry
timer_interrupt(int irq
, void *dev_id
)
60 unsigned long now
, now2
;
61 unsigned long next_tick
;
62 unsigned long cycles_elapsed
, ticks_elapsed
= 1;
63 unsigned long cycles_remainder
;
64 unsigned int cpu
= smp_processor_id();
65 struct cpuinfo_parisc
*cpuinfo
= &per_cpu(cpu_data
, cpu
);
67 /* gcc can optimize for "read-only" case with a local clocktick */
68 unsigned long cpt
= clocktick
;
70 profile_tick(CPU_PROFILING
);
72 /* Initialize next_tick to the expected tick time. */
73 next_tick
= cpuinfo
->it_value
;
75 /* Get current cycle counter (Control Register 16). */
78 cycles_elapsed
= now
- next_tick
;
80 if ((cycles_elapsed
>> 6) < cpt
) {
81 /* use "cheap" math (add/subtract) instead
82 * of the more expensive div/mul method
84 cycles_remainder
= cycles_elapsed
;
85 while (cycles_remainder
> cpt
) {
86 cycles_remainder
-= cpt
;
90 /* TODO: Reduce this to one fdiv op */
91 cycles_remainder
= cycles_elapsed
% cpt
;
92 ticks_elapsed
+= cycles_elapsed
/ cpt
;
95 /* convert from "division remainder" to "remainder of clock tick" */
96 cycles_remainder
= cpt
- cycles_remainder
;
98 /* Determine when (in CR16 cycles) next IT interrupt will fire.
99 * We want IT to fire modulo clocktick even if we miss/skip some.
100 * But those interrupts don't in fact get delivered that regularly.
102 next_tick
= now
+ cycles_remainder
;
104 cpuinfo
->it_value
= next_tick
;
106 /* Program the IT when to deliver the next interrupt.
107 * Only bottom 32-bits of next_tick are writable in CR16!
109 mtctl(next_tick
, 16);
111 /* Skip one clocktick on purpose if we missed next_tick.
112 * The new CR16 must be "later" than current CR16 otherwise
113 * itimer would not fire until CR16 wrapped - e.g 4 seconds
114 * later on a 1Ghz processor. We'll account for the missed
115 * tick on the next timer interrupt.
117 * "next_tick - now" will always give the difference regardless
118 * if one or the other wrapped. If "now" is "bigger" we'll end up
119 * with a very large unsigned number.
122 if (next_tick
- now2
> cpt
)
123 mtctl(next_tick
+cpt
, 16);
127 * GGG: DEBUG code for how many cycles programming CR16 used.
129 if (unlikely(now2
- now
> 0x3000)) /* 12K cycles */
130 printk (KERN_CRIT
"timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
132 " next/now %lX/%lX\n",
133 cpu
, now2
- now
, cycles_elapsed
, cycles_remainder
,
137 /* Can we differentiate between "early CR16" (aka Scenario 1) and
138 * "long delay" (aka Scenario 3)? I don't think so.
140 * Timer_interrupt will be delivered at least a few hundred cycles
141 * after the IT fires. But it's arbitrary how much time passes
142 * before we call it "late". I've picked one second.
144 * It's important NO printk's are between reading CR16 and
145 * setting up the next value. May introduce huge variance.
147 if (unlikely(ticks_elapsed
> HZ
)) {
148 /* Scenario 3: very long delay? bad in any case */
149 printk (KERN_CRIT
"timer_interrupt(CPU %d): delayed!"
150 " cycles %lX rem %lX "
151 " next/now %lX/%lX\n",
153 cycles_elapsed
, cycles_remainder
,
157 /* Done mucking with unreliable delivery of interrupts.
158 * Go do system house keeping.
161 if (!--cpuinfo
->prof_counter
) {
162 cpuinfo
->prof_counter
= cpuinfo
->prof_multiplier
;
163 update_process_times(user_mode(get_irq_regs()));
167 xtime_update(ticks_elapsed
);
173 unsigned long profile_pc(struct pt_regs
*regs
)
175 unsigned long pc
= instruction_pointer(regs
);
177 if (regs
->gr
[0] & PSW_N
)
181 if (in_lock_functions(pc
))
187 EXPORT_SYMBOL(profile_pc
);
190 /* clock source code */
192 static cycle_t
read_cr16(struct clocksource
*cs
)
197 static struct clocksource clocksource_cr16
= {
201 .mask
= CLOCKSOURCE_MASK(BITS_PER_LONG
),
202 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
206 int update_cr16_clocksource(void)
208 /* since the cr16 cycle counters are not synchronized across CPUs,
209 we'll check if we should switch to a safe clocksource: */
210 if (clocksource_cr16
.rating
!= 0 && num_online_cpus() > 1) {
211 clocksource_change_rating(&clocksource_cr16
, 0);
218 int update_cr16_clocksource(void)
220 return 0; /* no change */
222 #endif /*CONFIG_SMP*/
224 void __init
start_cpu_itimer(void)
226 unsigned int cpu
= smp_processor_id();
227 unsigned long next_tick
= mfctl(16) + clocktick
;
229 mtctl(next_tick
, 16); /* kick off Interval Timer (CR16) */
231 per_cpu(cpu_data
, cpu
).it_value
= next_tick
;
234 static struct platform_device rtc_generic_dev
= {
235 .name
= "rtc-generic",
239 static int __init
rtc_init(void)
241 if (platform_device_register(&rtc_generic_dev
) < 0)
242 printk(KERN_ERR
"unable to register rtc device...\n");
244 /* not necessarily an error */
247 module_init(rtc_init
);
249 void read_persistent_clock(struct timespec
*ts
)
251 static struct pdc_tod tod_data
;
252 if (pdc_tod_read(&tod_data
) == 0) {
253 ts
->tv_sec
= tod_data
.tod_sec
;
254 ts
->tv_nsec
= tod_data
.tod_usec
* 1000;
256 printk(KERN_ERR
"Error reading tod clock\n");
262 void __init
time_init(void)
264 unsigned long current_cr16_khz
;
266 clocktick
= (100 * PAGE0
->mem_10msec
) / HZ
;
268 start_cpu_itimer(); /* get CPU 0 started */
270 /* register at clocksource framework */
271 current_cr16_khz
= PAGE0
->mem_10msec
/10; /* kHz */
272 clocksource_register_khz(&clocksource_cr16
, current_cr16_khz
);