2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
43 static kmem_zone_t
*xfs_buf_zone
;
45 static struct workqueue_struct
*xfslogd_workqueue
;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp
->b_addr
&& bp
->b_page_count
> 1;
79 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
83 * xfs_buf_lru_add - add a buffer to the LRU.
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
92 struct xfs_buftarg
*btp
= bp
->b_target
;
94 spin_lock(&btp
->bt_lru_lock
);
95 if (list_empty(&bp
->b_lru
)) {
96 atomic_inc(&bp
->b_hold
);
97 list_add_tail(&bp
->b_lru
, &btp
->bt_lru
);
100 spin_unlock(&btp
->bt_lru_lock
);
104 * xfs_buf_lru_del - remove a buffer from the LRU
106 * The unlocked check is safe here because it only occurs when there are not
107 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
108 * to optimise the shrinker removing the buffer from the LRU and calling
109 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
116 struct xfs_buftarg
*btp
= bp
->b_target
;
118 if (list_empty(&bp
->b_lru
))
121 spin_lock(&btp
->bt_lru_lock
);
122 if (!list_empty(&bp
->b_lru
)) {
123 list_del_init(&bp
->b_lru
);
126 spin_unlock(&btp
->bt_lru_lock
);
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
135 * This prevents build-up of stale buffers on the LRU.
141 ASSERT(xfs_buf_islocked(bp
));
143 bp
->b_flags
|= XBF_STALE
;
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
150 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
152 atomic_set(&(bp
)->b_lru_ref
, 0);
153 if (!list_empty(&bp
->b_lru
)) {
154 struct xfs_buftarg
*btp
= bp
->b_target
;
156 spin_lock(&btp
->bt_lru_lock
);
157 if (!list_empty(&bp
->b_lru
)) {
158 list_del_init(&bp
->b_lru
);
160 atomic_dec(&bp
->b_hold
);
162 spin_unlock(&btp
->bt_lru_lock
);
164 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
172 ASSERT(bp
->b_maps
== NULL
);
173 bp
->b_map_count
= map_count
;
175 if (map_count
== 1) {
176 bp
->b_maps
= &bp
->b_map
;
180 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
188 * Frees b_pages if it was allocated.
194 if (bp
->b_maps
!= &bp
->b_map
) {
195 kmem_free(bp
->b_maps
);
202 struct xfs_buftarg
*target
,
203 struct xfs_buf_map
*map
,
205 xfs_buf_flags_t flags
)
211 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
216 * We don't want certain flags to appear in b_flags unless they are
217 * specifically set by later operations on the buffer.
219 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
221 atomic_set(&bp
->b_hold
, 1);
222 atomic_set(&bp
->b_lru_ref
, 1);
223 init_completion(&bp
->b_iowait
);
224 INIT_LIST_HEAD(&bp
->b_lru
);
225 INIT_LIST_HEAD(&bp
->b_list
);
226 RB_CLEAR_NODE(&bp
->b_rbnode
);
227 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
229 bp
->b_target
= target
;
233 * Set length and io_length to the same value initially.
234 * I/O routines should use io_length, which will be the same in
235 * most cases but may be reset (e.g. XFS recovery).
237 error
= xfs_buf_get_maps(bp
, nmaps
);
239 kmem_zone_free(xfs_buf_zone
, bp
);
243 bp
->b_bn
= map
[0].bm_bn
;
245 for (i
= 0; i
< nmaps
; i
++) {
246 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
247 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
248 bp
->b_length
+= map
[i
].bm_len
;
250 bp
->b_io_length
= bp
->b_length
;
252 atomic_set(&bp
->b_pin_count
, 0);
253 init_waitqueue_head(&bp
->b_waiters
);
255 XFS_STATS_INC(xb_create
);
256 trace_xfs_buf_init(bp
, _RET_IP_
);
262 * Allocate a page array capable of holding a specified number
263 * of pages, and point the page buf at it.
269 xfs_buf_flags_t flags
)
271 /* Make sure that we have a page list */
272 if (bp
->b_pages
== NULL
) {
273 bp
->b_page_count
= page_count
;
274 if (page_count
<= XB_PAGES
) {
275 bp
->b_pages
= bp
->b_page_array
;
277 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
278 page_count
, KM_NOFS
);
279 if (bp
->b_pages
== NULL
)
282 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
288 * Frees b_pages if it was allocated.
294 if (bp
->b_pages
!= bp
->b_page_array
) {
295 kmem_free(bp
->b_pages
);
301 * Releases the specified buffer.
303 * The modification state of any associated pages is left unchanged.
304 * The buffer most not be on any hash - use xfs_buf_rele instead for
305 * hashed and refcounted buffers
311 trace_xfs_buf_free(bp
, _RET_IP_
);
313 ASSERT(list_empty(&bp
->b_lru
));
315 if (bp
->b_flags
& _XBF_PAGES
) {
318 if (xfs_buf_is_vmapped(bp
))
319 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
322 for (i
= 0; i
< bp
->b_page_count
; i
++) {
323 struct page
*page
= bp
->b_pages
[i
];
327 } else if (bp
->b_flags
& _XBF_KMEM
)
328 kmem_free(bp
->b_addr
);
329 _xfs_buf_free_pages(bp
);
330 xfs_buf_free_maps(bp
);
331 kmem_zone_free(xfs_buf_zone
, bp
);
335 * Allocates all the pages for buffer in question and builds it's page list.
338 xfs_buf_allocate_memory(
343 size_t nbytes
, offset
;
344 gfp_t gfp_mask
= xb_to_gfp(flags
);
345 unsigned short page_count
, i
;
346 xfs_off_t start
, end
;
350 * for buffers that are contained within a single page, just allocate
351 * the memory from the heap - there's no need for the complexity of
352 * page arrays to keep allocation down to order 0.
354 size
= BBTOB(bp
->b_length
);
355 if (size
< PAGE_SIZE
) {
356 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
358 /* low memory - use alloc_page loop instead */
362 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
363 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
364 /* b_addr spans two pages - use alloc_page instead */
365 kmem_free(bp
->b_addr
);
369 bp
->b_offset
= offset_in_page(bp
->b_addr
);
370 bp
->b_pages
= bp
->b_page_array
;
371 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
372 bp
->b_page_count
= 1;
373 bp
->b_flags
|= _XBF_KMEM
;
378 start
= BBTOB(bp
->b_map
.bm_bn
) >> PAGE_SHIFT
;
379 end
= (BBTOB(bp
->b_map
.bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
381 page_count
= end
- start
;
382 error
= _xfs_buf_get_pages(bp
, page_count
, flags
);
386 offset
= bp
->b_offset
;
387 bp
->b_flags
|= _XBF_PAGES
;
389 for (i
= 0; i
< bp
->b_page_count
; i
++) {
393 page
= alloc_page(gfp_mask
);
394 if (unlikely(page
== NULL
)) {
395 if (flags
& XBF_READ_AHEAD
) {
396 bp
->b_page_count
= i
;
402 * This could deadlock.
404 * But until all the XFS lowlevel code is revamped to
405 * handle buffer allocation failures we can't do much.
407 if (!(++retries
% 100))
409 "possible memory allocation deadlock in %s (mode:0x%x)",
412 XFS_STATS_INC(xb_page_retries
);
413 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
417 XFS_STATS_INC(xb_page_found
);
419 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
421 bp
->b_pages
[i
] = page
;
427 for (i
= 0; i
< bp
->b_page_count
; i
++)
428 __free_page(bp
->b_pages
[i
]);
433 * Map buffer into kernel address-space if necessary.
440 ASSERT(bp
->b_flags
& _XBF_PAGES
);
441 if (bp
->b_page_count
== 1) {
442 /* A single page buffer is always mappable */
443 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
444 } else if (flags
& XBF_UNMAPPED
) {
450 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
455 } while (retried
++ <= 1);
459 bp
->b_addr
+= bp
->b_offset
;
466 * Finding and Reading Buffers
470 * Look up, and creates if absent, a lockable buffer for
471 * a given range of an inode. The buffer is returned
472 * locked. No I/O is implied by this call.
476 struct xfs_buftarg
*btp
,
477 struct xfs_buf_map
*map
,
479 xfs_buf_flags_t flags
,
483 struct xfs_perag
*pag
;
484 struct rb_node
**rbp
;
485 struct rb_node
*parent
;
487 xfs_daddr_t blkno
= map
[0].bm_bn
;
491 for (i
= 0; i
< nmaps
; i
++)
492 numblks
+= map
[i
].bm_len
;
493 numbytes
= BBTOB(numblks
);
495 /* Check for IOs smaller than the sector size / not sector aligned */
496 ASSERT(!(numbytes
< (1 << btp
->bt_sshift
)));
497 ASSERT(!(BBTOB(blkno
) & (xfs_off_t
)btp
->bt_smask
));
500 pag
= xfs_perag_get(btp
->bt_mount
,
501 xfs_daddr_to_agno(btp
->bt_mount
, blkno
));
504 spin_lock(&pag
->pag_buf_lock
);
505 rbp
= &pag
->pag_buf_tree
.rb_node
;
510 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
512 if (blkno
< bp
->b_bn
)
513 rbp
= &(*rbp
)->rb_left
;
514 else if (blkno
> bp
->b_bn
)
515 rbp
= &(*rbp
)->rb_right
;
518 * found a block number match. If the range doesn't
519 * match, the only way this is allowed is if the buffer
520 * in the cache is stale and the transaction that made
521 * it stale has not yet committed. i.e. we are
522 * reallocating a busy extent. Skip this buffer and
523 * continue searching to the right for an exact match.
525 if (bp
->b_length
!= numblks
) {
526 ASSERT(bp
->b_flags
& XBF_STALE
);
527 rbp
= &(*rbp
)->rb_right
;
530 atomic_inc(&bp
->b_hold
);
537 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
538 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
539 /* the buffer keeps the perag reference until it is freed */
541 spin_unlock(&pag
->pag_buf_lock
);
543 XFS_STATS_INC(xb_miss_locked
);
544 spin_unlock(&pag
->pag_buf_lock
);
550 spin_unlock(&pag
->pag_buf_lock
);
553 if (!xfs_buf_trylock(bp
)) {
554 if (flags
& XBF_TRYLOCK
) {
556 XFS_STATS_INC(xb_busy_locked
);
560 XFS_STATS_INC(xb_get_locked_waited
);
564 * if the buffer is stale, clear all the external state associated with
565 * it. We need to keep flags such as how we allocated the buffer memory
568 if (bp
->b_flags
& XBF_STALE
) {
569 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
570 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
573 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
574 XFS_STATS_INC(xb_get_locked
);
579 * Assembles a buffer covering the specified range. The code is optimised for
580 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
581 * more hits than misses.
585 struct xfs_buftarg
*target
,
586 struct xfs_buf_map
*map
,
588 xfs_buf_flags_t flags
)
591 struct xfs_buf
*new_bp
;
594 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
598 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
599 if (unlikely(!new_bp
))
602 error
= xfs_buf_allocate_memory(new_bp
, flags
);
604 xfs_buf_free(new_bp
);
608 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
610 xfs_buf_free(new_bp
);
615 xfs_buf_free(new_bp
);
619 error
= _xfs_buf_map_pages(bp
, flags
);
620 if (unlikely(error
)) {
621 xfs_warn(target
->bt_mount
,
622 "%s: failed to map pages\n", __func__
);
628 XFS_STATS_INC(xb_get
);
629 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
636 xfs_buf_flags_t flags
)
638 ASSERT(!(flags
& XBF_WRITE
));
639 ASSERT(bp
->b_map
.bm_bn
!= XFS_BUF_DADDR_NULL
);
641 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
642 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
644 xfs_buf_iorequest(bp
);
645 if (flags
& XBF_ASYNC
)
647 return xfs_buf_iowait(bp
);
652 struct xfs_buftarg
*target
,
653 struct xfs_buf_map
*map
,
655 xfs_buf_flags_t flags
)
661 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
663 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
665 if (!XFS_BUF_ISDONE(bp
)) {
666 XFS_STATS_INC(xb_get_read
);
667 _xfs_buf_read(bp
, flags
);
668 } else if (flags
& XBF_ASYNC
) {
670 * Read ahead call which is already satisfied,
676 /* We do not want read in the flags */
677 bp
->b_flags
&= ~XBF_READ
;
685 * If we are not low on memory then do the readahead in a deadlock
689 xfs_buf_readahead_map(
690 struct xfs_buftarg
*target
,
691 struct xfs_buf_map
*map
,
694 if (bdi_read_congested(target
->bt_bdi
))
697 xfs_buf_read_map(target
, map
, nmaps
,
698 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
);
702 * Read an uncached buffer from disk. Allocates and returns a locked
703 * buffer containing the disk contents or nothing.
706 xfs_buf_read_uncached(
707 struct xfs_buftarg
*target
,
715 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
719 /* set up the buffer for a read IO */
720 ASSERT(bp
->b_map_count
== 1);
722 bp
->b_maps
[0].bm_bn
= daddr
;
723 bp
->b_flags
|= XBF_READ
;
725 xfsbdstrat(target
->bt_mount
, bp
);
726 error
= xfs_buf_iowait(bp
);
735 * Return a buffer allocated as an empty buffer and associated to external
736 * memory via xfs_buf_associate_memory() back to it's empty state.
744 _xfs_buf_free_pages(bp
);
747 bp
->b_page_count
= 0;
749 bp
->b_length
= numblks
;
750 bp
->b_io_length
= numblks
;
752 ASSERT(bp
->b_map_count
== 1);
753 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
754 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
755 bp
->b_maps
[0].bm_len
= bp
->b_length
;
758 static inline struct page
*
762 if ((!is_vmalloc_addr(addr
))) {
763 return virt_to_page(addr
);
765 return vmalloc_to_page(addr
);
770 xfs_buf_associate_memory(
777 unsigned long pageaddr
;
778 unsigned long offset
;
782 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
783 offset
= (unsigned long)mem
- pageaddr
;
784 buflen
= PAGE_ALIGN(len
+ offset
);
785 page_count
= buflen
>> PAGE_SHIFT
;
787 /* Free any previous set of page pointers */
789 _xfs_buf_free_pages(bp
);
794 rval
= _xfs_buf_get_pages(bp
, page_count
, 0);
798 bp
->b_offset
= offset
;
800 for (i
= 0; i
< bp
->b_page_count
; i
++) {
801 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
802 pageaddr
+= PAGE_SIZE
;
805 bp
->b_io_length
= BTOBB(len
);
806 bp
->b_length
= BTOBB(buflen
);
812 xfs_buf_get_uncached(
813 struct xfs_buftarg
*target
,
817 unsigned long page_count
;
820 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
822 bp
= _xfs_buf_alloc(target
, &map
, 1, 0);
823 if (unlikely(bp
== NULL
))
826 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
827 error
= _xfs_buf_get_pages(bp
, page_count
, 0);
831 for (i
= 0; i
< page_count
; i
++) {
832 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
836 bp
->b_flags
|= _XBF_PAGES
;
838 error
= _xfs_buf_map_pages(bp
, 0);
839 if (unlikely(error
)) {
840 xfs_warn(target
->bt_mount
,
841 "%s: failed to map pages\n", __func__
);
845 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
850 __free_page(bp
->b_pages
[i
]);
851 _xfs_buf_free_pages(bp
);
853 xfs_buf_free_maps(bp
);
854 kmem_zone_free(xfs_buf_zone
, bp
);
860 * Increment reference count on buffer, to hold the buffer concurrently
861 * with another thread which may release (free) the buffer asynchronously.
862 * Must hold the buffer already to call this function.
868 trace_xfs_buf_hold(bp
, _RET_IP_
);
869 atomic_inc(&bp
->b_hold
);
873 * Releases a hold on the specified buffer. If the
874 * the hold count is 1, calls xfs_buf_free.
880 struct xfs_perag
*pag
= bp
->b_pag
;
882 trace_xfs_buf_rele(bp
, _RET_IP_
);
885 ASSERT(list_empty(&bp
->b_lru
));
886 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
887 if (atomic_dec_and_test(&bp
->b_hold
))
892 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
894 ASSERT(atomic_read(&bp
->b_hold
) > 0);
895 if (atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
)) {
896 if (!(bp
->b_flags
& XBF_STALE
) &&
897 atomic_read(&bp
->b_lru_ref
)) {
899 spin_unlock(&pag
->pag_buf_lock
);
902 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
903 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
904 spin_unlock(&pag
->pag_buf_lock
);
913 * Lock a buffer object, if it is not already locked.
915 * If we come across a stale, pinned, locked buffer, we know that we are
916 * being asked to lock a buffer that has been reallocated. Because it is
917 * pinned, we know that the log has not been pushed to disk and hence it
918 * will still be locked. Rather than continuing to have trylock attempts
919 * fail until someone else pushes the log, push it ourselves before
920 * returning. This means that the xfsaild will not get stuck trying
921 * to push on stale inode buffers.
929 locked
= down_trylock(&bp
->b_sema
) == 0;
932 else if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
933 xfs_log_force(bp
->b_target
->bt_mount
, 0);
935 trace_xfs_buf_trylock(bp
, _RET_IP_
);
940 * Lock a buffer object.
942 * If we come across a stale, pinned, locked buffer, we know that we
943 * are being asked to lock a buffer that has been reallocated. Because
944 * it is pinned, we know that the log has not been pushed to disk and
945 * hence it will still be locked. Rather than sleeping until someone
946 * else pushes the log, push it ourselves before trying to get the lock.
952 trace_xfs_buf_lock(bp
, _RET_IP_
);
954 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
955 xfs_log_force(bp
->b_target
->bt_mount
, 0);
959 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
969 trace_xfs_buf_unlock(bp
, _RET_IP_
);
976 DECLARE_WAITQUEUE (wait
, current
);
978 if (atomic_read(&bp
->b_pin_count
) == 0)
981 add_wait_queue(&bp
->b_waiters
, &wait
);
983 set_current_state(TASK_UNINTERRUPTIBLE
);
984 if (atomic_read(&bp
->b_pin_count
) == 0)
988 remove_wait_queue(&bp
->b_waiters
, &wait
);
989 set_current_state(TASK_RUNNING
);
993 * Buffer Utility Routines
998 struct work_struct
*work
)
1001 container_of(work
, xfs_buf_t
, b_iodone_work
);
1004 (*(bp
->b_iodone
))(bp
);
1005 else if (bp
->b_flags
& XBF_ASYNC
)
1014 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1016 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1017 if (bp
->b_error
== 0)
1018 bp
->b_flags
|= XBF_DONE
;
1020 if ((bp
->b_iodone
) || (bp
->b_flags
& XBF_ASYNC
)) {
1022 INIT_WORK(&bp
->b_iodone_work
, xfs_buf_iodone_work
);
1023 queue_work(xfslogd_workqueue
, &bp
->b_iodone_work
);
1025 xfs_buf_iodone_work(&bp
->b_iodone_work
);
1028 complete(&bp
->b_iowait
);
1037 ASSERT(error
>= 0 && error
<= 0xffff);
1038 bp
->b_error
= (unsigned short)error
;
1039 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1043 xfs_buf_ioerror_alert(
1047 xfs_alert(bp
->b_target
->bt_mount
,
1048 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1049 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, bp
->b_error
, bp
->b_length
);
1053 * Called when we want to stop a buffer from getting written or read.
1054 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1055 * so that the proper iodone callbacks get called.
1061 #ifdef XFSERRORDEBUG
1062 ASSERT(XFS_BUF_ISREAD(bp
) || bp
->b_iodone
);
1066 * No need to wait until the buffer is unpinned, we aren't flushing it.
1068 xfs_buf_ioerror(bp
, EIO
);
1071 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1077 xfs_buf_ioend(bp
, 0);
1083 * Same as xfs_bioerror, except that we are releasing the buffer
1084 * here ourselves, and avoiding the xfs_buf_ioend call.
1085 * This is meant for userdata errors; metadata bufs come with
1086 * iodone functions attached, so that we can track down errors.
1092 int64_t fl
= bp
->b_flags
;
1094 * No need to wait until the buffer is unpinned.
1095 * We aren't flushing it.
1097 * chunkhold expects B_DONE to be set, whether
1098 * we actually finish the I/O or not. We don't want to
1099 * change that interface.
1104 bp
->b_iodone
= NULL
;
1105 if (!(fl
& XBF_ASYNC
)) {
1107 * Mark b_error and B_ERROR _both_.
1108 * Lot's of chunkcache code assumes that.
1109 * There's no reason to mark error for
1112 xfs_buf_ioerror(bp
, EIO
);
1113 complete(&bp
->b_iowait
);
1125 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1126 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1128 * Metadata write that didn't get logged but
1129 * written delayed anyway. These aren't associated
1130 * with a transaction, and can be ignored.
1132 if (!bp
->b_iodone
&& !XFS_BUF_ISREAD(bp
))
1133 return xfs_bioerror_relse(bp
);
1135 return xfs_bioerror(bp
);
1138 xfs_buf_iorequest(bp
);
1148 ASSERT(xfs_buf_islocked(bp
));
1150 bp
->b_flags
|= XBF_WRITE
;
1151 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
);
1155 error
= xfs_buf_iowait(bp
);
1157 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1158 SHUTDOWN_META_IO_ERROR
);
1164 * Wrapper around bdstrat so that we can stop data from going to disk in case
1165 * we are shutting down the filesystem. Typically user data goes thru this
1166 * path; one of the exceptions is the superblock.
1170 struct xfs_mount
*mp
,
1173 if (XFS_FORCED_SHUTDOWN(mp
)) {
1174 trace_xfs_bdstrat_shut(bp
, _RET_IP_
);
1175 xfs_bioerror_relse(bp
);
1179 xfs_buf_iorequest(bp
);
1187 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1188 xfs_buf_ioend(bp
, schedule
);
1196 xfs_buf_t
*bp
= (xfs_buf_t
*)bio
->bi_private
;
1198 xfs_buf_ioerror(bp
, -error
);
1200 if (!error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1201 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1203 _xfs_buf_ioend(bp
, 1);
1208 xfs_buf_ioapply_map(
1216 int total_nr_pages
= bp
->b_page_count
;
1219 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1223 total_nr_pages
= bp
->b_page_count
;
1225 /* skip the pages in the buffer before the start offset */
1227 offset
= *buf_offset
;
1228 while (offset
>= PAGE_SIZE
) {
1230 offset
-= PAGE_SIZE
;
1234 * Limit the IO size to the length of the current vector, and update the
1235 * remaining IO count for the next time around.
1237 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1239 *buf_offset
+= size
;
1242 atomic_inc(&bp
->b_io_remaining
);
1243 nr_pages
= BIO_MAX_SECTORS
>> (PAGE_SHIFT
- BBSHIFT
);
1244 if (nr_pages
> total_nr_pages
)
1245 nr_pages
= total_nr_pages
;
1247 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1248 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1249 bio
->bi_sector
= sector
;
1250 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1251 bio
->bi_private
= bp
;
1254 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1255 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1260 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1262 if (rbytes
< nbytes
)
1266 sector
+= BTOBB(nbytes
);
1271 if (likely(bio
->bi_size
)) {
1272 if (xfs_buf_is_vmapped(bp
)) {
1273 flush_kernel_vmap_range(bp
->b_addr
,
1274 xfs_buf_vmap_len(bp
));
1276 submit_bio(rw
, bio
);
1280 xfs_buf_ioerror(bp
, EIO
);
1290 struct blk_plug plug
;
1296 if (bp
->b_flags
& XBF_WRITE
) {
1297 if (bp
->b_flags
& XBF_SYNCIO
)
1301 if (bp
->b_flags
& XBF_FUA
)
1303 if (bp
->b_flags
& XBF_FLUSH
)
1305 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1311 /* we only use the buffer cache for meta-data */
1315 * Walk all the vectors issuing IO on them. Set up the initial offset
1316 * into the buffer and the desired IO size before we start -
1317 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1320 offset
= bp
->b_offset
;
1321 size
= BBTOB(bp
->b_io_length
);
1322 blk_start_plug(&plug
);
1323 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1324 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, rw
);
1328 break; /* all done */
1330 blk_finish_plug(&plug
);
1337 trace_xfs_buf_iorequest(bp
, _RET_IP_
);
1339 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1341 if (bp
->b_flags
& XBF_WRITE
)
1342 xfs_buf_wait_unpin(bp
);
1345 /* Set the count to 1 initially, this will stop an I/O
1346 * completion callout which happens before we have started
1347 * all the I/O from calling xfs_buf_ioend too early.
1349 atomic_set(&bp
->b_io_remaining
, 1);
1350 _xfs_buf_ioapply(bp
);
1351 _xfs_buf_ioend(bp
, 1);
1357 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1358 * no I/O is pending or there is already a pending error on the buffer. It
1359 * returns the I/O error code, if any, or 0 if there was no error.
1365 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1368 wait_for_completion(&bp
->b_iowait
);
1370 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1382 return bp
->b_addr
+ offset
;
1384 offset
+= bp
->b_offset
;
1385 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1386 return (xfs_caddr_t
)page_address(page
) + (offset
& (PAGE_SIZE
-1));
1390 * Move data into or out of a buffer.
1394 xfs_buf_t
*bp
, /* buffer to process */
1395 size_t boff
, /* starting buffer offset */
1396 size_t bsize
, /* length to copy */
1397 void *data
, /* data address */
1398 xfs_buf_rw_t mode
) /* read/write/zero flag */
1402 bend
= boff
+ bsize
;
1403 while (boff
< bend
) {
1405 int page_index
, page_offset
, csize
;
1407 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1408 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1409 page
= bp
->b_pages
[page_index
];
1410 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1411 BBTOB(bp
->b_io_length
) - boff
);
1413 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1417 memset(page_address(page
) + page_offset
, 0, csize
);
1420 memcpy(data
, page_address(page
) + page_offset
, csize
);
1423 memcpy(page_address(page
) + page_offset
, data
, csize
);
1432 * Handling of buffer targets (buftargs).
1436 * Wait for any bufs with callbacks that have been submitted but have not yet
1437 * returned. These buffers will have an elevated hold count, so wait on those
1438 * while freeing all the buffers only held by the LRU.
1442 struct xfs_buftarg
*btp
)
1447 spin_lock(&btp
->bt_lru_lock
);
1448 while (!list_empty(&btp
->bt_lru
)) {
1449 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1450 if (atomic_read(&bp
->b_hold
) > 1) {
1451 spin_unlock(&btp
->bt_lru_lock
);
1456 * clear the LRU reference count so the buffer doesn't get
1457 * ignored in xfs_buf_rele().
1459 atomic_set(&bp
->b_lru_ref
, 0);
1460 spin_unlock(&btp
->bt_lru_lock
);
1462 spin_lock(&btp
->bt_lru_lock
);
1464 spin_unlock(&btp
->bt_lru_lock
);
1469 struct shrinker
*shrink
,
1470 struct shrink_control
*sc
)
1472 struct xfs_buftarg
*btp
= container_of(shrink
,
1473 struct xfs_buftarg
, bt_shrinker
);
1475 int nr_to_scan
= sc
->nr_to_scan
;
1479 return btp
->bt_lru_nr
;
1481 spin_lock(&btp
->bt_lru_lock
);
1482 while (!list_empty(&btp
->bt_lru
)) {
1483 if (nr_to_scan
-- <= 0)
1486 bp
= list_first_entry(&btp
->bt_lru
, struct xfs_buf
, b_lru
);
1489 * Decrement the b_lru_ref count unless the value is already
1490 * zero. If the value is already zero, we need to reclaim the
1491 * buffer, otherwise it gets another trip through the LRU.
1493 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1494 list_move_tail(&bp
->b_lru
, &btp
->bt_lru
);
1499 * remove the buffer from the LRU now to avoid needing another
1500 * lock round trip inside xfs_buf_rele().
1502 list_move(&bp
->b_lru
, &dispose
);
1505 spin_unlock(&btp
->bt_lru_lock
);
1507 while (!list_empty(&dispose
)) {
1508 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1509 list_del_init(&bp
->b_lru
);
1513 return btp
->bt_lru_nr
;
1518 struct xfs_mount
*mp
,
1519 struct xfs_buftarg
*btp
)
1521 unregister_shrinker(&btp
->bt_shrinker
);
1523 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1524 xfs_blkdev_issue_flush(btp
);
1530 xfs_setsize_buftarg_flags(
1532 unsigned int blocksize
,
1533 unsigned int sectorsize
,
1536 btp
->bt_bsize
= blocksize
;
1537 btp
->bt_sshift
= ffs(sectorsize
) - 1;
1538 btp
->bt_smask
= sectorsize
- 1;
1540 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1541 char name
[BDEVNAME_SIZE
];
1543 bdevname(btp
->bt_bdev
, name
);
1545 xfs_warn(btp
->bt_mount
,
1546 "Cannot set_blocksize to %u on device %s\n",
1555 * When allocating the initial buffer target we have not yet
1556 * read in the superblock, so don't know what sized sectors
1557 * are being used is at this early stage. Play safe.
1560 xfs_setsize_buftarg_early(
1562 struct block_device
*bdev
)
1564 return xfs_setsize_buftarg_flags(btp
,
1565 PAGE_SIZE
, bdev_logical_block_size(bdev
), 0);
1569 xfs_setsize_buftarg(
1571 unsigned int blocksize
,
1572 unsigned int sectorsize
)
1574 return xfs_setsize_buftarg_flags(btp
, blocksize
, sectorsize
, 1);
1579 struct xfs_mount
*mp
,
1580 struct block_device
*bdev
,
1586 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
);
1589 btp
->bt_dev
= bdev
->bd_dev
;
1590 btp
->bt_bdev
= bdev
;
1591 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1595 INIT_LIST_HEAD(&btp
->bt_lru
);
1596 spin_lock_init(&btp
->bt_lru_lock
);
1597 if (xfs_setsize_buftarg_early(btp
, bdev
))
1599 btp
->bt_shrinker
.shrink
= xfs_buftarg_shrink
;
1600 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1601 register_shrinker(&btp
->bt_shrinker
);
1610 * Add a buffer to the delayed write list.
1612 * This queues a buffer for writeout if it hasn't already been. Note that
1613 * neither this routine nor the buffer list submission functions perform
1614 * any internal synchronization. It is expected that the lists are thread-local
1617 * Returns true if we queued up the buffer, or false if it already had
1618 * been on the buffer list.
1621 xfs_buf_delwri_queue(
1623 struct list_head
*list
)
1625 ASSERT(xfs_buf_islocked(bp
));
1626 ASSERT(!(bp
->b_flags
& XBF_READ
));
1629 * If the buffer is already marked delwri it already is queued up
1630 * by someone else for imediate writeout. Just ignore it in that
1633 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1634 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1638 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1641 * If a buffer gets written out synchronously or marked stale while it
1642 * is on a delwri list we lazily remove it. To do this, the other party
1643 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1644 * It remains referenced and on the list. In a rare corner case it
1645 * might get readded to a delwri list after the synchronous writeout, in
1646 * which case we need just need to re-add the flag here.
1648 bp
->b_flags
|= _XBF_DELWRI_Q
;
1649 if (list_empty(&bp
->b_list
)) {
1650 atomic_inc(&bp
->b_hold
);
1651 list_add_tail(&bp
->b_list
, list
);
1658 * Compare function is more complex than it needs to be because
1659 * the return value is only 32 bits and we are doing comparisons
1665 struct list_head
*a
,
1666 struct list_head
*b
)
1668 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1669 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1672 diff
= ap
->b_map
.bm_bn
- bp
->b_map
.bm_bn
;
1681 __xfs_buf_delwri_submit(
1682 struct list_head
*buffer_list
,
1683 struct list_head
*io_list
,
1686 struct blk_plug plug
;
1687 struct xfs_buf
*bp
, *n
;
1690 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1692 if (xfs_buf_ispinned(bp
)) {
1696 if (!xfs_buf_trylock(bp
))
1703 * Someone else might have written the buffer synchronously or
1704 * marked it stale in the meantime. In that case only the
1705 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1706 * reference and remove it from the list here.
1708 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1709 list_del_init(&bp
->b_list
);
1714 list_move_tail(&bp
->b_list
, io_list
);
1715 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1718 list_sort(NULL
, io_list
, xfs_buf_cmp
);
1720 blk_start_plug(&plug
);
1721 list_for_each_entry_safe(bp
, n
, io_list
, b_list
) {
1722 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_ASYNC
);
1723 bp
->b_flags
|= XBF_WRITE
;
1726 bp
->b_flags
|= XBF_ASYNC
;
1727 list_del_init(&bp
->b_list
);
1731 blk_finish_plug(&plug
);
1737 * Write out a buffer list asynchronously.
1739 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1740 * out and not wait for I/O completion on any of the buffers. This interface
1741 * is only safely useable for callers that can track I/O completion by higher
1742 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1746 xfs_buf_delwri_submit_nowait(
1747 struct list_head
*buffer_list
)
1749 LIST_HEAD (io_list
);
1750 return __xfs_buf_delwri_submit(buffer_list
, &io_list
, false);
1754 * Write out a buffer list synchronously.
1756 * This will take the @buffer_list, write all buffers out and wait for I/O
1757 * completion on all of the buffers. @buffer_list is consumed by the function,
1758 * so callers must have some other way of tracking buffers if they require such
1762 xfs_buf_delwri_submit(
1763 struct list_head
*buffer_list
)
1765 LIST_HEAD (io_list
);
1766 int error
= 0, error2
;
1769 __xfs_buf_delwri_submit(buffer_list
, &io_list
, true);
1771 /* Wait for IO to complete. */
1772 while (!list_empty(&io_list
)) {
1773 bp
= list_first_entry(&io_list
, struct xfs_buf
, b_list
);
1775 list_del_init(&bp
->b_list
);
1776 error2
= xfs_buf_iowait(bp
);
1788 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
1789 KM_ZONE_HWALIGN
, NULL
);
1793 xfslogd_workqueue
= alloc_workqueue("xfslogd",
1794 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 1);
1795 if (!xfslogd_workqueue
)
1796 goto out_free_buf_zone
;
1801 kmem_zone_destroy(xfs_buf_zone
);
1807 xfs_buf_terminate(void)
1809 destroy_workqueue(xfslogd_workqueue
);
1810 kmem_zone_destroy(xfs_buf_zone
);