2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
51 xlog_clear_stale_blocks(
56 xlog_recover_check_summary(
59 #define xlog_recover_check_summary(log)
63 * This structure is used during recovery to record the buf log items which
64 * have been canceled and should not be replayed.
66 struct xfs_buf_cancel
{
70 struct list_head bc_list
;
74 * Sector aligned buffer routines for buffer create/read/write/access
78 * Verify the given count of basic blocks is valid number of blocks
79 * to specify for an operation involving the given XFS log buffer.
80 * Returns nonzero if the count is valid, 0 otherwise.
84 xlog_buf_bbcount_valid(
88 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
92 * Allocate a buffer to hold log data. The buffer needs to be able
93 * to map to a range of nbblks basic blocks at any valid (basic
94 * block) offset within the log.
103 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
104 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
106 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
111 * We do log I/O in units of log sectors (a power-of-2
112 * multiple of the basic block size), so we round up the
113 * requested size to accommodate the basic blocks required
114 * for complete log sectors.
116 * In addition, the buffer may be used for a non-sector-
117 * aligned block offset, in which case an I/O of the
118 * requested size could extend beyond the end of the
119 * buffer. If the requested size is only 1 basic block it
120 * will never straddle a sector boundary, so this won't be
121 * an issue. Nor will this be a problem if the log I/O is
122 * done in basic blocks (sector size 1). But otherwise we
123 * extend the buffer by one extra log sector to ensure
124 * there's space to accommodate this possibility.
126 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
127 nbblks
+= log
->l_sectBBsize
;
128 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
130 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
144 * Return the address of the start of the given block number's data
145 * in a log buffer. The buffer covers a log sector-aligned region.
154 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
156 ASSERT(offset
+ nbblks
<= bp
->b_length
);
157 return bp
->b_addr
+ BBTOB(offset
);
162 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
173 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
174 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
176 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
180 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
181 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
184 ASSERT(nbblks
<= bp
->b_length
);
186 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
188 bp
->b_io_length
= nbblks
;
191 xfsbdstrat(log
->l_mp
, bp
);
192 error
= xfs_buf_iowait(bp
);
194 xfs_buf_ioerror_alert(bp
, __func__
);
208 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
212 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
217 * Read at an offset into the buffer. Returns with the buffer in it's original
218 * state regardless of the result of the read.
223 xfs_daddr_t blk_no
, /* block to read from */
224 int nbblks
, /* blocks to read */
228 xfs_caddr_t orig_offset
= bp
->b_addr
;
229 int orig_len
= BBTOB(bp
->b_length
);
232 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
236 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
238 /* must reset buffer pointer even on error */
239 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
246 * Write out the buffer at the given block for the given number of blocks.
247 * The buffer is kept locked across the write and is returned locked.
248 * This can only be used for synchronous log writes.
259 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
260 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
262 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
266 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
267 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
270 ASSERT(nbblks
<= bp
->b_length
);
272 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
273 XFS_BUF_ZEROFLAGS(bp
);
276 bp
->b_io_length
= nbblks
;
279 error
= xfs_bwrite(bp
);
281 xfs_buf_ioerror_alert(bp
, __func__
);
288 * dump debug superblock and log record information
291 xlog_header_check_dump(
293 xlog_rec_header_t
*head
)
295 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d\n",
296 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
297 xfs_debug(mp
, " log : uuid = %pU, fmt = %d\n",
298 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
301 #define xlog_header_check_dump(mp, head)
305 * check log record header for recovery
308 xlog_header_check_recover(
310 xlog_rec_header_t
*head
)
312 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
315 * IRIX doesn't write the h_fmt field and leaves it zeroed
316 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
317 * a dirty log created in IRIX.
319 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
321 "dirty log written in incompatible format - can't recover");
322 xlog_header_check_dump(mp
, head
);
323 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
324 XFS_ERRLEVEL_HIGH
, mp
);
325 return XFS_ERROR(EFSCORRUPTED
);
326 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
328 "dirty log entry has mismatched uuid - can't recover");
329 xlog_header_check_dump(mp
, head
);
330 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
331 XFS_ERRLEVEL_HIGH
, mp
);
332 return XFS_ERROR(EFSCORRUPTED
);
338 * read the head block of the log and check the header
341 xlog_header_check_mount(
343 xlog_rec_header_t
*head
)
345 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
347 if (uuid_is_nil(&head
->h_fs_uuid
)) {
349 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
350 * h_fs_uuid is nil, we assume this log was last mounted
351 * by IRIX and continue.
353 xfs_warn(mp
, "nil uuid in log - IRIX style log");
354 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
355 xfs_warn(mp
, "log has mismatched uuid - can't recover");
356 xlog_header_check_dump(mp
, head
);
357 XFS_ERROR_REPORT("xlog_header_check_mount",
358 XFS_ERRLEVEL_HIGH
, mp
);
359 return XFS_ERROR(EFSCORRUPTED
);
370 * We're not going to bother about retrying
371 * this during recovery. One strike!
373 xfs_buf_ioerror_alert(bp
, __func__
);
374 xfs_force_shutdown(bp
->b_target
->bt_mount
,
375 SHUTDOWN_META_IO_ERROR
);
378 xfs_buf_ioend(bp
, 0);
382 * This routine finds (to an approximation) the first block in the physical
383 * log which contains the given cycle. It uses a binary search algorithm.
384 * Note that the algorithm can not be perfect because the disk will not
385 * necessarily be perfect.
388 xlog_find_cycle_start(
391 xfs_daddr_t first_blk
,
392 xfs_daddr_t
*last_blk
,
402 mid_blk
= BLK_AVG(first_blk
, end_blk
);
403 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
404 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
407 mid_cycle
= xlog_get_cycle(offset
);
408 if (mid_cycle
== cycle
)
409 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
411 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
412 mid_blk
= BLK_AVG(first_blk
, end_blk
);
414 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
415 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
423 * Check that a range of blocks does not contain stop_on_cycle_no.
424 * Fill in *new_blk with the block offset where such a block is
425 * found, or with -1 (an invalid block number) if there is no such
426 * block in the range. The scan needs to occur from front to back
427 * and the pointer into the region must be updated since a later
428 * routine will need to perform another test.
431 xlog_find_verify_cycle(
433 xfs_daddr_t start_blk
,
435 uint stop_on_cycle_no
,
436 xfs_daddr_t
*new_blk
)
442 xfs_caddr_t buf
= NULL
;
446 * Greedily allocate a buffer big enough to handle the full
447 * range of basic blocks we'll be examining. If that fails,
448 * try a smaller size. We need to be able to read at least
449 * a log sector, or we're out of luck.
451 bufblks
= 1 << ffs(nbblks
);
452 while (bufblks
> log
->l_logBBsize
)
454 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
456 if (bufblks
< log
->l_sectBBsize
)
460 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
463 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
465 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
469 for (j
= 0; j
< bcount
; j
++) {
470 cycle
= xlog_get_cycle(buf
);
471 if (cycle
== stop_on_cycle_no
) {
488 * Potentially backup over partial log record write.
490 * In the typical case, last_blk is the number of the block directly after
491 * a good log record. Therefore, we subtract one to get the block number
492 * of the last block in the given buffer. extra_bblks contains the number
493 * of blocks we would have read on a previous read. This happens when the
494 * last log record is split over the end of the physical log.
496 * extra_bblks is the number of blocks potentially verified on a previous
497 * call to this routine.
500 xlog_find_verify_log_record(
502 xfs_daddr_t start_blk
,
503 xfs_daddr_t
*last_blk
,
508 xfs_caddr_t offset
= NULL
;
509 xlog_rec_header_t
*head
= NULL
;
512 int num_blks
= *last_blk
- start_blk
;
515 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
517 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
518 if (!(bp
= xlog_get_bp(log
, 1)))
522 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
525 offset
+= ((num_blks
- 1) << BBSHIFT
);
528 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
530 /* valid log record not found */
532 "Log inconsistent (didn't find previous header)");
534 error
= XFS_ERROR(EIO
);
539 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
544 head
= (xlog_rec_header_t
*)offset
;
546 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
554 * We hit the beginning of the physical log & still no header. Return
555 * to caller. If caller can handle a return of -1, then this routine
556 * will be called again for the end of the physical log.
564 * We have the final block of the good log (the first block
565 * of the log record _before_ the head. So we check the uuid.
567 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
571 * We may have found a log record header before we expected one.
572 * last_blk will be the 1st block # with a given cycle #. We may end
573 * up reading an entire log record. In this case, we don't want to
574 * reset last_blk. Only when last_blk points in the middle of a log
575 * record do we update last_blk.
577 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
578 uint h_size
= be32_to_cpu(head
->h_size
);
580 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
581 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
587 if (*last_blk
- i
+ extra_bblks
!=
588 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
597 * Head is defined to be the point of the log where the next log write
598 * write could go. This means that incomplete LR writes at the end are
599 * eliminated when calculating the head. We aren't guaranteed that previous
600 * LR have complete transactions. We only know that a cycle number of
601 * current cycle number -1 won't be present in the log if we start writing
602 * from our current block number.
604 * last_blk contains the block number of the first block with a given
607 * Return: zero if normal, non-zero if error.
612 xfs_daddr_t
*return_head_blk
)
616 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
618 uint first_half_cycle
, last_half_cycle
;
620 int error
, log_bbnum
= log
->l_logBBsize
;
622 /* Is the end of the log device zeroed? */
623 if ((error
= xlog_find_zeroed(log
, &first_blk
)) == -1) {
624 *return_head_blk
= first_blk
;
626 /* Is the whole lot zeroed? */
628 /* Linux XFS shouldn't generate totally zeroed logs -
629 * mkfs etc write a dummy unmount record to a fresh
630 * log so we can store the uuid in there
632 xfs_warn(log
->l_mp
, "totally zeroed log");
637 xfs_warn(log
->l_mp
, "empty log check failed");
641 first_blk
= 0; /* get cycle # of 1st block */
642 bp
= xlog_get_bp(log
, 1);
646 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
650 first_half_cycle
= xlog_get_cycle(offset
);
652 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
653 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
657 last_half_cycle
= xlog_get_cycle(offset
);
658 ASSERT(last_half_cycle
!= 0);
661 * If the 1st half cycle number is equal to the last half cycle number,
662 * then the entire log is stamped with the same cycle number. In this
663 * case, head_blk can't be set to zero (which makes sense). The below
664 * math doesn't work out properly with head_blk equal to zero. Instead,
665 * we set it to log_bbnum which is an invalid block number, but this
666 * value makes the math correct. If head_blk doesn't changed through
667 * all the tests below, *head_blk is set to zero at the very end rather
668 * than log_bbnum. In a sense, log_bbnum and zero are the same block
669 * in a circular file.
671 if (first_half_cycle
== last_half_cycle
) {
673 * In this case we believe that the entire log should have
674 * cycle number last_half_cycle. We need to scan backwards
675 * from the end verifying that there are no holes still
676 * containing last_half_cycle - 1. If we find such a hole,
677 * then the start of that hole will be the new head. The
678 * simple case looks like
679 * x | x ... | x - 1 | x
680 * Another case that fits this picture would be
681 * x | x + 1 | x ... | x
682 * In this case the head really is somewhere at the end of the
683 * log, as one of the latest writes at the beginning was
686 * x | x + 1 | x ... | x - 1 | x
687 * This is really the combination of the above two cases, and
688 * the head has to end up at the start of the x-1 hole at the
691 * In the 256k log case, we will read from the beginning to the
692 * end of the log and search for cycle numbers equal to x-1.
693 * We don't worry about the x+1 blocks that we encounter,
694 * because we know that they cannot be the head since the log
697 head_blk
= log_bbnum
;
698 stop_on_cycle
= last_half_cycle
- 1;
701 * In this case we want to find the first block with cycle
702 * number matching last_half_cycle. We expect the log to be
704 * x + 1 ... | x ... | x
705 * The first block with cycle number x (last_half_cycle) will
706 * be where the new head belongs. First we do a binary search
707 * for the first occurrence of last_half_cycle. The binary
708 * search may not be totally accurate, so then we scan back
709 * from there looking for occurrences of last_half_cycle before
710 * us. If that backwards scan wraps around the beginning of
711 * the log, then we look for occurrences of last_half_cycle - 1
712 * at the end of the log. The cases we're looking for look
714 * v binary search stopped here
715 * x + 1 ... | x | x + 1 | x ... | x
716 * ^ but we want to locate this spot
718 * <---------> less than scan distance
719 * x + 1 ... | x ... | x - 1 | x
720 * ^ we want to locate this spot
722 stop_on_cycle
= last_half_cycle
;
723 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
724 &head_blk
, last_half_cycle
)))
729 * Now validate the answer. Scan back some number of maximum possible
730 * blocks and make sure each one has the expected cycle number. The
731 * maximum is determined by the total possible amount of buffering
732 * in the in-core log. The following number can be made tighter if
733 * we actually look at the block size of the filesystem.
735 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
736 if (head_blk
>= num_scan_bblks
) {
738 * We are guaranteed that the entire check can be performed
741 start_blk
= head_blk
- num_scan_bblks
;
742 if ((error
= xlog_find_verify_cycle(log
,
743 start_blk
, num_scan_bblks
,
744 stop_on_cycle
, &new_blk
)))
748 } else { /* need to read 2 parts of log */
750 * We are going to scan backwards in the log in two parts.
751 * First we scan the physical end of the log. In this part
752 * of the log, we are looking for blocks with cycle number
753 * last_half_cycle - 1.
754 * If we find one, then we know that the log starts there, as
755 * we've found a hole that didn't get written in going around
756 * the end of the physical log. The simple case for this is
757 * x + 1 ... | x ... | x - 1 | x
758 * <---------> less than scan distance
759 * If all of the blocks at the end of the log have cycle number
760 * last_half_cycle, then we check the blocks at the start of
761 * the log looking for occurrences of last_half_cycle. If we
762 * find one, then our current estimate for the location of the
763 * first occurrence of last_half_cycle is wrong and we move
764 * back to the hole we've found. This case looks like
765 * x + 1 ... | x | x + 1 | x ...
766 * ^ binary search stopped here
767 * Another case we need to handle that only occurs in 256k
769 * x + 1 ... | x ... | x+1 | x ...
770 * ^ binary search stops here
771 * In a 256k log, the scan at the end of the log will see the
772 * x + 1 blocks. We need to skip past those since that is
773 * certainly not the head of the log. By searching for
774 * last_half_cycle-1 we accomplish that.
776 ASSERT(head_blk
<= INT_MAX
&&
777 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
778 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
779 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
780 num_scan_bblks
- (int)head_blk
,
781 (stop_on_cycle
- 1), &new_blk
)))
789 * Scan beginning of log now. The last part of the physical
790 * log is good. This scan needs to verify that it doesn't find
791 * the last_half_cycle.
794 ASSERT(head_blk
<= INT_MAX
);
795 if ((error
= xlog_find_verify_cycle(log
,
796 start_blk
, (int)head_blk
,
797 stop_on_cycle
, &new_blk
)))
805 * Now we need to make sure head_blk is not pointing to a block in
806 * the middle of a log record.
808 num_scan_bblks
= XLOG_REC_SHIFT(log
);
809 if (head_blk
>= num_scan_bblks
) {
810 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
812 /* start ptr at last block ptr before head_blk */
813 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
814 &head_blk
, 0)) == -1) {
815 error
= XFS_ERROR(EIO
);
821 ASSERT(head_blk
<= INT_MAX
);
822 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
823 &head_blk
, 0)) == -1) {
824 /* We hit the beginning of the log during our search */
825 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
827 ASSERT(start_blk
<= INT_MAX
&&
828 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
829 ASSERT(head_blk
<= INT_MAX
);
830 if ((error
= xlog_find_verify_log_record(log
,
832 (int)head_blk
)) == -1) {
833 error
= XFS_ERROR(EIO
);
837 if (new_blk
!= log_bbnum
)
844 if (head_blk
== log_bbnum
)
845 *return_head_blk
= 0;
847 *return_head_blk
= head_blk
;
849 * When returning here, we have a good block number. Bad block
850 * means that during a previous crash, we didn't have a clean break
851 * from cycle number N to cycle number N-1. In this case, we need
852 * to find the first block with cycle number N-1.
860 xfs_warn(log
->l_mp
, "failed to find log head");
865 * Find the sync block number or the tail of the log.
867 * This will be the block number of the last record to have its
868 * associated buffers synced to disk. Every log record header has
869 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
870 * to get a sync block number. The only concern is to figure out which
871 * log record header to believe.
873 * The following algorithm uses the log record header with the largest
874 * lsn. The entire log record does not need to be valid. We only care
875 * that the header is valid.
877 * We could speed up search by using current head_blk buffer, but it is not
883 xfs_daddr_t
*head_blk
,
884 xfs_daddr_t
*tail_blk
)
886 xlog_rec_header_t
*rhead
;
887 xlog_op_header_t
*op_head
;
888 xfs_caddr_t offset
= NULL
;
891 xfs_daddr_t umount_data_blk
;
892 xfs_daddr_t after_umount_blk
;
899 * Find previous log record
901 if ((error
= xlog_find_head(log
, head_blk
)))
904 bp
= xlog_get_bp(log
, 1);
907 if (*head_blk
== 0) { /* special case */
908 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
912 if (xlog_get_cycle(offset
) == 0) {
914 /* leave all other log inited values alone */
920 * Search backwards looking for log record header block
922 ASSERT(*head_blk
< INT_MAX
);
923 for (i
= (int)(*head_blk
) - 1; i
>= 0; i
--) {
924 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
928 if (*(__be32
*)offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
934 * If we haven't found the log record header block, start looking
935 * again from the end of the physical log. XXXmiken: There should be
936 * a check here to make sure we didn't search more than N blocks in
940 for (i
= log
->l_logBBsize
- 1; i
>= (int)(*head_blk
); i
--) {
941 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
945 if (*(__be32
*)offset
==
946 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
953 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
955 return XFS_ERROR(EIO
);
958 /* find blk_no of tail of log */
959 rhead
= (xlog_rec_header_t
*)offset
;
960 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
963 * Reset log values according to the state of the log when we
964 * crashed. In the case where head_blk == 0, we bump curr_cycle
965 * one because the next write starts a new cycle rather than
966 * continuing the cycle of the last good log record. At this
967 * point we have guaranteed that all partial log records have been
968 * accounted for. Therefore, we know that the last good log record
969 * written was complete and ended exactly on the end boundary
970 * of the physical log.
972 log
->l_prev_block
= i
;
973 log
->l_curr_block
= (int)*head_blk
;
974 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
977 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
978 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
979 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
980 BBTOB(log
->l_curr_block
));
981 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
982 BBTOB(log
->l_curr_block
));
985 * Look for unmount record. If we find it, then we know there
986 * was a clean unmount. Since 'i' could be the last block in
987 * the physical log, we convert to a log block before comparing
990 * Save the current tail lsn to use to pass to
991 * xlog_clear_stale_blocks() below. We won't want to clear the
992 * unmount record if there is one, so we pass the lsn of the
993 * unmount record rather than the block after it.
995 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
996 int h_size
= be32_to_cpu(rhead
->h_size
);
997 int h_version
= be32_to_cpu(rhead
->h_version
);
999 if ((h_version
& XLOG_VERSION_2
) &&
1000 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1001 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1002 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1010 after_umount_blk
= (i
+ hblks
+ (int)
1011 BTOBB(be32_to_cpu(rhead
->h_len
))) % log
->l_logBBsize
;
1012 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1013 if (*head_blk
== after_umount_blk
&&
1014 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1015 umount_data_blk
= (i
+ hblks
) % log
->l_logBBsize
;
1016 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1020 op_head
= (xlog_op_header_t
*)offset
;
1021 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1023 * Set tail and last sync so that newly written
1024 * log records will point recovery to after the
1025 * current unmount record.
1027 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1028 log
->l_curr_cycle
, after_umount_blk
);
1029 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1030 log
->l_curr_cycle
, after_umount_blk
);
1031 *tail_blk
= after_umount_blk
;
1034 * Note that the unmount was clean. If the unmount
1035 * was not clean, we need to know this to rebuild the
1036 * superblock counters from the perag headers if we
1037 * have a filesystem using non-persistent counters.
1039 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1044 * Make sure that there are no blocks in front of the head
1045 * with the same cycle number as the head. This can happen
1046 * because we allow multiple outstanding log writes concurrently,
1047 * and the later writes might make it out before earlier ones.
1049 * We use the lsn from before modifying it so that we'll never
1050 * overwrite the unmount record after a clean unmount.
1052 * Do this only if we are going to recover the filesystem
1054 * NOTE: This used to say "if (!readonly)"
1055 * However on Linux, we can & do recover a read-only filesystem.
1056 * We only skip recovery if NORECOVERY is specified on mount,
1057 * in which case we would not be here.
1059 * But... if the -device- itself is readonly, just skip this.
1060 * We can't recover this device anyway, so it won't matter.
1062 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1063 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1069 xfs_warn(log
->l_mp
, "failed to locate log tail");
1074 * Is the log zeroed at all?
1076 * The last binary search should be changed to perform an X block read
1077 * once X becomes small enough. You can then search linearly through
1078 * the X blocks. This will cut down on the number of reads we need to do.
1080 * If the log is partially zeroed, this routine will pass back the blkno
1081 * of the first block with cycle number 0. It won't have a complete LR
1085 * 0 => the log is completely written to
1086 * -1 => use *blk_no as the first block of the log
1087 * >0 => error has occurred
1092 xfs_daddr_t
*blk_no
)
1096 uint first_cycle
, last_cycle
;
1097 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1098 xfs_daddr_t num_scan_bblks
;
1099 int error
, log_bbnum
= log
->l_logBBsize
;
1103 /* check totally zeroed log */
1104 bp
= xlog_get_bp(log
, 1);
1107 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1111 first_cycle
= xlog_get_cycle(offset
);
1112 if (first_cycle
== 0) { /* completely zeroed log */
1118 /* check partially zeroed log */
1119 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1123 last_cycle
= xlog_get_cycle(offset
);
1124 if (last_cycle
!= 0) { /* log completely written to */
1127 } else if (first_cycle
!= 1) {
1129 * If the cycle of the last block is zero, the cycle of
1130 * the first block must be 1. If it's not, maybe we're
1131 * not looking at a log... Bail out.
1134 "Log inconsistent or not a log (last==0, first!=1)");
1135 return XFS_ERROR(EINVAL
);
1138 /* we have a partially zeroed log */
1139 last_blk
= log_bbnum
-1;
1140 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1144 * Validate the answer. Because there is no way to guarantee that
1145 * the entire log is made up of log records which are the same size,
1146 * we scan over the defined maximum blocks. At this point, the maximum
1147 * is not chosen to mean anything special. XXXmiken
1149 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1150 ASSERT(num_scan_bblks
<= INT_MAX
);
1152 if (last_blk
< num_scan_bblks
)
1153 num_scan_bblks
= last_blk
;
1154 start_blk
= last_blk
- num_scan_bblks
;
1157 * We search for any instances of cycle number 0 that occur before
1158 * our current estimate of the head. What we're trying to detect is
1159 * 1 ... | 0 | 1 | 0...
1160 * ^ binary search ends here
1162 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1163 (int)num_scan_bblks
, 0, &new_blk
)))
1169 * Potentially backup over partial log record write. We don't need
1170 * to search the end of the log because we know it is zero.
1172 if ((error
= xlog_find_verify_log_record(log
, start_blk
,
1173 &last_blk
, 0)) == -1) {
1174 error
= XFS_ERROR(EIO
);
1188 * These are simple subroutines used by xlog_clear_stale_blocks() below
1189 * to initialize a buffer full of empty log record headers and write
1190 * them into the log.
1201 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1203 memset(buf
, 0, BBSIZE
);
1204 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1205 recp
->h_cycle
= cpu_to_be32(cycle
);
1206 recp
->h_version
= cpu_to_be32(
1207 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1208 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1209 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1210 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1211 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1215 xlog_write_log_records(
1226 int sectbb
= log
->l_sectBBsize
;
1227 int end_block
= start_block
+ blocks
;
1233 * Greedily allocate a buffer big enough to handle the full
1234 * range of basic blocks to be written. If that fails, try
1235 * a smaller size. We need to be able to write at least a
1236 * log sector, or we're out of luck.
1238 bufblks
= 1 << ffs(blocks
);
1239 while (bufblks
> log
->l_logBBsize
)
1241 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1243 if (bufblks
< sectbb
)
1247 /* We may need to do a read at the start to fill in part of
1248 * the buffer in the starting sector not covered by the first
1251 balign
= round_down(start_block
, sectbb
);
1252 if (balign
!= start_block
) {
1253 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1257 j
= start_block
- balign
;
1260 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1261 int bcount
, endcount
;
1263 bcount
= min(bufblks
, end_block
- start_block
);
1264 endcount
= bcount
- j
;
1266 /* We may need to do a read at the end to fill in part of
1267 * the buffer in the final sector not covered by the write.
1268 * If this is the same sector as the above read, skip it.
1270 ealign
= round_down(end_block
, sectbb
);
1271 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1272 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1273 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1280 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1281 for (; j
< endcount
; j
++) {
1282 xlog_add_record(log
, offset
, cycle
, i
+j
,
1283 tail_cycle
, tail_block
);
1286 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1289 start_block
+= endcount
;
1299 * This routine is called to blow away any incomplete log writes out
1300 * in front of the log head. We do this so that we won't become confused
1301 * if we come up, write only a little bit more, and then crash again.
1302 * If we leave the partial log records out there, this situation could
1303 * cause us to think those partial writes are valid blocks since they
1304 * have the current cycle number. We get rid of them by overwriting them
1305 * with empty log records with the old cycle number rather than the
1308 * The tail lsn is passed in rather than taken from
1309 * the log so that we will not write over the unmount record after a
1310 * clean unmount in a 512 block log. Doing so would leave the log without
1311 * any valid log records in it until a new one was written. If we crashed
1312 * during that time we would not be able to recover.
1315 xlog_clear_stale_blocks(
1319 int tail_cycle
, head_cycle
;
1320 int tail_block
, head_block
;
1321 int tail_distance
, max_distance
;
1325 tail_cycle
= CYCLE_LSN(tail_lsn
);
1326 tail_block
= BLOCK_LSN(tail_lsn
);
1327 head_cycle
= log
->l_curr_cycle
;
1328 head_block
= log
->l_curr_block
;
1331 * Figure out the distance between the new head of the log
1332 * and the tail. We want to write over any blocks beyond the
1333 * head that we may have written just before the crash, but
1334 * we don't want to overwrite the tail of the log.
1336 if (head_cycle
== tail_cycle
) {
1338 * The tail is behind the head in the physical log,
1339 * so the distance from the head to the tail is the
1340 * distance from the head to the end of the log plus
1341 * the distance from the beginning of the log to the
1344 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1345 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1346 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1347 return XFS_ERROR(EFSCORRUPTED
);
1349 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1352 * The head is behind the tail in the physical log,
1353 * so the distance from the head to the tail is just
1354 * the tail block minus the head block.
1356 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1357 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1358 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1359 return XFS_ERROR(EFSCORRUPTED
);
1361 tail_distance
= tail_block
- head_block
;
1365 * If the head is right up against the tail, we can't clear
1368 if (tail_distance
<= 0) {
1369 ASSERT(tail_distance
== 0);
1373 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1375 * Take the smaller of the maximum amount of outstanding I/O
1376 * we could have and the distance to the tail to clear out.
1377 * We take the smaller so that we don't overwrite the tail and
1378 * we don't waste all day writing from the head to the tail
1381 max_distance
= MIN(max_distance
, tail_distance
);
1383 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1385 * We can stomp all the blocks we need to without
1386 * wrapping around the end of the log. Just do it
1387 * in a single write. Use the cycle number of the
1388 * current cycle minus one so that the log will look like:
1391 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1392 head_block
, max_distance
, tail_cycle
,
1398 * We need to wrap around the end of the physical log in
1399 * order to clear all the blocks. Do it in two separate
1400 * I/Os. The first write should be from the head to the
1401 * end of the physical log, and it should use the current
1402 * cycle number minus one just like above.
1404 distance
= log
->l_logBBsize
- head_block
;
1405 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1406 head_block
, distance
, tail_cycle
,
1413 * Now write the blocks at the start of the physical log.
1414 * This writes the remainder of the blocks we want to clear.
1415 * It uses the current cycle number since we're now on the
1416 * same cycle as the head so that we get:
1417 * n ... n ... | n - 1 ...
1418 * ^^^^^ blocks we're writing
1420 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1421 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1422 tail_cycle
, tail_block
);
1430 /******************************************************************************
1432 * Log recover routines
1434 ******************************************************************************
1437 STATIC xlog_recover_t
*
1438 xlog_recover_find_tid(
1439 struct hlist_head
*head
,
1442 xlog_recover_t
*trans
;
1443 struct hlist_node
*n
;
1445 hlist_for_each_entry(trans
, n
, head
, r_list
) {
1446 if (trans
->r_log_tid
== tid
)
1453 xlog_recover_new_tid(
1454 struct hlist_head
*head
,
1458 xlog_recover_t
*trans
;
1460 trans
= kmem_zalloc(sizeof(xlog_recover_t
), KM_SLEEP
);
1461 trans
->r_log_tid
= tid
;
1463 INIT_LIST_HEAD(&trans
->r_itemq
);
1465 INIT_HLIST_NODE(&trans
->r_list
);
1466 hlist_add_head(&trans
->r_list
, head
);
1470 xlog_recover_add_item(
1471 struct list_head
*head
)
1473 xlog_recover_item_t
*item
;
1475 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
1476 INIT_LIST_HEAD(&item
->ri_list
);
1477 list_add_tail(&item
->ri_list
, head
);
1481 xlog_recover_add_to_cont_trans(
1483 struct xlog_recover
*trans
,
1487 xlog_recover_item_t
*item
;
1488 xfs_caddr_t ptr
, old_ptr
;
1491 if (list_empty(&trans
->r_itemq
)) {
1492 /* finish copying rest of trans header */
1493 xlog_recover_add_item(&trans
->r_itemq
);
1494 ptr
= (xfs_caddr_t
) &trans
->r_theader
+
1495 sizeof(xfs_trans_header_t
) - len
;
1496 memcpy(ptr
, dp
, len
); /* d, s, l */
1499 /* take the tail entry */
1500 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1502 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
1503 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
1505 ptr
= kmem_realloc(old_ptr
, len
+old_len
, old_len
, KM_SLEEP
);
1506 memcpy(&ptr
[old_len
], dp
, len
); /* d, s, l */
1507 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
1508 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
1509 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
1514 * The next region to add is the start of a new region. It could be
1515 * a whole region or it could be the first part of a new region. Because
1516 * of this, the assumption here is that the type and size fields of all
1517 * format structures fit into the first 32 bits of the structure.
1519 * This works because all regions must be 32 bit aligned. Therefore, we
1520 * either have both fields or we have neither field. In the case we have
1521 * neither field, the data part of the region is zero length. We only have
1522 * a log_op_header and can throw away the header since a new one will appear
1523 * later. If we have at least 4 bytes, then we can determine how many regions
1524 * will appear in the current log item.
1527 xlog_recover_add_to_trans(
1529 struct xlog_recover
*trans
,
1533 xfs_inode_log_format_t
*in_f
; /* any will do */
1534 xlog_recover_item_t
*item
;
1539 if (list_empty(&trans
->r_itemq
)) {
1540 /* we need to catch log corruptions here */
1541 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
1542 xfs_warn(log
->l_mp
, "%s: bad header magic number",
1545 return XFS_ERROR(EIO
);
1547 if (len
== sizeof(xfs_trans_header_t
))
1548 xlog_recover_add_item(&trans
->r_itemq
);
1549 memcpy(&trans
->r_theader
, dp
, len
); /* d, s, l */
1553 ptr
= kmem_alloc(len
, KM_SLEEP
);
1554 memcpy(ptr
, dp
, len
);
1555 in_f
= (xfs_inode_log_format_t
*)ptr
;
1557 /* take the tail entry */
1558 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
1559 if (item
->ri_total
!= 0 &&
1560 item
->ri_total
== item
->ri_cnt
) {
1561 /* tail item is in use, get a new one */
1562 xlog_recover_add_item(&trans
->r_itemq
);
1563 item
= list_entry(trans
->r_itemq
.prev
,
1564 xlog_recover_item_t
, ri_list
);
1567 if (item
->ri_total
== 0) { /* first region to be added */
1568 if (in_f
->ilf_size
== 0 ||
1569 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
1571 "bad number of regions (%d) in inode log format",
1574 return XFS_ERROR(EIO
);
1577 item
->ri_total
= in_f
->ilf_size
;
1579 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
1582 ASSERT(item
->ri_total
> item
->ri_cnt
);
1583 /* Description region is ri_buf[0] */
1584 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
1585 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
1587 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
1592 * Sort the log items in the transaction. Cancelled buffers need
1593 * to be put first so they are processed before any items that might
1594 * modify the buffers. If they are cancelled, then the modifications
1595 * don't need to be replayed.
1598 xlog_recover_reorder_trans(
1600 struct xlog_recover
*trans
,
1603 xlog_recover_item_t
*item
, *n
;
1604 LIST_HEAD(sort_list
);
1606 list_splice_init(&trans
->r_itemq
, &sort_list
);
1607 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1608 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1610 switch (ITEM_TYPE(item
)) {
1612 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1613 trace_xfs_log_recover_item_reorder_head(log
,
1615 list_move(&item
->ri_list
, &trans
->r_itemq
);
1620 case XFS_LI_QUOTAOFF
:
1623 trace_xfs_log_recover_item_reorder_tail(log
,
1625 list_move_tail(&item
->ri_list
, &trans
->r_itemq
);
1629 "%s: unrecognized type of log operation",
1632 return XFS_ERROR(EIO
);
1635 ASSERT(list_empty(&sort_list
));
1640 * Build up the table of buf cancel records so that we don't replay
1641 * cancelled data in the second pass. For buffer records that are
1642 * not cancel records, there is nothing to do here so we just return.
1644 * If we get a cancel record which is already in the table, this indicates
1645 * that the buffer was cancelled multiple times. In order to ensure
1646 * that during pass 2 we keep the record in the table until we reach its
1647 * last occurrence in the log, we keep a reference count in the cancel
1648 * record in the table to tell us how many times we expect to see this
1649 * record during the second pass.
1652 xlog_recover_buffer_pass1(
1654 struct xlog_recover_item
*item
)
1656 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1657 struct list_head
*bucket
;
1658 struct xfs_buf_cancel
*bcp
;
1661 * If this isn't a cancel buffer item, then just return.
1663 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1664 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1669 * Insert an xfs_buf_cancel record into the hash table of them.
1670 * If there is already an identical record, bump its reference count.
1672 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1673 list_for_each_entry(bcp
, bucket
, bc_list
) {
1674 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1675 bcp
->bc_len
== buf_f
->blf_len
) {
1677 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1682 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1683 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1684 bcp
->bc_len
= buf_f
->blf_len
;
1685 bcp
->bc_refcount
= 1;
1686 list_add_tail(&bcp
->bc_list
, bucket
);
1688 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
1693 * Check to see whether the buffer being recovered has a corresponding
1694 * entry in the buffer cancel record table. If it does then return 1
1695 * so that it will be cancelled, otherwise return 0. If the buffer is
1696 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1697 * the refcount on the entry in the table and remove it from the table
1698 * if this is the last reference.
1700 * We remove the cancel record from the table when we encounter its
1701 * last occurrence in the log so that if the same buffer is re-used
1702 * again after its last cancellation we actually replay the changes
1703 * made at that point.
1706 xlog_check_buffer_cancelled(
1712 struct list_head
*bucket
;
1713 struct xfs_buf_cancel
*bcp
;
1715 if (log
->l_buf_cancel_table
== NULL
) {
1717 * There is nothing in the table built in pass one,
1718 * so this buffer must not be cancelled.
1720 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1725 * Search for an entry in the cancel table that matches our buffer.
1727 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
1728 list_for_each_entry(bcp
, bucket
, bc_list
) {
1729 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
1734 * We didn't find a corresponding entry in the table, so return 0 so
1735 * that the buffer is NOT cancelled.
1737 ASSERT(!(flags
& XFS_BLF_CANCEL
));
1742 * We've go a match, so return 1 so that the recovery of this buffer
1743 * is cancelled. If this buffer is actually a buffer cancel log
1744 * item, then decrement the refcount on the one in the table and
1745 * remove it if this is the last reference.
1747 if (flags
& XFS_BLF_CANCEL
) {
1748 if (--bcp
->bc_refcount
== 0) {
1749 list_del(&bcp
->bc_list
);
1757 * Perform recovery for a buffer full of inodes. In these buffers, the only
1758 * data which should be recovered is that which corresponds to the
1759 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1760 * data for the inodes is always logged through the inodes themselves rather
1761 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1763 * The only time when buffers full of inodes are fully recovered is when the
1764 * buffer is full of newly allocated inodes. In this case the buffer will
1765 * not be marked as an inode buffer and so will be sent to
1766 * xlog_recover_do_reg_buffer() below during recovery.
1769 xlog_recover_do_inode_buffer(
1770 struct xfs_mount
*mp
,
1771 xlog_recover_item_t
*item
,
1773 xfs_buf_log_format_t
*buf_f
)
1779 int reg_buf_offset
= 0;
1780 int reg_buf_bytes
= 0;
1781 int next_unlinked_offset
;
1783 xfs_agino_t
*logged_nextp
;
1784 xfs_agino_t
*buffer_nextp
;
1786 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
1788 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
1789 for (i
= 0; i
< inodes_per_buf
; i
++) {
1790 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
1791 offsetof(xfs_dinode_t
, di_next_unlinked
);
1793 while (next_unlinked_offset
>=
1794 (reg_buf_offset
+ reg_buf_bytes
)) {
1796 * The next di_next_unlinked field is beyond
1797 * the current logged region. Find the next
1798 * logged region that contains or is beyond
1799 * the current di_next_unlinked field.
1802 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1803 buf_f
->blf_map_size
, bit
);
1806 * If there are no more logged regions in the
1807 * buffer, then we're done.
1812 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1813 buf_f
->blf_map_size
, bit
);
1815 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
1816 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
1821 * If the current logged region starts after the current
1822 * di_next_unlinked field, then move on to the next
1823 * di_next_unlinked field.
1825 if (next_unlinked_offset
< reg_buf_offset
)
1828 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
1829 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
1830 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
1831 BBTOB(bp
->b_io_length
));
1834 * The current logged region contains a copy of the
1835 * current di_next_unlinked field. Extract its value
1836 * and copy it to the buffer copy.
1838 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
1839 next_unlinked_offset
- reg_buf_offset
;
1840 if (unlikely(*logged_nextp
== 0)) {
1842 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1843 "Trying to replay bad (0) inode di_next_unlinked field.",
1845 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1846 XFS_ERRLEVEL_LOW
, mp
);
1847 return XFS_ERROR(EFSCORRUPTED
);
1850 buffer_nextp
= (xfs_agino_t
*)xfs_buf_offset(bp
,
1851 next_unlinked_offset
);
1852 *buffer_nextp
= *logged_nextp
;
1859 * Perform a 'normal' buffer recovery. Each logged region of the
1860 * buffer should be copied over the corresponding region in the
1861 * given buffer. The bitmap in the buf log format structure indicates
1862 * where to place the logged data.
1865 xlog_recover_do_reg_buffer(
1866 struct xfs_mount
*mp
,
1867 xlog_recover_item_t
*item
,
1869 xfs_buf_log_format_t
*buf_f
)
1876 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
1879 i
= 1; /* 0 is the buf format structure */
1881 bit
= xfs_next_bit(buf_f
->blf_data_map
,
1882 buf_f
->blf_map_size
, bit
);
1885 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
1886 buf_f
->blf_map_size
, bit
);
1888 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
1889 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
1890 ASSERT(BBTOB(bp
->b_io_length
) >=
1891 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
1894 * Do a sanity check if this is a dquot buffer. Just checking
1895 * the first dquot in the buffer should do. XXXThis is
1896 * probably a good thing to do for other buf types also.
1899 if (buf_f
->blf_flags
&
1900 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
1901 if (item
->ri_buf
[i
].i_addr
== NULL
) {
1903 "XFS: NULL dquot in %s.", __func__
);
1906 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
1908 "XFS: dquot too small (%d) in %s.",
1909 item
->ri_buf
[i
].i_len
, __func__
);
1912 error
= xfs_qm_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
1913 -1, 0, XFS_QMOPT_DOWARN
,
1914 "dquot_buf_recover");
1919 memcpy(xfs_buf_offset(bp
,
1920 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
1921 item
->ri_buf
[i
].i_addr
, /* source */
1922 nbits
<<XFS_BLF_SHIFT
); /* length */
1928 /* Shouldn't be any more regions */
1929 ASSERT(i
== item
->ri_total
);
1933 * Do some primitive error checking on ondisk dquot data structures.
1937 struct xfs_mount
*mp
,
1938 xfs_disk_dquot_t
*ddq
,
1940 uint type
, /* used only when IO_dorepair is true */
1944 xfs_dqblk_t
*d
= (xfs_dqblk_t
*)ddq
;
1948 * We can encounter an uninitialized dquot buffer for 2 reasons:
1949 * 1. If we crash while deleting the quotainode(s), and those blks got
1950 * used for user data. This is because we take the path of regular
1951 * file deletion; however, the size field of quotainodes is never
1952 * updated, so all the tricks that we play in itruncate_finish
1953 * don't quite matter.
1955 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1956 * But the allocation will be replayed so we'll end up with an
1957 * uninitialized quota block.
1959 * This is all fine; things are still consistent, and we haven't lost
1960 * any quota information. Just don't complain about bad dquot blks.
1962 if (ddq
->d_magic
!= cpu_to_be16(XFS_DQUOT_MAGIC
)) {
1963 if (flags
& XFS_QMOPT_DOWARN
)
1965 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1966 str
, id
, be16_to_cpu(ddq
->d_magic
), XFS_DQUOT_MAGIC
);
1969 if (ddq
->d_version
!= XFS_DQUOT_VERSION
) {
1970 if (flags
& XFS_QMOPT_DOWARN
)
1972 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1973 str
, id
, ddq
->d_version
, XFS_DQUOT_VERSION
);
1977 if (ddq
->d_flags
!= XFS_DQ_USER
&&
1978 ddq
->d_flags
!= XFS_DQ_PROJ
&&
1979 ddq
->d_flags
!= XFS_DQ_GROUP
) {
1980 if (flags
& XFS_QMOPT_DOWARN
)
1982 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1983 str
, id
, ddq
->d_flags
);
1987 if (id
!= -1 && id
!= be32_to_cpu(ddq
->d_id
)) {
1988 if (flags
& XFS_QMOPT_DOWARN
)
1990 "%s : ondisk-dquot 0x%p, ID mismatch: "
1991 "0x%x expected, found id 0x%x",
1992 str
, ddq
, id
, be32_to_cpu(ddq
->d_id
));
1996 if (!errs
&& ddq
->d_id
) {
1997 if (ddq
->d_blk_softlimit
&&
1998 be64_to_cpu(ddq
->d_bcount
) >
1999 be64_to_cpu(ddq
->d_blk_softlimit
)) {
2000 if (!ddq
->d_btimer
) {
2001 if (flags
& XFS_QMOPT_DOWARN
)
2003 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
2004 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2008 if (ddq
->d_ino_softlimit
&&
2009 be64_to_cpu(ddq
->d_icount
) >
2010 be64_to_cpu(ddq
->d_ino_softlimit
)) {
2011 if (!ddq
->d_itimer
) {
2012 if (flags
& XFS_QMOPT_DOWARN
)
2014 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2015 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2019 if (ddq
->d_rtb_softlimit
&&
2020 be64_to_cpu(ddq
->d_rtbcount
) >
2021 be64_to_cpu(ddq
->d_rtb_softlimit
)) {
2022 if (!ddq
->d_rtbtimer
) {
2023 if (flags
& XFS_QMOPT_DOWARN
)
2025 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2026 str
, (int)be32_to_cpu(ddq
->d_id
), ddq
);
2032 if (!errs
|| !(flags
& XFS_QMOPT_DQREPAIR
))
2035 if (flags
& XFS_QMOPT_DOWARN
)
2036 xfs_notice(mp
, "Re-initializing dquot ID 0x%x", id
);
2039 * Typically, a repair is only requested by quotacheck.
2042 ASSERT(flags
& XFS_QMOPT_DQREPAIR
);
2043 memset(d
, 0, sizeof(xfs_dqblk_t
));
2045 d
->dd_diskdq
.d_magic
= cpu_to_be16(XFS_DQUOT_MAGIC
);
2046 d
->dd_diskdq
.d_version
= XFS_DQUOT_VERSION
;
2047 d
->dd_diskdq
.d_flags
= type
;
2048 d
->dd_diskdq
.d_id
= cpu_to_be32(id
);
2054 * Perform a dquot buffer recovery.
2055 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2056 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2057 * Else, treat it as a regular buffer and do recovery.
2060 xlog_recover_do_dquot_buffer(
2061 struct xfs_mount
*mp
,
2063 struct xlog_recover_item
*item
,
2065 struct xfs_buf_log_format
*buf_f
)
2069 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2072 * Filesystems are required to send in quota flags at mount time.
2074 if (mp
->m_qflags
== 0) {
2079 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2080 type
|= XFS_DQ_USER
;
2081 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2082 type
|= XFS_DQ_PROJ
;
2083 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2084 type
|= XFS_DQ_GROUP
;
2086 * This type of quotas was turned off, so ignore this buffer
2088 if (log
->l_quotaoffs_flag
& type
)
2091 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2095 * This routine replays a modification made to a buffer at runtime.
2096 * There are actually two types of buffer, regular and inode, which
2097 * are handled differently. Inode buffers are handled differently
2098 * in that we only recover a specific set of data from them, namely
2099 * the inode di_next_unlinked fields. This is because all other inode
2100 * data is actually logged via inode records and any data we replay
2101 * here which overlaps that may be stale.
2103 * When meta-data buffers are freed at run time we log a buffer item
2104 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2105 * of the buffer in the log should not be replayed at recovery time.
2106 * This is so that if the blocks covered by the buffer are reused for
2107 * file data before we crash we don't end up replaying old, freed
2108 * meta-data into a user's file.
2110 * To handle the cancellation of buffer log items, we make two passes
2111 * over the log during recovery. During the first we build a table of
2112 * those buffers which have been cancelled, and during the second we
2113 * only replay those buffers which do not have corresponding cancel
2114 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2115 * for more details on the implementation of the table of cancel records.
2118 xlog_recover_buffer_pass2(
2120 struct list_head
*buffer_list
,
2121 struct xlog_recover_item
*item
)
2123 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2124 xfs_mount_t
*mp
= log
->l_mp
;
2130 * In this pass we only want to recover all the buffers which have
2131 * not been cancelled and are not cancellation buffers themselves.
2133 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2134 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2135 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2139 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2142 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2143 buf_flags
|= XBF_UNMAPPED
;
2145 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2148 return XFS_ERROR(ENOMEM
);
2149 error
= bp
->b_error
;
2151 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2156 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2157 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2158 } else if (buf_f
->blf_flags
&
2159 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2160 xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2162 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2165 return XFS_ERROR(error
);
2168 * Perform delayed write on the buffer. Asynchronous writes will be
2169 * slower when taking into account all the buffers to be flushed.
2171 * Also make sure that only inode buffers with good sizes stay in
2172 * the buffer cache. The kernel moves inodes in buffers of 1 block
2173 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2174 * buffers in the log can be a different size if the log was generated
2175 * by an older kernel using unclustered inode buffers or a newer kernel
2176 * running with a different inode cluster size. Regardless, if the
2177 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2178 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2179 * the buffer out of the buffer cache so that the buffer won't
2180 * overlap with future reads of those inodes.
2182 if (XFS_DINODE_MAGIC
==
2183 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2184 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2185 (__uint32_t
)XFS_INODE_CLUSTER_SIZE(log
->l_mp
)))) {
2187 error
= xfs_bwrite(bp
);
2189 ASSERT(bp
->b_target
->bt_mount
== mp
);
2190 bp
->b_iodone
= xlog_recover_iodone
;
2191 xfs_buf_delwri_queue(bp
, buffer_list
);
2199 xlog_recover_inode_pass2(
2201 struct list_head
*buffer_list
,
2202 struct xlog_recover_item
*item
)
2204 xfs_inode_log_format_t
*in_f
;
2205 xfs_mount_t
*mp
= log
->l_mp
;
2214 xfs_icdinode_t
*dicp
;
2217 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2218 in_f
= item
->ri_buf
[0].i_addr
;
2220 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2222 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2228 * Inode buffers can be freed, look out for it,
2229 * and do not replay the inode.
2231 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2232 in_f
->ilf_len
, 0)) {
2234 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2237 trace_xfs_log_recover_inode_recover(log
, in_f
);
2239 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0);
2244 error
= bp
->b_error
;
2246 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2250 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2251 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2254 * Make sure the place we're flushing out to really looks
2257 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2260 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2261 __func__
, dip
, bp
, in_f
->ilf_ino
);
2262 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2263 XFS_ERRLEVEL_LOW
, mp
);
2264 error
= EFSCORRUPTED
;
2267 dicp
= item
->ri_buf
[1].i_addr
;
2268 if (unlikely(dicp
->di_magic
!= XFS_DINODE_MAGIC
)) {
2271 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2272 __func__
, item
, in_f
->ilf_ino
);
2273 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2274 XFS_ERRLEVEL_LOW
, mp
);
2275 error
= EFSCORRUPTED
;
2279 /* Skip replay when the on disk inode is newer than the log one */
2280 if (dicp
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
2282 * Deal with the wrap case, DI_MAX_FLUSH is less
2283 * than smaller numbers
2285 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
2286 dicp
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
2290 trace_xfs_log_recover_inode_skip(log
, in_f
);
2295 /* Take the opportunity to reset the flush iteration count */
2296 dicp
->di_flushiter
= 0;
2298 if (unlikely(S_ISREG(dicp
->di_mode
))) {
2299 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2300 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
2301 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2302 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2305 "%s: Bad regular inode log record, rec ptr 0x%p, "
2306 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2307 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2308 error
= EFSCORRUPTED
;
2311 } else if (unlikely(S_ISDIR(dicp
->di_mode
))) {
2312 if ((dicp
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
2313 (dicp
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
2314 (dicp
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
2315 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2316 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2319 "%s: Bad dir inode log record, rec ptr 0x%p, "
2320 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2321 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
2322 error
= EFSCORRUPTED
;
2326 if (unlikely(dicp
->di_nextents
+ dicp
->di_anextents
> dicp
->di_nblocks
)){
2327 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2328 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2331 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2332 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2333 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
2334 dicp
->di_nextents
+ dicp
->di_anextents
,
2336 error
= EFSCORRUPTED
;
2339 if (unlikely(dicp
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
2340 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2341 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2344 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2345 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
2346 item
, dip
, bp
, in_f
->ilf_ino
, dicp
->di_forkoff
);
2347 error
= EFSCORRUPTED
;
2350 if (unlikely(item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
))) {
2351 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2352 XFS_ERRLEVEL_LOW
, mp
, dicp
);
2355 "%s: Bad inode log record length %d, rec ptr 0x%p",
2356 __func__
, item
->ri_buf
[1].i_len
, item
);
2357 error
= EFSCORRUPTED
;
2361 /* The core is in in-core format */
2362 xfs_dinode_to_disk(dip
, item
->ri_buf
[1].i_addr
);
2364 /* the rest is in on-disk format */
2365 if (item
->ri_buf
[1].i_len
> sizeof(struct xfs_icdinode
)) {
2366 memcpy((xfs_caddr_t
) dip
+ sizeof(struct xfs_icdinode
),
2367 item
->ri_buf
[1].i_addr
+ sizeof(struct xfs_icdinode
),
2368 item
->ri_buf
[1].i_len
- sizeof(struct xfs_icdinode
));
2371 fields
= in_f
->ilf_fields
;
2372 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
2374 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
2377 memcpy(XFS_DFORK_DPTR(dip
),
2378 &in_f
->ilf_u
.ilfu_uuid
,
2383 if (in_f
->ilf_size
== 2)
2384 goto write_inode_buffer
;
2385 len
= item
->ri_buf
[2].i_len
;
2386 src
= item
->ri_buf
[2].i_addr
;
2387 ASSERT(in_f
->ilf_size
<= 4);
2388 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
2389 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
2390 (len
== in_f
->ilf_dsize
));
2392 switch (fields
& XFS_ILOG_DFORK
) {
2393 case XFS_ILOG_DDATA
:
2395 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
2398 case XFS_ILOG_DBROOT
:
2399 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
2400 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
2401 XFS_DFORK_DSIZE(dip
, mp
));
2406 * There are no data fork flags set.
2408 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
2413 * If we logged any attribute data, recover it. There may or
2414 * may not have been any other non-core data logged in this
2417 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2418 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
2423 len
= item
->ri_buf
[attr_index
].i_len
;
2424 src
= item
->ri_buf
[attr_index
].i_addr
;
2425 ASSERT(len
== in_f
->ilf_asize
);
2427 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
2428 case XFS_ILOG_ADATA
:
2430 dest
= XFS_DFORK_APTR(dip
);
2431 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
2432 memcpy(dest
, src
, len
);
2435 case XFS_ILOG_ABROOT
:
2436 dest
= XFS_DFORK_APTR(dip
);
2437 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
2438 len
, (xfs_bmdr_block_t
*)dest
,
2439 XFS_DFORK_ASIZE(dip
, mp
));
2443 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
2452 ASSERT(bp
->b_target
->bt_mount
== mp
);
2453 bp
->b_iodone
= xlog_recover_iodone
;
2454 xfs_buf_delwri_queue(bp
, buffer_list
);
2459 return XFS_ERROR(error
);
2463 * Recover QUOTAOFF records. We simply make a note of it in the xlog
2464 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2468 xlog_recover_quotaoff_pass1(
2470 struct xlog_recover_item
*item
)
2472 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
2476 * The logitem format's flag tells us if this was user quotaoff,
2477 * group/project quotaoff or both.
2479 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
2480 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
2481 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
2482 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
2483 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
2484 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
2490 * Recover a dquot record
2493 xlog_recover_dquot_pass2(
2495 struct list_head
*buffer_list
,
2496 struct xlog_recover_item
*item
)
2498 xfs_mount_t
*mp
= log
->l_mp
;
2500 struct xfs_disk_dquot
*ddq
, *recddq
;
2502 xfs_dq_logformat_t
*dq_f
;
2507 * Filesystems are required to send in quota flags at mount time.
2509 if (mp
->m_qflags
== 0)
2512 recddq
= item
->ri_buf
[1].i_addr
;
2513 if (recddq
== NULL
) {
2514 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
2515 return XFS_ERROR(EIO
);
2517 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
2518 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
2519 item
->ri_buf
[1].i_len
, __func__
);
2520 return XFS_ERROR(EIO
);
2524 * This type of quotas was turned off, so ignore this record.
2526 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
2528 if (log
->l_quotaoffs_flag
& type
)
2532 * At this point we know that quota was _not_ turned off.
2533 * Since the mount flags are not indicating to us otherwise, this
2534 * must mean that quota is on, and the dquot needs to be replayed.
2535 * Remember that we may not have fully recovered the superblock yet,
2536 * so we can't do the usual trick of looking at the SB quota bits.
2538 * The other possibility, of course, is that the quota subsystem was
2539 * removed since the last mount - ENOSYS.
2541 dq_f
= item
->ri_buf
[0].i_addr
;
2543 error
= xfs_qm_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2544 "xlog_recover_dquot_pass2 (log copy)");
2546 return XFS_ERROR(EIO
);
2547 ASSERT(dq_f
->qlf_len
== 1);
2549 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
2550 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
);
2555 ddq
= (xfs_disk_dquot_t
*)xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
2558 * At least the magic num portion should be on disk because this
2559 * was among a chunk of dquots created earlier, and we did some
2560 * minimal initialization then.
2562 error
= xfs_qm_dqcheck(mp
, ddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
2563 "xlog_recover_dquot_pass2");
2566 return XFS_ERROR(EIO
);
2569 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
2571 ASSERT(dq_f
->qlf_size
== 2);
2572 ASSERT(bp
->b_target
->bt_mount
== mp
);
2573 bp
->b_iodone
= xlog_recover_iodone
;
2574 xfs_buf_delwri_queue(bp
, buffer_list
);
2581 * This routine is called to create an in-core extent free intent
2582 * item from the efi format structure which was logged on disk.
2583 * It allocates an in-core efi, copies the extents from the format
2584 * structure into it, and adds the efi to the AIL with the given
2588 xlog_recover_efi_pass2(
2590 struct xlog_recover_item
*item
,
2594 xfs_mount_t
*mp
= log
->l_mp
;
2595 xfs_efi_log_item_t
*efip
;
2596 xfs_efi_log_format_t
*efi_formatp
;
2598 efi_formatp
= item
->ri_buf
[0].i_addr
;
2600 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
2601 if ((error
= xfs_efi_copy_format(&(item
->ri_buf
[0]),
2602 &(efip
->efi_format
)))) {
2603 xfs_efi_item_free(efip
);
2606 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
2608 spin_lock(&log
->l_ailp
->xa_lock
);
2610 * xfs_trans_ail_update() drops the AIL lock.
2612 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
2618 * This routine is called when an efd format structure is found in
2619 * a committed transaction in the log. It's purpose is to cancel
2620 * the corresponding efi if it was still in the log. To do this
2621 * it searches the AIL for the efi with an id equal to that in the
2622 * efd format structure. If we find it, we remove the efi from the
2626 xlog_recover_efd_pass2(
2628 struct xlog_recover_item
*item
)
2630 xfs_efd_log_format_t
*efd_formatp
;
2631 xfs_efi_log_item_t
*efip
= NULL
;
2632 xfs_log_item_t
*lip
;
2634 struct xfs_ail_cursor cur
;
2635 struct xfs_ail
*ailp
= log
->l_ailp
;
2637 efd_formatp
= item
->ri_buf
[0].i_addr
;
2638 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
2639 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
2640 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
2641 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
2642 efi_id
= efd_formatp
->efd_efi_id
;
2645 * Search for the efi with the id in the efd format structure
2648 spin_lock(&ailp
->xa_lock
);
2649 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
2650 while (lip
!= NULL
) {
2651 if (lip
->li_type
== XFS_LI_EFI
) {
2652 efip
= (xfs_efi_log_item_t
*)lip
;
2653 if (efip
->efi_format
.efi_id
== efi_id
) {
2655 * xfs_trans_ail_delete() drops the
2658 xfs_trans_ail_delete(ailp
, lip
,
2659 SHUTDOWN_CORRUPT_INCORE
);
2660 xfs_efi_item_free(efip
);
2661 spin_lock(&ailp
->xa_lock
);
2665 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
2667 xfs_trans_ail_cursor_done(ailp
, &cur
);
2668 spin_unlock(&ailp
->xa_lock
);
2674 * Free up any resources allocated by the transaction
2676 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2679 xlog_recover_free_trans(
2680 struct xlog_recover
*trans
)
2682 xlog_recover_item_t
*item
, *n
;
2685 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
2686 /* Free the regions in the item. */
2687 list_del(&item
->ri_list
);
2688 for (i
= 0; i
< item
->ri_cnt
; i
++)
2689 kmem_free(item
->ri_buf
[i
].i_addr
);
2690 /* Free the item itself */
2691 kmem_free(item
->ri_buf
);
2694 /* Free the transaction recover structure */
2699 xlog_recover_commit_pass1(
2701 struct xlog_recover
*trans
,
2702 struct xlog_recover_item
*item
)
2704 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
2706 switch (ITEM_TYPE(item
)) {
2708 return xlog_recover_buffer_pass1(log
, item
);
2709 case XFS_LI_QUOTAOFF
:
2710 return xlog_recover_quotaoff_pass1(log
, item
);
2715 /* nothing to do in pass 1 */
2718 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2719 __func__
, ITEM_TYPE(item
));
2721 return XFS_ERROR(EIO
);
2726 xlog_recover_commit_pass2(
2728 struct xlog_recover
*trans
,
2729 struct list_head
*buffer_list
,
2730 struct xlog_recover_item
*item
)
2732 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
2734 switch (ITEM_TYPE(item
)) {
2736 return xlog_recover_buffer_pass2(log
, buffer_list
, item
);
2738 return xlog_recover_inode_pass2(log
, buffer_list
, item
);
2740 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
2742 return xlog_recover_efd_pass2(log
, item
);
2744 return xlog_recover_dquot_pass2(log
, buffer_list
, item
);
2745 case XFS_LI_QUOTAOFF
:
2746 /* nothing to do in pass2 */
2749 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
2750 __func__
, ITEM_TYPE(item
));
2752 return XFS_ERROR(EIO
);
2757 * Perform the transaction.
2759 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2760 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2763 xlog_recover_commit_trans(
2765 struct xlog_recover
*trans
,
2768 int error
= 0, error2
;
2769 xlog_recover_item_t
*item
;
2770 LIST_HEAD (buffer_list
);
2772 hlist_del(&trans
->r_list
);
2774 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
2778 list_for_each_entry(item
, &trans
->r_itemq
, ri_list
) {
2780 case XLOG_RECOVER_PASS1
:
2781 error
= xlog_recover_commit_pass1(log
, trans
, item
);
2783 case XLOG_RECOVER_PASS2
:
2784 error
= xlog_recover_commit_pass2(log
, trans
,
2785 &buffer_list
, item
);
2795 xlog_recover_free_trans(trans
);
2798 error2
= xfs_buf_delwri_submit(&buffer_list
);
2799 return error
? error
: error2
;
2803 xlog_recover_unmount_trans(
2805 struct xlog_recover
*trans
)
2807 /* Do nothing now */
2808 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
2813 * There are two valid states of the r_state field. 0 indicates that the
2814 * transaction structure is in a normal state. We have either seen the
2815 * start of the transaction or the last operation we added was not a partial
2816 * operation. If the last operation we added to the transaction was a
2817 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2819 * NOTE: skip LRs with 0 data length.
2822 xlog_recover_process_data(
2824 struct hlist_head rhash
[],
2825 struct xlog_rec_header
*rhead
,
2831 xlog_op_header_t
*ohead
;
2832 xlog_recover_t
*trans
;
2838 lp
= dp
+ be32_to_cpu(rhead
->h_len
);
2839 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
2841 /* check the log format matches our own - else we can't recover */
2842 if (xlog_header_check_recover(log
->l_mp
, rhead
))
2843 return (XFS_ERROR(EIO
));
2845 while ((dp
< lp
) && num_logops
) {
2846 ASSERT(dp
+ sizeof(xlog_op_header_t
) <= lp
);
2847 ohead
= (xlog_op_header_t
*)dp
;
2848 dp
+= sizeof(xlog_op_header_t
);
2849 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
2850 ohead
->oh_clientid
!= XFS_LOG
) {
2851 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
2852 __func__
, ohead
->oh_clientid
);
2854 return (XFS_ERROR(EIO
));
2856 tid
= be32_to_cpu(ohead
->oh_tid
);
2857 hash
= XLOG_RHASH(tid
);
2858 trans
= xlog_recover_find_tid(&rhash
[hash
], tid
);
2859 if (trans
== NULL
) { /* not found; add new tid */
2860 if (ohead
->oh_flags
& XLOG_START_TRANS
)
2861 xlog_recover_new_tid(&rhash
[hash
], tid
,
2862 be64_to_cpu(rhead
->h_lsn
));
2864 if (dp
+ be32_to_cpu(ohead
->oh_len
) > lp
) {
2865 xfs_warn(log
->l_mp
, "%s: bad length 0x%x",
2866 __func__
, be32_to_cpu(ohead
->oh_len
));
2868 return (XFS_ERROR(EIO
));
2870 flags
= ohead
->oh_flags
& ~XLOG_END_TRANS
;
2871 if (flags
& XLOG_WAS_CONT_TRANS
)
2872 flags
&= ~XLOG_CONTINUE_TRANS
;
2874 case XLOG_COMMIT_TRANS
:
2875 error
= xlog_recover_commit_trans(log
,
2878 case XLOG_UNMOUNT_TRANS
:
2879 error
= xlog_recover_unmount_trans(log
, trans
);
2881 case XLOG_WAS_CONT_TRANS
:
2882 error
= xlog_recover_add_to_cont_trans(log
,
2884 be32_to_cpu(ohead
->oh_len
));
2886 case XLOG_START_TRANS
:
2887 xfs_warn(log
->l_mp
, "%s: bad transaction",
2890 error
= XFS_ERROR(EIO
);
2893 case XLOG_CONTINUE_TRANS
:
2894 error
= xlog_recover_add_to_trans(log
, trans
,
2895 dp
, be32_to_cpu(ohead
->oh_len
));
2898 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x",
2901 error
= XFS_ERROR(EIO
);
2907 dp
+= be32_to_cpu(ohead
->oh_len
);
2914 * Process an extent free intent item that was recovered from
2915 * the log. We need to free the extents that it describes.
2918 xlog_recover_process_efi(
2920 xfs_efi_log_item_t
*efip
)
2922 xfs_efd_log_item_t
*efdp
;
2927 xfs_fsblock_t startblock_fsb
;
2929 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
2932 * First check the validity of the extents described by the
2933 * EFI. If any are bad, then assume that all are bad and
2934 * just toss the EFI.
2936 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2937 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2938 startblock_fsb
= XFS_BB_TO_FSB(mp
,
2939 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
2940 if ((startblock_fsb
== 0) ||
2941 (extp
->ext_len
== 0) ||
2942 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
2943 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
2945 * This will pull the EFI from the AIL and
2946 * free the memory associated with it.
2948 xfs_efi_release(efip
, efip
->efi_format
.efi_nextents
);
2949 return XFS_ERROR(EIO
);
2953 tp
= xfs_trans_alloc(mp
, 0);
2954 error
= xfs_trans_reserve(tp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0, 0, 0);
2957 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
2959 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
2960 extp
= &(efip
->efi_format
.efi_extents
[i
]);
2961 error
= xfs_free_extent(tp
, extp
->ext_start
, extp
->ext_len
);
2964 xfs_trans_log_efd_extent(tp
, efdp
, extp
->ext_start
,
2968 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
2969 error
= xfs_trans_commit(tp
, 0);
2973 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
2978 * When this is called, all of the EFIs which did not have
2979 * corresponding EFDs should be in the AIL. What we do now
2980 * is free the extents associated with each one.
2982 * Since we process the EFIs in normal transactions, they
2983 * will be removed at some point after the commit. This prevents
2984 * us from just walking down the list processing each one.
2985 * We'll use a flag in the EFI to skip those that we've already
2986 * processed and use the AIL iteration mechanism's generation
2987 * count to try to speed this up at least a bit.
2989 * When we start, we know that the EFIs are the only things in
2990 * the AIL. As we process them, however, other items are added
2991 * to the AIL. Since everything added to the AIL must come after
2992 * everything already in the AIL, we stop processing as soon as
2993 * we see something other than an EFI in the AIL.
2996 xlog_recover_process_efis(
2999 xfs_log_item_t
*lip
;
3000 xfs_efi_log_item_t
*efip
;
3002 struct xfs_ail_cursor cur
;
3003 struct xfs_ail
*ailp
;
3006 spin_lock(&ailp
->xa_lock
);
3007 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3008 while (lip
!= NULL
) {
3010 * We're done when we see something other than an EFI.
3011 * There should be no EFIs left in the AIL now.
3013 if (lip
->li_type
!= XFS_LI_EFI
) {
3015 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
3016 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
3022 * Skip EFIs that we've already processed.
3024 efip
= (xfs_efi_log_item_t
*)lip
;
3025 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
3026 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3030 spin_unlock(&ailp
->xa_lock
);
3031 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
3032 spin_lock(&ailp
->xa_lock
);
3035 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3038 xfs_trans_ail_cursor_done(ailp
, &cur
);
3039 spin_unlock(&ailp
->xa_lock
);
3044 * This routine performs a transaction to null out a bad inode pointer
3045 * in an agi unlinked inode hash bucket.
3048 xlog_recover_clear_agi_bucket(
3050 xfs_agnumber_t agno
,
3059 tp
= xfs_trans_alloc(mp
, XFS_TRANS_CLEAR_AGI_BUCKET
);
3060 error
= xfs_trans_reserve(tp
, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp
),
3065 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
3069 agi
= XFS_BUF_TO_AGI(agibp
);
3070 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
3071 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
3072 (sizeof(xfs_agino_t
) * bucket
);
3073 xfs_trans_log_buf(tp
, agibp
, offset
,
3074 (offset
+ sizeof(xfs_agino_t
) - 1));
3076 error
= xfs_trans_commit(tp
, 0);
3082 xfs_trans_cancel(tp
, XFS_TRANS_ABORT
);
3084 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
3089 xlog_recover_process_one_iunlink(
3090 struct xfs_mount
*mp
,
3091 xfs_agnumber_t agno
,
3095 struct xfs_buf
*ibp
;
3096 struct xfs_dinode
*dip
;
3097 struct xfs_inode
*ip
;
3101 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
3102 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
3107 * Get the on disk inode to find the next inode in the bucket.
3109 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
3113 ASSERT(ip
->i_d
.di_nlink
== 0);
3114 ASSERT(ip
->i_d
.di_mode
!= 0);
3116 /* setup for the next pass */
3117 agino
= be32_to_cpu(dip
->di_next_unlinked
);
3121 * Prevent any DMAPI event from being sent when the reference on
3122 * the inode is dropped.
3124 ip
->i_d
.di_dmevmask
= 0;
3133 * We can't read in the inode this bucket points to, or this inode
3134 * is messed up. Just ditch this bucket of inodes. We will lose
3135 * some inodes and space, but at least we won't hang.
3137 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3138 * clear the inode pointer in the bucket.
3140 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
3145 * xlog_iunlink_recover
3147 * This is called during recovery to process any inodes which
3148 * we unlinked but not freed when the system crashed. These
3149 * inodes will be on the lists in the AGI blocks. What we do
3150 * here is scan all the AGIs and fully truncate and free any
3151 * inodes found on the lists. Each inode is removed from the
3152 * lists when it has been fully truncated and is freed. The
3153 * freeing of the inode and its removal from the list must be
3157 xlog_recover_process_iunlinks(
3161 xfs_agnumber_t agno
;
3172 * Prevent any DMAPI event from being sent while in this function.
3174 mp_dmevmask
= mp
->m_dmevmask
;
3177 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3179 * Find the agi for this ag.
3181 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3184 * AGI is b0rked. Don't process it.
3186 * We should probably mark the filesystem as corrupt
3187 * after we've recovered all the ag's we can....
3192 * Unlock the buffer so that it can be acquired in the normal
3193 * course of the transaction to truncate and free each inode.
3194 * Because we are not racing with anyone else here for the AGI
3195 * buffer, we don't even need to hold it locked to read the
3196 * initial unlinked bucket entries out of the buffer. We keep
3197 * buffer reference though, so that it stays pinned in memory
3198 * while we need the buffer.
3200 agi
= XFS_BUF_TO_AGI(agibp
);
3201 xfs_buf_unlock(agibp
);
3203 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
3204 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
3205 while (agino
!= NULLAGINO
) {
3206 agino
= xlog_recover_process_one_iunlink(mp
,
3207 agno
, agino
, bucket
);
3210 xfs_buf_rele(agibp
);
3213 mp
->m_dmevmask
= mp_dmevmask
;
3219 xlog_pack_data_checksum(
3221 struct xlog_in_core
*iclog
,
3228 up
= (__be32
*)iclog
->ic_datap
;
3229 /* divide length by 4 to get # words */
3230 for (i
= 0; i
< (size
>> 2); i
++) {
3231 chksum
^= be32_to_cpu(*up
);
3234 iclog
->ic_header
.h_chksum
= cpu_to_be32(chksum
);
3237 #define xlog_pack_data_checksum(log, iclog, size)
3241 * Stamp cycle number in every block
3246 struct xlog_in_core
*iclog
,
3250 int size
= iclog
->ic_offset
+ roundoff
;
3254 xlog_pack_data_checksum(log
, iclog
, size
);
3256 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
3258 dp
= iclog
->ic_datap
;
3259 for (i
= 0; i
< BTOBB(size
) &&
3260 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3261 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
3262 *(__be32
*)dp
= cycle_lsn
;
3266 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3267 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
3269 for ( ; i
< BTOBB(size
); i
++) {
3270 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3271 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3272 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
3273 *(__be32
*)dp
= cycle_lsn
;
3277 for (i
= 1; i
< log
->l_iclog_heads
; i
++) {
3278 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
3285 struct xlog_rec_header
*rhead
,
3291 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
3292 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
3293 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
3297 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3298 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
3299 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
3300 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3301 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3302 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
3309 xlog_valid_rec_header(
3311 struct xlog_rec_header
*rhead
,
3316 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
3317 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3318 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3319 return XFS_ERROR(EFSCORRUPTED
);
3322 (!rhead
->h_version
||
3323 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
3324 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
3325 __func__
, be32_to_cpu(rhead
->h_version
));
3326 return XFS_ERROR(EIO
);
3329 /* LR body must have data or it wouldn't have been written */
3330 hlen
= be32_to_cpu(rhead
->h_len
);
3331 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
3332 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3333 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3334 return XFS_ERROR(EFSCORRUPTED
);
3336 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
3337 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3338 XFS_ERRLEVEL_LOW
, log
->l_mp
);
3339 return XFS_ERROR(EFSCORRUPTED
);
3345 * Read the log from tail to head and process the log records found.
3346 * Handle the two cases where the tail and head are in the same cycle
3347 * and where the active portion of the log wraps around the end of
3348 * the physical log separately. The pass parameter is passed through
3349 * to the routines called to process the data and is not looked at
3353 xlog_do_recovery_pass(
3355 xfs_daddr_t head_blk
,
3356 xfs_daddr_t tail_blk
,
3359 xlog_rec_header_t
*rhead
;
3362 xfs_buf_t
*hbp
, *dbp
;
3363 int error
= 0, h_size
;
3364 int bblks
, split_bblks
;
3365 int hblks
, split_hblks
, wrapped_hblks
;
3366 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
3368 ASSERT(head_blk
!= tail_blk
);
3371 * Read the header of the tail block and get the iclog buffer size from
3372 * h_size. Use this to tell how many sectors make up the log header.
3374 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
3376 * When using variable length iclogs, read first sector of
3377 * iclog header and extract the header size from it. Get a
3378 * new hbp that is the correct size.
3380 hbp
= xlog_get_bp(log
, 1);
3384 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
3388 rhead
= (xlog_rec_header_t
*)offset
;
3389 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
3392 h_size
= be32_to_cpu(rhead
->h_size
);
3393 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
3394 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
3395 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
3396 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
3399 hbp
= xlog_get_bp(log
, hblks
);
3404 ASSERT(log
->l_sectBBsize
== 1);
3406 hbp
= xlog_get_bp(log
, 1);
3407 h_size
= XLOG_BIG_RECORD_BSIZE
;
3412 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
3418 memset(rhash
, 0, sizeof(rhash
));
3419 if (tail_blk
<= head_blk
) {
3420 for (blk_no
= tail_blk
; blk_no
< head_blk
; ) {
3421 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3425 rhead
= (xlog_rec_header_t
*)offset
;
3426 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3430 /* blocks in data section */
3431 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3432 error
= xlog_bread(log
, blk_no
+ hblks
, bblks
, dbp
,
3437 xlog_unpack_data(rhead
, offset
, log
);
3438 if ((error
= xlog_recover_process_data(log
,
3439 rhash
, rhead
, offset
, pass
)))
3441 blk_no
+= bblks
+ hblks
;
3445 * Perform recovery around the end of the physical log.
3446 * When the head is not on the same cycle number as the tail,
3447 * we can't do a sequential recovery as above.
3450 while (blk_no
< log
->l_logBBsize
) {
3452 * Check for header wrapping around physical end-of-log
3454 offset
= hbp
->b_addr
;
3457 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
3458 /* Read header in one read */
3459 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
3464 /* This LR is split across physical log end */
3465 if (blk_no
!= log
->l_logBBsize
) {
3466 /* some data before physical log end */
3467 ASSERT(blk_no
<= INT_MAX
);
3468 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
3469 ASSERT(split_hblks
> 0);
3470 error
= xlog_bread(log
, blk_no
,
3478 * Note: this black magic still works with
3479 * large sector sizes (non-512) only because:
3480 * - we increased the buffer size originally
3481 * by 1 sector giving us enough extra space
3482 * for the second read;
3483 * - the log start is guaranteed to be sector
3485 * - we read the log end (LR header start)
3486 * _first_, then the log start (LR header end)
3487 * - order is important.
3489 wrapped_hblks
= hblks
- split_hblks
;
3490 error
= xlog_bread_offset(log
, 0,
3492 offset
+ BBTOB(split_hblks
));
3496 rhead
= (xlog_rec_header_t
*)offset
;
3497 error
= xlog_valid_rec_header(log
, rhead
,
3498 split_hblks
? blk_no
: 0);
3502 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3505 /* Read in data for log record */
3506 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
3507 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
3512 /* This log record is split across the
3513 * physical end of log */
3514 offset
= dbp
->b_addr
;
3516 if (blk_no
!= log
->l_logBBsize
) {
3517 /* some data is before the physical
3519 ASSERT(!wrapped_hblks
);
3520 ASSERT(blk_no
<= INT_MAX
);
3522 log
->l_logBBsize
- (int)blk_no
;
3523 ASSERT(split_bblks
> 0);
3524 error
= xlog_bread(log
, blk_no
,
3532 * Note: this black magic still works with
3533 * large sector sizes (non-512) only because:
3534 * - we increased the buffer size originally
3535 * by 1 sector giving us enough extra space
3536 * for the second read;
3537 * - the log start is guaranteed to be sector
3539 * - we read the log end (LR header start)
3540 * _first_, then the log start (LR header end)
3541 * - order is important.
3543 error
= xlog_bread_offset(log
, 0,
3544 bblks
- split_bblks
, hbp
,
3545 offset
+ BBTOB(split_bblks
));
3549 xlog_unpack_data(rhead
, offset
, log
);
3550 if ((error
= xlog_recover_process_data(log
, rhash
,
3551 rhead
, offset
, pass
)))
3556 ASSERT(blk_no
>= log
->l_logBBsize
);
3557 blk_no
-= log
->l_logBBsize
;
3559 /* read first part of physical log */
3560 while (blk_no
< head_blk
) {
3561 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
3565 rhead
= (xlog_rec_header_t
*)offset
;
3566 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
3570 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
3571 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
3576 xlog_unpack_data(rhead
, offset
, log
);
3577 if ((error
= xlog_recover_process_data(log
, rhash
,
3578 rhead
, offset
, pass
)))
3580 blk_no
+= bblks
+ hblks
;
3592 * Do the recovery of the log. We actually do this in two phases.
3593 * The two passes are necessary in order to implement the function
3594 * of cancelling a record written into the log. The first pass
3595 * determines those things which have been cancelled, and the
3596 * second pass replays log items normally except for those which
3597 * have been cancelled. The handling of the replay and cancellations
3598 * takes place in the log item type specific routines.
3600 * The table of items which have cancel records in the log is allocated
3601 * and freed at this level, since only here do we know when all of
3602 * the log recovery has been completed.
3605 xlog_do_log_recovery(
3607 xfs_daddr_t head_blk
,
3608 xfs_daddr_t tail_blk
)
3612 ASSERT(head_blk
!= tail_blk
);
3615 * First do a pass to find all of the cancelled buf log items.
3616 * Store them in the buf_cancel_table for use in the second pass.
3618 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
3619 sizeof(struct list_head
),
3621 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3622 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
3624 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3625 XLOG_RECOVER_PASS1
);
3627 kmem_free(log
->l_buf_cancel_table
);
3628 log
->l_buf_cancel_table
= NULL
;
3632 * Then do a second pass to actually recover the items in the log.
3633 * When it is complete free the table of buf cancel items.
3635 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
3636 XLOG_RECOVER_PASS2
);
3641 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
3642 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
3646 kmem_free(log
->l_buf_cancel_table
);
3647 log
->l_buf_cancel_table
= NULL
;
3653 * Do the actual recovery
3658 xfs_daddr_t head_blk
,
3659 xfs_daddr_t tail_blk
)
3666 * First replay the images in the log.
3668 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
3673 * If IO errors happened during recovery, bail out.
3675 if (XFS_FORCED_SHUTDOWN(log
->l_mp
)) {
3680 * We now update the tail_lsn since much of the recovery has completed
3681 * and there may be space available to use. If there were no extent
3682 * or iunlinks, we can free up the entire log and set the tail_lsn to
3683 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3684 * lsn of the last known good LR on disk. If there are extent frees
3685 * or iunlinks they will have some entries in the AIL; so we look at
3686 * the AIL to determine how to set the tail_lsn.
3688 xlog_assign_tail_lsn(log
->l_mp
);
3691 * Now that we've finished replaying all buffer and inode
3692 * updates, re-read in the superblock.
3694 bp
= xfs_getsb(log
->l_mp
, 0);
3696 ASSERT(!(XFS_BUF_ISWRITE(bp
)));
3698 XFS_BUF_UNASYNC(bp
);
3699 xfsbdstrat(log
->l_mp
, bp
);
3700 error
= xfs_buf_iowait(bp
);
3702 xfs_buf_ioerror_alert(bp
, __func__
);
3708 /* Convert superblock from on-disk format */
3709 sbp
= &log
->l_mp
->m_sb
;
3710 xfs_sb_from_disk(log
->l_mp
, XFS_BUF_TO_SBP(bp
));
3711 ASSERT(sbp
->sb_magicnum
== XFS_SB_MAGIC
);
3712 ASSERT(xfs_sb_good_version(sbp
));
3715 /* We've re-read the superblock so re-initialize per-cpu counters */
3716 xfs_icsb_reinit_counters(log
->l_mp
);
3718 xlog_recover_check_summary(log
);
3720 /* Normal transactions can now occur */
3721 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
3726 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3728 * Return error or zero.
3734 xfs_daddr_t head_blk
, tail_blk
;
3737 /* find the tail of the log */
3738 if ((error
= xlog_find_tail(log
, &head_blk
, &tail_blk
)))
3741 if (tail_blk
!= head_blk
) {
3742 /* There used to be a comment here:
3744 * disallow recovery on read-only mounts. note -- mount
3745 * checks for ENOSPC and turns it into an intelligent
3747 * ...but this is no longer true. Now, unless you specify
3748 * NORECOVERY (in which case this function would never be
3749 * called), we just go ahead and recover. We do this all
3750 * under the vfs layer, so we can get away with it unless
3751 * the device itself is read-only, in which case we fail.
3753 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
3757 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
3758 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3761 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
3762 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
3768 * In the first part of recovery we replay inodes and buffers and build
3769 * up the list of extent free items which need to be processed. Here
3770 * we process the extent free items and clean up the on disk unlinked
3771 * inode lists. This is separated from the first part of recovery so
3772 * that the root and real-time bitmap inodes can be read in from disk in
3773 * between the two stages. This is necessary so that we can free space
3774 * in the real-time portion of the file system.
3777 xlog_recover_finish(
3781 * Now we're ready to do the transactions needed for the
3782 * rest of recovery. Start with completing all the extent
3783 * free intent records and then process the unlinked inode
3784 * lists. At this point, we essentially run in normal mode
3785 * except that we're still performing recovery actions
3786 * rather than accepting new requests.
3788 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
3790 error
= xlog_recover_process_efis(log
);
3792 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
3796 * Sync the log to get all the EFIs out of the AIL.
3797 * This isn't absolutely necessary, but it helps in
3798 * case the unlink transactions would have problems
3799 * pushing the EFIs out of the way.
3801 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
3803 xlog_recover_process_iunlinks(log
);
3805 xlog_recover_check_summary(log
);
3807 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
3808 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
3810 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
3812 xfs_info(log
->l_mp
, "Ending clean mount");
3820 * Read all of the agf and agi counters and check that they
3821 * are consistent with the superblock counters.
3824 xlog_recover_check_summary(
3831 xfs_agnumber_t agno
;
3832 __uint64_t freeblks
;
3842 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
3843 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
3845 xfs_alert(mp
, "%s agf read failed agno %d error %d",
3846 __func__
, agno
, error
);
3848 agfp
= XFS_BUF_TO_AGF(agfbp
);
3849 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
3850 be32_to_cpu(agfp
->agf_flcount
);
3851 xfs_buf_relse(agfbp
);
3854 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
3856 xfs_alert(mp
, "%s agi read failed agno %d error %d",
3857 __func__
, agno
, error
);
3859 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
3861 itotal
+= be32_to_cpu(agi
->agi_count
);
3862 ifree
+= be32_to_cpu(agi
->agi_freecount
);
3863 xfs_buf_relse(agibp
);