1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 #include "check-integrity.h"
23 #include "rcu-string.h"
27 static struct kmem_cache
*extent_state_cache
;
28 static struct kmem_cache
*extent_buffer_cache
;
29 static struct bio_set btrfs_bioset
;
31 static inline bool extent_state_in_tree(const struct extent_state
*state
)
33 return !RB_EMPTY_NODE(&state
->rb_node
);
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers
);
38 static LIST_HEAD(states
);
40 static DEFINE_SPINLOCK(leak_lock
);
43 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
47 spin_lock_irqsave(&leak_lock
, flags
);
49 spin_unlock_irqrestore(&leak_lock
, flags
);
53 void btrfs_leak_debug_del(struct list_head
*entry
)
57 spin_lock_irqsave(&leak_lock
, flags
);
59 spin_unlock_irqrestore(&leak_lock
, flags
);
63 void btrfs_leak_debug_check(void)
65 struct extent_state
*state
;
66 struct extent_buffer
*eb
;
68 while (!list_empty(&states
)) {
69 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state
->start
, state
->end
, state
->state
,
72 extent_state_in_tree(state
),
73 refcount_read(&state
->refs
));
74 list_del(&state
->leak_list
);
75 kmem_cache_free(extent_state_cache
, state
);
78 while (!list_empty(&buffers
)) {
79 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb
->start
, eb
->len
, atomic_read(&eb
->refs
), eb
->bflags
);
82 list_del(&eb
->leak_list
);
83 kmem_cache_free(extent_buffer_cache
, eb
);
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
90 struct extent_io_tree
*tree
, u64 start
, u64 end
)
92 struct inode
*inode
= tree
->private_data
;
95 if (!inode
|| !is_data_inode(inode
))
98 isize
= i_size_read(inode
);
99 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
100 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
106 #define btrfs_leak_debug_add(new, head) do {} while (0)
107 #define btrfs_leak_debug_del(entry) do {} while (0)
108 #define btrfs_leak_debug_check() do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
115 struct rb_node rb_node
;
118 struct extent_page_data
{
120 struct extent_io_tree
*tree
;
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
124 unsigned int extent_locked
:1;
126 /* tells the submit_bio code to use REQ_SYNC */
127 unsigned int sync_io
:1;
130 static int add_extent_changeset(struct extent_state
*state
, unsigned bits
,
131 struct extent_changeset
*changeset
,
138 if (set
&& (state
->state
& bits
) == bits
)
140 if (!set
&& (state
->state
& bits
) == 0)
142 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
143 ret
= ulist_add(&changeset
->range_changed
, state
->start
, state
->end
,
148 static int __must_check
submit_one_bio(struct bio
*bio
, int mirror_num
,
149 unsigned long bio_flags
)
151 blk_status_t ret
= 0;
152 struct extent_io_tree
*tree
= bio
->bi_private
;
154 bio
->bi_private
= NULL
;
157 ret
= tree
->ops
->submit_bio_hook(tree
->private_data
, bio
,
158 mirror_num
, bio_flags
);
160 btrfsic_submit_bio(bio
);
162 return blk_status_to_errno(ret
);
165 /* Cleanup unsubmitted bios */
166 static void end_write_bio(struct extent_page_data
*epd
, int ret
)
169 epd
->bio
->bi_status
= errno_to_blk_status(ret
);
176 * Submit bio from extent page data via submit_one_bio
178 * Return 0 if everything is OK.
179 * Return <0 for error.
181 static int __must_check
flush_write_bio(struct extent_page_data
*epd
)
186 ret
= submit_one_bio(epd
->bio
, 0, 0);
188 * Clean up of epd->bio is handled by its endio function.
189 * And endio is either triggered by successful bio execution
190 * or the error handler of submit bio hook.
191 * So at this point, no matter what happened, we don't need
192 * to clean up epd->bio.
199 int __init
extent_io_init(void)
201 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
202 sizeof(struct extent_state
), 0,
203 SLAB_MEM_SPREAD
, NULL
);
204 if (!extent_state_cache
)
207 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
208 sizeof(struct extent_buffer
), 0,
209 SLAB_MEM_SPREAD
, NULL
);
210 if (!extent_buffer_cache
)
211 goto free_state_cache
;
213 if (bioset_init(&btrfs_bioset
, BIO_POOL_SIZE
,
214 offsetof(struct btrfs_io_bio
, bio
),
216 goto free_buffer_cache
;
218 if (bioset_integrity_create(&btrfs_bioset
, BIO_POOL_SIZE
))
224 bioset_exit(&btrfs_bioset
);
227 kmem_cache_destroy(extent_buffer_cache
);
228 extent_buffer_cache
= NULL
;
231 kmem_cache_destroy(extent_state_cache
);
232 extent_state_cache
= NULL
;
236 void __cold
extent_io_exit(void)
238 btrfs_leak_debug_check();
241 * Make sure all delayed rcu free are flushed before we
245 kmem_cache_destroy(extent_state_cache
);
246 kmem_cache_destroy(extent_buffer_cache
);
247 bioset_exit(&btrfs_bioset
);
250 void extent_io_tree_init(struct btrfs_fs_info
*fs_info
,
251 struct extent_io_tree
*tree
, unsigned int owner
,
254 tree
->fs_info
= fs_info
;
255 tree
->state
= RB_ROOT
;
257 tree
->dirty_bytes
= 0;
258 spin_lock_init(&tree
->lock
);
259 tree
->private_data
= private_data
;
263 void extent_io_tree_release(struct extent_io_tree
*tree
)
265 spin_lock(&tree
->lock
);
267 * Do a single barrier for the waitqueue_active check here, the state
268 * of the waitqueue should not change once extent_io_tree_release is
272 while (!RB_EMPTY_ROOT(&tree
->state
)) {
273 struct rb_node
*node
;
274 struct extent_state
*state
;
276 node
= rb_first(&tree
->state
);
277 state
= rb_entry(node
, struct extent_state
, rb_node
);
278 rb_erase(&state
->rb_node
, &tree
->state
);
279 RB_CLEAR_NODE(&state
->rb_node
);
281 * btree io trees aren't supposed to have tasks waiting for
282 * changes in the flags of extent states ever.
284 ASSERT(!waitqueue_active(&state
->wq
));
285 free_extent_state(state
);
287 cond_resched_lock(&tree
->lock
);
289 spin_unlock(&tree
->lock
);
292 static struct extent_state
*alloc_extent_state(gfp_t mask
)
294 struct extent_state
*state
;
297 * The given mask might be not appropriate for the slab allocator,
298 * drop the unsupported bits
300 mask
&= ~(__GFP_DMA32
|__GFP_HIGHMEM
);
301 state
= kmem_cache_alloc(extent_state_cache
, mask
);
305 state
->failrec
= NULL
;
306 RB_CLEAR_NODE(&state
->rb_node
);
307 btrfs_leak_debug_add(&state
->leak_list
, &states
);
308 refcount_set(&state
->refs
, 1);
309 init_waitqueue_head(&state
->wq
);
310 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
314 void free_extent_state(struct extent_state
*state
)
318 if (refcount_dec_and_test(&state
->refs
)) {
319 WARN_ON(extent_state_in_tree(state
));
320 btrfs_leak_debug_del(&state
->leak_list
);
321 trace_free_extent_state(state
, _RET_IP_
);
322 kmem_cache_free(extent_state_cache
, state
);
326 static struct rb_node
*tree_insert(struct rb_root
*root
,
327 struct rb_node
*search_start
,
329 struct rb_node
*node
,
330 struct rb_node
***p_in
,
331 struct rb_node
**parent_in
)
334 struct rb_node
*parent
= NULL
;
335 struct tree_entry
*entry
;
337 if (p_in
&& parent_in
) {
343 p
= search_start
? &search_start
: &root
->rb_node
;
346 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
348 if (offset
< entry
->start
)
350 else if (offset
> entry
->end
)
357 rb_link_node(node
, parent
, p
);
358 rb_insert_color(node
, root
);
362 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
363 struct rb_node
**next_ret
,
364 struct rb_node
**prev_ret
,
365 struct rb_node
***p_ret
,
366 struct rb_node
**parent_ret
)
368 struct rb_root
*root
= &tree
->state
;
369 struct rb_node
**n
= &root
->rb_node
;
370 struct rb_node
*prev
= NULL
;
371 struct rb_node
*orig_prev
= NULL
;
372 struct tree_entry
*entry
;
373 struct tree_entry
*prev_entry
= NULL
;
377 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
380 if (offset
< entry
->start
)
382 else if (offset
> entry
->end
)
395 while (prev
&& offset
> prev_entry
->end
) {
396 prev
= rb_next(prev
);
397 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
404 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
405 while (prev
&& offset
< prev_entry
->start
) {
406 prev
= rb_prev(prev
);
407 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
414 static inline struct rb_node
*
415 tree_search_for_insert(struct extent_io_tree
*tree
,
417 struct rb_node
***p_ret
,
418 struct rb_node
**parent_ret
)
420 struct rb_node
*next
= NULL
;
423 ret
= __etree_search(tree
, offset
, &next
, NULL
, p_ret
, parent_ret
);
429 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
432 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
436 * utility function to look for merge candidates inside a given range.
437 * Any extents with matching state are merged together into a single
438 * extent in the tree. Extents with EXTENT_IO in their state field
439 * are not merged because the end_io handlers need to be able to do
440 * operations on them without sleeping (or doing allocations/splits).
442 * This should be called with the tree lock held.
444 static void merge_state(struct extent_io_tree
*tree
,
445 struct extent_state
*state
)
447 struct extent_state
*other
;
448 struct rb_node
*other_node
;
450 if (state
->state
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
453 other_node
= rb_prev(&state
->rb_node
);
455 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
456 if (other
->end
== state
->start
- 1 &&
457 other
->state
== state
->state
) {
458 if (tree
->private_data
&&
459 is_data_inode(tree
->private_data
))
460 btrfs_merge_delalloc_extent(tree
->private_data
,
462 state
->start
= other
->start
;
463 rb_erase(&other
->rb_node
, &tree
->state
);
464 RB_CLEAR_NODE(&other
->rb_node
);
465 free_extent_state(other
);
468 other_node
= rb_next(&state
->rb_node
);
470 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
471 if (other
->start
== state
->end
+ 1 &&
472 other
->state
== state
->state
) {
473 if (tree
->private_data
&&
474 is_data_inode(tree
->private_data
))
475 btrfs_merge_delalloc_extent(tree
->private_data
,
477 state
->end
= other
->end
;
478 rb_erase(&other
->rb_node
, &tree
->state
);
479 RB_CLEAR_NODE(&other
->rb_node
);
480 free_extent_state(other
);
485 static void set_state_bits(struct extent_io_tree
*tree
,
486 struct extent_state
*state
, unsigned *bits
,
487 struct extent_changeset
*changeset
);
490 * insert an extent_state struct into the tree. 'bits' are set on the
491 * struct before it is inserted.
493 * This may return -EEXIST if the extent is already there, in which case the
494 * state struct is freed.
496 * The tree lock is not taken internally. This is a utility function and
497 * probably isn't what you want to call (see set/clear_extent_bit).
499 static int insert_state(struct extent_io_tree
*tree
,
500 struct extent_state
*state
, u64 start
, u64 end
,
502 struct rb_node
**parent
,
503 unsigned *bits
, struct extent_changeset
*changeset
)
505 struct rb_node
*node
;
508 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
510 state
->start
= start
;
513 set_state_bits(tree
, state
, bits
, changeset
);
515 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
517 struct extent_state
*found
;
518 found
= rb_entry(node
, struct extent_state
, rb_node
);
519 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
520 found
->start
, found
->end
, start
, end
);
523 merge_state(tree
, state
);
528 * split a given extent state struct in two, inserting the preallocated
529 * struct 'prealloc' as the newly created second half. 'split' indicates an
530 * offset inside 'orig' where it should be split.
533 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
534 * are two extent state structs in the tree:
535 * prealloc: [orig->start, split - 1]
536 * orig: [ split, orig->end ]
538 * The tree locks are not taken by this function. They need to be held
541 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
542 struct extent_state
*prealloc
, u64 split
)
544 struct rb_node
*node
;
546 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
547 btrfs_split_delalloc_extent(tree
->private_data
, orig
, split
);
549 prealloc
->start
= orig
->start
;
550 prealloc
->end
= split
- 1;
551 prealloc
->state
= orig
->state
;
554 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
555 &prealloc
->rb_node
, NULL
, NULL
);
557 free_extent_state(prealloc
);
563 static struct extent_state
*next_state(struct extent_state
*state
)
565 struct rb_node
*next
= rb_next(&state
->rb_node
);
567 return rb_entry(next
, struct extent_state
, rb_node
);
573 * utility function to clear some bits in an extent state struct.
574 * it will optionally wake up anyone waiting on this state (wake == 1).
576 * If no bits are set on the state struct after clearing things, the
577 * struct is freed and removed from the tree
579 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
580 struct extent_state
*state
,
581 unsigned *bits
, int wake
,
582 struct extent_changeset
*changeset
)
584 struct extent_state
*next
;
585 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
588 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
589 u64 range
= state
->end
- state
->start
+ 1;
590 WARN_ON(range
> tree
->dirty_bytes
);
591 tree
->dirty_bytes
-= range
;
594 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
595 btrfs_clear_delalloc_extent(tree
->private_data
, state
, bits
);
597 ret
= add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
599 state
->state
&= ~bits_to_clear
;
602 if (state
->state
== 0) {
603 next
= next_state(state
);
604 if (extent_state_in_tree(state
)) {
605 rb_erase(&state
->rb_node
, &tree
->state
);
606 RB_CLEAR_NODE(&state
->rb_node
);
607 free_extent_state(state
);
612 merge_state(tree
, state
);
613 next
= next_state(state
);
618 static struct extent_state
*
619 alloc_extent_state_atomic(struct extent_state
*prealloc
)
622 prealloc
= alloc_extent_state(GFP_ATOMIC
);
627 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
629 struct inode
*inode
= tree
->private_data
;
631 btrfs_panic(btrfs_sb(inode
->i_sb
), err
,
632 "locking error: extent tree was modified by another thread while locked");
636 * clear some bits on a range in the tree. This may require splitting
637 * or inserting elements in the tree, so the gfp mask is used to
638 * indicate which allocations or sleeping are allowed.
640 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
641 * the given range from the tree regardless of state (ie for truncate).
643 * the range [start, end] is inclusive.
645 * This takes the tree lock, and returns 0 on success and < 0 on error.
647 int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
648 unsigned bits
, int wake
, int delete,
649 struct extent_state
**cached_state
,
650 gfp_t mask
, struct extent_changeset
*changeset
)
652 struct extent_state
*state
;
653 struct extent_state
*cached
;
654 struct extent_state
*prealloc
= NULL
;
655 struct rb_node
*node
;
660 btrfs_debug_check_extent_io_range(tree
, start
, end
);
661 trace_btrfs_clear_extent_bit(tree
, start
, end
- start
+ 1, bits
);
663 if (bits
& EXTENT_DELALLOC
)
664 bits
|= EXTENT_NORESERVE
;
667 bits
|= ~EXTENT_CTLBITS
;
669 if (bits
& (EXTENT_LOCKED
| EXTENT_BOUNDARY
))
672 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
674 * Don't care for allocation failure here because we might end
675 * up not needing the pre-allocated extent state at all, which
676 * is the case if we only have in the tree extent states that
677 * cover our input range and don't cover too any other range.
678 * If we end up needing a new extent state we allocate it later.
680 prealloc
= alloc_extent_state(mask
);
683 spin_lock(&tree
->lock
);
685 cached
= *cached_state
;
688 *cached_state
= NULL
;
692 if (cached
&& extent_state_in_tree(cached
) &&
693 cached
->start
<= start
&& cached
->end
> start
) {
695 refcount_dec(&cached
->refs
);
700 free_extent_state(cached
);
703 * this search will find the extents that end after
706 node
= tree_search(tree
, start
);
709 state
= rb_entry(node
, struct extent_state
, rb_node
);
711 if (state
->start
> end
)
713 WARN_ON(state
->end
< start
);
714 last_end
= state
->end
;
716 /* the state doesn't have the wanted bits, go ahead */
717 if (!(state
->state
& bits
)) {
718 state
= next_state(state
);
723 * | ---- desired range ---- |
725 * | ------------- state -------------- |
727 * We need to split the extent we found, and may flip
728 * bits on second half.
730 * If the extent we found extends past our range, we
731 * just split and search again. It'll get split again
732 * the next time though.
734 * If the extent we found is inside our range, we clear
735 * the desired bit on it.
738 if (state
->start
< start
) {
739 prealloc
= alloc_extent_state_atomic(prealloc
);
741 err
= split_state(tree
, state
, prealloc
, start
);
743 extent_io_tree_panic(tree
, err
);
748 if (state
->end
<= end
) {
749 state
= clear_state_bit(tree
, state
, &bits
, wake
,
756 * | ---- desired range ---- |
758 * We need to split the extent, and clear the bit
761 if (state
->start
<= end
&& state
->end
> end
) {
762 prealloc
= alloc_extent_state_atomic(prealloc
);
764 err
= split_state(tree
, state
, prealloc
, end
+ 1);
766 extent_io_tree_panic(tree
, err
);
771 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
777 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
779 if (last_end
== (u64
)-1)
781 start
= last_end
+ 1;
782 if (start
<= end
&& state
&& !need_resched())
788 spin_unlock(&tree
->lock
);
789 if (gfpflags_allow_blocking(mask
))
794 spin_unlock(&tree
->lock
);
796 free_extent_state(prealloc
);
802 static void wait_on_state(struct extent_io_tree
*tree
,
803 struct extent_state
*state
)
804 __releases(tree
->lock
)
805 __acquires(tree
->lock
)
808 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
809 spin_unlock(&tree
->lock
);
811 spin_lock(&tree
->lock
);
812 finish_wait(&state
->wq
, &wait
);
816 * waits for one or more bits to clear on a range in the state tree.
817 * The range [start, end] is inclusive.
818 * The tree lock is taken by this function
820 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
823 struct extent_state
*state
;
824 struct rb_node
*node
;
826 btrfs_debug_check_extent_io_range(tree
, start
, end
);
828 spin_lock(&tree
->lock
);
832 * this search will find all the extents that end after
835 node
= tree_search(tree
, start
);
840 state
= rb_entry(node
, struct extent_state
, rb_node
);
842 if (state
->start
> end
)
845 if (state
->state
& bits
) {
846 start
= state
->start
;
847 refcount_inc(&state
->refs
);
848 wait_on_state(tree
, state
);
849 free_extent_state(state
);
852 start
= state
->end
+ 1;
857 if (!cond_resched_lock(&tree
->lock
)) {
858 node
= rb_next(node
);
863 spin_unlock(&tree
->lock
);
866 static void set_state_bits(struct extent_io_tree
*tree
,
867 struct extent_state
*state
,
868 unsigned *bits
, struct extent_changeset
*changeset
)
870 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
873 if (tree
->private_data
&& is_data_inode(tree
->private_data
))
874 btrfs_set_delalloc_extent(tree
->private_data
, state
, bits
);
876 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
877 u64 range
= state
->end
- state
->start
+ 1;
878 tree
->dirty_bytes
+= range
;
880 ret
= add_extent_changeset(state
, bits_to_set
, changeset
, 1);
882 state
->state
|= bits_to_set
;
885 static void cache_state_if_flags(struct extent_state
*state
,
886 struct extent_state
**cached_ptr
,
889 if (cached_ptr
&& !(*cached_ptr
)) {
890 if (!flags
|| (state
->state
& flags
)) {
892 refcount_inc(&state
->refs
);
897 static void cache_state(struct extent_state
*state
,
898 struct extent_state
**cached_ptr
)
900 return cache_state_if_flags(state
, cached_ptr
,
901 EXTENT_LOCKED
| EXTENT_BOUNDARY
);
905 * set some bits on a range in the tree. This may require allocations or
906 * sleeping, so the gfp mask is used to indicate what is allowed.
908 * If any of the exclusive bits are set, this will fail with -EEXIST if some
909 * part of the range already has the desired bits set. The start of the
910 * existing range is returned in failed_start in this case.
912 * [start, end] is inclusive This takes the tree lock.
915 static int __must_check
916 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
917 unsigned bits
, unsigned exclusive_bits
,
918 u64
*failed_start
, struct extent_state
**cached_state
,
919 gfp_t mask
, struct extent_changeset
*changeset
)
921 struct extent_state
*state
;
922 struct extent_state
*prealloc
= NULL
;
923 struct rb_node
*node
;
925 struct rb_node
*parent
;
930 btrfs_debug_check_extent_io_range(tree
, start
, end
);
931 trace_btrfs_set_extent_bit(tree
, start
, end
- start
+ 1, bits
);
934 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
936 * Don't care for allocation failure here because we might end
937 * up not needing the pre-allocated extent state at all, which
938 * is the case if we only have in the tree extent states that
939 * cover our input range and don't cover too any other range.
940 * If we end up needing a new extent state we allocate it later.
942 prealloc
= alloc_extent_state(mask
);
945 spin_lock(&tree
->lock
);
946 if (cached_state
&& *cached_state
) {
947 state
= *cached_state
;
948 if (state
->start
<= start
&& state
->end
> start
&&
949 extent_state_in_tree(state
)) {
950 node
= &state
->rb_node
;
955 * this search will find all the extents that end after
958 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
960 prealloc
= alloc_extent_state_atomic(prealloc
);
962 err
= insert_state(tree
, prealloc
, start
, end
,
963 &p
, &parent
, &bits
, changeset
);
965 extent_io_tree_panic(tree
, err
);
967 cache_state(prealloc
, cached_state
);
971 state
= rb_entry(node
, struct extent_state
, rb_node
);
973 last_start
= state
->start
;
974 last_end
= state
->end
;
977 * | ---- desired range ---- |
980 * Just lock what we found and keep going
982 if (state
->start
== start
&& state
->end
<= end
) {
983 if (state
->state
& exclusive_bits
) {
984 *failed_start
= state
->start
;
989 set_state_bits(tree
, state
, &bits
, changeset
);
990 cache_state(state
, cached_state
);
991 merge_state(tree
, state
);
992 if (last_end
== (u64
)-1)
994 start
= last_end
+ 1;
995 state
= next_state(state
);
996 if (start
< end
&& state
&& state
->start
== start
&&
1003 * | ---- desired range ---- |
1006 * | ------------- state -------------- |
1008 * We need to split the extent we found, and may flip bits on
1011 * If the extent we found extends past our
1012 * range, we just split and search again. It'll get split
1013 * again the next time though.
1015 * If the extent we found is inside our range, we set the
1016 * desired bit on it.
1018 if (state
->start
< start
) {
1019 if (state
->state
& exclusive_bits
) {
1020 *failed_start
= start
;
1025 prealloc
= alloc_extent_state_atomic(prealloc
);
1027 err
= split_state(tree
, state
, prealloc
, start
);
1029 extent_io_tree_panic(tree
, err
);
1034 if (state
->end
<= end
) {
1035 set_state_bits(tree
, state
, &bits
, changeset
);
1036 cache_state(state
, cached_state
);
1037 merge_state(tree
, state
);
1038 if (last_end
== (u64
)-1)
1040 start
= last_end
+ 1;
1041 state
= next_state(state
);
1042 if (start
< end
&& state
&& state
->start
== start
&&
1049 * | ---- desired range ---- |
1050 * | state | or | state |
1052 * There's a hole, we need to insert something in it and
1053 * ignore the extent we found.
1055 if (state
->start
> start
) {
1057 if (end
< last_start
)
1060 this_end
= last_start
- 1;
1062 prealloc
= alloc_extent_state_atomic(prealloc
);
1066 * Avoid to free 'prealloc' if it can be merged with
1069 err
= insert_state(tree
, prealloc
, start
, this_end
,
1070 NULL
, NULL
, &bits
, changeset
);
1072 extent_io_tree_panic(tree
, err
);
1074 cache_state(prealloc
, cached_state
);
1076 start
= this_end
+ 1;
1080 * | ---- desired range ---- |
1082 * We need to split the extent, and set the bit
1085 if (state
->start
<= end
&& state
->end
> end
) {
1086 if (state
->state
& exclusive_bits
) {
1087 *failed_start
= start
;
1092 prealloc
= alloc_extent_state_atomic(prealloc
);
1094 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1096 extent_io_tree_panic(tree
, err
);
1098 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1099 cache_state(prealloc
, cached_state
);
1100 merge_state(tree
, prealloc
);
1108 spin_unlock(&tree
->lock
);
1109 if (gfpflags_allow_blocking(mask
))
1114 spin_unlock(&tree
->lock
);
1116 free_extent_state(prealloc
);
1122 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1123 unsigned bits
, u64
* failed_start
,
1124 struct extent_state
**cached_state
, gfp_t mask
)
1126 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1127 cached_state
, mask
, NULL
);
1132 * convert_extent_bit - convert all bits in a given range from one bit to
1134 * @tree: the io tree to search
1135 * @start: the start offset in bytes
1136 * @end: the end offset in bytes (inclusive)
1137 * @bits: the bits to set in this range
1138 * @clear_bits: the bits to clear in this range
1139 * @cached_state: state that we're going to cache
1141 * This will go through and set bits for the given range. If any states exist
1142 * already in this range they are set with the given bit and cleared of the
1143 * clear_bits. This is only meant to be used by things that are mergeable, ie
1144 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1145 * boundary bits like LOCK.
1147 * All allocations are done with GFP_NOFS.
1149 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1150 unsigned bits
, unsigned clear_bits
,
1151 struct extent_state
**cached_state
)
1153 struct extent_state
*state
;
1154 struct extent_state
*prealloc
= NULL
;
1155 struct rb_node
*node
;
1157 struct rb_node
*parent
;
1161 bool first_iteration
= true;
1163 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1164 trace_btrfs_convert_extent_bit(tree
, start
, end
- start
+ 1, bits
,
1170 * Best effort, don't worry if extent state allocation fails
1171 * here for the first iteration. We might have a cached state
1172 * that matches exactly the target range, in which case no
1173 * extent state allocations are needed. We'll only know this
1174 * after locking the tree.
1176 prealloc
= alloc_extent_state(GFP_NOFS
);
1177 if (!prealloc
&& !first_iteration
)
1181 spin_lock(&tree
->lock
);
1182 if (cached_state
&& *cached_state
) {
1183 state
= *cached_state
;
1184 if (state
->start
<= start
&& state
->end
> start
&&
1185 extent_state_in_tree(state
)) {
1186 node
= &state
->rb_node
;
1192 * this search will find all the extents that end after
1195 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1197 prealloc
= alloc_extent_state_atomic(prealloc
);
1202 err
= insert_state(tree
, prealloc
, start
, end
,
1203 &p
, &parent
, &bits
, NULL
);
1205 extent_io_tree_panic(tree
, err
);
1206 cache_state(prealloc
, cached_state
);
1210 state
= rb_entry(node
, struct extent_state
, rb_node
);
1212 last_start
= state
->start
;
1213 last_end
= state
->end
;
1216 * | ---- desired range ---- |
1219 * Just lock what we found and keep going
1221 if (state
->start
== start
&& state
->end
<= end
) {
1222 set_state_bits(tree
, state
, &bits
, NULL
);
1223 cache_state(state
, cached_state
);
1224 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1225 if (last_end
== (u64
)-1)
1227 start
= last_end
+ 1;
1228 if (start
< end
&& state
&& state
->start
== start
&&
1235 * | ---- desired range ---- |
1238 * | ------------- state -------------- |
1240 * We need to split the extent we found, and may flip bits on
1243 * If the extent we found extends past our
1244 * range, we just split and search again. It'll get split
1245 * again the next time though.
1247 * If the extent we found is inside our range, we set the
1248 * desired bit on it.
1250 if (state
->start
< start
) {
1251 prealloc
= alloc_extent_state_atomic(prealloc
);
1256 err
= split_state(tree
, state
, prealloc
, start
);
1258 extent_io_tree_panic(tree
, err
);
1262 if (state
->end
<= end
) {
1263 set_state_bits(tree
, state
, &bits
, NULL
);
1264 cache_state(state
, cached_state
);
1265 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1267 if (last_end
== (u64
)-1)
1269 start
= last_end
+ 1;
1270 if (start
< end
&& state
&& state
->start
== start
&&
1277 * | ---- desired range ---- |
1278 * | state | or | state |
1280 * There's a hole, we need to insert something in it and
1281 * ignore the extent we found.
1283 if (state
->start
> start
) {
1285 if (end
< last_start
)
1288 this_end
= last_start
- 1;
1290 prealloc
= alloc_extent_state_atomic(prealloc
);
1297 * Avoid to free 'prealloc' if it can be merged with
1300 err
= insert_state(tree
, prealloc
, start
, this_end
,
1301 NULL
, NULL
, &bits
, NULL
);
1303 extent_io_tree_panic(tree
, err
);
1304 cache_state(prealloc
, cached_state
);
1306 start
= this_end
+ 1;
1310 * | ---- desired range ---- |
1312 * We need to split the extent, and set the bit
1315 if (state
->start
<= end
&& state
->end
> end
) {
1316 prealloc
= alloc_extent_state_atomic(prealloc
);
1322 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1324 extent_io_tree_panic(tree
, err
);
1326 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1327 cache_state(prealloc
, cached_state
);
1328 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1336 spin_unlock(&tree
->lock
);
1338 first_iteration
= false;
1342 spin_unlock(&tree
->lock
);
1344 free_extent_state(prealloc
);
1349 /* wrappers around set/clear extent bit */
1350 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1351 unsigned bits
, struct extent_changeset
*changeset
)
1354 * We don't support EXTENT_LOCKED yet, as current changeset will
1355 * record any bits changed, so for EXTENT_LOCKED case, it will
1356 * either fail with -EEXIST or changeset will record the whole
1359 BUG_ON(bits
& EXTENT_LOCKED
);
1361 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, GFP_NOFS
,
1365 int set_extent_bits_nowait(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1368 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
,
1372 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1373 unsigned bits
, int wake
, int delete,
1374 struct extent_state
**cached
)
1376 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1377 cached
, GFP_NOFS
, NULL
);
1380 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1381 unsigned bits
, struct extent_changeset
*changeset
)
1384 * Don't support EXTENT_LOCKED case, same reason as
1385 * set_record_extent_bits().
1387 BUG_ON(bits
& EXTENT_LOCKED
);
1389 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, GFP_NOFS
,
1394 * either insert or lock state struct between start and end use mask to tell
1395 * us if waiting is desired.
1397 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1398 struct extent_state
**cached_state
)
1404 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
,
1405 EXTENT_LOCKED
, &failed_start
,
1406 cached_state
, GFP_NOFS
, NULL
);
1407 if (err
== -EEXIST
) {
1408 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1409 start
= failed_start
;
1412 WARN_ON(start
> end
);
1417 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1422 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1423 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1424 if (err
== -EEXIST
) {
1425 if (failed_start
> start
)
1426 clear_extent_bit(tree
, start
, failed_start
- 1,
1427 EXTENT_LOCKED
, 1, 0, NULL
);
1433 void extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1435 unsigned long index
= start
>> PAGE_SHIFT
;
1436 unsigned long end_index
= end
>> PAGE_SHIFT
;
1439 while (index
<= end_index
) {
1440 page
= find_get_page(inode
->i_mapping
, index
);
1441 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1442 clear_page_dirty_for_io(page
);
1448 void extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1450 unsigned long index
= start
>> PAGE_SHIFT
;
1451 unsigned long end_index
= end
>> PAGE_SHIFT
;
1454 while (index
<= end_index
) {
1455 page
= find_get_page(inode
->i_mapping
, index
);
1456 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1457 __set_page_dirty_nobuffers(page
);
1458 account_page_redirty(page
);
1464 /* find the first state struct with 'bits' set after 'start', and
1465 * return it. tree->lock must be held. NULL will returned if
1466 * nothing was found after 'start'
1468 static struct extent_state
*
1469 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1470 u64 start
, unsigned bits
)
1472 struct rb_node
*node
;
1473 struct extent_state
*state
;
1476 * this search will find all the extents that end after
1479 node
= tree_search(tree
, start
);
1484 state
= rb_entry(node
, struct extent_state
, rb_node
);
1485 if (state
->end
>= start
&& (state
->state
& bits
))
1488 node
= rb_next(node
);
1497 * find the first offset in the io tree with 'bits' set. zero is
1498 * returned if we find something, and *start_ret and *end_ret are
1499 * set to reflect the state struct that was found.
1501 * If nothing was found, 1 is returned. If found something, return 0.
1503 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1504 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1505 struct extent_state
**cached_state
)
1507 struct extent_state
*state
;
1510 spin_lock(&tree
->lock
);
1511 if (cached_state
&& *cached_state
) {
1512 state
= *cached_state
;
1513 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1514 while ((state
= next_state(state
)) != NULL
) {
1515 if (state
->state
& bits
)
1518 free_extent_state(*cached_state
);
1519 *cached_state
= NULL
;
1522 free_extent_state(*cached_state
);
1523 *cached_state
= NULL
;
1526 state
= find_first_extent_bit_state(tree
, start
, bits
);
1529 cache_state_if_flags(state
, cached_state
, 0);
1530 *start_ret
= state
->start
;
1531 *end_ret
= state
->end
;
1535 spin_unlock(&tree
->lock
);
1540 * find_first_clear_extent_bit - finds the first range that has @bits not set
1541 * and that starts after @start
1543 * @tree - the tree to search
1544 * @start - the offset at/after which the found extent should start
1545 * @start_ret - records the beginning of the range
1546 * @end_ret - records the end of the range (inclusive)
1547 * @bits - the set of bits which must be unset
1549 * Since unallocated range is also considered one which doesn't have the bits
1550 * set it's possible that @end_ret contains -1, this happens in case the range
1551 * spans (last_range_end, end of device]. In this case it's up to the caller to
1552 * trim @end_ret to the appropriate size.
1554 void find_first_clear_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1555 u64
*start_ret
, u64
*end_ret
, unsigned bits
)
1557 struct extent_state
*state
;
1558 struct rb_node
*node
, *prev
= NULL
, *next
;
1560 spin_lock(&tree
->lock
);
1562 /* Find first extent with bits cleared */
1564 node
= __etree_search(tree
, start
, &next
, &prev
, NULL
, NULL
);
1569 * We are past the last allocated chunk,
1570 * set start at the end of the last extent. The
1571 * device alloc tree should never be empty so
1572 * prev is always set.
1575 state
= rb_entry(prev
, struct extent_state
, rb_node
);
1576 *start_ret
= state
->end
+ 1;
1581 state
= rb_entry(node
, struct extent_state
, rb_node
);
1582 if (in_range(start
, state
->start
, state
->end
- state
->start
+ 1) &&
1583 (state
->state
& bits
)) {
1584 start
= state
->end
+ 1;
1592 * Find the longest stretch from start until an entry which has the
1596 state
= rb_entry(node
, struct extent_state
, rb_node
);
1597 if (state
->end
>= start
&& !(state
->state
& bits
)) {
1598 *end_ret
= state
->end
;
1600 *end_ret
= state
->start
- 1;
1604 node
= rb_next(node
);
1609 spin_unlock(&tree
->lock
);
1613 * find a contiguous range of bytes in the file marked as delalloc, not
1614 * more than 'max_bytes'. start and end are used to return the range,
1616 * true is returned if we find something, false if nothing was in the tree
1618 static noinline
bool find_delalloc_range(struct extent_io_tree
*tree
,
1619 u64
*start
, u64
*end
, u64 max_bytes
,
1620 struct extent_state
**cached_state
)
1622 struct rb_node
*node
;
1623 struct extent_state
*state
;
1624 u64 cur_start
= *start
;
1626 u64 total_bytes
= 0;
1628 spin_lock(&tree
->lock
);
1631 * this search will find all the extents that end after
1634 node
= tree_search(tree
, cur_start
);
1641 state
= rb_entry(node
, struct extent_state
, rb_node
);
1642 if (found
&& (state
->start
!= cur_start
||
1643 (state
->state
& EXTENT_BOUNDARY
))) {
1646 if (!(state
->state
& EXTENT_DELALLOC
)) {
1652 *start
= state
->start
;
1653 *cached_state
= state
;
1654 refcount_inc(&state
->refs
);
1658 cur_start
= state
->end
+ 1;
1659 node
= rb_next(node
);
1660 total_bytes
+= state
->end
- state
->start
+ 1;
1661 if (total_bytes
>= max_bytes
)
1667 spin_unlock(&tree
->lock
);
1671 static int __process_pages_contig(struct address_space
*mapping
,
1672 struct page
*locked_page
,
1673 pgoff_t start_index
, pgoff_t end_index
,
1674 unsigned long page_ops
, pgoff_t
*index_ret
);
1676 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1677 struct page
*locked_page
,
1680 unsigned long index
= start
>> PAGE_SHIFT
;
1681 unsigned long end_index
= end
>> PAGE_SHIFT
;
1683 ASSERT(locked_page
);
1684 if (index
== locked_page
->index
&& end_index
== index
)
1687 __process_pages_contig(inode
->i_mapping
, locked_page
, index
, end_index
,
1691 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1692 struct page
*locked_page
,
1696 unsigned long index
= delalloc_start
>> PAGE_SHIFT
;
1697 unsigned long index_ret
= index
;
1698 unsigned long end_index
= delalloc_end
>> PAGE_SHIFT
;
1701 ASSERT(locked_page
);
1702 if (index
== locked_page
->index
&& index
== end_index
)
1705 ret
= __process_pages_contig(inode
->i_mapping
, locked_page
, index
,
1706 end_index
, PAGE_LOCK
, &index_ret
);
1708 __unlock_for_delalloc(inode
, locked_page
, delalloc_start
,
1709 (u64
)index_ret
<< PAGE_SHIFT
);
1714 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1715 * more than @max_bytes. @Start and @end are used to return the range,
1717 * Return: true if we find something
1718 * false if nothing was in the tree
1721 noinline_for_stack
bool find_lock_delalloc_range(struct inode
*inode
,
1722 struct extent_io_tree
*tree
,
1723 struct page
*locked_page
, u64
*start
,
1726 u64 max_bytes
= BTRFS_MAX_EXTENT_SIZE
;
1730 struct extent_state
*cached_state
= NULL
;
1735 /* step one, find a bunch of delalloc bytes starting at start */
1736 delalloc_start
= *start
;
1738 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1739 max_bytes
, &cached_state
);
1740 if (!found
|| delalloc_end
<= *start
) {
1741 *start
= delalloc_start
;
1742 *end
= delalloc_end
;
1743 free_extent_state(cached_state
);
1748 * start comes from the offset of locked_page. We have to lock
1749 * pages in order, so we can't process delalloc bytes before
1752 if (delalloc_start
< *start
)
1753 delalloc_start
= *start
;
1756 * make sure to limit the number of pages we try to lock down
1758 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1759 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1761 /* step two, lock all the pages after the page that has start */
1762 ret
= lock_delalloc_pages(inode
, locked_page
,
1763 delalloc_start
, delalloc_end
);
1764 ASSERT(!ret
|| ret
== -EAGAIN
);
1765 if (ret
== -EAGAIN
) {
1766 /* some of the pages are gone, lets avoid looping by
1767 * shortening the size of the delalloc range we're searching
1769 free_extent_state(cached_state
);
1770 cached_state
= NULL
;
1772 max_bytes
= PAGE_SIZE
;
1781 /* step three, lock the state bits for the whole range */
1782 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, &cached_state
);
1784 /* then test to make sure it is all still delalloc */
1785 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1786 EXTENT_DELALLOC
, 1, cached_state
);
1788 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1790 __unlock_for_delalloc(inode
, locked_page
,
1791 delalloc_start
, delalloc_end
);
1795 free_extent_state(cached_state
);
1796 *start
= delalloc_start
;
1797 *end
= delalloc_end
;
1802 static int __process_pages_contig(struct address_space
*mapping
,
1803 struct page
*locked_page
,
1804 pgoff_t start_index
, pgoff_t end_index
,
1805 unsigned long page_ops
, pgoff_t
*index_ret
)
1807 unsigned long nr_pages
= end_index
- start_index
+ 1;
1808 unsigned long pages_locked
= 0;
1809 pgoff_t index
= start_index
;
1810 struct page
*pages
[16];
1815 if (page_ops
& PAGE_LOCK
) {
1816 ASSERT(page_ops
== PAGE_LOCK
);
1817 ASSERT(index_ret
&& *index_ret
== start_index
);
1820 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1821 mapping_set_error(mapping
, -EIO
);
1823 while (nr_pages
> 0) {
1824 ret
= find_get_pages_contig(mapping
, index
,
1825 min_t(unsigned long,
1826 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1829 * Only if we're going to lock these pages,
1830 * can we find nothing at @index.
1832 ASSERT(page_ops
& PAGE_LOCK
);
1837 for (i
= 0; i
< ret
; i
++) {
1838 if (page_ops
& PAGE_SET_PRIVATE2
)
1839 SetPagePrivate2(pages
[i
]);
1841 if (pages
[i
] == locked_page
) {
1846 if (page_ops
& PAGE_CLEAR_DIRTY
)
1847 clear_page_dirty_for_io(pages
[i
]);
1848 if (page_ops
& PAGE_SET_WRITEBACK
)
1849 set_page_writeback(pages
[i
]);
1850 if (page_ops
& PAGE_SET_ERROR
)
1851 SetPageError(pages
[i
]);
1852 if (page_ops
& PAGE_END_WRITEBACK
)
1853 end_page_writeback(pages
[i
]);
1854 if (page_ops
& PAGE_UNLOCK
)
1855 unlock_page(pages
[i
]);
1856 if (page_ops
& PAGE_LOCK
) {
1857 lock_page(pages
[i
]);
1858 if (!PageDirty(pages
[i
]) ||
1859 pages
[i
]->mapping
!= mapping
) {
1860 unlock_page(pages
[i
]);
1874 if (err
&& index_ret
)
1875 *index_ret
= start_index
+ pages_locked
- 1;
1879 void extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1880 u64 delalloc_end
, struct page
*locked_page
,
1881 unsigned clear_bits
,
1882 unsigned long page_ops
)
1884 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, clear_bits
, 1, 0,
1887 __process_pages_contig(inode
->i_mapping
, locked_page
,
1888 start
>> PAGE_SHIFT
, end
>> PAGE_SHIFT
,
1893 * count the number of bytes in the tree that have a given bit(s)
1894 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1895 * cached. The total number found is returned.
1897 u64
count_range_bits(struct extent_io_tree
*tree
,
1898 u64
*start
, u64 search_end
, u64 max_bytes
,
1899 unsigned bits
, int contig
)
1901 struct rb_node
*node
;
1902 struct extent_state
*state
;
1903 u64 cur_start
= *start
;
1904 u64 total_bytes
= 0;
1908 if (WARN_ON(search_end
<= cur_start
))
1911 spin_lock(&tree
->lock
);
1912 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1913 total_bytes
= tree
->dirty_bytes
;
1917 * this search will find all the extents that end after
1920 node
= tree_search(tree
, cur_start
);
1925 state
= rb_entry(node
, struct extent_state
, rb_node
);
1926 if (state
->start
> search_end
)
1928 if (contig
&& found
&& state
->start
> last
+ 1)
1930 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1931 total_bytes
+= min(search_end
, state
->end
) + 1 -
1932 max(cur_start
, state
->start
);
1933 if (total_bytes
>= max_bytes
)
1936 *start
= max(cur_start
, state
->start
);
1940 } else if (contig
&& found
) {
1943 node
= rb_next(node
);
1948 spin_unlock(&tree
->lock
);
1953 * set the private field for a given byte offset in the tree. If there isn't
1954 * an extent_state there already, this does nothing.
1956 static noinline
int set_state_failrec(struct extent_io_tree
*tree
, u64 start
,
1957 struct io_failure_record
*failrec
)
1959 struct rb_node
*node
;
1960 struct extent_state
*state
;
1963 spin_lock(&tree
->lock
);
1965 * this search will find all the extents that end after
1968 node
= tree_search(tree
, start
);
1973 state
= rb_entry(node
, struct extent_state
, rb_node
);
1974 if (state
->start
!= start
) {
1978 state
->failrec
= failrec
;
1980 spin_unlock(&tree
->lock
);
1984 static noinline
int get_state_failrec(struct extent_io_tree
*tree
, u64 start
,
1985 struct io_failure_record
**failrec
)
1987 struct rb_node
*node
;
1988 struct extent_state
*state
;
1991 spin_lock(&tree
->lock
);
1993 * this search will find all the extents that end after
1996 node
= tree_search(tree
, start
);
2001 state
= rb_entry(node
, struct extent_state
, rb_node
);
2002 if (state
->start
!= start
) {
2006 *failrec
= state
->failrec
;
2008 spin_unlock(&tree
->lock
);
2013 * searches a range in the state tree for a given mask.
2014 * If 'filled' == 1, this returns 1 only if every extent in the tree
2015 * has the bits set. Otherwise, 1 is returned if any bit in the
2016 * range is found set.
2018 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
2019 unsigned bits
, int filled
, struct extent_state
*cached
)
2021 struct extent_state
*state
= NULL
;
2022 struct rb_node
*node
;
2025 spin_lock(&tree
->lock
);
2026 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
2027 cached
->end
> start
)
2028 node
= &cached
->rb_node
;
2030 node
= tree_search(tree
, start
);
2031 while (node
&& start
<= end
) {
2032 state
= rb_entry(node
, struct extent_state
, rb_node
);
2034 if (filled
&& state
->start
> start
) {
2039 if (state
->start
> end
)
2042 if (state
->state
& bits
) {
2046 } else if (filled
) {
2051 if (state
->end
== (u64
)-1)
2054 start
= state
->end
+ 1;
2057 node
= rb_next(node
);
2064 spin_unlock(&tree
->lock
);
2069 * helper function to set a given page up to date if all the
2070 * extents in the tree for that page are up to date
2072 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
2074 u64 start
= page_offset(page
);
2075 u64 end
= start
+ PAGE_SIZE
- 1;
2076 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
2077 SetPageUptodate(page
);
2080 int free_io_failure(struct extent_io_tree
*failure_tree
,
2081 struct extent_io_tree
*io_tree
,
2082 struct io_failure_record
*rec
)
2087 set_state_failrec(failure_tree
, rec
->start
, NULL
);
2088 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2089 rec
->start
+ rec
->len
- 1,
2090 EXTENT_LOCKED
| EXTENT_DIRTY
);
2094 ret
= clear_extent_bits(io_tree
, rec
->start
,
2095 rec
->start
+ rec
->len
- 1,
2105 * this bypasses the standard btrfs submit functions deliberately, as
2106 * the standard behavior is to write all copies in a raid setup. here we only
2107 * want to write the one bad copy. so we do the mapping for ourselves and issue
2108 * submit_bio directly.
2109 * to avoid any synchronization issues, wait for the data after writing, which
2110 * actually prevents the read that triggered the error from finishing.
2111 * currently, there can be no more than two copies of every data bit. thus,
2112 * exactly one rewrite is required.
2114 int repair_io_failure(struct btrfs_fs_info
*fs_info
, u64 ino
, u64 start
,
2115 u64 length
, u64 logical
, struct page
*page
,
2116 unsigned int pg_offset
, int mirror_num
)
2119 struct btrfs_device
*dev
;
2122 struct btrfs_bio
*bbio
= NULL
;
2125 ASSERT(!(fs_info
->sb
->s_flags
& SB_RDONLY
));
2126 BUG_ON(!mirror_num
);
2128 bio
= btrfs_io_bio_alloc(1);
2129 bio
->bi_iter
.bi_size
= 0;
2130 map_length
= length
;
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are doing the
2135 * read repair operation.
2137 btrfs_bio_counter_inc_blocked(fs_info
);
2138 if (btrfs_is_parity_mirror(fs_info
, logical
, length
)) {
2140 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2141 * to update all raid stripes, but here we just want to correct
2142 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2143 * stripe's dev and sector.
2145 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, logical
,
2146 &map_length
, &bbio
, 0);
2148 btrfs_bio_counter_dec(fs_info
);
2152 ASSERT(bbio
->mirror_num
== 1);
2154 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_WRITE
, logical
,
2155 &map_length
, &bbio
, mirror_num
);
2157 btrfs_bio_counter_dec(fs_info
);
2161 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2164 sector
= bbio
->stripes
[bbio
->mirror_num
- 1].physical
>> 9;
2165 bio
->bi_iter
.bi_sector
= sector
;
2166 dev
= bbio
->stripes
[bbio
->mirror_num
- 1].dev
;
2167 btrfs_put_bbio(bbio
);
2168 if (!dev
|| !dev
->bdev
||
2169 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
)) {
2170 btrfs_bio_counter_dec(fs_info
);
2174 bio_set_dev(bio
, dev
->bdev
);
2175 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
2176 bio_add_page(bio
, page
, length
, pg_offset
);
2178 if (btrfsic_submit_bio_wait(bio
)) {
2179 /* try to remap that extent elsewhere? */
2180 btrfs_bio_counter_dec(fs_info
);
2182 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2186 btrfs_info_rl_in_rcu(fs_info
,
2187 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2189 rcu_str_deref(dev
->name
), sector
);
2190 btrfs_bio_counter_dec(fs_info
);
2195 int btrfs_repair_eb_io_failure(struct extent_buffer
*eb
, int mirror_num
)
2197 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
2198 u64 start
= eb
->start
;
2199 int i
, num_pages
= num_extent_pages(eb
);
2202 if (sb_rdonly(fs_info
->sb
))
2205 for (i
= 0; i
< num_pages
; i
++) {
2206 struct page
*p
= eb
->pages
[i
];
2208 ret
= repair_io_failure(fs_info
, 0, start
, PAGE_SIZE
, start
, p
,
2209 start
- page_offset(p
), mirror_num
);
2219 * each time an IO finishes, we do a fast check in the IO failure tree
2220 * to see if we need to process or clean up an io_failure_record
2222 int clean_io_failure(struct btrfs_fs_info
*fs_info
,
2223 struct extent_io_tree
*failure_tree
,
2224 struct extent_io_tree
*io_tree
, u64 start
,
2225 struct page
*page
, u64 ino
, unsigned int pg_offset
)
2228 struct io_failure_record
*failrec
;
2229 struct extent_state
*state
;
2234 ret
= count_range_bits(failure_tree
, &private, (u64
)-1, 1,
2239 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2243 BUG_ON(!failrec
->this_mirror
);
2245 if (failrec
->in_validation
) {
2246 /* there was no real error, just free the record */
2247 btrfs_debug(fs_info
,
2248 "clean_io_failure: freeing dummy error at %llu",
2252 if (sb_rdonly(fs_info
->sb
))
2255 spin_lock(&io_tree
->lock
);
2256 state
= find_first_extent_bit_state(io_tree
,
2259 spin_unlock(&io_tree
->lock
);
2261 if (state
&& state
->start
<= failrec
->start
&&
2262 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2263 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2265 if (num_copies
> 1) {
2266 repair_io_failure(fs_info
, ino
, start
, failrec
->len
,
2267 failrec
->logical
, page
, pg_offset
,
2268 failrec
->failed_mirror
);
2273 free_io_failure(failure_tree
, io_tree
, failrec
);
2279 * Can be called when
2280 * - hold extent lock
2281 * - under ordered extent
2282 * - the inode is freeing
2284 void btrfs_free_io_failure_record(struct btrfs_inode
*inode
, u64 start
, u64 end
)
2286 struct extent_io_tree
*failure_tree
= &inode
->io_failure_tree
;
2287 struct io_failure_record
*failrec
;
2288 struct extent_state
*state
, *next
;
2290 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2293 spin_lock(&failure_tree
->lock
);
2294 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2296 if (state
->start
> end
)
2299 ASSERT(state
->end
<= end
);
2301 next
= next_state(state
);
2303 failrec
= state
->failrec
;
2304 free_extent_state(state
);
2309 spin_unlock(&failure_tree
->lock
);
2312 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2313 struct io_failure_record
**failrec_ret
)
2315 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2316 struct io_failure_record
*failrec
;
2317 struct extent_map
*em
;
2318 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2319 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2320 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2324 ret
= get_state_failrec(failure_tree
, start
, &failrec
);
2326 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2330 failrec
->start
= start
;
2331 failrec
->len
= end
- start
+ 1;
2332 failrec
->this_mirror
= 0;
2333 failrec
->bio_flags
= 0;
2334 failrec
->in_validation
= 0;
2336 read_lock(&em_tree
->lock
);
2337 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2339 read_unlock(&em_tree
->lock
);
2344 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2345 free_extent_map(em
);
2348 read_unlock(&em_tree
->lock
);
2354 logical
= start
- em
->start
;
2355 logical
= em
->block_start
+ logical
;
2356 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2357 logical
= em
->block_start
;
2358 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2359 extent_set_compress_type(&failrec
->bio_flags
,
2363 btrfs_debug(fs_info
,
2364 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2365 logical
, start
, failrec
->len
);
2367 failrec
->logical
= logical
;
2368 free_extent_map(em
);
2370 /* set the bits in the private failure tree */
2371 ret
= set_extent_bits(failure_tree
, start
, end
,
2372 EXTENT_LOCKED
| EXTENT_DIRTY
);
2374 ret
= set_state_failrec(failure_tree
, start
, failrec
);
2375 /* set the bits in the inode's tree */
2377 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
);
2383 btrfs_debug(fs_info
,
2384 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2385 failrec
->logical
, failrec
->start
, failrec
->len
,
2386 failrec
->in_validation
);
2388 * when data can be on disk more than twice, add to failrec here
2389 * (e.g. with a list for failed_mirror) to make
2390 * clean_io_failure() clean all those errors at once.
2394 *failrec_ret
= failrec
;
2399 bool btrfs_check_repairable(struct inode
*inode
, unsigned failed_bio_pages
,
2400 struct io_failure_record
*failrec
, int failed_mirror
)
2402 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2405 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
2406 if (num_copies
== 1) {
2408 * we only have a single copy of the data, so don't bother with
2409 * all the retry and error correction code that follows. no
2410 * matter what the error is, it is very likely to persist.
2412 btrfs_debug(fs_info
,
2413 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2414 num_copies
, failrec
->this_mirror
, failed_mirror
);
2419 * there are two premises:
2420 * a) deliver good data to the caller
2421 * b) correct the bad sectors on disk
2423 if (failed_bio_pages
> 1) {
2425 * to fulfill b), we need to know the exact failing sectors, as
2426 * we don't want to rewrite any more than the failed ones. thus,
2427 * we need separate read requests for the failed bio
2429 * if the following BUG_ON triggers, our validation request got
2430 * merged. we need separate requests for our algorithm to work.
2432 BUG_ON(failrec
->in_validation
);
2433 failrec
->in_validation
= 1;
2434 failrec
->this_mirror
= failed_mirror
;
2437 * we're ready to fulfill a) and b) alongside. get a good copy
2438 * of the failed sector and if we succeed, we have setup
2439 * everything for repair_io_failure to do the rest for us.
2441 if (failrec
->in_validation
) {
2442 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2443 failrec
->in_validation
= 0;
2444 failrec
->this_mirror
= 0;
2446 failrec
->failed_mirror
= failed_mirror
;
2447 failrec
->this_mirror
++;
2448 if (failrec
->this_mirror
== failed_mirror
)
2449 failrec
->this_mirror
++;
2452 if (failrec
->this_mirror
> num_copies
) {
2453 btrfs_debug(fs_info
,
2454 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2455 num_copies
, failrec
->this_mirror
, failed_mirror
);
2463 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2464 struct io_failure_record
*failrec
,
2465 struct page
*page
, int pg_offset
, int icsum
,
2466 bio_end_io_t
*endio_func
, void *data
)
2468 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2470 struct btrfs_io_bio
*btrfs_failed_bio
;
2471 struct btrfs_io_bio
*btrfs_bio
;
2473 bio
= btrfs_io_bio_alloc(1);
2474 bio
->bi_end_io
= endio_func
;
2475 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2476 bio_set_dev(bio
, fs_info
->fs_devices
->latest_bdev
);
2477 bio
->bi_iter
.bi_size
= 0;
2478 bio
->bi_private
= data
;
2480 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2481 if (btrfs_failed_bio
->csum
) {
2482 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2484 btrfs_bio
= btrfs_io_bio(bio
);
2485 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2487 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2491 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2497 * This is a generic handler for readpage errors. If other copies exist, read
2498 * those and write back good data to the failed position. Does not investigate
2499 * in remapping the failed extent elsewhere, hoping the device will be smart
2500 * enough to do this as needed
2502 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2503 struct page
*page
, u64 start
, u64 end
,
2506 struct io_failure_record
*failrec
;
2507 struct inode
*inode
= page
->mapping
->host
;
2508 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2509 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2512 blk_status_t status
;
2514 unsigned failed_bio_pages
= failed_bio
->bi_iter
.bi_size
>> PAGE_SHIFT
;
2516 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
2518 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2522 if (!btrfs_check_repairable(inode
, failed_bio_pages
, failrec
,
2524 free_io_failure(failure_tree
, tree
, failrec
);
2528 if (failed_bio_pages
> 1)
2529 read_mode
|= REQ_FAILFAST_DEV
;
2531 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2532 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2533 start
- page_offset(page
),
2534 (int)phy_offset
, failed_bio
->bi_end_io
,
2536 bio
->bi_opf
= REQ_OP_READ
| read_mode
;
2538 btrfs_debug(btrfs_sb(inode
->i_sb
),
2539 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2540 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2542 status
= tree
->ops
->submit_bio_hook(tree
->private_data
, bio
, failrec
->this_mirror
,
2543 failrec
->bio_flags
);
2545 free_io_failure(failure_tree
, tree
, failrec
);
2547 ret
= blk_status_to_errno(status
);
2553 /* lots and lots of room for performance fixes in the end_bio funcs */
2555 void end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2557 int uptodate
= (err
== 0);
2560 btrfs_writepage_endio_finish_ordered(page
, start
, end
, uptodate
);
2563 ClearPageUptodate(page
);
2565 ret
= err
< 0 ? err
: -EIO
;
2566 mapping_set_error(page
->mapping
, ret
);
2571 * after a writepage IO is done, we need to:
2572 * clear the uptodate bits on error
2573 * clear the writeback bits in the extent tree for this IO
2574 * end_page_writeback if the page has no more pending IO
2576 * Scheduling is not allowed, so the extent state tree is expected
2577 * to have one and only one object corresponding to this IO.
2579 static void end_bio_extent_writepage(struct bio
*bio
)
2581 int error
= blk_status_to_errno(bio
->bi_status
);
2582 struct bio_vec
*bvec
;
2585 struct bvec_iter_all iter_all
;
2587 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2588 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2589 struct page
*page
= bvec
->bv_page
;
2590 struct inode
*inode
= page
->mapping
->host
;
2591 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2593 /* We always issue full-page reads, but if some block
2594 * in a page fails to read, blk_update_request() will
2595 * advance bv_offset and adjust bv_len to compensate.
2596 * Print a warning for nonzero offsets, and an error
2597 * if they don't add up to a full page. */
2598 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2599 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2601 "partial page write in btrfs with offset %u and length %u",
2602 bvec
->bv_offset
, bvec
->bv_len
);
2605 "incomplete page write in btrfs with offset %u and length %u",
2606 bvec
->bv_offset
, bvec
->bv_len
);
2609 start
= page_offset(page
);
2610 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2612 end_extent_writepage(page
, error
, start
, end
);
2613 end_page_writeback(page
);
2620 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2623 struct extent_state
*cached
= NULL
;
2624 u64 end
= start
+ len
- 1;
2626 if (uptodate
&& tree
->track_uptodate
)
2627 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2628 unlock_extent_cached_atomic(tree
, start
, end
, &cached
);
2632 * after a readpage IO is done, we need to:
2633 * clear the uptodate bits on error
2634 * set the uptodate bits if things worked
2635 * set the page up to date if all extents in the tree are uptodate
2636 * clear the lock bit in the extent tree
2637 * unlock the page if there are no other extents locked for it
2639 * Scheduling is not allowed, so the extent state tree is expected
2640 * to have one and only one object corresponding to this IO.
2642 static void end_bio_extent_readpage(struct bio
*bio
)
2644 struct bio_vec
*bvec
;
2645 int uptodate
= !bio
->bi_status
;
2646 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2647 struct extent_io_tree
*tree
, *failure_tree
;
2652 u64 extent_start
= 0;
2656 struct bvec_iter_all iter_all
;
2658 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
2659 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
2660 struct page
*page
= bvec
->bv_page
;
2661 struct inode
*inode
= page
->mapping
->host
;
2662 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2663 bool data_inode
= btrfs_ino(BTRFS_I(inode
))
2664 != BTRFS_BTREE_INODE_OBJECTID
;
2666 btrfs_debug(fs_info
,
2667 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2668 (u64
)bio
->bi_iter
.bi_sector
, bio
->bi_status
,
2669 io_bio
->mirror_num
);
2670 tree
= &BTRFS_I(inode
)->io_tree
;
2671 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2673 /* We always issue full-page reads, but if some block
2674 * in a page fails to read, blk_update_request() will
2675 * advance bv_offset and adjust bv_len to compensate.
2676 * Print a warning for nonzero offsets, and an error
2677 * if they don't add up to a full page. */
2678 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_SIZE
) {
2679 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_SIZE
)
2681 "partial page read in btrfs with offset %u and length %u",
2682 bvec
->bv_offset
, bvec
->bv_len
);
2685 "incomplete page read in btrfs with offset %u and length %u",
2686 bvec
->bv_offset
, bvec
->bv_len
);
2689 start
= page_offset(page
);
2690 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2693 mirror
= io_bio
->mirror_num
;
2694 if (likely(uptodate
)) {
2695 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2701 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
2702 failure_tree
, tree
, start
,
2704 btrfs_ino(BTRFS_I(inode
)), 0);
2707 if (likely(uptodate
))
2713 * The generic bio_readpage_error handles errors the
2714 * following way: If possible, new read requests are
2715 * created and submitted and will end up in
2716 * end_bio_extent_readpage as well (if we're lucky,
2717 * not in the !uptodate case). In that case it returns
2718 * 0 and we just go on with the next page in our bio.
2719 * If it can't handle the error it will return -EIO and
2720 * we remain responsible for that page.
2722 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2725 uptodate
= !bio
->bi_status
;
2730 struct extent_buffer
*eb
;
2732 eb
= (struct extent_buffer
*)page
->private;
2733 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
2734 eb
->read_mirror
= mirror
;
2735 atomic_dec(&eb
->io_pages
);
2736 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
,
2738 btree_readahead_hook(eb
, -EIO
);
2741 if (likely(uptodate
)) {
2742 loff_t i_size
= i_size_read(inode
);
2743 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2746 /* Zero out the end if this page straddles i_size */
2747 off
= offset_in_page(i_size
);
2748 if (page
->index
== end_index
&& off
)
2749 zero_user_segment(page
, off
, PAGE_SIZE
);
2750 SetPageUptodate(page
);
2752 ClearPageUptodate(page
);
2758 if (unlikely(!uptodate
)) {
2760 endio_readpage_release_extent(tree
,
2766 endio_readpage_release_extent(tree
, start
,
2767 end
- start
+ 1, 0);
2768 } else if (!extent_len
) {
2769 extent_start
= start
;
2770 extent_len
= end
+ 1 - start
;
2771 } else if (extent_start
+ extent_len
== start
) {
2772 extent_len
+= end
+ 1 - start
;
2774 endio_readpage_release_extent(tree
, extent_start
,
2775 extent_len
, uptodate
);
2776 extent_start
= start
;
2777 extent_len
= end
+ 1 - start
;
2782 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2784 btrfs_io_bio_free_csum(io_bio
);
2789 * Initialize the members up to but not including 'bio'. Use after allocating a
2790 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2791 * 'bio' because use of __GFP_ZERO is not supported.
2793 static inline void btrfs_io_bio_init(struct btrfs_io_bio
*btrfs_bio
)
2795 memset(btrfs_bio
, 0, offsetof(struct btrfs_io_bio
, bio
));
2799 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2800 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2801 * for the appropriate container_of magic
2803 struct bio
*btrfs_bio_alloc(struct block_device
*bdev
, u64 first_byte
)
2807 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, &btrfs_bioset
);
2808 bio_set_dev(bio
, bdev
);
2809 bio
->bi_iter
.bi_sector
= first_byte
>> 9;
2810 btrfs_io_bio_init(btrfs_io_bio(bio
));
2814 struct bio
*btrfs_bio_clone(struct bio
*bio
)
2816 struct btrfs_io_bio
*btrfs_bio
;
2819 /* Bio allocation backed by a bioset does not fail */
2820 new = bio_clone_fast(bio
, GFP_NOFS
, &btrfs_bioset
);
2821 btrfs_bio
= btrfs_io_bio(new);
2822 btrfs_io_bio_init(btrfs_bio
);
2823 btrfs_bio
->iter
= bio
->bi_iter
;
2827 struct bio
*btrfs_io_bio_alloc(unsigned int nr_iovecs
)
2831 /* Bio allocation backed by a bioset does not fail */
2832 bio
= bio_alloc_bioset(GFP_NOFS
, nr_iovecs
, &btrfs_bioset
);
2833 btrfs_io_bio_init(btrfs_io_bio(bio
));
2837 struct bio
*btrfs_bio_clone_partial(struct bio
*orig
, int offset
, int size
)
2840 struct btrfs_io_bio
*btrfs_bio
;
2842 /* this will never fail when it's backed by a bioset */
2843 bio
= bio_clone_fast(orig
, GFP_NOFS
, &btrfs_bioset
);
2846 btrfs_bio
= btrfs_io_bio(bio
);
2847 btrfs_io_bio_init(btrfs_bio
);
2849 bio_trim(bio
, offset
>> 9, size
>> 9);
2850 btrfs_bio
->iter
= bio
->bi_iter
;
2855 * @opf: bio REQ_OP_* and REQ_* flags as one value
2856 * @tree: tree so we can call our merge_bio hook
2857 * @wbc: optional writeback control for io accounting
2858 * @page: page to add to the bio
2859 * @pg_offset: offset of the new bio or to check whether we are adding
2860 * a contiguous page to the previous one
2861 * @size: portion of page that we want to write
2862 * @offset: starting offset in the page
2863 * @bdev: attach newly created bios to this bdev
2864 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2865 * @end_io_func: end_io callback for new bio
2866 * @mirror_num: desired mirror to read/write
2867 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2868 * @bio_flags: flags of the current bio to see if we can merge them
2870 static int submit_extent_page(unsigned int opf
, struct extent_io_tree
*tree
,
2871 struct writeback_control
*wbc
,
2872 struct page
*page
, u64 offset
,
2873 size_t size
, unsigned long pg_offset
,
2874 struct block_device
*bdev
,
2875 struct bio
**bio_ret
,
2876 bio_end_io_t end_io_func
,
2878 unsigned long prev_bio_flags
,
2879 unsigned long bio_flags
,
2880 bool force_bio_submit
)
2884 size_t page_size
= min_t(size_t, size
, PAGE_SIZE
);
2885 sector_t sector
= offset
>> 9;
2891 bool can_merge
= true;
2894 if (prev_bio_flags
& EXTENT_BIO_COMPRESSED
)
2895 contig
= bio
->bi_iter
.bi_sector
== sector
;
2897 contig
= bio_end_sector(bio
) == sector
;
2900 if (btrfs_bio_fits_in_stripe(page
, page_size
, bio
, bio_flags
))
2903 if (prev_bio_flags
!= bio_flags
|| !contig
|| !can_merge
||
2905 bio_add_page(bio
, page
, page_size
, pg_offset
) < page_size
) {
2906 ret
= submit_one_bio(bio
, mirror_num
, prev_bio_flags
);
2914 wbc_account_io(wbc
, page
, page_size
);
2919 bio
= btrfs_bio_alloc(bdev
, offset
);
2920 bio_add_page(bio
, page
, page_size
, pg_offset
);
2921 bio
->bi_end_io
= end_io_func
;
2922 bio
->bi_private
= tree
;
2923 bio
->bi_write_hint
= page
->mapping
->host
->i_write_hint
;
2926 wbc_init_bio(wbc
, bio
);
2927 wbc_account_io(wbc
, page
, page_size
);
2935 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2938 if (!PagePrivate(page
)) {
2939 SetPagePrivate(page
);
2941 set_page_private(page
, (unsigned long)eb
);
2943 WARN_ON(page
->private != (unsigned long)eb
);
2947 void set_page_extent_mapped(struct page
*page
)
2949 if (!PagePrivate(page
)) {
2950 SetPagePrivate(page
);
2952 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2956 static struct extent_map
*
2957 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2958 u64 start
, u64 len
, get_extent_t
*get_extent
,
2959 struct extent_map
**em_cached
)
2961 struct extent_map
*em
;
2963 if (em_cached
&& *em_cached
) {
2965 if (extent_map_in_tree(em
) && start
>= em
->start
&&
2966 start
< extent_map_end(em
)) {
2967 refcount_inc(&em
->refs
);
2971 free_extent_map(em
);
2975 em
= get_extent(BTRFS_I(inode
), page
, pg_offset
, start
, len
, 0);
2976 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2978 refcount_inc(&em
->refs
);
2984 * basic readpage implementation. Locked extent state structs are inserted
2985 * into the tree that are removed when the IO is done (by the end_io
2987 * XXX JDM: This needs looking at to ensure proper page locking
2988 * return 0 on success, otherwise return error
2990 static int __do_readpage(struct extent_io_tree
*tree
,
2992 get_extent_t
*get_extent
,
2993 struct extent_map
**em_cached
,
2994 struct bio
**bio
, int mirror_num
,
2995 unsigned long *bio_flags
, unsigned int read_flags
,
2998 struct inode
*inode
= page
->mapping
->host
;
2999 u64 start
= page_offset(page
);
3000 const u64 end
= start
+ PAGE_SIZE
- 1;
3003 u64 last_byte
= i_size_read(inode
);
3006 struct extent_map
*em
;
3007 struct block_device
*bdev
;
3010 size_t pg_offset
= 0;
3012 size_t disk_io_size
;
3013 size_t blocksize
= inode
->i_sb
->s_blocksize
;
3014 unsigned long this_bio_flag
= 0;
3016 set_page_extent_mapped(page
);
3018 if (!PageUptodate(page
)) {
3019 if (cleancache_get_page(page
) == 0) {
3020 BUG_ON(blocksize
!= PAGE_SIZE
);
3021 unlock_extent(tree
, start
, end
);
3026 if (page
->index
== last_byte
>> PAGE_SHIFT
) {
3028 size_t zero_offset
= offset_in_page(last_byte
);
3031 iosize
= PAGE_SIZE
- zero_offset
;
3032 userpage
= kmap_atomic(page
);
3033 memset(userpage
+ zero_offset
, 0, iosize
);
3034 flush_dcache_page(page
);
3035 kunmap_atomic(userpage
);
3038 while (cur
<= end
) {
3039 bool force_bio_submit
= false;
3042 if (cur
>= last_byte
) {
3044 struct extent_state
*cached
= NULL
;
3046 iosize
= PAGE_SIZE
- pg_offset
;
3047 userpage
= kmap_atomic(page
);
3048 memset(userpage
+ pg_offset
, 0, iosize
);
3049 flush_dcache_page(page
);
3050 kunmap_atomic(userpage
);
3051 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3053 unlock_extent_cached(tree
, cur
,
3054 cur
+ iosize
- 1, &cached
);
3057 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
3058 end
- cur
+ 1, get_extent
, em_cached
);
3059 if (IS_ERR_OR_NULL(em
)) {
3061 unlock_extent(tree
, cur
, end
);
3064 extent_offset
= cur
- em
->start
;
3065 BUG_ON(extent_map_end(em
) <= cur
);
3068 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3069 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
3070 extent_set_compress_type(&this_bio_flag
,
3074 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3075 cur_end
= min(extent_map_end(em
) - 1, end
);
3076 iosize
= ALIGN(iosize
, blocksize
);
3077 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
3078 disk_io_size
= em
->block_len
;
3079 offset
= em
->block_start
;
3081 offset
= em
->block_start
+ extent_offset
;
3082 disk_io_size
= iosize
;
3085 block_start
= em
->block_start
;
3086 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3087 block_start
= EXTENT_MAP_HOLE
;
3090 * If we have a file range that points to a compressed extent
3091 * and it's followed by a consecutive file range that points to
3092 * to the same compressed extent (possibly with a different
3093 * offset and/or length, so it either points to the whole extent
3094 * or only part of it), we must make sure we do not submit a
3095 * single bio to populate the pages for the 2 ranges because
3096 * this makes the compressed extent read zero out the pages
3097 * belonging to the 2nd range. Imagine the following scenario:
3100 * [0 - 8K] [8K - 24K]
3103 * points to extent X, points to extent X,
3104 * offset 4K, length of 8K offset 0, length 16K
3106 * [extent X, compressed length = 4K uncompressed length = 16K]
3108 * If the bio to read the compressed extent covers both ranges,
3109 * it will decompress extent X into the pages belonging to the
3110 * first range and then it will stop, zeroing out the remaining
3111 * pages that belong to the other range that points to extent X.
3112 * So here we make sure we submit 2 bios, one for the first
3113 * range and another one for the third range. Both will target
3114 * the same physical extent from disk, but we can't currently
3115 * make the compressed bio endio callback populate the pages
3116 * for both ranges because each compressed bio is tightly
3117 * coupled with a single extent map, and each range can have
3118 * an extent map with a different offset value relative to the
3119 * uncompressed data of our extent and different lengths. This
3120 * is a corner case so we prioritize correctness over
3121 * non-optimal behavior (submitting 2 bios for the same extent).
3123 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3124 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3125 *prev_em_start
!= em
->start
)
3126 force_bio_submit
= true;
3129 *prev_em_start
= em
->start
;
3131 free_extent_map(em
);
3134 /* we've found a hole, just zero and go on */
3135 if (block_start
== EXTENT_MAP_HOLE
) {
3137 struct extent_state
*cached
= NULL
;
3139 userpage
= kmap_atomic(page
);
3140 memset(userpage
+ pg_offset
, 0, iosize
);
3141 flush_dcache_page(page
);
3142 kunmap_atomic(userpage
);
3144 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3146 unlock_extent_cached(tree
, cur
,
3147 cur
+ iosize
- 1, &cached
);
3149 pg_offset
+= iosize
;
3152 /* the get_extent function already copied into the page */
3153 if (test_range_bit(tree
, cur
, cur_end
,
3154 EXTENT_UPTODATE
, 1, NULL
)) {
3155 check_page_uptodate(tree
, page
);
3156 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3158 pg_offset
+= iosize
;
3161 /* we have an inline extent but it didn't get marked up
3162 * to date. Error out
3164 if (block_start
== EXTENT_MAP_INLINE
) {
3166 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3168 pg_offset
+= iosize
;
3172 ret
= submit_extent_page(REQ_OP_READ
| read_flags
, tree
, NULL
,
3173 page
, offset
, disk_io_size
,
3174 pg_offset
, bdev
, bio
,
3175 end_bio_extent_readpage
, mirror_num
,
3181 *bio_flags
= this_bio_flag
;
3184 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3188 pg_offset
+= iosize
;
3192 if (!PageError(page
))
3193 SetPageUptodate(page
);
3199 static inline void contiguous_readpages(struct extent_io_tree
*tree
,
3200 struct page
*pages
[], int nr_pages
,
3202 struct extent_map
**em_cached
,
3204 unsigned long *bio_flags
,
3207 struct inode
*inode
;
3208 struct btrfs_ordered_extent
*ordered
;
3211 inode
= pages
[0]->mapping
->host
;
3213 lock_extent(tree
, start
, end
);
3214 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
3218 unlock_extent(tree
, start
, end
);
3219 btrfs_start_ordered_extent(inode
, ordered
, 1);
3220 btrfs_put_ordered_extent(ordered
);
3223 for (index
= 0; index
< nr_pages
; index
++) {
3224 __do_readpage(tree
, pages
[index
], btrfs_get_extent
, em_cached
,
3225 bio
, 0, bio_flags
, REQ_RAHEAD
, prev_em_start
);
3226 put_page(pages
[index
]);
3230 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3232 get_extent_t
*get_extent
,
3233 struct bio
**bio
, int mirror_num
,
3234 unsigned long *bio_flags
,
3235 unsigned int read_flags
)
3237 struct inode
*inode
= page
->mapping
->host
;
3238 struct btrfs_ordered_extent
*ordered
;
3239 u64 start
= page_offset(page
);
3240 u64 end
= start
+ PAGE_SIZE
- 1;
3244 lock_extent(tree
, start
, end
);
3245 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
3249 unlock_extent(tree
, start
, end
);
3250 btrfs_start_ordered_extent(inode
, ordered
, 1);
3251 btrfs_put_ordered_extent(ordered
);
3254 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3255 bio_flags
, read_flags
, NULL
);
3259 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3260 get_extent_t
*get_extent
, int mirror_num
)
3262 struct bio
*bio
= NULL
;
3263 unsigned long bio_flags
= 0;
3266 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3269 ret
= submit_one_bio(bio
, mirror_num
, bio_flags
);
3273 static void update_nr_written(struct writeback_control
*wbc
,
3274 unsigned long nr_written
)
3276 wbc
->nr_to_write
-= nr_written
;
3280 * helper for __extent_writepage, doing all of the delayed allocation setup.
3282 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3283 * to write the page (copy into inline extent). In this case the IO has
3284 * been started and the page is already unlocked.
3286 * This returns 0 if all went well (page still locked)
3287 * This returns < 0 if there were errors (page still locked)
3289 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3290 struct page
*page
, struct writeback_control
*wbc
,
3291 u64 delalloc_start
, unsigned long *nr_written
)
3293 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
3294 u64 page_end
= delalloc_start
+ PAGE_SIZE
- 1;
3296 u64 delalloc_to_write
= 0;
3297 u64 delalloc_end
= 0;
3299 int page_started
= 0;
3302 while (delalloc_end
< page_end
) {
3303 found
= find_lock_delalloc_range(inode
, tree
,
3308 delalloc_start
= delalloc_end
+ 1;
3311 ret
= btrfs_run_delalloc_range(inode
, page
, delalloc_start
,
3312 delalloc_end
, &page_started
, nr_written
, wbc
);
3313 /* File system has been set read-only */
3317 * btrfs_run_delalloc_range should return < 0 for error
3318 * but just in case, we use > 0 here meaning the IO is
3319 * started, so we don't want to return > 0 unless
3320 * things are going well.
3322 ret
= ret
< 0 ? ret
: -EIO
;
3326 * delalloc_end is already one less than the total length, so
3327 * we don't subtract one from PAGE_SIZE
3329 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3330 PAGE_SIZE
) >> PAGE_SHIFT
;
3331 delalloc_start
= delalloc_end
+ 1;
3333 if (wbc
->nr_to_write
< delalloc_to_write
) {
3336 if (delalloc_to_write
< thresh
* 2)
3337 thresh
= delalloc_to_write
;
3338 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3342 /* did the fill delalloc function already unlock and start
3347 * we've unlocked the page, so we can't update
3348 * the mapping's writeback index, just update
3351 wbc
->nr_to_write
-= *nr_written
;
3362 * helper for __extent_writepage. This calls the writepage start hooks,
3363 * and does the loop to map the page into extents and bios.
3365 * We return 1 if the IO is started and the page is unlocked,
3366 * 0 if all went well (page still locked)
3367 * < 0 if there were errors (page still locked)
3369 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3371 struct writeback_control
*wbc
,
3372 struct extent_page_data
*epd
,
3374 unsigned long nr_written
,
3375 unsigned int write_flags
, int *nr_ret
)
3377 struct extent_io_tree
*tree
= epd
->tree
;
3378 u64 start
= page_offset(page
);
3379 u64 page_end
= start
+ PAGE_SIZE
- 1;
3385 struct extent_map
*em
;
3386 struct block_device
*bdev
;
3387 size_t pg_offset
= 0;
3393 ret
= btrfs_writepage_cow_fixup(page
, start
, page_end
);
3395 /* Fixup worker will requeue */
3397 wbc
->pages_skipped
++;
3399 redirty_page_for_writepage(wbc
, page
);
3401 update_nr_written(wbc
, nr_written
);
3407 * we don't want to touch the inode after unlocking the page,
3408 * so we update the mapping writeback index now
3410 update_nr_written(wbc
, nr_written
+ 1);
3413 if (i_size
<= start
) {
3414 btrfs_writepage_endio_finish_ordered(page
, start
, page_end
, 1);
3418 blocksize
= inode
->i_sb
->s_blocksize
;
3420 while (cur
<= end
) {
3424 if (cur
>= i_size
) {
3425 btrfs_writepage_endio_finish_ordered(page
, cur
,
3429 em
= btrfs_get_extent(BTRFS_I(inode
), page
, pg_offset
, cur
,
3431 if (IS_ERR_OR_NULL(em
)) {
3433 ret
= PTR_ERR_OR_ZERO(em
);
3437 extent_offset
= cur
- em
->start
;
3438 em_end
= extent_map_end(em
);
3439 BUG_ON(em_end
<= cur
);
3441 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3442 iosize
= ALIGN(iosize
, blocksize
);
3443 offset
= em
->block_start
+ extent_offset
;
3445 block_start
= em
->block_start
;
3446 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3447 free_extent_map(em
);
3451 * compressed and inline extents are written through other
3454 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3455 block_start
== EXTENT_MAP_INLINE
) {
3457 * end_io notification does not happen here for
3458 * compressed extents
3461 btrfs_writepage_endio_finish_ordered(page
, cur
,
3464 else if (compressed
) {
3465 /* we don't want to end_page_writeback on
3466 * a compressed extent. this happens
3473 pg_offset
+= iosize
;
3477 btrfs_set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3478 if (!PageWriteback(page
)) {
3479 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3480 "page %lu not writeback, cur %llu end %llu",
3481 page
->index
, cur
, end
);
3484 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, tree
, wbc
,
3485 page
, offset
, iosize
, pg_offset
,
3487 end_bio_extent_writepage
,
3491 if (PageWriteback(page
))
3492 end_page_writeback(page
);
3496 pg_offset
+= iosize
;
3505 * the writepage semantics are similar to regular writepage. extent
3506 * records are inserted to lock ranges in the tree, and as dirty areas
3507 * are found, they are marked writeback. Then the lock bits are removed
3508 * and the end_io handler clears the writeback ranges
3510 * Return 0 if everything goes well.
3511 * Return <0 for error.
3513 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3514 struct extent_page_data
*epd
)
3516 struct inode
*inode
= page
->mapping
->host
;
3517 u64 start
= page_offset(page
);
3518 u64 page_end
= start
+ PAGE_SIZE
- 1;
3521 size_t pg_offset
= 0;
3522 loff_t i_size
= i_size_read(inode
);
3523 unsigned long end_index
= i_size
>> PAGE_SHIFT
;
3524 unsigned int write_flags
= 0;
3525 unsigned long nr_written
= 0;
3527 write_flags
= wbc_to_write_flags(wbc
);
3529 trace___extent_writepage(page
, inode
, wbc
);
3531 WARN_ON(!PageLocked(page
));
3533 ClearPageError(page
);
3535 pg_offset
= offset_in_page(i_size
);
3536 if (page
->index
> end_index
||
3537 (page
->index
== end_index
&& !pg_offset
)) {
3538 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_SIZE
);
3543 if (page
->index
== end_index
) {
3546 userpage
= kmap_atomic(page
);
3547 memset(userpage
+ pg_offset
, 0,
3548 PAGE_SIZE
- pg_offset
);
3549 kunmap_atomic(userpage
);
3550 flush_dcache_page(page
);
3555 set_page_extent_mapped(page
);
3557 if (!epd
->extent_locked
) {
3558 ret
= writepage_delalloc(inode
, page
, wbc
, start
, &nr_written
);
3565 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3566 i_size
, nr_written
, write_flags
, &nr
);
3572 /* make sure the mapping tag for page dirty gets cleared */
3573 set_page_writeback(page
);
3574 end_page_writeback(page
);
3576 if (PageError(page
)) {
3577 ret
= ret
< 0 ? ret
: -EIO
;
3578 end_extent_writepage(page
, ret
, start
, page_end
);
3588 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3590 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3591 TASK_UNINTERRUPTIBLE
);
3595 * Lock eb pages and flush the bio if we can't the locks
3597 * Return 0 if nothing went wrong
3598 * Return >0 is same as 0, except bio is not submitted
3599 * Return <0 if something went wrong, no page is locked
3601 static noinline_for_stack
int lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3602 struct extent_page_data
*epd
)
3604 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
3605 int i
, num_pages
, failed_page_nr
;
3609 if (!btrfs_try_tree_write_lock(eb
)) {
3610 ret
= flush_write_bio(epd
);
3614 btrfs_tree_lock(eb
);
3617 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3618 btrfs_tree_unlock(eb
);
3622 ret
= flush_write_bio(epd
);
3628 wait_on_extent_buffer_writeback(eb
);
3629 btrfs_tree_lock(eb
);
3630 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3632 btrfs_tree_unlock(eb
);
3637 * We need to do this to prevent races in people who check if the eb is
3638 * under IO since we can end up having no IO bits set for a short period
3641 spin_lock(&eb
->refs_lock
);
3642 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3643 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3644 spin_unlock(&eb
->refs_lock
);
3645 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3646 percpu_counter_add_batch(&fs_info
->dirty_metadata_bytes
,
3648 fs_info
->dirty_metadata_batch
);
3651 spin_unlock(&eb
->refs_lock
);
3654 btrfs_tree_unlock(eb
);
3659 num_pages
= num_extent_pages(eb
);
3660 for (i
= 0; i
< num_pages
; i
++) {
3661 struct page
*p
= eb
->pages
[i
];
3663 if (!trylock_page(p
)) {
3665 ret
= flush_write_bio(epd
);
3678 /* Unlock already locked pages */
3679 for (i
= 0; i
< failed_page_nr
; i
++)
3680 unlock_page(eb
->pages
[i
]);
3684 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3686 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3687 smp_mb__after_atomic();
3688 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3691 static void set_btree_ioerr(struct page
*page
)
3693 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3696 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3700 * If writeback for a btree extent that doesn't belong to a log tree
3701 * failed, increment the counter transaction->eb_write_errors.
3702 * We do this because while the transaction is running and before it's
3703 * committing (when we call filemap_fdata[write|wait]_range against
3704 * the btree inode), we might have
3705 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3706 * returns an error or an error happens during writeback, when we're
3707 * committing the transaction we wouldn't know about it, since the pages
3708 * can be no longer dirty nor marked anymore for writeback (if a
3709 * subsequent modification to the extent buffer didn't happen before the
3710 * transaction commit), which makes filemap_fdata[write|wait]_range not
3711 * able to find the pages tagged with SetPageError at transaction
3712 * commit time. So if this happens we must abort the transaction,
3713 * otherwise we commit a super block with btree roots that point to
3714 * btree nodes/leafs whose content on disk is invalid - either garbage
3715 * or the content of some node/leaf from a past generation that got
3716 * cowed or deleted and is no longer valid.
3718 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3719 * not be enough - we need to distinguish between log tree extents vs
3720 * non-log tree extents, and the next filemap_fdatawait_range() call
3721 * will catch and clear such errors in the mapping - and that call might
3722 * be from a log sync and not from a transaction commit. Also, checking
3723 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3724 * not done and would not be reliable - the eb might have been released
3725 * from memory and reading it back again means that flag would not be
3726 * set (since it's a runtime flag, not persisted on disk).
3728 * Using the flags below in the btree inode also makes us achieve the
3729 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3730 * writeback for all dirty pages and before filemap_fdatawait_range()
3731 * is called, the writeback for all dirty pages had already finished
3732 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3733 * filemap_fdatawait_range() would return success, as it could not know
3734 * that writeback errors happened (the pages were no longer tagged for
3737 switch (eb
->log_index
) {
3739 set_bit(BTRFS_FS_BTREE_ERR
, &eb
->fs_info
->flags
);
3742 set_bit(BTRFS_FS_LOG1_ERR
, &eb
->fs_info
->flags
);
3745 set_bit(BTRFS_FS_LOG2_ERR
, &eb
->fs_info
->flags
);
3748 BUG(); /* unexpected, logic error */
3752 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3754 struct bio_vec
*bvec
;
3755 struct extent_buffer
*eb
;
3757 struct bvec_iter_all iter_all
;
3759 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
3760 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
3761 struct page
*page
= bvec
->bv_page
;
3763 eb
= (struct extent_buffer
*)page
->private;
3765 done
= atomic_dec_and_test(&eb
->io_pages
);
3767 if (bio
->bi_status
||
3768 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3769 ClearPageUptodate(page
);
3770 set_btree_ioerr(page
);
3773 end_page_writeback(page
);
3778 end_extent_buffer_writeback(eb
);
3784 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3785 struct writeback_control
*wbc
,
3786 struct extent_page_data
*epd
)
3788 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
3789 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3790 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3791 u64 offset
= eb
->start
;
3794 unsigned long start
, end
;
3795 unsigned int write_flags
= wbc_to_write_flags(wbc
) | REQ_META
;
3798 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3799 num_pages
= num_extent_pages(eb
);
3800 atomic_set(&eb
->io_pages
, num_pages
);
3802 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3803 nritems
= btrfs_header_nritems(eb
);
3804 if (btrfs_header_level(eb
) > 0) {
3805 end
= btrfs_node_key_ptr_offset(nritems
);
3807 memzero_extent_buffer(eb
, end
, eb
->len
- end
);
3811 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3813 start
= btrfs_item_nr_offset(nritems
);
3814 end
= BTRFS_LEAF_DATA_OFFSET
+ leaf_data_end(eb
);
3815 memzero_extent_buffer(eb
, start
, end
- start
);
3818 for (i
= 0; i
< num_pages
; i
++) {
3819 struct page
*p
= eb
->pages
[i
];
3821 clear_page_dirty_for_io(p
);
3822 set_page_writeback(p
);
3823 ret
= submit_extent_page(REQ_OP_WRITE
| write_flags
, tree
, wbc
,
3824 p
, offset
, PAGE_SIZE
, 0, bdev
,
3826 end_bio_extent_buffer_writepage
,
3830 if (PageWriteback(p
))
3831 end_page_writeback(p
);
3832 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3833 end_extent_buffer_writeback(eb
);
3837 offset
+= PAGE_SIZE
;
3838 update_nr_written(wbc
, 1);
3842 if (unlikely(ret
)) {
3843 for (; i
< num_pages
; i
++) {
3844 struct page
*p
= eb
->pages
[i
];
3845 clear_page_dirty_for_io(p
);
3853 int btree_write_cache_pages(struct address_space
*mapping
,
3854 struct writeback_control
*wbc
)
3856 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3857 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3858 struct extent_page_data epd
= {
3862 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3866 int nr_to_write_done
= 0;
3867 struct pagevec pvec
;
3870 pgoff_t end
; /* Inclusive */
3874 pagevec_init(&pvec
);
3875 if (wbc
->range_cyclic
) {
3876 index
= mapping
->writeback_index
; /* Start from prev offset */
3879 index
= wbc
->range_start
>> PAGE_SHIFT
;
3880 end
= wbc
->range_end
>> PAGE_SHIFT
;
3883 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3884 tag
= PAGECACHE_TAG_TOWRITE
;
3886 tag
= PAGECACHE_TAG_DIRTY
;
3888 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3889 tag_pages_for_writeback(mapping
, index
, end
);
3890 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3891 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
3896 for (i
= 0; i
< nr_pages
; i
++) {
3897 struct page
*page
= pvec
.pages
[i
];
3899 if (!PagePrivate(page
))
3902 spin_lock(&mapping
->private_lock
);
3903 if (!PagePrivate(page
)) {
3904 spin_unlock(&mapping
->private_lock
);
3908 eb
= (struct extent_buffer
*)page
->private;
3911 * Shouldn't happen and normally this would be a BUG_ON
3912 * but no sense in crashing the users box for something
3913 * we can survive anyway.
3916 spin_unlock(&mapping
->private_lock
);
3920 if (eb
== prev_eb
) {
3921 spin_unlock(&mapping
->private_lock
);
3925 ret
= atomic_inc_not_zero(&eb
->refs
);
3926 spin_unlock(&mapping
->private_lock
);
3931 ret
= lock_extent_buffer_for_io(eb
, &epd
);
3933 free_extent_buffer(eb
);
3937 ret
= write_one_eb(eb
, wbc
, &epd
);
3940 free_extent_buffer(eb
);
3943 free_extent_buffer(eb
);
3946 * the filesystem may choose to bump up nr_to_write.
3947 * We have to make sure to honor the new nr_to_write
3950 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3952 pagevec_release(&pvec
);
3955 if (!scanned
&& !done
) {
3957 * We hit the last page and there is more work to be done: wrap
3958 * back to the start of the file
3966 end_write_bio(&epd
, ret
);
3969 ret
= flush_write_bio(&epd
);
3974 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3975 * @mapping: address space structure to write
3976 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3977 * @data: data passed to __extent_writepage function
3979 * If a page is already under I/O, write_cache_pages() skips it, even
3980 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3981 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3982 * and msync() need to guarantee that all the data which was dirty at the time
3983 * the call was made get new I/O started against them. If wbc->sync_mode is
3984 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3985 * existing IO to complete.
3987 static int extent_write_cache_pages(struct address_space
*mapping
,
3988 struct writeback_control
*wbc
,
3989 struct extent_page_data
*epd
)
3991 struct inode
*inode
= mapping
->host
;
3994 int nr_to_write_done
= 0;
3995 struct pagevec pvec
;
3998 pgoff_t end
; /* Inclusive */
4000 int range_whole
= 0;
4005 * We have to hold onto the inode so that ordered extents can do their
4006 * work when the IO finishes. The alternative to this is failing to add
4007 * an ordered extent if the igrab() fails there and that is a huge pain
4008 * to deal with, so instead just hold onto the inode throughout the
4009 * writepages operation. If it fails here we are freeing up the inode
4010 * anyway and we'd rather not waste our time writing out stuff that is
4011 * going to be truncated anyway.
4016 pagevec_init(&pvec
);
4017 if (wbc
->range_cyclic
) {
4018 index
= mapping
->writeback_index
; /* Start from prev offset */
4021 index
= wbc
->range_start
>> PAGE_SHIFT
;
4022 end
= wbc
->range_end
>> PAGE_SHIFT
;
4023 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
4029 * We do the tagged writepage as long as the snapshot flush bit is set
4030 * and we are the first one who do the filemap_flush() on this inode.
4032 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4033 * not race in and drop the bit.
4035 if (range_whole
&& wbc
->nr_to_write
== LONG_MAX
&&
4036 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH
,
4037 &BTRFS_I(inode
)->runtime_flags
))
4038 wbc
->tagged_writepages
= 1;
4040 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4041 tag
= PAGECACHE_TAG_TOWRITE
;
4043 tag
= PAGECACHE_TAG_DIRTY
;
4045 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
4046 tag_pages_for_writeback(mapping
, index
, end
);
4048 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4049 (nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
,
4050 &index
, end
, tag
))) {
4054 for (i
= 0; i
< nr_pages
; i
++) {
4055 struct page
*page
= pvec
.pages
[i
];
4057 done_index
= page
->index
;
4059 * At this point we hold neither the i_pages lock nor
4060 * the page lock: the page may be truncated or
4061 * invalidated (changing page->mapping to NULL),
4062 * or even swizzled back from swapper_space to
4063 * tmpfs file mapping
4065 if (!trylock_page(page
)) {
4066 ret
= flush_write_bio(epd
);
4071 if (unlikely(page
->mapping
!= mapping
)) {
4076 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4077 if (PageWriteback(page
)) {
4078 ret
= flush_write_bio(epd
);
4081 wait_on_page_writeback(page
);
4084 if (PageWriteback(page
) ||
4085 !clear_page_dirty_for_io(page
)) {
4090 ret
= __extent_writepage(page
, wbc
, epd
);
4093 * done_index is set past this page,
4094 * so media errors will not choke
4095 * background writeout for the entire
4096 * file. This has consequences for
4097 * range_cyclic semantics (ie. it may
4098 * not be suitable for data integrity
4101 done_index
= page
->index
+ 1;
4107 * the filesystem may choose to bump up nr_to_write.
4108 * We have to make sure to honor the new nr_to_write
4111 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4113 pagevec_release(&pvec
);
4116 if (!scanned
&& !done
) {
4118 * We hit the last page and there is more work to be done: wrap
4119 * back to the start of the file
4126 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 && range_whole
))
4127 mapping
->writeback_index
= done_index
;
4129 btrfs_add_delayed_iput(inode
);
4133 int extent_write_full_page(struct page
*page
, struct writeback_control
*wbc
)
4136 struct extent_page_data epd
= {
4138 .tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
,
4140 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4143 ret
= __extent_writepage(page
, wbc
, &epd
);
4146 end_write_bio(&epd
, ret
);
4150 ret
= flush_write_bio(&epd
);
4155 int extent_write_locked_range(struct inode
*inode
, u64 start
, u64 end
,
4159 struct address_space
*mapping
= inode
->i_mapping
;
4160 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
4162 unsigned long nr_pages
= (end
- start
+ PAGE_SIZE
) >>
4165 struct extent_page_data epd
= {
4169 .sync_io
= mode
== WB_SYNC_ALL
,
4171 struct writeback_control wbc_writepages
= {
4173 .nr_to_write
= nr_pages
* 2,
4174 .range_start
= start
,
4175 .range_end
= end
+ 1,
4178 while (start
<= end
) {
4179 page
= find_get_page(mapping
, start
>> PAGE_SHIFT
);
4180 if (clear_page_dirty_for_io(page
))
4181 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4183 btrfs_writepage_endio_finish_ordered(page
, start
,
4184 start
+ PAGE_SIZE
- 1, 1);
4193 end_write_bio(&epd
, ret
);
4196 ret
= flush_write_bio(&epd
);
4200 int extent_writepages(struct address_space
*mapping
,
4201 struct writeback_control
*wbc
)
4204 struct extent_page_data epd
= {
4206 .tree
= &BTRFS_I(mapping
->host
)->io_tree
,
4208 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4211 ret
= extent_write_cache_pages(mapping
, wbc
, &epd
);
4214 end_write_bio(&epd
, ret
);
4217 ret
= flush_write_bio(&epd
);
4221 int extent_readpages(struct address_space
*mapping
, struct list_head
*pages
,
4224 struct bio
*bio
= NULL
;
4225 unsigned long bio_flags
= 0;
4226 struct page
*pagepool
[16];
4227 struct extent_map
*em_cached
= NULL
;
4228 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4230 u64 prev_em_start
= (u64
)-1;
4232 while (!list_empty(pages
)) {
4235 for (nr
= 0; nr
< ARRAY_SIZE(pagepool
) && !list_empty(pages
);) {
4236 struct page
*page
= lru_to_page(pages
);
4238 prefetchw(&page
->flags
);
4239 list_del(&page
->lru
);
4240 if (add_to_page_cache_lru(page
, mapping
, page
->index
,
4241 readahead_gfp_mask(mapping
))) {
4246 pagepool
[nr
++] = page
;
4247 contig_end
= page_offset(page
) + PAGE_SIZE
- 1;
4251 u64 contig_start
= page_offset(pagepool
[0]);
4253 ASSERT(contig_start
+ nr
* PAGE_SIZE
- 1 == contig_end
);
4255 contiguous_readpages(tree
, pagepool
, nr
, contig_start
,
4256 contig_end
, &em_cached
, &bio
, &bio_flags
,
4262 free_extent_map(em_cached
);
4265 return submit_one_bio(bio
, 0, bio_flags
);
4270 * basic invalidatepage code, this waits on any locked or writeback
4271 * ranges corresponding to the page, and then deletes any extent state
4272 * records from the tree
4274 int extent_invalidatepage(struct extent_io_tree
*tree
,
4275 struct page
*page
, unsigned long offset
)
4277 struct extent_state
*cached_state
= NULL
;
4278 u64 start
= page_offset(page
);
4279 u64 end
= start
+ PAGE_SIZE
- 1;
4280 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4282 start
+= ALIGN(offset
, blocksize
);
4286 lock_extent_bits(tree
, start
, end
, &cached_state
);
4287 wait_on_page_writeback(page
);
4288 clear_extent_bit(tree
, start
, end
,
4289 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4290 EXTENT_DO_ACCOUNTING
,
4291 1, 1, &cached_state
);
4296 * a helper for releasepage, this tests for areas of the page that
4297 * are locked or under IO and drops the related state bits if it is safe
4300 static int try_release_extent_state(struct extent_io_tree
*tree
,
4301 struct page
*page
, gfp_t mask
)
4303 u64 start
= page_offset(page
);
4304 u64 end
= start
+ PAGE_SIZE
- 1;
4307 if (test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
)) {
4311 * at this point we can safely clear everything except the
4312 * locked bit and the nodatasum bit
4314 ret
= __clear_extent_bit(tree
, start
, end
,
4315 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4316 0, 0, NULL
, mask
, NULL
);
4318 /* if clear_extent_bit failed for enomem reasons,
4319 * we can't allow the release to continue.
4330 * a helper for releasepage. As long as there are no locked extents
4331 * in the range corresponding to the page, both state records and extent
4332 * map records are removed
4334 int try_release_extent_mapping(struct page
*page
, gfp_t mask
)
4336 struct extent_map
*em
;
4337 u64 start
= page_offset(page
);
4338 u64 end
= start
+ PAGE_SIZE
- 1;
4339 struct btrfs_inode
*btrfs_inode
= BTRFS_I(page
->mapping
->host
);
4340 struct extent_io_tree
*tree
= &btrfs_inode
->io_tree
;
4341 struct extent_map_tree
*map
= &btrfs_inode
->extent_tree
;
4343 if (gfpflags_allow_blocking(mask
) &&
4344 page
->mapping
->host
->i_size
> SZ_16M
) {
4346 while (start
<= end
) {
4347 len
= end
- start
+ 1;
4348 write_lock(&map
->lock
);
4349 em
= lookup_extent_mapping(map
, start
, len
);
4351 write_unlock(&map
->lock
);
4354 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4355 em
->start
!= start
) {
4356 write_unlock(&map
->lock
);
4357 free_extent_map(em
);
4360 if (!test_range_bit(tree
, em
->start
,
4361 extent_map_end(em
) - 1,
4362 EXTENT_LOCKED
, 0, NULL
)) {
4363 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4364 &btrfs_inode
->runtime_flags
);
4365 remove_extent_mapping(map
, em
);
4366 /* once for the rb tree */
4367 free_extent_map(em
);
4369 start
= extent_map_end(em
);
4370 write_unlock(&map
->lock
);
4373 free_extent_map(em
);
4376 return try_release_extent_state(tree
, page
, mask
);
4380 * helper function for fiemap, which doesn't want to see any holes.
4381 * This maps until we find something past 'last'
4383 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4384 u64 offset
, u64 last
)
4386 u64 sectorsize
= btrfs_inode_sectorsize(inode
);
4387 struct extent_map
*em
;
4394 len
= last
- offset
;
4397 len
= ALIGN(len
, sectorsize
);
4398 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), offset
, len
);
4399 if (IS_ERR_OR_NULL(em
))
4402 /* if this isn't a hole return it */
4403 if (em
->block_start
!= EXTENT_MAP_HOLE
)
4406 /* this is a hole, advance to the next extent */
4407 offset
= extent_map_end(em
);
4408 free_extent_map(em
);
4416 * To cache previous fiemap extent
4418 * Will be used for merging fiemap extent
4420 struct fiemap_cache
{
4429 * Helper to submit fiemap extent.
4431 * Will try to merge current fiemap extent specified by @offset, @phys,
4432 * @len and @flags with cached one.
4433 * And only when we fails to merge, cached one will be submitted as
4436 * Return value is the same as fiemap_fill_next_extent().
4438 static int emit_fiemap_extent(struct fiemap_extent_info
*fieinfo
,
4439 struct fiemap_cache
*cache
,
4440 u64 offset
, u64 phys
, u64 len
, u32 flags
)
4448 * Sanity check, extent_fiemap() should have ensured that new
4449 * fiemap extent won't overlap with cached one.
4452 * NOTE: Physical address can overlap, due to compression
4454 if (cache
->offset
+ cache
->len
> offset
) {
4460 * Only merges fiemap extents if
4461 * 1) Their logical addresses are continuous
4463 * 2) Their physical addresses are continuous
4464 * So truly compressed (physical size smaller than logical size)
4465 * extents won't get merged with each other
4467 * 3) Share same flags except FIEMAP_EXTENT_LAST
4468 * So regular extent won't get merged with prealloc extent
4470 if (cache
->offset
+ cache
->len
== offset
&&
4471 cache
->phys
+ cache
->len
== phys
&&
4472 (cache
->flags
& ~FIEMAP_EXTENT_LAST
) ==
4473 (flags
& ~FIEMAP_EXTENT_LAST
)) {
4475 cache
->flags
|= flags
;
4476 goto try_submit_last
;
4479 /* Not mergeable, need to submit cached one */
4480 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4481 cache
->len
, cache
->flags
);
4482 cache
->cached
= false;
4486 cache
->cached
= true;
4487 cache
->offset
= offset
;
4490 cache
->flags
= flags
;
4492 if (cache
->flags
& FIEMAP_EXTENT_LAST
) {
4493 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
,
4494 cache
->phys
, cache
->len
, cache
->flags
);
4495 cache
->cached
= false;
4501 * Emit last fiemap cache
4503 * The last fiemap cache may still be cached in the following case:
4505 * |<- Fiemap range ->|
4506 * |<------------ First extent ----------->|
4508 * In this case, the first extent range will be cached but not emitted.
4509 * So we must emit it before ending extent_fiemap().
4511 static int emit_last_fiemap_cache(struct fiemap_extent_info
*fieinfo
,
4512 struct fiemap_cache
*cache
)
4519 ret
= fiemap_fill_next_extent(fieinfo
, cache
->offset
, cache
->phys
,
4520 cache
->len
, cache
->flags
);
4521 cache
->cached
= false;
4527 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4528 __u64 start
, __u64 len
)
4532 u64 max
= start
+ len
;
4536 u64 last_for_get_extent
= 0;
4538 u64 isize
= i_size_read(inode
);
4539 struct btrfs_key found_key
;
4540 struct extent_map
*em
= NULL
;
4541 struct extent_state
*cached_state
= NULL
;
4542 struct btrfs_path
*path
;
4543 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4544 struct fiemap_cache cache
= { 0 };
4545 struct ulist
*roots
;
4546 struct ulist
*tmp_ulist
;
4555 path
= btrfs_alloc_path();
4558 path
->leave_spinning
= 1;
4560 roots
= ulist_alloc(GFP_KERNEL
);
4561 tmp_ulist
= ulist_alloc(GFP_KERNEL
);
4562 if (!roots
|| !tmp_ulist
) {
4564 goto out_free_ulist
;
4567 start
= round_down(start
, btrfs_inode_sectorsize(inode
));
4568 len
= round_up(max
, btrfs_inode_sectorsize(inode
)) - start
;
4571 * lookup the last file extent. We're not using i_size here
4572 * because there might be preallocation past i_size
4574 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
4575 btrfs_ino(BTRFS_I(inode
)), -1, 0);
4577 btrfs_free_path(path
);
4578 goto out_free_ulist
;
4586 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4587 found_type
= found_key
.type
;
4589 /* No extents, but there might be delalloc bits */
4590 if (found_key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
4591 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4592 /* have to trust i_size as the end */
4594 last_for_get_extent
= isize
;
4597 * remember the start of the last extent. There are a
4598 * bunch of different factors that go into the length of the
4599 * extent, so its much less complex to remember where it started
4601 last
= found_key
.offset
;
4602 last_for_get_extent
= last
+ 1;
4604 btrfs_release_path(path
);
4607 * we might have some extents allocated but more delalloc past those
4608 * extents. so, we trust isize unless the start of the last extent is
4613 last_for_get_extent
= isize
;
4616 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4619 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
);
4628 u64 offset_in_extent
= 0;
4630 /* break if the extent we found is outside the range */
4631 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4635 * get_extent may return an extent that starts before our
4636 * requested range. We have to make sure the ranges
4637 * we return to fiemap always move forward and don't
4638 * overlap, so adjust the offsets here
4640 em_start
= max(em
->start
, off
);
4643 * record the offset from the start of the extent
4644 * for adjusting the disk offset below. Only do this if the
4645 * extent isn't compressed since our in ram offset may be past
4646 * what we have actually allocated on disk.
4648 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4649 offset_in_extent
= em_start
- em
->start
;
4650 em_end
= extent_map_end(em
);
4651 em_len
= em_end
- em_start
;
4653 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
)
4654 disko
= em
->block_start
+ offset_in_extent
;
4659 * bump off for our next call to get_extent
4661 off
= extent_map_end(em
);
4665 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4667 flags
|= FIEMAP_EXTENT_LAST
;
4668 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4669 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4670 FIEMAP_EXTENT_NOT_ALIGNED
);
4671 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4672 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4673 FIEMAP_EXTENT_UNKNOWN
);
4674 } else if (fieinfo
->fi_extents_max
) {
4675 u64 bytenr
= em
->block_start
-
4676 (em
->start
- em
->orig_start
);
4679 * As btrfs supports shared space, this information
4680 * can be exported to userspace tools via
4681 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4682 * then we're just getting a count and we can skip the
4685 ret
= btrfs_check_shared(root
,
4686 btrfs_ino(BTRFS_I(inode
)),
4687 bytenr
, roots
, tmp_ulist
);
4691 flags
|= FIEMAP_EXTENT_SHARED
;
4694 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4695 flags
|= FIEMAP_EXTENT_ENCODED
;
4696 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4697 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4699 free_extent_map(em
);
4701 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4702 (last
== (u64
)-1 && isize
<= em_end
)) {
4703 flags
|= FIEMAP_EXTENT_LAST
;
4707 /* now scan forward to see if this is really the last extent. */
4708 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
);
4714 flags
|= FIEMAP_EXTENT_LAST
;
4717 ret
= emit_fiemap_extent(fieinfo
, &cache
, em_start
, disko
,
4727 ret
= emit_last_fiemap_cache(fieinfo
, &cache
);
4728 free_extent_map(em
);
4730 btrfs_free_path(path
);
4731 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4736 ulist_free(tmp_ulist
);
4740 static void __free_extent_buffer(struct extent_buffer
*eb
)
4742 btrfs_leak_debug_del(&eb
->leak_list
);
4743 kmem_cache_free(extent_buffer_cache
, eb
);
4746 int extent_buffer_under_io(struct extent_buffer
*eb
)
4748 return (atomic_read(&eb
->io_pages
) ||
4749 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4750 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4754 * Release all pages attached to the extent buffer.
4756 static void btrfs_release_extent_buffer_pages(struct extent_buffer
*eb
)
4760 int mapped
= !test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
4762 BUG_ON(extent_buffer_under_io(eb
));
4764 num_pages
= num_extent_pages(eb
);
4765 for (i
= 0; i
< num_pages
; i
++) {
4766 struct page
*page
= eb
->pages
[i
];
4771 spin_lock(&page
->mapping
->private_lock
);
4773 * We do this since we'll remove the pages after we've
4774 * removed the eb from the radix tree, so we could race
4775 * and have this page now attached to the new eb. So
4776 * only clear page_private if it's still connected to
4779 if (PagePrivate(page
) &&
4780 page
->private == (unsigned long)eb
) {
4781 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4782 BUG_ON(PageDirty(page
));
4783 BUG_ON(PageWriteback(page
));
4785 * We need to make sure we haven't be attached
4788 ClearPagePrivate(page
);
4789 set_page_private(page
, 0);
4790 /* One for the page private */
4795 spin_unlock(&page
->mapping
->private_lock
);
4797 /* One for when we allocated the page */
4803 * Helper for releasing the extent buffer.
4805 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4807 btrfs_release_extent_buffer_pages(eb
);
4808 __free_extent_buffer(eb
);
4811 static struct extent_buffer
*
4812 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4815 struct extent_buffer
*eb
= NULL
;
4817 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
4820 eb
->fs_info
= fs_info
;
4822 rwlock_init(&eb
->lock
);
4823 atomic_set(&eb
->blocking_readers
, 0);
4824 atomic_set(&eb
->blocking_writers
, 0);
4825 eb
->lock_nested
= false;
4826 init_waitqueue_head(&eb
->write_lock_wq
);
4827 init_waitqueue_head(&eb
->read_lock_wq
);
4829 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4831 spin_lock_init(&eb
->refs_lock
);
4832 atomic_set(&eb
->refs
, 1);
4833 atomic_set(&eb
->io_pages
, 0);
4836 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4838 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4839 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4840 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4842 #ifdef CONFIG_BTRFS_DEBUG
4843 atomic_set(&eb
->spinning_writers
, 0);
4844 atomic_set(&eb
->spinning_readers
, 0);
4845 atomic_set(&eb
->read_locks
, 0);
4846 atomic_set(&eb
->write_locks
, 0);
4852 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4856 struct extent_buffer
*new;
4857 int num_pages
= num_extent_pages(src
);
4859 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
4863 for (i
= 0; i
< num_pages
; i
++) {
4864 p
= alloc_page(GFP_NOFS
);
4866 btrfs_release_extent_buffer(new);
4869 attach_extent_buffer_page(new, p
);
4870 WARN_ON(PageDirty(p
));
4873 copy_page(page_address(p
), page_address(src
->pages
[i
]));
4876 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4877 set_bit(EXTENT_BUFFER_UNMAPPED
, &new->bflags
);
4882 struct extent_buffer
*__alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4883 u64 start
, unsigned long len
)
4885 struct extent_buffer
*eb
;
4889 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4893 num_pages
= num_extent_pages(eb
);
4894 for (i
= 0; i
< num_pages
; i
++) {
4895 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4899 set_extent_buffer_uptodate(eb
);
4900 btrfs_set_header_nritems(eb
, 0);
4901 set_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
);
4906 __free_page(eb
->pages
[i
- 1]);
4907 __free_extent_buffer(eb
);
4911 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4914 return __alloc_dummy_extent_buffer(fs_info
, start
, fs_info
->nodesize
);
4917 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4920 /* the ref bit is tricky. We have to make sure it is set
4921 * if we have the buffer dirty. Otherwise the
4922 * code to free a buffer can end up dropping a dirty
4925 * Once the ref bit is set, it won't go away while the
4926 * buffer is dirty or in writeback, and it also won't
4927 * go away while we have the reference count on the
4930 * We can't just set the ref bit without bumping the
4931 * ref on the eb because free_extent_buffer might
4932 * see the ref bit and try to clear it. If this happens
4933 * free_extent_buffer might end up dropping our original
4934 * ref by mistake and freeing the page before we are able
4935 * to add one more ref.
4937 * So bump the ref count first, then set the bit. If someone
4938 * beat us to it, drop the ref we added.
4940 refs
= atomic_read(&eb
->refs
);
4941 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4944 spin_lock(&eb
->refs_lock
);
4945 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4946 atomic_inc(&eb
->refs
);
4947 spin_unlock(&eb
->refs_lock
);
4950 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
4951 struct page
*accessed
)
4955 check_buffer_tree_ref(eb
);
4957 num_pages
= num_extent_pages(eb
);
4958 for (i
= 0; i
< num_pages
; i
++) {
4959 struct page
*p
= eb
->pages
[i
];
4962 mark_page_accessed(p
);
4966 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4969 struct extent_buffer
*eb
;
4972 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4973 start
>> PAGE_SHIFT
);
4974 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4977 * Lock our eb's refs_lock to avoid races with
4978 * free_extent_buffer. When we get our eb it might be flagged
4979 * with EXTENT_BUFFER_STALE and another task running
4980 * free_extent_buffer might have seen that flag set,
4981 * eb->refs == 2, that the buffer isn't under IO (dirty and
4982 * writeback flags not set) and it's still in the tree (flag
4983 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4984 * of decrementing the extent buffer's reference count twice.
4985 * So here we could race and increment the eb's reference count,
4986 * clear its stale flag, mark it as dirty and drop our reference
4987 * before the other task finishes executing free_extent_buffer,
4988 * which would later result in an attempt to free an extent
4989 * buffer that is dirty.
4991 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
4992 spin_lock(&eb
->refs_lock
);
4993 spin_unlock(&eb
->refs_lock
);
4995 mark_extent_buffer_accessed(eb
, NULL
);
5003 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5004 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
5007 struct extent_buffer
*eb
, *exists
= NULL
;
5010 eb
= find_extent_buffer(fs_info
, start
);
5013 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
5016 eb
->fs_info
= fs_info
;
5018 ret
= radix_tree_preload(GFP_NOFS
);
5021 spin_lock(&fs_info
->buffer_lock
);
5022 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5023 start
>> PAGE_SHIFT
, eb
);
5024 spin_unlock(&fs_info
->buffer_lock
);
5025 radix_tree_preload_end();
5026 if (ret
== -EEXIST
) {
5027 exists
= find_extent_buffer(fs_info
, start
);
5033 check_buffer_tree_ref(eb
);
5034 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5038 btrfs_release_extent_buffer(eb
);
5043 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
5046 unsigned long len
= fs_info
->nodesize
;
5049 unsigned long index
= start
>> PAGE_SHIFT
;
5050 struct extent_buffer
*eb
;
5051 struct extent_buffer
*exists
= NULL
;
5053 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
5057 if (!IS_ALIGNED(start
, fs_info
->sectorsize
)) {
5058 btrfs_err(fs_info
, "bad tree block start %llu", start
);
5059 return ERR_PTR(-EINVAL
);
5062 eb
= find_extent_buffer(fs_info
, start
);
5066 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
5068 return ERR_PTR(-ENOMEM
);
5070 num_pages
= num_extent_pages(eb
);
5071 for (i
= 0; i
< num_pages
; i
++, index
++) {
5072 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
5074 exists
= ERR_PTR(-ENOMEM
);
5078 spin_lock(&mapping
->private_lock
);
5079 if (PagePrivate(p
)) {
5081 * We could have already allocated an eb for this page
5082 * and attached one so lets see if we can get a ref on
5083 * the existing eb, and if we can we know it's good and
5084 * we can just return that one, else we know we can just
5085 * overwrite page->private.
5087 exists
= (struct extent_buffer
*)p
->private;
5088 if (atomic_inc_not_zero(&exists
->refs
)) {
5089 spin_unlock(&mapping
->private_lock
);
5092 mark_extent_buffer_accessed(exists
, p
);
5098 * Do this so attach doesn't complain and we need to
5099 * drop the ref the old guy had.
5101 ClearPagePrivate(p
);
5102 WARN_ON(PageDirty(p
));
5105 attach_extent_buffer_page(eb
, p
);
5106 spin_unlock(&mapping
->private_lock
);
5107 WARN_ON(PageDirty(p
));
5109 if (!PageUptodate(p
))
5113 * We can't unlock the pages just yet since the extent buffer
5114 * hasn't been properly inserted in the radix tree, this
5115 * opens a race with btree_releasepage which can free a page
5116 * while we are still filling in all pages for the buffer and
5121 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5123 ret
= radix_tree_preload(GFP_NOFS
);
5125 exists
= ERR_PTR(ret
);
5129 spin_lock(&fs_info
->buffer_lock
);
5130 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5131 start
>> PAGE_SHIFT
, eb
);
5132 spin_unlock(&fs_info
->buffer_lock
);
5133 radix_tree_preload_end();
5134 if (ret
== -EEXIST
) {
5135 exists
= find_extent_buffer(fs_info
, start
);
5141 /* add one reference for the tree */
5142 check_buffer_tree_ref(eb
);
5143 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5146 * Now it's safe to unlock the pages because any calls to
5147 * btree_releasepage will correctly detect that a page belongs to a
5148 * live buffer and won't free them prematurely.
5150 for (i
= 0; i
< num_pages
; i
++)
5151 unlock_page(eb
->pages
[i
]);
5155 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5156 for (i
= 0; i
< num_pages
; i
++) {
5158 unlock_page(eb
->pages
[i
]);
5161 btrfs_release_extent_buffer(eb
);
5165 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5167 struct extent_buffer
*eb
=
5168 container_of(head
, struct extent_buffer
, rcu_head
);
5170 __free_extent_buffer(eb
);
5173 static int release_extent_buffer(struct extent_buffer
*eb
)
5175 lockdep_assert_held(&eb
->refs_lock
);
5177 WARN_ON(atomic_read(&eb
->refs
) == 0);
5178 if (atomic_dec_and_test(&eb
->refs
)) {
5179 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5180 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5182 spin_unlock(&eb
->refs_lock
);
5184 spin_lock(&fs_info
->buffer_lock
);
5185 radix_tree_delete(&fs_info
->buffer_radix
,
5186 eb
->start
>> PAGE_SHIFT
);
5187 spin_unlock(&fs_info
->buffer_lock
);
5189 spin_unlock(&eb
->refs_lock
);
5192 /* Should be safe to release our pages at this point */
5193 btrfs_release_extent_buffer_pages(eb
);
5194 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5195 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
))) {
5196 __free_extent_buffer(eb
);
5200 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5203 spin_unlock(&eb
->refs_lock
);
5208 void free_extent_buffer(struct extent_buffer
*eb
)
5216 refs
= atomic_read(&eb
->refs
);
5217 if ((!test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) && refs
<= 3)
5218 || (test_bit(EXTENT_BUFFER_UNMAPPED
, &eb
->bflags
) &&
5221 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5226 spin_lock(&eb
->refs_lock
);
5227 if (atomic_read(&eb
->refs
) == 2 &&
5228 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5229 !extent_buffer_under_io(eb
) &&
5230 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5231 atomic_dec(&eb
->refs
);
5234 * I know this is terrible, but it's temporary until we stop tracking
5235 * the uptodate bits and such for the extent buffers.
5237 release_extent_buffer(eb
);
5240 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5245 spin_lock(&eb
->refs_lock
);
5246 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5248 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5249 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5250 atomic_dec(&eb
->refs
);
5251 release_extent_buffer(eb
);
5254 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5260 num_pages
= num_extent_pages(eb
);
5262 for (i
= 0; i
< num_pages
; i
++) {
5263 page
= eb
->pages
[i
];
5264 if (!PageDirty(page
))
5268 WARN_ON(!PagePrivate(page
));
5270 clear_page_dirty_for_io(page
);
5271 xa_lock_irq(&page
->mapping
->i_pages
);
5272 if (!PageDirty(page
))
5273 __xa_clear_mark(&page
->mapping
->i_pages
,
5274 page_index(page
), PAGECACHE_TAG_DIRTY
);
5275 xa_unlock_irq(&page
->mapping
->i_pages
);
5276 ClearPageError(page
);
5279 WARN_ON(atomic_read(&eb
->refs
) == 0);
5282 bool set_extent_buffer_dirty(struct extent_buffer
*eb
)
5288 check_buffer_tree_ref(eb
);
5290 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5292 num_pages
= num_extent_pages(eb
);
5293 WARN_ON(atomic_read(&eb
->refs
) == 0);
5294 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5297 for (i
= 0; i
< num_pages
; i
++)
5298 set_page_dirty(eb
->pages
[i
]);
5300 #ifdef CONFIG_BTRFS_DEBUG
5301 for (i
= 0; i
< num_pages
; i
++)
5302 ASSERT(PageDirty(eb
->pages
[i
]));
5308 void clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5314 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5315 num_pages
= num_extent_pages(eb
);
5316 for (i
= 0; i
< num_pages
; i
++) {
5317 page
= eb
->pages
[i
];
5319 ClearPageUptodate(page
);
5323 void set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5329 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5330 num_pages
= num_extent_pages(eb
);
5331 for (i
= 0; i
< num_pages
; i
++) {
5332 page
= eb
->pages
[i
];
5333 SetPageUptodate(page
);
5337 int read_extent_buffer_pages(struct extent_buffer
*eb
, int wait
, int mirror_num
)
5343 int locked_pages
= 0;
5344 int all_uptodate
= 1;
5346 unsigned long num_reads
= 0;
5347 struct bio
*bio
= NULL
;
5348 unsigned long bio_flags
= 0;
5349 struct extent_io_tree
*tree
= &BTRFS_I(eb
->fs_info
->btree_inode
)->io_tree
;
5351 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5354 num_pages
= num_extent_pages(eb
);
5355 for (i
= 0; i
< num_pages
; i
++) {
5356 page
= eb
->pages
[i
];
5357 if (wait
== WAIT_NONE
) {
5358 if (!trylock_page(page
))
5366 * We need to firstly lock all pages to make sure that
5367 * the uptodate bit of our pages won't be affected by
5368 * clear_extent_buffer_uptodate().
5370 for (i
= 0; i
< num_pages
; i
++) {
5371 page
= eb
->pages
[i
];
5372 if (!PageUptodate(page
)) {
5379 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5383 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5384 eb
->read_mirror
= 0;
5385 atomic_set(&eb
->io_pages
, num_reads
);
5386 for (i
= 0; i
< num_pages
; i
++) {
5387 page
= eb
->pages
[i
];
5389 if (!PageUptodate(page
)) {
5391 atomic_dec(&eb
->io_pages
);
5396 ClearPageError(page
);
5397 err
= __extent_read_full_page(tree
, page
,
5398 btree_get_extent
, &bio
,
5399 mirror_num
, &bio_flags
,
5404 * We use &bio in above __extent_read_full_page,
5405 * so we ensure that if it returns error, the
5406 * current page fails to add itself to bio and
5407 * it's been unlocked.
5409 * We must dec io_pages by ourselves.
5411 atomic_dec(&eb
->io_pages
);
5419 err
= submit_one_bio(bio
, mirror_num
, bio_flags
);
5424 if (ret
|| wait
!= WAIT_COMPLETE
)
5427 for (i
= 0; i
< num_pages
; i
++) {
5428 page
= eb
->pages
[i
];
5429 wait_on_page_locked(page
);
5430 if (!PageUptodate(page
))
5437 while (locked_pages
> 0) {
5439 page
= eb
->pages
[locked_pages
];
5445 void read_extent_buffer(const struct extent_buffer
*eb
, void *dstv
,
5446 unsigned long start
, unsigned long len
)
5452 char *dst
= (char *)dstv
;
5453 size_t start_offset
= offset_in_page(eb
->start
);
5454 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5456 if (start
+ len
> eb
->len
) {
5457 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5458 eb
->start
, eb
->len
, start
, len
);
5459 memset(dst
, 0, len
);
5463 offset
= offset_in_page(start_offset
+ start
);
5466 page
= eb
->pages
[i
];
5468 cur
= min(len
, (PAGE_SIZE
- offset
));
5469 kaddr
= page_address(page
);
5470 memcpy(dst
, kaddr
+ offset
, cur
);
5479 int read_extent_buffer_to_user(const struct extent_buffer
*eb
,
5481 unsigned long start
, unsigned long len
)
5487 char __user
*dst
= (char __user
*)dstv
;
5488 size_t start_offset
= offset_in_page(eb
->start
);
5489 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5492 WARN_ON(start
> eb
->len
);
5493 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5495 offset
= offset_in_page(start_offset
+ start
);
5498 page
= eb
->pages
[i
];
5500 cur
= min(len
, (PAGE_SIZE
- offset
));
5501 kaddr
= page_address(page
);
5502 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5517 * return 0 if the item is found within a page.
5518 * return 1 if the item spans two pages.
5519 * return -EINVAL otherwise.
5521 int map_private_extent_buffer(const struct extent_buffer
*eb
,
5522 unsigned long start
, unsigned long min_len
,
5523 char **map
, unsigned long *map_start
,
5524 unsigned long *map_len
)
5529 size_t start_offset
= offset_in_page(eb
->start
);
5530 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5531 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5534 if (start
+ min_len
> eb
->len
) {
5535 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5536 eb
->start
, eb
->len
, start
, min_len
);
5544 offset
= start_offset
;
5548 *map_start
= ((u64
)i
<< PAGE_SHIFT
) - start_offset
;
5552 kaddr
= page_address(p
);
5553 *map
= kaddr
+ offset
;
5554 *map_len
= PAGE_SIZE
- offset
;
5558 int memcmp_extent_buffer(const struct extent_buffer
*eb
, const void *ptrv
,
5559 unsigned long start
, unsigned long len
)
5565 char *ptr
= (char *)ptrv
;
5566 size_t start_offset
= offset_in_page(eb
->start
);
5567 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5570 WARN_ON(start
> eb
->len
);
5571 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5573 offset
= offset_in_page(start_offset
+ start
);
5576 page
= eb
->pages
[i
];
5578 cur
= min(len
, (PAGE_SIZE
- offset
));
5580 kaddr
= page_address(page
);
5581 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5593 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer
*eb
,
5598 WARN_ON(!PageUptodate(eb
->pages
[0]));
5599 kaddr
= page_address(eb
->pages
[0]);
5600 memcpy(kaddr
+ offsetof(struct btrfs_header
, chunk_tree_uuid
), srcv
,
5604 void write_extent_buffer_fsid(struct extent_buffer
*eb
, const void *srcv
)
5608 WARN_ON(!PageUptodate(eb
->pages
[0]));
5609 kaddr
= page_address(eb
->pages
[0]);
5610 memcpy(kaddr
+ offsetof(struct btrfs_header
, fsid
), srcv
,
5614 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5615 unsigned long start
, unsigned long len
)
5621 char *src
= (char *)srcv
;
5622 size_t start_offset
= offset_in_page(eb
->start
);
5623 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5625 WARN_ON(start
> eb
->len
);
5626 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5628 offset
= offset_in_page(start_offset
+ start
);
5631 page
= eb
->pages
[i
];
5632 WARN_ON(!PageUptodate(page
));
5634 cur
= min(len
, PAGE_SIZE
- offset
);
5635 kaddr
= page_address(page
);
5636 memcpy(kaddr
+ offset
, src
, cur
);
5645 void memzero_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5652 size_t start_offset
= offset_in_page(eb
->start
);
5653 unsigned long i
= (start_offset
+ start
) >> PAGE_SHIFT
;
5655 WARN_ON(start
> eb
->len
);
5656 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5658 offset
= offset_in_page(start_offset
+ start
);
5661 page
= eb
->pages
[i
];
5662 WARN_ON(!PageUptodate(page
));
5664 cur
= min(len
, PAGE_SIZE
- offset
);
5665 kaddr
= page_address(page
);
5666 memset(kaddr
+ offset
, 0, cur
);
5674 void copy_extent_buffer_full(struct extent_buffer
*dst
,
5675 struct extent_buffer
*src
)
5680 ASSERT(dst
->len
== src
->len
);
5682 num_pages
= num_extent_pages(dst
);
5683 for (i
= 0; i
< num_pages
; i
++)
5684 copy_page(page_address(dst
->pages
[i
]),
5685 page_address(src
->pages
[i
]));
5688 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5689 unsigned long dst_offset
, unsigned long src_offset
,
5692 u64 dst_len
= dst
->len
;
5697 size_t start_offset
= offset_in_page(dst
->start
);
5698 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5700 WARN_ON(src
->len
!= dst_len
);
5702 offset
= offset_in_page(start_offset
+ dst_offset
);
5705 page
= dst
->pages
[i
];
5706 WARN_ON(!PageUptodate(page
));
5708 cur
= min(len
, (unsigned long)(PAGE_SIZE
- offset
));
5710 kaddr
= page_address(page
);
5711 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5721 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5723 * @eb: the extent buffer
5724 * @start: offset of the bitmap item in the extent buffer
5726 * @page_index: return index of the page in the extent buffer that contains the
5728 * @page_offset: return offset into the page given by page_index
5730 * This helper hides the ugliness of finding the byte in an extent buffer which
5731 * contains a given bit.
5733 static inline void eb_bitmap_offset(struct extent_buffer
*eb
,
5734 unsigned long start
, unsigned long nr
,
5735 unsigned long *page_index
,
5736 size_t *page_offset
)
5738 size_t start_offset
= offset_in_page(eb
->start
);
5739 size_t byte_offset
= BIT_BYTE(nr
);
5743 * The byte we want is the offset of the extent buffer + the offset of
5744 * the bitmap item in the extent buffer + the offset of the byte in the
5747 offset
= start_offset
+ start
+ byte_offset
;
5749 *page_index
= offset
>> PAGE_SHIFT
;
5750 *page_offset
= offset_in_page(offset
);
5754 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5755 * @eb: the extent buffer
5756 * @start: offset of the bitmap item in the extent buffer
5757 * @nr: bit number to test
5759 int extent_buffer_test_bit(struct extent_buffer
*eb
, unsigned long start
,
5767 eb_bitmap_offset(eb
, start
, nr
, &i
, &offset
);
5768 page
= eb
->pages
[i
];
5769 WARN_ON(!PageUptodate(page
));
5770 kaddr
= page_address(page
);
5771 return 1U & (kaddr
[offset
] >> (nr
& (BITS_PER_BYTE
- 1)));
5775 * extent_buffer_bitmap_set - set an area of a bitmap
5776 * @eb: the extent buffer
5777 * @start: offset of the bitmap item in the extent buffer
5778 * @pos: bit number of the first bit
5779 * @len: number of bits to set
5781 void extent_buffer_bitmap_set(struct extent_buffer
*eb
, unsigned long start
,
5782 unsigned long pos
, unsigned long len
)
5788 const unsigned int size
= pos
+ len
;
5789 int bits_to_set
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5790 u8 mask_to_set
= BITMAP_FIRST_BYTE_MASK(pos
);
5792 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5793 page
= eb
->pages
[i
];
5794 WARN_ON(!PageUptodate(page
));
5795 kaddr
= page_address(page
);
5797 while (len
>= bits_to_set
) {
5798 kaddr
[offset
] |= mask_to_set
;
5800 bits_to_set
= BITS_PER_BYTE
;
5802 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5804 page
= eb
->pages
[++i
];
5805 WARN_ON(!PageUptodate(page
));
5806 kaddr
= page_address(page
);
5810 mask_to_set
&= BITMAP_LAST_BYTE_MASK(size
);
5811 kaddr
[offset
] |= mask_to_set
;
5817 * extent_buffer_bitmap_clear - clear an area of a bitmap
5818 * @eb: the extent buffer
5819 * @start: offset of the bitmap item in the extent buffer
5820 * @pos: bit number of the first bit
5821 * @len: number of bits to clear
5823 void extent_buffer_bitmap_clear(struct extent_buffer
*eb
, unsigned long start
,
5824 unsigned long pos
, unsigned long len
)
5830 const unsigned int size
= pos
+ len
;
5831 int bits_to_clear
= BITS_PER_BYTE
- (pos
% BITS_PER_BYTE
);
5832 u8 mask_to_clear
= BITMAP_FIRST_BYTE_MASK(pos
);
5834 eb_bitmap_offset(eb
, start
, pos
, &i
, &offset
);
5835 page
= eb
->pages
[i
];
5836 WARN_ON(!PageUptodate(page
));
5837 kaddr
= page_address(page
);
5839 while (len
>= bits_to_clear
) {
5840 kaddr
[offset
] &= ~mask_to_clear
;
5841 len
-= bits_to_clear
;
5842 bits_to_clear
= BITS_PER_BYTE
;
5844 if (++offset
>= PAGE_SIZE
&& len
> 0) {
5846 page
= eb
->pages
[++i
];
5847 WARN_ON(!PageUptodate(page
));
5848 kaddr
= page_address(page
);
5852 mask_to_clear
&= BITMAP_LAST_BYTE_MASK(size
);
5853 kaddr
[offset
] &= ~mask_to_clear
;
5857 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5859 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5860 return distance
< len
;
5863 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5864 unsigned long dst_off
, unsigned long src_off
,
5867 char *dst_kaddr
= page_address(dst_page
);
5869 int must_memmove
= 0;
5871 if (dst_page
!= src_page
) {
5872 src_kaddr
= page_address(src_page
);
5874 src_kaddr
= dst_kaddr
;
5875 if (areas_overlap(src_off
, dst_off
, len
))
5880 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5882 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5885 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5886 unsigned long src_offset
, unsigned long len
)
5888 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5890 size_t dst_off_in_page
;
5891 size_t src_off_in_page
;
5892 size_t start_offset
= offset_in_page(dst
->start
);
5893 unsigned long dst_i
;
5894 unsigned long src_i
;
5896 if (src_offset
+ len
> dst
->len
) {
5898 "memmove bogus src_offset %lu move len %lu dst len %lu",
5899 src_offset
, len
, dst
->len
);
5902 if (dst_offset
+ len
> dst
->len
) {
5904 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5905 dst_offset
, len
, dst
->len
);
5910 dst_off_in_page
= offset_in_page(start_offset
+ dst_offset
);
5911 src_off_in_page
= offset_in_page(start_offset
+ src_offset
);
5913 dst_i
= (start_offset
+ dst_offset
) >> PAGE_SHIFT
;
5914 src_i
= (start_offset
+ src_offset
) >> PAGE_SHIFT
;
5916 cur
= min(len
, (unsigned long)(PAGE_SIZE
-
5918 cur
= min_t(unsigned long, cur
,
5919 (unsigned long)(PAGE_SIZE
- dst_off_in_page
));
5921 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5922 dst_off_in_page
, src_off_in_page
, cur
);
5930 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5931 unsigned long src_offset
, unsigned long len
)
5933 struct btrfs_fs_info
*fs_info
= dst
->fs_info
;
5935 size_t dst_off_in_page
;
5936 size_t src_off_in_page
;
5937 unsigned long dst_end
= dst_offset
+ len
- 1;
5938 unsigned long src_end
= src_offset
+ len
- 1;
5939 size_t start_offset
= offset_in_page(dst
->start
);
5940 unsigned long dst_i
;
5941 unsigned long src_i
;
5943 if (src_offset
+ len
> dst
->len
) {
5945 "memmove bogus src_offset %lu move len %lu len %lu",
5946 src_offset
, len
, dst
->len
);
5949 if (dst_offset
+ len
> dst
->len
) {
5951 "memmove bogus dst_offset %lu move len %lu len %lu",
5952 dst_offset
, len
, dst
->len
);
5955 if (dst_offset
< src_offset
) {
5956 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5960 dst_i
= (start_offset
+ dst_end
) >> PAGE_SHIFT
;
5961 src_i
= (start_offset
+ src_end
) >> PAGE_SHIFT
;
5963 dst_off_in_page
= offset_in_page(start_offset
+ dst_end
);
5964 src_off_in_page
= offset_in_page(start_offset
+ src_end
);
5966 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5967 cur
= min(cur
, dst_off_in_page
+ 1);
5968 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5969 dst_off_in_page
- cur
+ 1,
5970 src_off_in_page
- cur
+ 1, cur
);
5978 int try_release_extent_buffer(struct page
*page
)
5980 struct extent_buffer
*eb
;
5983 * We need to make sure nobody is attaching this page to an eb right
5986 spin_lock(&page
->mapping
->private_lock
);
5987 if (!PagePrivate(page
)) {
5988 spin_unlock(&page
->mapping
->private_lock
);
5992 eb
= (struct extent_buffer
*)page
->private;
5996 * This is a little awful but should be ok, we need to make sure that
5997 * the eb doesn't disappear out from under us while we're looking at
6000 spin_lock(&eb
->refs_lock
);
6001 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
6002 spin_unlock(&eb
->refs_lock
);
6003 spin_unlock(&page
->mapping
->private_lock
);
6006 spin_unlock(&page
->mapping
->private_lock
);
6009 * If tree ref isn't set then we know the ref on this eb is a real ref,
6010 * so just return, this page will likely be freed soon anyway.
6012 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
6013 spin_unlock(&eb
->refs_lock
);
6017 return release_extent_buffer(eb
);