4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
42 * How many user pages to map in one call to get_user_pages(). This determines
43 * the size of a structure in the slab cache
48 * This code generally works in units of "dio_blocks". A dio_block is
49 * somewhere between the hard sector size and the filesystem block size. it
50 * is determined on a per-invocation basis. When talking to the filesystem
51 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
52 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
53 * to bio_block quantities by shifting left by blkfactor.
55 * If blkfactor is zero then the user's request was aligned to the filesystem's
59 /* dio_state only used in the submission path */
62 struct bio
*bio
; /* bio under assembly */
63 unsigned blkbits
; /* doesn't change */
64 unsigned blkfactor
; /* When we're using an alignment which
65 is finer than the filesystem's soft
66 blocksize, this specifies how much
67 finer. blkfactor=2 means 1/4-block
68 alignment. Does not change */
69 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
70 been performed at the start of a
72 int pages_in_io
; /* approximate total IO pages */
73 size_t size
; /* total request size (doesn't change)*/
74 sector_t block_in_file
; /* Current offset into the underlying
75 file in dio_block units. */
76 unsigned blocks_available
; /* At block_in_file. changes */
77 int reap_counter
; /* rate limit reaping */
78 sector_t final_block_in_request
;/* doesn't change */
79 unsigned first_block_in_page
; /* doesn't change, Used only once */
80 int boundary
; /* prev block is at a boundary */
81 get_block_t
*get_block
; /* block mapping function */
82 dio_submit_t
*submit_io
; /* IO submition function */
84 loff_t logical_offset_in_bio
; /* current first logical block in bio */
85 sector_t final_block_in_bio
; /* current final block in bio + 1 */
86 sector_t next_block_for_io
; /* next block to be put under IO,
87 in dio_blocks units */
90 * Deferred addition of a page to the dio. These variables are
91 * private to dio_send_cur_page(), submit_page_section() and
94 struct page
*cur_page
; /* The page */
95 unsigned cur_page_offset
; /* Offset into it, in bytes */
96 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
97 sector_t cur_page_block
; /* Where it starts */
98 loff_t cur_page_fs_offset
; /* Offset in file */
101 * Page fetching state. These variables belong to dio_refill_pages().
103 int curr_page
; /* changes */
104 int total_pages
; /* doesn't change */
105 unsigned long curr_user_address
;/* changes */
108 * Page queue. These variables belong to dio_refill_pages() and
111 unsigned head
; /* next page to process */
112 unsigned tail
; /* last valid page + 1 */
115 /* dio_state communicated between submission path and end_io */
117 int flags
; /* doesn't change */
120 loff_t i_size
; /* i_size when submitted */
121 dio_iodone_t
*end_io
; /* IO completion function */
123 void *private; /* copy from map_bh.b_private */
125 /* BIO completion state */
126 spinlock_t bio_lock
; /* protects BIO fields below */
127 int page_errors
; /* errno from get_user_pages() */
128 int is_async
; /* is IO async ? */
129 int io_error
; /* IO error in completion path */
130 unsigned long refcount
; /* direct_io_worker() and bios */
131 struct bio
*bio_list
; /* singly linked via bi_private */
132 struct task_struct
*waiter
; /* waiting task (NULL if none) */
134 /* AIO related stuff */
135 struct kiocb
*iocb
; /* kiocb */
136 ssize_t result
; /* IO result */
139 * pages[] (and any fields placed after it) are not zeroed out at
140 * allocation time. Don't add new fields after pages[] unless you
141 * wish that they not be zeroed.
143 struct page
*pages
[DIO_PAGES
]; /* page buffer */
144 } ____cacheline_aligned_in_smp
;
146 static struct kmem_cache
*dio_cache __read_mostly
;
149 * How many pages are in the queue?
151 static inline unsigned dio_pages_present(struct dio_submit
*sdio
)
153 return sdio
->tail
- sdio
->head
;
157 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
159 static inline int dio_refill_pages(struct dio
*dio
, struct dio_submit
*sdio
)
164 nr_pages
= min(sdio
->total_pages
- sdio
->curr_page
, DIO_PAGES
);
165 ret
= get_user_pages_fast(
166 sdio
->curr_user_address
, /* Where from? */
167 nr_pages
, /* How many pages? */
168 dio
->rw
== READ
, /* Write to memory? */
169 &dio
->pages
[0]); /* Put results here */
171 if (ret
< 0 && sdio
->blocks_available
&& (dio
->rw
& WRITE
)) {
172 struct page
*page
= ZERO_PAGE(0);
174 * A memory fault, but the filesystem has some outstanding
175 * mapped blocks. We need to use those blocks up to avoid
176 * leaking stale data in the file.
178 if (dio
->page_errors
== 0)
179 dio
->page_errors
= ret
;
180 page_cache_get(page
);
181 dio
->pages
[0] = page
;
189 sdio
->curr_user_address
+= ret
* PAGE_SIZE
;
190 sdio
->curr_page
+= ret
;
200 * Get another userspace page. Returns an ERR_PTR on error. Pages are
201 * buffered inside the dio so that we can call get_user_pages() against a
202 * decent number of pages, less frequently. To provide nicer use of the
205 static inline struct page
*dio_get_page(struct dio
*dio
,
206 struct dio_submit
*sdio
)
208 if (dio_pages_present(sdio
) == 0) {
211 ret
= dio_refill_pages(dio
, sdio
);
214 BUG_ON(dio_pages_present(sdio
) == 0);
216 return dio
->pages
[sdio
->head
++];
220 * dio_complete() - called when all DIO BIO I/O has been completed
221 * @offset: the byte offset in the file of the completed operation
223 * This releases locks as dictated by the locking type, lets interested parties
224 * know that a DIO operation has completed, and calculates the resulting return
225 * code for the operation.
227 * It lets the filesystem know if it registered an interest earlier via
228 * get_block. Pass the private field of the map buffer_head so that
229 * filesystems can use it to hold additional state between get_block calls and
232 static ssize_t
dio_complete(struct dio
*dio
, loff_t offset
, ssize_t ret
, bool is_async
)
234 ssize_t transferred
= 0;
237 * AIO submission can race with bio completion to get here while
238 * expecting to have the last io completed by bio completion.
239 * In that case -EIOCBQUEUED is in fact not an error we want
240 * to preserve through this call.
242 if (ret
== -EIOCBQUEUED
)
246 transferred
= dio
->result
;
248 /* Check for short read case */
249 if ((dio
->rw
== READ
) && ((offset
+ transferred
) > dio
->i_size
))
250 transferred
= dio
->i_size
- offset
;
254 ret
= dio
->page_errors
;
260 if (dio
->end_io
&& dio
->result
) {
261 dio
->end_io(dio
->iocb
, offset
, transferred
,
262 dio
->private, ret
, is_async
);
264 inode_dio_done(dio
->inode
);
266 aio_complete(dio
->iocb
, ret
, 0);
272 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
274 * Asynchronous IO callback.
276 static void dio_bio_end_aio(struct bio
*bio
, int error
)
278 struct dio
*dio
= bio
->bi_private
;
279 unsigned long remaining
;
282 /* cleanup the bio */
283 dio_bio_complete(dio
, bio
);
285 spin_lock_irqsave(&dio
->bio_lock
, flags
);
286 remaining
= --dio
->refcount
;
287 if (remaining
== 1 && dio
->waiter
)
288 wake_up_process(dio
->waiter
);
289 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
291 if (remaining
== 0) {
292 dio_complete(dio
, dio
->iocb
->ki_pos
, 0, true);
293 kmem_cache_free(dio_cache
, dio
);
298 * The BIO completion handler simply queues the BIO up for the process-context
301 * During I/O bi_private points at the dio. After I/O, bi_private is used to
302 * implement a singly-linked list of completed BIOs, at dio->bio_list.
304 static void dio_bio_end_io(struct bio
*bio
, int error
)
306 struct dio
*dio
= bio
->bi_private
;
309 spin_lock_irqsave(&dio
->bio_lock
, flags
);
310 bio
->bi_private
= dio
->bio_list
;
312 if (--dio
->refcount
== 1 && dio
->waiter
)
313 wake_up_process(dio
->waiter
);
314 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
318 * dio_end_io - handle the end io action for the given bio
319 * @bio: The direct io bio thats being completed
320 * @error: Error if there was one
322 * This is meant to be called by any filesystem that uses their own dio_submit_t
323 * so that the DIO specific endio actions are dealt with after the filesystem
324 * has done it's completion work.
326 void dio_end_io(struct bio
*bio
, int error
)
328 struct dio
*dio
= bio
->bi_private
;
331 dio_bio_end_aio(bio
, error
);
333 dio_bio_end_io(bio
, error
);
335 EXPORT_SYMBOL_GPL(dio_end_io
);
338 dio_bio_alloc(struct dio
*dio
, struct dio_submit
*sdio
,
339 struct block_device
*bdev
,
340 sector_t first_sector
, int nr_vecs
)
345 * bio_alloc() is guaranteed to return a bio when called with
346 * __GFP_WAIT and we request a valid number of vectors.
348 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
351 bio
->bi_sector
= first_sector
;
353 bio
->bi_end_io
= dio_bio_end_aio
;
355 bio
->bi_end_io
= dio_bio_end_io
;
358 sdio
->logical_offset_in_bio
= sdio
->cur_page_fs_offset
;
362 * In the AIO read case we speculatively dirty the pages before starting IO.
363 * During IO completion, any of these pages which happen to have been written
364 * back will be redirtied by bio_check_pages_dirty().
366 * bios hold a dio reference between submit_bio and ->end_io.
368 static inline void dio_bio_submit(struct dio
*dio
, struct dio_submit
*sdio
)
370 struct bio
*bio
= sdio
->bio
;
373 bio
->bi_private
= dio
;
375 spin_lock_irqsave(&dio
->bio_lock
, flags
);
377 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
379 if (dio
->is_async
&& dio
->rw
== READ
)
380 bio_set_pages_dirty(bio
);
383 sdio
->submit_io(dio
->rw
, bio
, dio
->inode
,
384 sdio
->logical_offset_in_bio
);
386 submit_bio(dio
->rw
, bio
);
390 sdio
->logical_offset_in_bio
= 0;
394 * Release any resources in case of a failure
396 static inline void dio_cleanup(struct dio
*dio
, struct dio_submit
*sdio
)
398 while (dio_pages_present(sdio
))
399 page_cache_release(dio_get_page(dio
, sdio
));
403 * Wait for the next BIO to complete. Remove it and return it. NULL is
404 * returned once all BIOs have been completed. This must only be called once
405 * all bios have been issued so that dio->refcount can only decrease. This
406 * requires that that the caller hold a reference on the dio.
408 static struct bio
*dio_await_one(struct dio
*dio
)
411 struct bio
*bio
= NULL
;
413 spin_lock_irqsave(&dio
->bio_lock
, flags
);
416 * Wait as long as the list is empty and there are bios in flight. bio
417 * completion drops the count, maybe adds to the list, and wakes while
418 * holding the bio_lock so we don't need set_current_state()'s barrier
419 * and can call it after testing our condition.
421 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
422 __set_current_state(TASK_UNINTERRUPTIBLE
);
423 dio
->waiter
= current
;
424 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
426 /* wake up sets us TASK_RUNNING */
427 spin_lock_irqsave(&dio
->bio_lock
, flags
);
432 dio
->bio_list
= bio
->bi_private
;
434 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
439 * Process one completed BIO. No locks are held.
441 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
443 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
444 struct bio_vec
*bvec
= bio
->bi_io_vec
;
448 dio
->io_error
= -EIO
;
450 if (dio
->is_async
&& dio
->rw
== READ
) {
451 bio_check_pages_dirty(bio
); /* transfers ownership */
453 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
454 struct page
*page
= bvec
[page_no
].bv_page
;
456 if (dio
->rw
== READ
&& !PageCompound(page
))
457 set_page_dirty_lock(page
);
458 page_cache_release(page
);
462 return uptodate
? 0 : -EIO
;
466 * Wait on and process all in-flight BIOs. This must only be called once
467 * all bios have been issued so that the refcount can only decrease.
468 * This just waits for all bios to make it through dio_bio_complete. IO
469 * errors are propagated through dio->io_error and should be propagated via
472 static void dio_await_completion(struct dio
*dio
)
476 bio
= dio_await_one(dio
);
478 dio_bio_complete(dio
, bio
);
483 * A really large O_DIRECT read or write can generate a lot of BIOs. So
484 * to keep the memory consumption sane we periodically reap any completed BIOs
485 * during the BIO generation phase.
487 * This also helps to limit the peak amount of pinned userspace memory.
489 static inline int dio_bio_reap(struct dio
*dio
, struct dio_submit
*sdio
)
493 if (sdio
->reap_counter
++ >= 64) {
494 while (dio
->bio_list
) {
499 spin_lock_irqsave(&dio
->bio_lock
, flags
);
501 dio
->bio_list
= bio
->bi_private
;
502 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
503 ret2
= dio_bio_complete(dio
, bio
);
507 sdio
->reap_counter
= 0;
513 * Call into the fs to map some more disk blocks. We record the current number
514 * of available blocks at sdio->blocks_available. These are in units of the
515 * fs blocksize, (1 << inode->i_blkbits).
517 * The fs is allowed to map lots of blocks at once. If it wants to do that,
518 * it uses the passed inode-relative block number as the file offset, as usual.
520 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
521 * has remaining to do. The fs should not map more than this number of blocks.
523 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
524 * indicate how much contiguous disk space has been made available at
527 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
528 * This isn't very efficient...
530 * In the case of filesystem holes: the fs may return an arbitrarily-large
531 * hole by returning an appropriate value in b_size and by clearing
532 * buffer_mapped(). However the direct-io code will only process holes one
533 * block at a time - it will repeatedly call get_block() as it walks the hole.
535 static int get_more_blocks(struct dio
*dio
, struct dio_submit
*sdio
,
536 struct buffer_head
*map_bh
)
539 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
540 sector_t fs_endblk
; /* Into file, in filesystem-sized blocks */
541 unsigned long fs_count
; /* Number of filesystem-sized blocks */
543 unsigned int i_blkbits
= sdio
->blkbits
+ sdio
->blkfactor
;
546 * If there was a memory error and we've overwritten all the
547 * mapped blocks then we can now return that memory error
549 ret
= dio
->page_errors
;
551 BUG_ON(sdio
->block_in_file
>= sdio
->final_block_in_request
);
552 fs_startblk
= sdio
->block_in_file
>> sdio
->blkfactor
;
553 fs_endblk
= (sdio
->final_block_in_request
- 1) >>
555 fs_count
= fs_endblk
- fs_startblk
+ 1;
558 map_bh
->b_size
= fs_count
<< i_blkbits
;
561 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
562 * forbid block creations: only overwrites are permitted.
563 * We will return early to the caller once we see an
564 * unmapped buffer head returned, and the caller will fall
565 * back to buffered I/O.
567 * Otherwise the decision is left to the get_blocks method,
568 * which may decide to handle it or also return an unmapped
571 create
= dio
->rw
& WRITE
;
572 if (dio
->flags
& DIO_SKIP_HOLES
) {
573 if (sdio
->block_in_file
< (i_size_read(dio
->inode
) >>
578 ret
= (*sdio
->get_block
)(dio
->inode
, fs_startblk
,
581 /* Store for completion */
582 dio
->private = map_bh
->b_private
;
588 * There is no bio. Make one now.
590 static inline int dio_new_bio(struct dio
*dio
, struct dio_submit
*sdio
,
591 sector_t start_sector
, struct buffer_head
*map_bh
)
596 ret
= dio_bio_reap(dio
, sdio
);
599 sector
= start_sector
<< (sdio
->blkbits
- 9);
600 nr_pages
= min(sdio
->pages_in_io
, bio_get_nr_vecs(map_bh
->b_bdev
));
601 nr_pages
= min(nr_pages
, BIO_MAX_PAGES
);
602 BUG_ON(nr_pages
<= 0);
603 dio_bio_alloc(dio
, sdio
, map_bh
->b_bdev
, sector
, nr_pages
);
610 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
611 * that was successful then update final_block_in_bio and take a ref against
612 * the just-added page.
614 * Return zero on success. Non-zero means the caller needs to start a new BIO.
616 static inline int dio_bio_add_page(struct dio_submit
*sdio
)
620 ret
= bio_add_page(sdio
->bio
, sdio
->cur_page
,
621 sdio
->cur_page_len
, sdio
->cur_page_offset
);
622 if (ret
== sdio
->cur_page_len
) {
624 * Decrement count only, if we are done with this page
626 if ((sdio
->cur_page_len
+ sdio
->cur_page_offset
) == PAGE_SIZE
)
628 page_cache_get(sdio
->cur_page
);
629 sdio
->final_block_in_bio
= sdio
->cur_page_block
+
630 (sdio
->cur_page_len
>> sdio
->blkbits
);
639 * Put cur_page under IO. The section of cur_page which is described by
640 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
641 * starts on-disk at cur_page_block.
643 * We take a ref against the page here (on behalf of its presence in the bio).
645 * The caller of this function is responsible for removing cur_page from the
646 * dio, and for dropping the refcount which came from that presence.
648 static inline int dio_send_cur_page(struct dio
*dio
, struct dio_submit
*sdio
,
649 struct buffer_head
*map_bh
)
654 loff_t cur_offset
= sdio
->cur_page_fs_offset
;
655 loff_t bio_next_offset
= sdio
->logical_offset_in_bio
+
659 * See whether this new request is contiguous with the old.
661 * Btrfs cannot handle having logically non-contiguous requests
662 * submitted. For example if you have
664 * Logical: [0-4095][HOLE][8192-12287]
665 * Physical: [0-4095] [4096-8191]
667 * We cannot submit those pages together as one BIO. So if our
668 * current logical offset in the file does not equal what would
669 * be the next logical offset in the bio, submit the bio we
672 if (sdio
->final_block_in_bio
!= sdio
->cur_page_block
||
673 cur_offset
!= bio_next_offset
)
674 dio_bio_submit(dio
, sdio
);
676 * Submit now if the underlying fs is about to perform a
679 else if (sdio
->boundary
)
680 dio_bio_submit(dio
, sdio
);
683 if (sdio
->bio
== NULL
) {
684 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
689 if (dio_bio_add_page(sdio
) != 0) {
690 dio_bio_submit(dio
, sdio
);
691 ret
= dio_new_bio(dio
, sdio
, sdio
->cur_page_block
, map_bh
);
693 ret
= dio_bio_add_page(sdio
);
702 * An autonomous function to put a chunk of a page under deferred IO.
704 * The caller doesn't actually know (or care) whether this piece of page is in
705 * a BIO, or is under IO or whatever. We just take care of all possible
706 * situations here. The separation between the logic of do_direct_IO() and
707 * that of submit_page_section() is important for clarity. Please don't break.
709 * The chunk of page starts on-disk at blocknr.
711 * We perform deferred IO, by recording the last-submitted page inside our
712 * private part of the dio structure. If possible, we just expand the IO
713 * across that page here.
715 * If that doesn't work out then we put the old page into the bio and add this
716 * page to the dio instead.
719 submit_page_section(struct dio
*dio
, struct dio_submit
*sdio
, struct page
*page
,
720 unsigned offset
, unsigned len
, sector_t blocknr
,
721 struct buffer_head
*map_bh
)
725 if (dio
->rw
& WRITE
) {
727 * Read accounting is performed in submit_bio()
729 task_io_account_write(len
);
733 * Can we just grow the current page's presence in the dio?
735 if (sdio
->cur_page
== page
&&
736 sdio
->cur_page_offset
+ sdio
->cur_page_len
== offset
&&
737 sdio
->cur_page_block
+
738 (sdio
->cur_page_len
>> sdio
->blkbits
) == blocknr
) {
739 sdio
->cur_page_len
+= len
;
742 * If sdio->boundary then we want to schedule the IO now to
743 * avoid metadata seeks.
745 if (sdio
->boundary
) {
746 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
747 page_cache_release(sdio
->cur_page
);
748 sdio
->cur_page
= NULL
;
754 * If there's a deferred page already there then send it.
756 if (sdio
->cur_page
) {
757 ret
= dio_send_cur_page(dio
, sdio
, map_bh
);
758 page_cache_release(sdio
->cur_page
);
759 sdio
->cur_page
= NULL
;
764 page_cache_get(page
); /* It is in dio */
765 sdio
->cur_page
= page
;
766 sdio
->cur_page_offset
= offset
;
767 sdio
->cur_page_len
= len
;
768 sdio
->cur_page_block
= blocknr
;
769 sdio
->cur_page_fs_offset
= sdio
->block_in_file
<< sdio
->blkbits
;
775 * Clean any dirty buffers in the blockdev mapping which alias newly-created
776 * file blocks. Only called for S_ISREG files - blockdevs do not set
779 static void clean_blockdev_aliases(struct dio
*dio
, struct buffer_head
*map_bh
)
784 nblocks
= map_bh
->b_size
>> dio
->inode
->i_blkbits
;
786 for (i
= 0; i
< nblocks
; i
++) {
787 unmap_underlying_metadata(map_bh
->b_bdev
,
788 map_bh
->b_blocknr
+ i
);
793 * If we are not writing the entire block and get_block() allocated
794 * the block for us, we need to fill-in the unused portion of the
795 * block with zeros. This happens only if user-buffer, fileoffset or
796 * io length is not filesystem block-size multiple.
798 * `end' is zero if we're doing the start of the IO, 1 at the end of the
801 static inline void dio_zero_block(struct dio
*dio
, struct dio_submit
*sdio
,
802 int end
, struct buffer_head
*map_bh
)
804 unsigned dio_blocks_per_fs_block
;
805 unsigned this_chunk_blocks
; /* In dio_blocks */
806 unsigned this_chunk_bytes
;
809 sdio
->start_zero_done
= 1;
810 if (!sdio
->blkfactor
|| !buffer_new(map_bh
))
813 dio_blocks_per_fs_block
= 1 << sdio
->blkfactor
;
814 this_chunk_blocks
= sdio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
816 if (!this_chunk_blocks
)
820 * We need to zero out part of an fs block. It is either at the
821 * beginning or the end of the fs block.
824 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
826 this_chunk_bytes
= this_chunk_blocks
<< sdio
->blkbits
;
829 if (submit_page_section(dio
, sdio
, page
, 0, this_chunk_bytes
,
830 sdio
->next_block_for_io
, map_bh
))
833 sdio
->next_block_for_io
+= this_chunk_blocks
;
837 * Walk the user pages, and the file, mapping blocks to disk and generating
838 * a sequence of (page,offset,len,block) mappings. These mappings are injected
839 * into submit_page_section(), which takes care of the next stage of submission
841 * Direct IO against a blockdev is different from a file. Because we can
842 * happily perform page-sized but 512-byte aligned IOs. It is important that
843 * blockdev IO be able to have fine alignment and large sizes.
845 * So what we do is to permit the ->get_block function to populate bh.b_size
846 * with the size of IO which is permitted at this offset and this i_blkbits.
848 * For best results, the blockdev should be set up with 512-byte i_blkbits and
849 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
850 * fine alignment but still allows this function to work in PAGE_SIZE units.
852 static int do_direct_IO(struct dio
*dio
, struct dio_submit
*sdio
,
853 struct buffer_head
*map_bh
)
855 const unsigned blkbits
= sdio
->blkbits
;
856 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
858 unsigned block_in_page
;
861 /* The I/O can start at any block offset within the first page */
862 block_in_page
= sdio
->first_block_in_page
;
864 while (sdio
->block_in_file
< sdio
->final_block_in_request
) {
865 page
= dio_get_page(dio
, sdio
);
871 while (block_in_page
< blocks_per_page
) {
872 unsigned offset_in_page
= block_in_page
<< blkbits
;
873 unsigned this_chunk_bytes
; /* # of bytes mapped */
874 unsigned this_chunk_blocks
; /* # of blocks */
877 if (sdio
->blocks_available
== 0) {
879 * Need to go and map some more disk
881 unsigned long blkmask
;
882 unsigned long dio_remainder
;
884 ret
= get_more_blocks(dio
, sdio
, map_bh
);
886 page_cache_release(page
);
889 if (!buffer_mapped(map_bh
))
892 sdio
->blocks_available
=
893 map_bh
->b_size
>> sdio
->blkbits
;
894 sdio
->next_block_for_io
=
895 map_bh
->b_blocknr
<< sdio
->blkfactor
;
896 if (buffer_new(map_bh
))
897 clean_blockdev_aliases(dio
, map_bh
);
899 if (!sdio
->blkfactor
)
902 blkmask
= (1 << sdio
->blkfactor
) - 1;
903 dio_remainder
= (sdio
->block_in_file
& blkmask
);
906 * If we are at the start of IO and that IO
907 * starts partway into a fs-block,
908 * dio_remainder will be non-zero. If the IO
909 * is a read then we can simply advance the IO
910 * cursor to the first block which is to be
911 * read. But if the IO is a write and the
912 * block was newly allocated we cannot do that;
913 * the start of the fs block must be zeroed out
916 if (!buffer_new(map_bh
))
917 sdio
->next_block_for_io
+= dio_remainder
;
918 sdio
->blocks_available
-= dio_remainder
;
922 if (!buffer_mapped(map_bh
)) {
923 loff_t i_size_aligned
;
925 /* AKPM: eargh, -ENOTBLK is a hack */
926 if (dio
->rw
& WRITE
) {
927 page_cache_release(page
);
932 * Be sure to account for a partial block as the
933 * last block in the file
935 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
937 if (sdio
->block_in_file
>=
938 i_size_aligned
>> blkbits
) {
940 page_cache_release(page
);
943 zero_user(page
, block_in_page
<< blkbits
,
945 sdio
->block_in_file
++;
951 * If we're performing IO which has an alignment which
952 * is finer than the underlying fs, go check to see if
953 * we must zero out the start of this block.
955 if (unlikely(sdio
->blkfactor
&& !sdio
->start_zero_done
))
956 dio_zero_block(dio
, sdio
, 0, map_bh
);
959 * Work out, in this_chunk_blocks, how much disk we
960 * can add to this page
962 this_chunk_blocks
= sdio
->blocks_available
;
963 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
964 if (this_chunk_blocks
> u
)
965 this_chunk_blocks
= u
;
966 u
= sdio
->final_block_in_request
- sdio
->block_in_file
;
967 if (this_chunk_blocks
> u
)
968 this_chunk_blocks
= u
;
969 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
970 BUG_ON(this_chunk_bytes
== 0);
972 sdio
->boundary
= buffer_boundary(map_bh
);
973 ret
= submit_page_section(dio
, sdio
, page
,
976 sdio
->next_block_for_io
,
979 page_cache_release(page
);
982 sdio
->next_block_for_io
+= this_chunk_blocks
;
984 sdio
->block_in_file
+= this_chunk_blocks
;
985 block_in_page
+= this_chunk_blocks
;
986 sdio
->blocks_available
-= this_chunk_blocks
;
988 BUG_ON(sdio
->block_in_file
> sdio
->final_block_in_request
);
989 if (sdio
->block_in_file
== sdio
->final_block_in_request
)
993 /* Drop the ref which was taken in get_user_pages() */
994 page_cache_release(page
);
1001 static inline int drop_refcount(struct dio
*dio
)
1004 unsigned long flags
;
1007 * Sync will always be dropping the final ref and completing the
1008 * operation. AIO can if it was a broken operation described above or
1009 * in fact if all the bios race to complete before we get here. In
1010 * that case dio_complete() translates the EIOCBQUEUED into the proper
1011 * return code that the caller will hand to aio_complete().
1013 * This is managed by the bio_lock instead of being an atomic_t so that
1014 * completion paths can drop their ref and use the remaining count to
1015 * decide to wake the submission path atomically.
1017 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1018 ret2
= --dio
->refcount
;
1019 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1024 * This is a library function for use by filesystem drivers.
1026 * The locking rules are governed by the flags parameter:
1027 * - if the flags value contains DIO_LOCKING we use a fancy locking
1028 * scheme for dumb filesystems.
1029 * For writes this function is called under i_mutex and returns with
1030 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1031 * taken and dropped again before returning.
1032 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1033 * internal locking but rather rely on the filesystem to synchronize
1034 * direct I/O reads/writes versus each other and truncate.
1036 * To help with locking against truncate we incremented the i_dio_count
1037 * counter before starting direct I/O, and decrement it once we are done.
1038 * Truncate can wait for it to reach zero to provide exclusion. It is
1039 * expected that filesystem provide exclusion between new direct I/O
1040 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1041 * but other filesystems need to take care of this on their own.
1043 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1044 * is always inlined. Otherwise gcc is unable to split the structure into
1045 * individual fields and will generate much worse code. This is important
1046 * for the whole file.
1048 static inline ssize_t
1049 do_blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1050 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1051 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1052 dio_submit_t submit_io
, int flags
)
1057 unsigned i_blkbits
= ACCESS_ONCE(inode
->i_blkbits
);
1058 unsigned blkbits
= i_blkbits
;
1059 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1060 ssize_t retval
= -EINVAL
;
1061 loff_t end
= offset
;
1063 struct dio_submit sdio
= { 0, };
1064 unsigned long user_addr
;
1066 struct buffer_head map_bh
= { 0, };
1067 struct blk_plug plug
;
1073 * Avoid references to bdev if not absolutely needed to give
1074 * the early prefetch in the caller enough time.
1077 if (offset
& blocksize_mask
) {
1079 blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1080 blocksize_mask
= (1 << blkbits
) - 1;
1081 if (offset
& blocksize_mask
)
1085 /* Check the memory alignment. Blocks cannot straddle pages */
1086 for (seg
= 0; seg
< nr_segs
; seg
++) {
1087 addr
= (unsigned long)iov
[seg
].iov_base
;
1088 size
= iov
[seg
].iov_len
;
1090 if (unlikely((addr
& blocksize_mask
) ||
1091 (size
& blocksize_mask
))) {
1093 blkbits
= blksize_bits(
1094 bdev_logical_block_size(bdev
));
1095 blocksize_mask
= (1 << blkbits
) - 1;
1096 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1101 /* watch out for a 0 len io from a tricksy fs */
1102 if (rw
== READ
&& end
== offset
)
1105 dio
= kmem_cache_alloc(dio_cache
, GFP_KERNEL
);
1110 * Believe it or not, zeroing out the page array caused a .5%
1111 * performance regression in a database benchmark. So, we take
1112 * care to only zero out what's needed.
1114 memset(dio
, 0, offsetof(struct dio
, pages
));
1117 if (dio
->flags
& DIO_LOCKING
) {
1119 struct address_space
*mapping
=
1120 iocb
->ki_filp
->f_mapping
;
1122 /* will be released by direct_io_worker */
1123 mutex_lock(&inode
->i_mutex
);
1125 retval
= filemap_write_and_wait_range(mapping
, offset
,
1128 mutex_unlock(&inode
->i_mutex
);
1129 kmem_cache_free(dio_cache
, dio
);
1136 * Will be decremented at I/O completion time.
1138 atomic_inc(&inode
->i_dio_count
);
1141 * For file extending writes updating i_size before data
1142 * writeouts complete can expose uninitialized blocks. So
1143 * even for AIO, we need to wait for i/o to complete before
1144 * returning in this case.
1146 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
& WRITE
) &&
1147 (end
> i_size_read(inode
)));
1153 sdio
.blkbits
= blkbits
;
1154 sdio
.blkfactor
= i_blkbits
- blkbits
;
1155 sdio
.block_in_file
= offset
>> blkbits
;
1157 sdio
.get_block
= get_block
;
1158 dio
->end_io
= end_io
;
1159 sdio
.submit_io
= submit_io
;
1160 sdio
.final_block_in_bio
= -1;
1161 sdio
.next_block_for_io
= -1;
1164 dio
->i_size
= i_size_read(inode
);
1166 spin_lock_init(&dio
->bio_lock
);
1170 * In case of non-aligned buffers, we may need 2 more
1171 * pages since we need to zero out first and last block.
1173 if (unlikely(sdio
.blkfactor
))
1174 sdio
.pages_in_io
= 2;
1176 for (seg
= 0; seg
< nr_segs
; seg
++) {
1177 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1179 ((user_addr
+ iov
[seg
].iov_len
+ PAGE_SIZE
-1) /
1180 PAGE_SIZE
- user_addr
/ PAGE_SIZE
);
1183 blk_start_plug(&plug
);
1185 for (seg
= 0; seg
< nr_segs
; seg
++) {
1186 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1187 sdio
.size
+= bytes
= iov
[seg
].iov_len
;
1189 /* Index into the first page of the first block */
1190 sdio
.first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
1191 sdio
.final_block_in_request
= sdio
.block_in_file
+
1193 /* Page fetching state */
1198 sdio
.total_pages
= 0;
1199 if (user_addr
& (PAGE_SIZE
-1)) {
1201 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1203 sdio
.total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1204 sdio
.curr_user_address
= user_addr
;
1206 retval
= do_direct_IO(dio
, &sdio
, &map_bh
);
1208 dio
->result
+= iov
[seg
].iov_len
-
1209 ((sdio
.final_block_in_request
- sdio
.block_in_file
) <<
1213 dio_cleanup(dio
, &sdio
);
1216 } /* end iovec loop */
1218 if (retval
== -ENOTBLK
) {
1220 * The remaining part of the request will be
1221 * be handled by buffered I/O when we return
1226 * There may be some unwritten disk at the end of a part-written
1227 * fs-block-sized block. Go zero that now.
1229 dio_zero_block(dio
, &sdio
, 1, &map_bh
);
1231 if (sdio
.cur_page
) {
1234 ret2
= dio_send_cur_page(dio
, &sdio
, &map_bh
);
1237 page_cache_release(sdio
.cur_page
);
1238 sdio
.cur_page
= NULL
;
1241 dio_bio_submit(dio
, &sdio
);
1243 blk_finish_plug(&plug
);
1246 * It is possible that, we return short IO due to end of file.
1247 * In that case, we need to release all the pages we got hold on.
1249 dio_cleanup(dio
, &sdio
);
1252 * All block lookups have been performed. For READ requests
1253 * we can let i_mutex go now that its achieved its purpose
1254 * of protecting us from looking up uninitialized blocks.
1256 if (rw
== READ
&& (dio
->flags
& DIO_LOCKING
))
1257 mutex_unlock(&dio
->inode
->i_mutex
);
1260 * The only time we want to leave bios in flight is when a successful
1261 * partial aio read or full aio write have been setup. In that case
1262 * bio completion will call aio_complete. The only time it's safe to
1263 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1264 * This had *better* be the only place that raises -EIOCBQUEUED.
1266 BUG_ON(retval
== -EIOCBQUEUED
);
1267 if (dio
->is_async
&& retval
== 0 && dio
->result
&&
1268 ((rw
== READ
) || (dio
->result
== sdio
.size
)))
1269 retval
= -EIOCBQUEUED
;
1271 if (retval
!= -EIOCBQUEUED
)
1272 dio_await_completion(dio
);
1274 if (drop_refcount(dio
) == 0) {
1275 retval
= dio_complete(dio
, offset
, retval
, false);
1276 kmem_cache_free(dio_cache
, dio
);
1278 BUG_ON(retval
!= -EIOCBQUEUED
);
1285 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1286 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1287 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1288 dio_submit_t submit_io
, int flags
)
1291 * The block device state is needed in the end to finally
1292 * submit everything. Since it's likely to be cache cold
1293 * prefetch it here as first thing to hide some of the
1296 * Attempt to prefetch the pieces we likely need later.
1298 prefetch(&bdev
->bd_disk
->part_tbl
);
1299 prefetch(bdev
->bd_queue
);
1300 prefetch((char *)bdev
->bd_queue
+ SMP_CACHE_BYTES
);
1302 return do_blockdev_direct_IO(rw
, iocb
, inode
, bdev
, iov
, offset
,
1303 nr_segs
, get_block
, end_io
,
1307 EXPORT_SYMBOL(__blockdev_direct_IO
);
1309 static __init
int dio_init(void)
1311 dio_cache
= KMEM_CACHE(dio
, SLAB_PANIC
);
1314 module_init(dio_init
)